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ABSTRACT: Mathematics seems to have a special status when compared to other areas of human knowledge. This 
special status is linked with the role of proof. Mathematicians often believe that this type of argumentation 
leaves no room for errors and unclarity. Philosophers of mathematics have differentiated between absolut-
ist and fallibilist views on mathematical knowledge, and argued that these views are related to whether one 
looks at mathematics-in-the-making or finished mathematics. In this paper we take a closer look at mathe-
matical practice, more precisely at the publication process in mathematics. We argue that the apparent view 
that mathematical literature, given the special status of mathematics, is highly reliable is too naive. We will 
discuss several problems in the publication process that threaten this view, and give several suggestions on 
how this could be countered. 
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RESUMEN: Las matemáticas parecen tener un estatuto especial cuando se las compara con otras áreas del conoci-
miento humano. Este estatuto especial está conectado con el papel de la demostración. Los matemáticos 
creen con frecuencia que este tipo de argumentos no deja margen para el error o la falta de claridad. Los fi-
lósofos de la matemática han distinguido entre una concepción absolutista y una falibilista del conocimien-
to matemático, argumentando que estas concepciones están relacionadas con una consideración de las ma-
temáticas-en-proceso o en tanto que matemáticas ya hechas. En este artículo examinamos más de cerca la 
práctica matemática, más en concreto el proceso de publicación en matemáticas. Argumentaremos que la 
idea preconcebida de que la literatura matemática, dado el estatuto especial de las matemáticas, es altamente 
fiable, es demasiado ingenua. Discutiremos algunos problemas del proceso de edición que amenazan esta 
visión y haremos algunas sugerencias sobre cómo enfrentarlos. 

Palabras clave: demostración matemática; fiabilidad; proceso de publicación; absolutismo; falibilismo. 

1. Introduction 

In recent decades a growing number of philosophers of mathematics have relocated 
their attention from the logical foundations of mathematics to the practice of      
mathematics.1 In this paper we proceed along these lines by critically reevaluating the 
reliability of the publishing process in mathematics. 
 In section 2 we will discuss how mathematics is often characterized as                
epistemically unique, and relate this view with absolutist and fallibilist approaches to 
mathematics. Our goal is to show that the argument that the view that mathematics is 
                                                        
* Both authors contributed equally to this work. The authors would like to thank Erik Weber for     

comments on earlier drafts of this paper. 
1 See, for instance, the work of Mancosu (2008) and the recently founded ‘Association for the Philosophy 

of Mathematical Practice’ or APMP (http://institucional.us.es/apmp/index.htm). For more insights 
on the historical development of the study of mathematical practice and its relationship with ‘tradi-
tional’ philosophy of mathematics, see Van Bendegem (2014). 
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epistemically unique does not necessarily lead to a high level of reliability of publica-
tions in mathematical literature. We will argue in section 3 why this is the case. Section 
4 discusses possible strategies to counter the problematic situation that we outlined in 
section 3. Section 5, finally, entails some concluding remarks. 

2. Mathematical knowledge 

2.1 Epistemic uniqueness 

Mathematical knowledge is often characterized as very special and unique, since it 
seems that mathematical knowledge has a level of certainty, exactness and objectivity 
that is unachieved in any other form of knowledge, including scientific knowledge. 
Mathematicians defend such a view with confidence. Kline argues as follows:   
“Whenever someone wants an example of certitude and exactness of reasoning, he 
appeals to mathematics” (Kline 2008, 4). Krantz also describes the idea that mathe-
matics “is equipped with a sort of certainty that other sciences do not possess. […] 
We have endowed the system with a reliability and reproducibility and portability that 
no other science can hope for” (Krantz 2011, 22). 
 Philosophers have wondered about the special epistemic status of mathematics as 
well. Heintz (2000) refers to two typical characteristics of mathematics, i.e. coherence 
of mathematical concepts and theories and the consensus among mathematicians. 
First, mathematics is strongly connected and coherent. What mathematicians and   
scientists have in common is that they work relatively isolated and within small      
specialized subfields. In contrast with science, where this practice leads to partly    
contradictory theories, mathematics remains highly coherent. Second, Heintz refers to 
a high consensus among mathematicians, or, as she indicates, mathematics does not 
allow flexibility on the part of interpretation. More specifically, mathematics leaves no 
room for controversy in regard to its conclusions. Anyone accepting the rules of the 
mathematical method is thus supposed to arrive at the same result. 

