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The Problem of Variable Choice[footnoteRef:1]   [1:  It is a great pleasure to be able to contribute this essay to this special journal issue on the philosophy of Clark Glymour. There is no one in philosophy whose work I admire more. I have benefited from a number of  conversations with Clark on the  topic of this essay.  I’ve also been greatly helped by discussions with David Danks, Frederick Eberhardt, Chris Hitchcock and Peter Spirtes, among others.  A version of this paper was given at a workshop on Methodology and Ontology at Virginia Tech in May, 2013 and I am grateful to audience members for their comments.] 

 

It should perhaps be noted that the choice of variables in terms of which a given problem is formulated, while a seemingly innocuous step, is often the most crucial step in the solution.  (Callen, 1985, p. 465)

1. Introduction 

The problem addressed in this essay has to do with the choice of variables for purposes of causal analysis and explanation   One version has received extensive discussion: given a pre-selected stock of candidate variables, how should we decide which  should be incorporated into a causal model for some system?  The issue that interests me  is different and  more difficult. Suppose we are in a situation in which we can construct or define new previously unconsidered variables  either de novo or by   transforming  or  combining or aggregating old variables,  and  where our goal is to find  variables that  are  best or most perspicuous from the  point of view of  causal analysis/ explanation. Is there anything useful to be said about the considerations that ought to  guide such choices?   It is this   that I have in mind in speaking of the problem of variable choice in what follows.
One possible view is that there is nothing systematic to say about this issue—  choice of  appropriate variables depends upon the details of the particular system under analysis in a way that defies description by any general principles.  (Perhaps it is an “art”, success in which depends on the free creativity of individual investigators.)  I concede that, at the end of the day, this position may turn out to be correct but I propose, perhaps quixotically, to explore the opposite possibility: that there are useful (although of course defeasible) heuristics/default rules of some generality that can be used to guide variable choice and which have some connection with principles governing the construction of causal explanations. I acknowledge such heuristics are unlikely to yield, in most cases, a uniquely best choice of variables – at most they will rule out certain choices as bad or defective, perhaps leaving a range of others as acceptable. This, in my view, is how it should be: for many complex systems a range of different causal models utilizing different variables will be appropriate, depending on considerations of scale or level and on the explananda toward which they are directed.
 Having announced this goal, I wish I could report more satisfying results than what has been achieved here.   Instead, I am acutely conscious that what follows consists of very partial  and miscellaneous observations, in many cases derivative from  the ideas of others,  and a list of unanswered questions. I hope, however, that my discussion  will help  (or at least motivate) others to explore these issues in a more satisfactory way.   
The remainder of this essay is organized as follows: Section 2 argues that variable selection is an important problem in many areas of science,  Section 3 discusses goals associated with  causal analysis, Section 4 proposes some candidate principles for variable selection in the light of these goals, Section 5 rejects the idea that the invocation of natural properties provides a useful solution to the variable selection problem, Sections 6-8 discuss some general results about how transformation of variables affects statistical (in)dependence  and about when variables are “distinct”. Section 9  discusses the role of the  Causal Markov Condition in variable selection and  Sections 10 and 11 the role of stability and specificity.  I largely employ examples from the causal modeling literature since this is a context in which problems of variable choice arise particularly acutely. 

2.   Variable Selection as a Scientific and not just a “Philosophical” Problem  

Philosophers are familiar with the idea that certain predicates or properties seem “unnatural” or  “gerry-mandered” or even “pathological”, with “grue”   perhaps the most prominent example.  If one focuses on such examples, it is easy to get the impression that problems posed by a ” bad “ choice of variables are philosophical curiosities, with little relevance to methodological issues in real science. Thus it might be suggested that whatever the right story may be about what is wrong with “grue”,  we have no difficulty recognizing that “grue”  and other similar variables are  “bad” and  that  as long as we can do this, nothing  further is required for scientific purposes.  It is thus worth emphasizing that problems  having to do with variable choice arise in a natural and internal way in many areas of science, and are not just “philosophical”  in  the deprecatory  sense of that term that suggests they are  methodologically irrelevant or unimportant. Indeed, in many real life cases, it is not obvious, as one  might think  is   the case for grue, which choices of variables are “bad” (or at least inferior to alternatives.)  As the quotation at the beginning of this paper suggests, it is a pervasive belief among many researchers that finding the “right” variables is crucial to successful theory construction and that this is often not easy.  Indeed, it is a very common worry in many scientific disciplines ( including neurobiology, cognitive psychology, psychiatry, genetics, and macroeconomics )  that  theorizing at present is conducted in terms of the wrong variables and this seriously impedes theory construction, including causal analysis. 
  An initial motivating consideration,  discussed in more detail below, is provided by the observation that  the results of virtually any procedure for inferring causal relationships from statistical information (in conjunction   with other assumptions) will be sensitive to the variables one chooses to employ because (among other considerations) statistical independence and dependence relations depend on variable choice: for example, if X and Y are independent, then V= X+Y, U=X-Y will be dependent, except in the special case in which X and Y are Gaussian with the same mean and variance. A procedure that claims that there is no causal relationship between X and Y (on the grounds that they are independent), may conclude that there is such a relationship between U and V (because they are dependent).  Standard procedures for causal inference give us advice about what conclusions to draw given statistical relationships among some specified set of variables but have little or nothing to say about where the variables themselves “come from” or the grounds on which one choice of variables is superior to another.    
 	The consideration just described is very abstract, but more specific   illustrations involving  variable choice are provided by problems of causal inference in complex systems  of various sorts (the brain, the weather, a national economy) . Very often one is able to measure a very large number of variables that characterize the components of such systems. However, to usefully theorize about the behavior of the system as whole one  must somehow aggregate these variables into a much smaller number of   more macro or coarse-grained variables, with far fewer degrees of freedom than are associated with the original variables with which one began.  Many different aggregation procedures will be possible, the results of any causal analysis for the system as a whole will be sensitive to the choice of aggregation or “variable reduction” procedure, and it may be very unobvious which aggregation procedure is “best” or “most reasonable” – or even what criteria should be used to assess claims about what is best. As an illustration  from climate science discussed in section 10, different aggregation procedures for forming macro-variables from local measurements lead to different macro-variables and depending on these, very different  claims about the causal relationships among  these variables, with a hugely complex network of claimed causal  relationships resulting  for some choices of variables and a relatively simple causal representation in the case of other variable choices.   In the case of fMRI, the (relatively raw) data consist of very large numbers of voxels, reflecting activation in small brain regions.  Causal analysis requires that these be aggregated or grouped in some way into a much, much smaller number of variables.   There are many different possible ways of doing this, with different choices having different consequences for the causal relationships found among the resulting variables[footnoteRef:2].  Moreover, the aggregation procedure can affect the joint distribution that results in ways that enable or disable various inference methods. For example, addition of variables with non- Gaussian distributions (but finite variance) tends, in accord with the Central Limit theorem, to produce variables with Gaussian distributions which means that inference methods that exploit non-Gausseanity such as (Shimizu et al., 2006) cannot be used[footnoteRef:3]. Psychiatry is also a rich source of examples: it is widely suspected  that current disease classifications such as “schizophrenia”  are both highly causally heterogeneous (there may be many different forms of schizophrenia) and defective  in other ways (e. g., because schizophrenia frequently co-occurs with other major mental illnesses  such as major depression (MD) and both seem to involve many of the same brain regions,  it is suspected that a better way of carving things up might classify some forms of schizophrenia and MD together as a single disease, which we presently do not know how to effectively characterize. ) Needless to say etiological theories that assume that  schizophrenia  is a single disease are problematic under either of these assumptions[footnoteRef:4]. [2:  Discussions of “cognitive ontology” among cognitive neuroscientists such as Lenartowicz  et al. (2010)  are in effect debates about how to choose “cognitive” variables on the basis of neural information, with the suspicion being frequently voiced that our current stock of variables is unprincipled and often an  obstacle  to casual understanding. ]  [3:   Thanks to Clark Glymour for this observation. ]  [4:  Other examples: Should  we think in terms of just one intelligence variable (g—for general intelligence) or many  different forms of intelligence?  Different choices will likely lead to different conclusions about the causal influences at work.   Is it reasonable  to conceptualize “risk-taking”   as general tendency (i.e., a single variable) and then investigate its genetic etiology? ] 