2.2 Absolutism and fallibilism 

Several philosophers have nonetheless pointed out that the above view of mathemat-
ics is mistaken, since it it is not a correct or complete presentation of the mathematical 
practice or mathematical knowledge. Ernest (1998) describes two opposing views in 
philosophy of mathematics, that is the absolutist and the fallibilist view about mathe-
matical knowledge. Absolutism sees mathematical knowledge as a body of knowledge 
consisting of certain and unchallengeable truths. Sympathisers of the absolutist view 
argue that the use of formal language, axioms and strict rules of inference in mathe-
matics leads to unquestionable mathematical knowledge. Furthermore, they argue that 
these tools suffice to establish all mathematical truths. 
 The other view Ernest describes, and argues for, is fallibilism. This is a more recent 
position in the philosophy of mathematics, and embraces the practice of mathematics 
and its human side. Mathematical knowledge is here described as fallible and corrigi-
ble, both in terms of its proofs and its concepts. Lakatos (1978) is often considered 
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among the first and most important authors that presented such a fallibilistic view. In 
Proofs and Refutations, he presents a lively classroom discussion of Euler's formula in 
order to explore ideas about the concept of proof and the nature of mathematics. By 
showing how the formula was investigated, decomposed, built upon and improved, 
Lakatos presented a mathematical activity that was an alternative to the idea that 
mathematics was merely presenting an absolute proof. Through his analogy, Lakatos 
demonstrated mathematics as an activity of trial and error. Mathematical concepts, 
forms and standards of proof are not permanently fixed, but can rather have a history 
of continuous modification. 
 One way of approaching these discussions is by differentiating between writing 
mathematics and doing mathematics. Hersh (1997) has called this respectively the 
‘front’ and the ‘back’ of mathematics. The analogy is made by referring to a gourmet 
restaurant, where in the front the public are served finished and perfect dishes. The 
back, which is the kitchen, is restricted to insiders and shows a much more messy (but 
often practical) activity. Hersh argues that in mathematics an analogous distinction  
exists between the front, how mathematics is presented neatly in lectures and       
textbooks, and the back, how mathematicians ‘make’ new knowledge and how this is 
connected with a messy human striving. The front still leaves the impression of an  
absolutist view of mathematics while the back shows a more fallibilist picture. 

2.3 Mathematical publications 

The dichotomy between absolutism and fallibilism has mainly led to extensive discus-
sions in the philosophy of mathematical education, on how mathematics should be 
presented in the classroom. Within the community of working mathematicians, how-
ever, such discussions are quite rare.2 In this paper, we examine a particular part of the 
mathematical practice, namely the publication process. It is not surprising that, in ac-
cordance with the work of Hersh, there are differences between the activities that are 
part of creating a mathematical idea and the properties of the final paper. We are in-
terested in the latter, and whether one could still uphold the idea that knowledge pre-
sented in mathematical literature reaches a uniquely high level of reliability or the 
knowledge presented in papers is in fact part of the fallible striving towards true 
knowledge. 
 Mathematicians do not merely present the claims or conclusions of their research 
in published articles. They use the method of proof, in order to show how the truth of 
these claims is mathematically established. A crucial aspect of proof seems to be that, 
if two or more mathematicians share the same mathematical assumptions and reason-
ing methods, one can check a proof of his colleague completely in order to verify the 
correctness of the mathematical result. 
 Obviously, working mathematicians are humans and are not immune to error.  
This is the case even if mathematics offers this method that, in principle, leaves no 
room for errors. Mathematical research is complex. There is always a possibility that 
                                                        
2 The gap between concepts in (philosophy of) mathematical education and mathematical practice is    

discussed by Sfard (1998). 
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mathematicians make a mistake that they oversee themselves. Consequently, if a 
mathematician presents a mathematical result, it is possible his or her research is in-
fected by mistakes. 
 The most common and important medium mathematicians use in order to present 
these results, in agreement with other sciences, is the publication in academic journals. 
This sort of communication has two specific characteristics. First, these journals are 
peer reviewed. As a result, every paper is reviewed by at least one mathematician be-
fore it is accepted for publication. Secondly, after the publication anyone with access 
to the journal can read the article. 
 Starting from these assumptions one would be able to argue that the mathematical 
literature is highly reliable. If an article contains an error, due to a mistake of the au-
thor, this error can be detected by the reviewers of the journal. Even if these reviewers 
do not detect the error, other mathematicians will be able to detect it. This is the case 
even when a mistake eludes detection for a long period, which is a characteristic that 
makes mathematics unique, as discussed by Azzouni: “[E]ven if many later results are 
built on that mistake, this won’t provide enough social inertia—once the error is un-
earthed—to resist changing the practice back to what it was originally: in mathematics, 
even after lots of time, the subsequent mathematics built on the “falsehood” is repu-
diated” (Azzouni 2007, 9). 
 In the following section we argue that in contemporary practice, this argument is 
too naive. Although we believe that these assumptions have a certain truth in them, 
the reality is more complex and problematic. We will argue that the reliability of math-
ematical literature should be handled with greater caution than is done in contempo-
rary practice. The result is that if we want to deal with this problem, as we will do in 
the final section by suggesting several strategies, that mathematical literature should be 
more located in the back and treated in terms of the fallibilist. 