Other examples discussed below involve cases in which choices of overly coarse-grained or causally heterogeneous variables lead to the postulation of additional causal relationships that do not need to be postulated  when less coarse grained  variables are employed (Section 9) and where the former relationships do not exist,  on standard understandings of causation, and cases in which a bad choice of variables leads to a causal representation in which causal cycles are present, even though on  empirical grounds they are not (Section 8.) 
	   There is a tendency among  some philosophers of science to  suppose that problems of variable choice are particularly or distinctively a problem for approaches to causal inference and reasoning that make use of structural equations and directed graphs (see for example, Paul and Hall, 2013, Strevens, 2007).  Some of these philosophers are disturbed by the observation that depending on which variables one employs in a causal model, one can reach different conclusions about which causal relationships are present. They take this sort of “variable relativity” to indicate that there is something fundamentally amiss with causal representations employing directed graphs/ structural equations. In my view this assessment is   wrong-headed; variable choice is  equally an issue for any theory of causation or causal inference or apparatus of causal representation.   For example,  if X and Y are counterfactually independent, V  = X+Y and U=X-Y  will be  counterfactually dependent.  Hence a counterfactual theory of causation such as Lewis (1973) will be led to the conclusion that there is a causal relationship between  V and U unless some grounds can be found for excluding these variables as causal relata—perhaps on the grounds that they do not correspond to “distinct” events. (But see Section 7.) Similarly, a regularity theory of causation will find a causal relationship between V and U unless some grounds can be found for excluding these variables as causal relata.  And, notoriously, any “probabilistic”  theory of causation will reach different conclusions about causal relationships depending on which variables are employed in the representation. 
Let me emphasize that in drawing attention to the way in which choice of variables influences conclusions about which causal relationships are present, I do not mean to claim  that all such conclusions are equally good or acceptable.  On the contrary, I assume (in agreement with what I take to be the attitude of most scientists) that many choices of variables are, from the point of view of causal analysis, defective in some way—among other possibilities, they may lead to the formulation of causal claims that are false or impede the discovery and formulation of true claims.  Or the use of such variables may lead to causal claims that are less informative  (in ways described in more detail below) about causal relationships in comparison with alternative variable choices. This is why there is a problem of variable choice in the first place and why it is important to find “good” variables.  Thus I take the observation that one can be led to different conclusions about which causal relationships are present depending on which variables are employed to show that we need additional constraints on variable choice.  It does not  motivate a kind of relativism in which all choices of variables are equally good and causal claims can be true with respect to one choice of variables but not with respect to another. 

3. Causal Representation/Explanation as a Goal of Inquiry 

My view, which will motivated in more detail below, is that the problem of variable choice should be approached within a means/ends framework:  cognitive inquiries  can have various goals or ends and  one can justify or rationalize candidate  criteria for variable choice by showing that they are effective means to these ends.  Put differently, one should be able to specify what goes wrong in terms of failure to achieve one’s ends if one chooses the “wrong” variables. The candidate criteria for variable choice described in Section 4 should be understood in terms of this picture.
The broad goal of inquiry on which I focus in what follows is causal representation/explanation.    (See immediately below for more detail on what this involves.) It is worth noting, however, that this is not the only possible (reasonable) goal of inquiry. For example, one  might instead choose variables just in terms of whether they conduce to accurate prediction.  As shown by Danks ( forthcoming) (and is perhaps intuitively obvious), this goal can lead to  a different choice of variables than one would adopt if one’s goals have to do with causal analysis.  
In thinking about the impact of variable choice on causal analysis, it is useful to begin with some broad distinctions. One way in which a choice of variables can be “bad” is that it leads, perhaps in combination with other assumptions or inference procedures, to causal claims  that are straightforwardly false. An illustration,   provided  in Section 9, involves use of an overly coarse-grained variable   which leads, given other assumptions, to a postulated causal relationship that does not exist.  Another possibility is that the  chosen variables are involved in dependency relationships that are not causally interpretable.   This might happen if, for example,    the chosen variables  stand in logical or conceptual relations, as in the case of variables representing whether someone says “hello” and whether that person says “hello” loudly. Another possibility (which will be important within an interventionist framework, although perhaps not otherwise ) is that  the chosen variables  may be such that they don’t correspond to possible targets of intervention (for example, they correspond to quantities that are not manipulable for conceptual reasons, as, one might argue, is the case with “age” or perhaps “gender”).  Another possibility is that  variables have been defined in such a way that  they do not allow for “unambiguous”  manipulations (See section 10).   Still another broad set of cases involve variable choices that lead to the formulation of causal relationships that are correct or true as far as they go (in, for example, the interventionist sense, that they make correct claims about what happens under interventions) but which are in various ways less informative about causal relationships than alternative variable choices.  This   can happen if, for example, the chosen variables don’t allow for the formulation of certain claims about how certain variables will respond to interventions on others  that might be captured by another choice of variables[footnoteRef:5].  Finally, it also matters  whether the chosen variables  allow for the formulation of causal relationships that are  readily learnable or discoverable and that fit well with available inference techniques.   As argued below, this is one consideration that  motivates a  preference for  variables leading to  causal representations that are relatively sparse in the sense that such variables exhibit causal connections with relatively few other variables rather than many .   [5:  To forestall an obvious criticism  this is not the  claim that variables should be chosen so that all possible interventionist dependency relations can be captured. My claim is merely that it is sometimes a defect in variable choice if it does not allow some such relations to be captured. ] 