3. Mathematical practice 

3.1 Surveyability of mathematical proofs 

A first important observation is that mathematicians, in contrast with other sciences, 
are able to prove their results. Once such a proof is available, another mathematician 
can in principle check the correctness of the proof without any doubt, by making sure 
that every part of the proof follows legitimately from the previous ones. The question 
that evidently arises is whether every proof can be checked this rigorously. These 
questions are linked with the topic of surveyability, that has been severely discussed in 
mathematics and philosophy.3 
 Contemporary discussions on the surveyability of mathematical proofs start with 
the seminal paper on the four-color theorem by Tymoczko (1979). The problem is 
that the proof, provided by Appel and Haken, is obtained with the use of computer 
programs. The data used is too immense in order to be checked by a mathematician. 
Tymockzo argued that if we accept the four-color theorem based on a computer-
                                                        
3 For a historical overview, see Bassler (2006). 
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assisted proof we have to change the concept of proof. The standard view of proof 
was indeed a “construction that can be looked over, reviewed, verified by a rational 
agent. We often say that a proof must be perspicuous, or capable of being checked by 
hand. It is an exhibition, a derivation of the conclusion, and it needs nothing outside 
itself to be convincing. The mathematician surveys the proof in its entirety and there-
by comes to know the conclusion” (Tymoczko 1979, 59). Tymoczko thus showed, 
that the fact that most of the mathematical community did accept the proof as a genu-
ine mathematical justification for the four-color theorem, meant a crucial change in 
traditional conceptions of proof and mathematical knowledge.  
 Contemporary mathematics is increasingly reliant on the interaction with computer 
systems, and not only for reasoning or calculation steps in proofs. There are also more 
and more programs that verify mathematical results.4 In order to use these tools, the 
proof must be written in a completely formal language, which is a precise artificial lan-
guage that only admits certain well-defined operations. Naturally, the proof-checking 
software could contain bugs and again, mathematicians are not always able to check 
everything themselves because the processed data is too immense. There is however 
another problem, namely that the proofs mathematicians deal with are almost never 
spelled out in a complete formal language: “Human mathematics consists in fact in 
talking about formal proofs, and not actually performing them. One argues quite con-
vincingly that certain formal texts exist, and it would in fact not be impossible to write 
them down. But it is not done: it would be hard work and useless because the human 
brain is not good at checking that a formal text is error-free. Human mathematics is a 
sort of dance around an unwritten formal text, which if written would be unreadable” 
(Ruelle 2000, 254). 
 Hence, for a set of (non-traditional) proofs the certainty of the established theorem 
is not obtained by referring to the surveyability of its proof. But at least most mathe-
maticians are willing to discuss what place they give these theorems in the body of 
mathematical knowledge. More interesting and more problematic are the traditional 
proofs. Perhaps a move towards proof-checking programs is needed, but we are in 
this paper interested in the proofs that are in fact published. And these proofs are not 
presented in a way that the surveyability and verifiability is trivial.5 
 Fallis (2003), for instance, introduces the notion of gaps in mathematical proofs.6 
A gap is any point where the written proof does not follow from the previous lines in 
the proof by merely applying formally valid rules of inference. Fallis argues that most 
actual proofs that are presented by the mathematical community contain gaps.         
He proposes the following categorization of proof gaps: A mathematician leaves an  
inferential gap whenever the mathematician uses a particular sequence of propositions, 
                                                        
4 For further discussions of this topic, see Harrison (2008). 
5 It could be that certain informal mathematical methods, such as mathematical visualizations, are tools  

to verify mathematical results as well. Giaquinto (2007), for example, argues that mathematical      
visualisations can lead to legitimate mathematical knowledge. Further investigations in these topics 
are more than welcome. 

6 Fallis introduces this notion in order to argue that pobabilistic proofs in mathematics should be given 
more credence. 
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which he/she has in mind as being a proof, that is in fact not a proof. This sort of gap 
is problematic, as it undercuts the proof. A mathematician leaves an enthymematic gap if 
he/she does not explicitly state the particular sequence of propositions in mind. One 
has supposedly checked all the details, but these details are left out for the sake of style 
or length of the article. The third category are untraversed gaps, where the mathematician 
has not tried to verify directly that each proposition in the sequence of propositions 
that he/she has in mind follows from a subset of previous propositions in the se-
quence by application of a mathematical inference. Fallis notes that in some cases it is 
“considered acceptable for a mathematician to leave an untraversed gap” (Fallis 2003, 
59). Next to this taxonomy of gaps, Fallis speaks of a universally untraversed gap if 
none of the members of the mathematical community has bridged an untraversed gap. 
He claims that such gaps are not unusual in mathematical practice and that         
proofs containing such gaps are still often accepted/justified by the mathematical 
community.7 
 A similar point, using another terminology, is also made by Davis (1972), who   
discusses the practice of splicing proofs: “In the course of a proof, one cites Euler’s 
Theorem, say, by way of authority. The onus is now on the reader to verify that all  
the conditions (in their most modern formulation) which are necessary for the        
applicability of the theorem are, in fact, present” (Davis 1972, 259). Splicing allows 
mathematicians to leave out steps that are sufficiently worked out in other places of 
the literature. Davis argues that splicing is not the only phenomenon in mathematical 
practice. Mathematicians also skip steps. The practice of skipping is very similar to the 
taxonomy of gaps provided by Fallis. Davis states that mathematicians skip steps due 
to boredom, if he or she finds it unnecessary to complete every single step, or         
superiority, if he or she believes that everyone can follow the steps without spelling 
them out. 
 Mathematicians thus leave, in practice, gaps in the communication of mathematical 
proofs. On the one hand this makes the proofs more readable, on the other hand it is 
not always clear to what extent the proofs can still be checked rigourously. Coleman 
(2009), discussing the surveyability of long proofs in mathematics, concludes that a  
dichotomy between short and long proofs is unnecessary since mathematics always 
concerns ‘long proofs’, emphasizing the importance of the archive of mathematical 
literature in this matter:  

The key to that, is to recognise that mathematics is a written practice which depends on the     
accumulation and deployment of an archive. Because of that, one does not need to have all of a 
proof in one’s head because it is all on record. Understanding it means you have the main idea of 
it in your head, and knowing it requires both that, and the facility with the archive to get at the 
details if wanted. The ‘fully written out proofs’ are there, in a sense—the distributed sense in 
which the mathematically educated agent can access them, and so the theorems of mathematics 
are indeed justified by proofs, though the true justifications are not the proofs labelled as such. 
Really, mathematics is long proofs. (Coleman 2009, 42) 

                                                        
7 Fallis admits that it is difficult to cite cases where it is undeniable that a mathematician uses a proof that 

contains a universally untraversed gap and that he/she is nevertheless justified in his/her belief in a 
manner that is accepted by the mathematical community. Fallis discusses several cases that suggest 
that universally untraversed gaps are at least sometimes accepted. 
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 We believe that this is a good view of mathematical research, but we want to      
include two remarks. First, not all “fully written out proofs” are available, since     
published proofs are not only sliced, but certain steps are also skipped. And secondly, 
it shows that checking a mathematical proof comes with a high price. If one wants to 
fully check a mathematical result, one has to consult the archives of mathematical    
literature and fill in certain gaps in addition to reading the paper itself. The idea that 
mathematical proofs can be checked beyond doubt given common assumptions and 
methods between mathematicians, is thus not as simple as it appears. Moreover, as we 
will discuss in the next sections, proofs are not sufficiently checked at all. 

3.2 Peer review 

Once a paper containing mathematical results is written, it is submitted to an academic 
journal. Before it can be published, the article must be reviewed by referees. These 
referees, other professional mathematicians who are experts in the area covered in the 
article, decide whether the article can be published in the journal. One of the goals of 
the peer review system is quality control. It protects the body of literature from con-
tamination by false or flawed arguments. 
 Does the refereeing process lead to a high reliability of mathematical literature? 
Although we have seen that this is also problematic, the use of (semi-)verifiable proofs 
could still lead to a positive answer. Nathanson, in an opinion piece for a mathemati-
cal journal is however quite pessimistic on this: 

How do we know that a proof is correct? By checking it, line by line. […] If a theorem has a 
short complete proof, we can check it. But if the proof is deep, difficult, and already fills 100 
journal pages, if no one has the time and energy to fill in the details, if a “complete” proof would 
be 100,000 pages long, then we rely on the judgment of the bosses in the field. […] Many (I think 
most) papers in most refereed journals are not refereed. There is a presumptive referee who looks 
at the paper, reads the introduction and the statement of the results, glances at the proofs, and, if 
everything seems okay, recommends publication. Some referees check proofs line-by-line, but 
many do not. When I read a journal article, I often find mistakes. Whether I can fix them is irrel-
evant. The literature is unreliable. (Nathanson 2008, 773) 

 Nathanson mentions several problems. First, mathematicians are not able to check 
all the proofs themselves. We will discuss this problem more severe in the next sec-
tion. Second, referees do not check the correctness of the proofs. Hildebrand (2009) 
also states that reviewers can only be reasonably confident about the correctness of 
the article. It remains however vague what this amounts to and whether this happens 
in practice. And third, Nathanson (2008) was able to find mistakes in the literature. 
Nathanson does not stand alone with his claim that the literature contains error. Davis 
(1972) states that half of the published proofs contain errors.8 

                                                        
8 There is naturally a difference between errors that undermine the established theorems, and errors that 

are present in the paper but don't render the results false. There is no reason to believe that the ma-
jority of mathematical results in the literature is false because there are quite a lot of errors. This 
could be linked with Thurston’s (1994) claim that mathematicians are manifest better in detecting 
flaws or weaknesses that make a proof false than validating its complete formal correctness. 