  Turning  to a  somewhat more detailed  characterization of what is involved in  causal   representation/ explanation,   I think of this along broadly interventionist lines in the sense of Woodward, 2003: successful causal explanation involves the representation of true claims about what would happen to some variables under interventions on others —    dependency (or intervention)  relationships, as I will call them.  More generally,  causal explanation has to do with  the representation of relationships that are  useful for  or informative about  manipulation and control[footnoteRef:6].  A rough formulation of the guiding idea to which I will appeal below is: [6:   For those worried that this characterization is overly restrictive, several additional considerations may be helpful. First, a number of the features of good variables on which I focus are   also justifiable in terms of other frameworks for thinking about causal explanation.  For example, stability or generalizability is a desideratum on many theories of causal explanation. Finding counterfactual supporting dependency relations is also a goal  of many theories that do not think of those dependency relations in specifically interventionist terms. Second, even if  successful  causal explanation  involves more than just the features  on which the  interventionist conception focuses,  as long as that conception captures some relevant features of causal explanation, it may be a useful source of  constraints on variable choice.    ] 


(M) X causes Y if and only if under some interventions on X (and possibly other variables) the value of Y changes

More specific criteria or principles governing variable choice can be motivated by showing that they conduce to the satisfaction of the “interventionist”  goals just described.  For example,  given these goals,  it  seems uncontroversial, other things being equal, that is desirable to  make true  claims rather than false claims  about  what will happen  to some variables under interventions on others.  Similarly, other things being equal, among representations of relationships relevant to manipulation and control,  it is better to choose variables that allow for   representations  that provide more rather than less information  that conduces to the satisfaction of these goals.  For example, it is better to choose variables that allow for the formulation of generalizations that are stable or generalizable in the sense of holding over  a wide range of background circumstances—these  provide more information relevant to manipulation and control  than less stable relationships. Sparse causal representations often have similar virtues. 
 As should be apparent, the project in which I am engaged is normative—the aim is to formulate criteria for variable choice that ought to be employed, given that one has certain goals, where the normative force of the “ought”  derives from the conduciveness of the criteria to these goals. But I also hold that, as a descriptive matter,  scientific (and, for that matter,  common sense[footnoteRef:7]) inquiry (or at least successful inquiry, where the criteria for success is achievement of the goals just described)  often employs variables that  do conform  to criteria of the sort  I will describe.  Suppose that some area of science seems, as a descriptive matter,  to be guided by goals that our normative analysis associates with successful causal representation/explanation, that we observe certain criteria governing variable choice being employed by  that science,  that our normative analysis recommends these  criteria  on the grounds that they will conduce to the goals in question,  and that we observe, as an empirical matter, that use of the criteria does indeed seem to lead to those goals. I take these descriptive observations  about the science to lend some support to  the normative analysis.   For this reason, I will make use of descriptive observations about criteria for variable choice employed in science  as well as  normative arguments in what follows.  For example, the discussion of variable choice in climate modeling in Section 10 shows that as a descriptive matter, climate scientists employ certain aggregate variables  rather than others and that doing so leads to the formulation of climate models containing generalizations that are more stable and sparser (in the sense that fewer connections are postulated) than the models that would result from   alternative choices of variables.  This fits with the normative claim  that looking for  models with these features makes normative  sense in terms of   goals of causal inquiry[footnoteRef:8].        [7:  For support for the empirical claim that common sense casual inquiry is guided by a preference for sparse causal representations in the sense described in Section 11, see Liu et al. (2008).]  [8:   Another clarification:  an anonymous referee worries that   talk of  goals of inquiry makes the “the truth of causal claims depend on  the circumstances and goals of an inquiry rather than merely the system in question” and “leads to an “interest-relative” notion of causation. This is a misunderstanding. First, as should be clear from my discussion above, by goals of inquiry, I have in mind broad cognitive aims like provision of causal explanations as opposed to, say,  “prediction”, rather than the   idiosyncratic preferences of  particular investigators for certain variables (such as the preferences of some psychologists for only behavioral variables). Second, once these broad goals are sufficiently  specified,  I take it to be an “objective” matter, not dependent on further facts about anyone’s interests, whether certain choices conduce to  the goals—it is the nature of the system under investigation that determines this. Thus, if the specified goal is to find variables that maximize predictive accuracy according to some criterion, it is empirical features of the system   investigated which determine which variables will do this. Similarly, if one’s goal is causal explanation. If investigator X is not interested in causal explanation but instead just in prediction and chooses variables accordingly  and investigator Y is  interested in causal explanation and chooses variables accordingly, we should not think of this as a case in which the truth of  causal claims made  by X and Y somehow varies depending on X and Y’s interests or the variables they choose. Instead    X is not in the business of making causal claims and if the predictive claims X makes are interpreted causally (e.g. as predictions of the outcomes of interventions) presumably many of them will be false.  Thus once one decides to adopt the goal of casual explanation and fleshes this out in a specific way, one is locked into certain  criteria for what constitutes success in this enterprise—or so I assume.  I will add that the  idea that there is a conflict between,  on the one hand, representing  causal  relations “as they really are”  and, on the other hand, thinking in terms of goals of inquiry is misconceived: representing causal relations as they are (and so on) just is one possible  goal of inquiry. 
Finally, in connection with “goals” let me acknowledge the role of an additional (obvious) consideration : even given the broad goal of causal analysis, different researchers may target  different systems or  different features of systems for analysis: researcher A may be interested in a causal analysis of the molecular process involved in the opening an closing of individual ion channels during the generation of the action potential,  while researcher B is interested in causal understanding of the overall circuit structure of the neuron  that allows it to generate an action potential rather than some other response.  Again, I take   this sort of interest-relativity to be no threat to the “objectivity” of the resulting causal claims. ] 