Joachim FRANS and Laszlo KOSOLOSKY 

Theoria 81 (2014): 345-360  

352 

 Geist, Löwe and Van Kerkhove (2010) have done preliminary research on the sta-
tus of the refereeing process and the link with the reliability of mathematical literature. 
They remarkably found that it is not even universally expected that referees check the 
complete correctness of the paper: “Mathematicians disagree about the amount of de-
tail checking that has to be done by the referees. While some (few) mathematicians 
think that checking the correctness of the proofs is the main task of the referee, others 
disagree with this and consider mathematical correctness the problem of the author 
rather than that of the referee” (Geist, Löwe & Van Kerkhove 2010, 161). This is con-
firmed by a questionnaire the authors sent off to several mathematical journals. One 
of the questions was whether the referee should check all the proofs in detail, some 
proofs in detail or no proofs in detail. Of the 27 editors that were addressed, 11 an-
swered: the first option was chosen five times, the second six times, and the third op-
tion was not selected. Remarkably, one of the editors who chose the first option add-
ed: “but to be reasonable, I am happy when I find a referee doing (b)” (Geist, Löwe & 
Van Kerkhove 2010, 163-164), which is in fact the second option. 

3.3 Mathematical community 

Mathematicians, as mentioned above, base their work on the archive of other mathe-
matical results. Consequently, it can still be the case that mathematical publications are 
sufficiently checked when they are used for new research. However, this view is still 
quite naive, as already became clear in the quote from Nathanson in the previous sec-
tion. Mathematicians do not have the time or expertise to completely check every 
proof they read or use. Rather, Geist, Löwe and Van Kerkhove (2010) state there is a 
tendency of mathematicians to take proofs for granted in using them for their own re-
search. The fact that knowledge depends on the knowledge reported by others is dis-
cussed in the topic of testimony.9 It is evident that a great number of our beliefs come 
from what others tell us. The epistemology of testimony takes up the challenge to in-
vestigate when and why these beliefs are justified. 
 Hardwig (1985, 1991) acknowledges trust as an ultimate foundation for a serious 
part of our knowledge.10 He argues that this trust is eligible since “if I were to pursue 
epistemic autonomy across the board, I would succeed in holding relatively unin-
formed, unreliable, crude, untested and therefore irrational beliefs” (Hardwig 1985, 
340). Mathematical progress would indeed be hard without relying on testimony of 
others. It would, for instance, require a lot of time and expertise for a mathematician 
to check the reliability of each accepted proposition in a proof. Moreover, the proofs 
that the mathematician would be able to check, start themselves from already accepted 
propositions. Despite the fact that testimony seems to be an essential part of mathe-
matical research and progress, we should still ask ourselves when relying on testimony 
is in fact justified. Or, in other words, when we are justified taking the work and word 

                                                        
9 For a detailed overview of both historical and contemporary positions in this debate, see Origgi (2004). 
10 For insights on how its counterparts, being distrust and mistrust, influence knowledge gaining, see 

Primiero and Kosolosky (2014). 
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of our peers for granted in a rather ‘blind’ manner, as we miss out on time and energy 
to justify their claims for ourselves. 
 The mathematician Auslander refers to the importance of experts in this matter. 
Mathematicians take certain results for granted, without verifying the proofs them-
selves: “We accept that a purported result is correct when we hear that it has been 
proved by a mathematician we trust and ‘validated’ by experts in the author’s mathe-
matical specialty. This is the case even if we haven’t read the proof, or more frequently 
when we don’t have the background to follow the proof” (Auslander 2008, 64). 
 Furthermore, many mathematicians adopt the view that if a mathematical result is 
published in a journal, it must be trustworthy. Weber (2008, 2011) interviewed several 
mathematics professors at a regional university in the United States, specialized in a 
variety of mathematical disciplines. On the topic of validating the correctness of the 
proofs, one of the interviewees said: “To be honest, when I read papers, I don’t read 
the proofs. In the journal papers, and the papers that I read in my research, maybe 
that's bad or maybe that’s not, if I’m convinced that the result is true, I don’t neces-
sarily need to read it, I can just believe it” (Weber 2008, 449). Another professor said 
the following: “I do not try and determine if a proof is correct. If it is in a journal, I 
assume it is. I’m much more interested in the ideas of a proof” (Weber 2011, 334). It 
must be noted that it is not the case that all participants indicate that they do not 
check proofs in the literature. In fact, some indicate that they do pay attention to the 
correctness of proofs when they read papers. Nevertheless, these quotations show 
that Nathanson and Auslander are not mistaken when indicating that checking the 
correctness of a proof is not the primary concern of mathematicians. And we already 
discussed the problem of depending on peer review for the correctness of these 
proofs. 
 Another observation connected with the problem of testimony is the fact that, 
which may seem surprising for an outstander, some mathematical results in fact lack a 
written proof.11 This is, among others, described by the mathematician Thurston:  

Within any field, there are certain theorems and certain techniques that are generally known and 
generally accepted. When you write a paper, you refer to these without proof. You look at other 
papers in the field, and you see what facts they quote without proof, and what they cite in their 
bibliography. […] Many of the things that are generally known are things for which there may be 
no known written source. As long as people in the field are comfortable that the idea works, it 
doesn't need to have a formal written source. (Thurston 1994, 168) 

 The attitude of taking other literature for granted does not only stand in the way of 
detecting and correcting errors in the literature. In reality, it leads to new results that 
are based on flawed literature. Consequently, it becomes increasingly complex to cor-
rect mistakes in the literature, since new results are based on other results that are po-
tentially flawed and potentially insufficiently checked by either reviewers or authors of 
the new article. 
 

                                                        
11 Mathematicians themselves even have a name for proofs that may circulate without having been ap-

peared in print, namely mathematical folklore. 
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3.4 Mathematical journals 

A final issue is that authors are in fact not always interested in validating other results, 
and more interested in finding new results. In science, authors may be inclined to pub-
lish statistically significant results more eagerly than non-significant ones, and negative 
findings are more difficult to prove with a high probability than positive ones (Resnik 
2007). Moreover, results that are more provocative may get published more easily, as a 
study on precognition demonstrates: Bem (2011) published an article in which he re-
ported evidence of people’s ability to see the future. Ritchie, French and Wiseman 
(2012), who replicated the study, found, however, no evidence of precognition. Their 
paper was however rejected by the same journal as Bem’s research was published in. 
The journal mentioned that their policy was not to publish replications of previous 
studies. The replication study was also turned down by Science, only now the reason 
was that the negative results should be published in the same journal as the original 
study, which the authors previously attempted to do. Psychological Science and Sci-
ence Brevia are yet other journals that rejected the study without conducting proper 
peer review (Goldacre 2011; Sutton 2011). Our example shows how difficult it is to 
get negative studies published. Science is thought to be self-correcting partly because 
there is the possibility of replicating previous studies. However, while researchers are 
pressured to publish frequently as to promote their career, the editors’ policy of not 
publishing replication studies does not encourage them to take part in the process of 
correcting each other’s work. This, in turn, can hinder the detection of biases and mis-
takes in earlier studies (Jukola, Forthcoming). 
 Grcar (2013) has discussed the fact that, compared to other areas of investigation, 
mathematical literature has significantly lower correction rates. However, considering 
the previous sections, it is hard to maintain that mathematical literature has in fact 
lower error rates than these other areas of investigation. One possible explanation is 
that mathematicians are in fact absolutists that believe that papers that undergo peer 
review are free from error. This point has been discussed earlier. Another explanation 
that Grcar points out is a lack of editorial guidance: “The lack of editorial policies in-
viting correction goes hand in hand with low rates in mathematical journals. […] 
Some journals privately advise authors to post corrections on their personal websites, 
which is not consistent with the concept of an archival literature” (Grcar 2013, 422). 
The idea that mathematical research is based on the archive of literature indeed     
demands that errors in the archive are not only detected, but that these errors are also 
indicated and/or corrected in the archives themselves. This is not the case, because 
similarly to the discussed case in psychology, journals are not eager to publish such  
results. 
 An example of this problem is an online article of Capelas de Oliveira and Ro-
drigues Jr (2006). They provide a comment on a published paper on computations in 
multi-dimensional mathematics. The authors of the comment provide a severe criti-
cism and several counterexamples to what they take to be unbelievable results of the 
published paper. However, this valid comment has not been published, while the con-
cerning paper is not retracted and still available in the archival literature. A second ex-
ample is a letter from Hill (2010), who also found a sufficient amount of counterex-
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amples to a published mathematical paper. In a letter to the journal he complains 
about the reluctance of publishing his remarks fully, and the problematic effects of the 
fact that the paper is not retracted or corrected sufficiently:  

The Editorial solution was a ‘correction’ that not only omitted many of the flaws I had found, 
but also introduced a new mathematical error into the permanent record in spite of an additional 
counterexample I had provided them to the new claim. The same errors that appeared in the 
2006 Notices article continue to be propagated in the literature, including published research arti-
cles and a new book. More than two years later, I am still trying to publish the counterexamples, 
and will continue to do so. (Hill 2010, 7) 

4. Discussion 

It is not our goal to argue that relying on testimony, or, in other words, (‘blindly’) 
trusting one’s peers, in mathematical practice should be prohibited, since it would 
make mathematical research and progress impossible. However, the idea of working 
mathematicians that published articles are free from error creates an absurdly high ex-
pectation of peer review to catch all errors. We will argue in this section for more 
transparency and a fair credit allocation, in order to encourage mathematicians to de-
tect, acknowledge and discuss mistakes in the literature. 

4.1 Plea for transparency 

Increasing the level of transparency breaks the taboo that mathematical knowledge in 
the literature is as infallible as an absolutist view suggests. 
 A first way to achieve more transparency is using the possibilities and potential of 
the internet fully. Several sciences already began to adapt to the ‘new’ medium by 
building and using online databases that were designed in order to share data among a 
community of scientists. An example is the Gene Expression Omnibus.12 As an an-
swer to the demand for a public repository for data generated from high-throughput 
microarray experiments, this database allows scientists to submit, store, retrieve and 
consult many types of data sets. 
 There are also examples from the field of mathematics. A first case is the         
Metamath Proof Explorer.13 Inspired by Whitehead and Russel’s project Principia 
Mathematica, the aim of this database is to collect completely worked out proofs, 
starting from the very basic foundations of mathematics. As a result, each proof can 
be brought back to the axioms of logic and set theory. Many mathematicians would 
argue that the phenomena of slicing, splicing and gaps discussed earlier in this paper 
are in fact tools in order to avoid such proofs that demand lots of patience for even 
quite simple or basic proofs. But one can hardly say that such projects are not wel-
come in mathematical practice, where the complete correctness of mathematical litera-
ture is unattained. A second case is the Polymath and Tricki Project, two projects ini-
tiated in 2009 by mathematician and Fields Medallist winner Gowers. In January 2009 
Gowers posted an unsolved mathematical problem on his blog and invited collabora-

                                                        
12 Which can be found online on: http://www.ncbi.nlm.nih.gov/geo/ . 
13 Which can be found online on: http://us.metamath.org/mpegif/mmset.html . 
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tion from anyone who was interested. About 40 people accepted the challenge and to-
gether they solved the problem within several weeks. This pace was highly uncommon 
for such a problematic case. The resulting proofs were eventually published under the 
pseudonym Polymath. Next to the Polymath project, Gowers launched Tricki, which 
is a Wikipedia-style database of articles about mathematical techniques that are useful 
in mathematical problem solving.14 
 We argue for more and specific databases that increase the transparency on how a 
fully written out proof could be completed. Given the length of some proofs, and the 
archive of proofs of assumptions of the new proof, it is indeed impossible and unnec-
essary to include every step in the literature. If such an omission is the case, for any 
reason whatsoever, an online database could serve as an archive for the steps that the 
author of the article has in fact completed. An online database could serve as a substi-
tute. If there are steps that (s)he does not complete because it is too trivial, the author 
should mention this. If (s)he leaves out steps because they are in the literature (either 
in work of the author self, or in other work), (s)he should include references to these 
proofs. And finally, if (s)he leaves out steps because (s)he has done them, but are left 
out in function of the length, comprehensibility or style of the article, (s)he should put 
them in the database. We hope the benefits of such a database are clear. If a mathema-
tician has in fact gone through some steps, in a formal or informal way, it is very little 
effort to put them in the database. Consequently, it is more transparent, in case of 
doubt, to check steps or fill in gaps of the proof. The success of Gowers’ Polymath 
shows a goodwill among mathematicians to tackle mathematical problems collabora-
tively. As we have argued throughout the paper, the correctness of publications 
should be seen as a challenge as well. 
 Not only authors should be more transparent, but peer reviewers as well. Again, 
we will not argue that the responsibility of the correctness of the proofs lies fully with 
the peer reviewers. Such a view is unattainable, since we agree that reviewers can in 
fact only be reasonably certain about the correctness of the proof. However, we do 
defend the obligation of the peer reviewers to be transparent about their contribution 
to checking the correctness of proofs. If a peer reviewer checks certain steps, while 
(s)he is not able to fully check another part of the proof, for example due to his/her 
area of expertise, this can and should be public information. Such information is use-
ful and in fact crucial for other mathematicians, whether they are other reviewers,    
editors or readers. 

4.2 Credit allocation 

Looking into how scientific research is socially organized has often led to the charac-
terization of a researcher as a credit-maximizing individual. Research is driven rather 
by the search for credits than a search for truth. Researchers can for example gain 
credits by publishing results in respected journals. Consequently, such credits lead to 
new funding or job opportunities, which can be again formulated in terms of credit. 

                                                        
14 Which can be found online on: www.tricki.org . 



Mathematical Proofs in Practice 

Theoria 81 (2014): 345-360 

357 

The notion of credit has been used in philosophy of science, for example in order to 
explain how scientists choose certain research programs (Kitcher 1993). Naturally, 
mathematicians are also interested in their academic positions and career, and mathe-
matical practice can also be considered as a credit-driven practice.  
 The idea of credit-driven mathematics allows us to formulate several strategies that 
would lead to a situation where mathematicians can earn credit for checking proofs. 
This is now not the case, as refereeing is done anonymously. If referees are no longer 
anonymous, it would be possible to grant them credits for checking the correctness of 
proofs. It is hard to see why a referee that checks the correctness of proofs should be 
anonymous. Judgment on originality and publication worthiness of a paper can be  
another case, but perhaps these tasks should then be separated in the refereeing    
process. 
 It is also necessary to endorse an editor mentality shift concerning corrections of 
published papers. If such papers become more acceptable in the literature,          
mathematicians will be more inclined to take the time to check or complete other 
proofs. Now, as we have seen, such endeavors end up in internet databases or letters 
to journals, which leave the authors with no credits. Another possibility is that we   
devise a mathematical journal that solely focuses on contributions concerning the  
correctness of (already published) proofs. It is easy to see that for an innovative or 
highly difficult result in mathematical research the mathematician in question deserves 
credit. But the previous sections have shown that contributing results about a flaw or 
weakness of a proof, filling in gaps of a proof or asserting the correctness of a long or 
difficult proof are also important. 
 Mathematicians should earn credit for these endeavors as well. The possibility of 
gaining academic credit for checking proofs, encourages mathematicians to invest time 
in such tasks. In fact, it seems that in the current situations credits are what pushes 
them away from performing such tasks where no credit can be gained. Furthermore, 
more transparency, as discussed earlier, should also encourage mathematicians to take 
up these tasks. This is a scenario that could easily lead to an increased degree of relia-
bility concerning the proofs and results established in mathematical literature. 
 Finally, our approach creates room to implicate the importance of a new, what 
Shirky (2008) calls a ‘publish-then-filter’, approach to mathematical practice. Publish-
then-filter, in our case, entails that mathematical journals publish proofs knowing that 
they might turn out to be false later on, as opposed to postponing publication as long 
as one is not entirely sure about the reliability of its content.15,16 This idea could    
function in mathematical research as it already does in other scientific research. In   
academia one’s claims get rejected all the time turning rejection into an intrinsic and 
accepted part of scientific research. Papers are but rarely withdrawn from previous 

                                                        
15 Of course, we imagine this in accordance to our other suggestions made above. 
16 According to Shirky, it’s opposing strategy ‘filter-then-publish’ is outdated, as “[it] rested on a scarcity 

of media that is a thing of the past. The expansion of social media means that the only working sys-
tem is publish-then-filter” (Shriky 2008, 98). For an impression how this idea would impact other dis-
ciplines, see Kosolosky (Forthcoming). 
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publication, even if they contain evident mistakes. The reasoning behind it is that the-
se mistakes are thought to be eventually filtered out through subsequent publications 
or meta-analyses or, as we suggested, through journals focusing solely on correcting 
flaws in previous papers. Not only is this approach closer to how scientific practice 
works, it would also take a considerable load off of reviewers’ worries. They should 
check the papers to a reasonable level, being transparent about what they have 
checked completely and what not. After publication, other mathematicians should 
than challenge the results further. This, however, can only work if mathematicians and 
the broader audience adjust their attitude towards mathematics (and knowledge-
gaining in general), i.e. that results can be flawed and that this is part of the game. 
 What our scientific endeavors will bring us, we cannot predict. What we can     
predict, however, is that sticking to a rigid view on the epistemic uniqueness of   
mathematics, in terms of it possessing old-fashioned certainty, will certainly not be 
conducive. In this paper we made an attempt to adjust this view of mathematics and 
proposed strategies to tackle the problems that surround it. The alternative we      
propose is much more in line with fallibilism of mathematics, where processes such as 
the back-checking, completing, changing, correcting, etc. of proofs are much more 
highlighted in the presentation of mathematical results. 

5. Concluding remarks 

In this paper we started with the differentiation between absolutist and fallibilist views 
on mathematical knowledge, and the argument that the view that mathematical 
knowledge is infallible is only defendable when one looks at the front of mathematics, 
as it is presented in lectures and books, and not when one looks at the back of math-
ematics, as how working mathematicians deal with problems in practice. 
 Starting from the assumptions that mathematicians are in fact humans and are not 
immune to error, one can still argue that the method of proof and communication 
through academic journals leads to a high level of reliability of mathematical publica-
tions. If an article contains an error, due to a mistake of the author, this error can be 
detected by the reviewers of the journal. Even if these reviewers do not detect the er-
ror, other mathematicians will be able to detect it. This is the case even when a mis-
take eludes detection for a long period. 
 However, we showed that, first of all, published proofs contain gaps and cannot 
simply be checked by humans. Secondly, at each level of the publication process, we 
argued that there is a general lack of discipline to emphasize the importance of check-
ing and correcting published proofs. Given this state of the field, we came up with 
several ways in which mathematics, as a discipline, can and should be improved, so 
that it becomes more responsive to actual mathematical practice. These are (1) ways 
that increase the transparency among authors and reviewers, for instance through ap-
pealing to online databases, (2) ways that allow for appropriate credit allocation, both 
for authors (in the sense that venues are created for checking and correcting proofs) 
as for reviewers (in the sense that they get awarded for their work in checking proofs 
by making their names explicit) in a practice responsive system of ‘publish-then-filter’. 
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 Working out these particular suggestions would require further research that goes 
beyond the scope of this paper. Nevertheless we managed to show that such ideas 
governed by transparency and credit allocation could help us to bring mathematical 
publications and mathematical practice closer together. At this point, we hope to have 
established some important questions for both philosophy of mathematics and the 
practice of mathematics. 
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