 
 4.   Some Candidate Criteria for Variable Choice  

I turn now to some possible criteria for variable selection.  My discussion in subsequent sections will  refer back to these principles and attempt to clarify and motivate them.  Needless to say, this list is not intended to be exhaustive. 
	 
4.1) Choose variables that are well-defined targets for (single) interventions in the sense that they describe quantities or properties  for which   there is a  clear answer to the question of what would happen if they were to be manipulated or  intervened on. One obvious rationale (again within an interventionist framework)  is that to the extent this requirement is not met, a representation employing these variables will not provide answers to questions about what will happen under interventions on such variables and hence will fail to provide information about causal relationships. Possible candidates for variables failing to meet this condition (and which are sometimes claimed in the scientific literature to fail this condition) include “age”, “gender” and “obesity”[footnoteRef:9].  [9:   For a discussion of “obesity “ as defective causal variable, see Hernan et al (2008). For  the opposite view with respect to race and gender, see Glymour C. and Glymour M.  (2014).  ] 


4.2) In addition, choose variables that have unambiguous effects on other variables of interest under manipulation, rather than variables that have ambiguous or heterogeneous effects.  The  rationale is the same as the rationale for 4.1.    

4.3)  Choose variables that are defined in such a way that we can in principle manipulate them to any of their possible values independently of the values taken by other variables. Other things being equal, a choice of variables satisfying this requirement will provide more information about causal relations than variables for which this requirement is not satisfied. This excludes, for example, variables that are logically or conceptually related. 

4.4) Choose variables which, when used to formulate causal relationships satisfying the  Causal Markov Condition (CMC) or satisfying standard expectations about the relationship between causation and screening off  relations, lead to causal representations that are relatively sparse in the sense that  they postulate  relatively few causal relations among variables, rather than many.  (A directed graph G involving a set of variables V and an associated probability distribution P satisfies   (CMC) if the variables in V are independent of their non-effects conditional on their direct causes.) Sparseness in causal representations is closely related  to the idea of looking for variables that are causally specific  (cf. Section 11) in the sense that  they affect only a limited number of other variables in some set of interest rather than indiscriminately affecting all of them. One justification for this requirement is that  causal relationships that are  specific and  sparse can be exploited for targeted and fine-grained manipulation and control  in ways that non-specific relationships cannot—a variable that affects many others is likely to produce unwanted effects or at least effects that are difficult to track in comparison with a more causally specific variable. More specific relationships are thus often  more informative in the sense of providing manipulation information of the sort we are most interested in. Another possible justification is that learning non-sparse and non-specific sets of causal relationships is difficult, for reasons described in Section 11.    

4.5) Choose variables that allow for the formulation of cause-effect relations that are as close to deterministic as possible or at least relations that exhibit strong correlations between cause and effect.[footnoteRef:10]  Again causal relationships that are close to deterministic are more useful for purposes of manipulation and control than alternative, weaker relationships; they are also more readily learnable, as shown by both theoretical and empirical analysis.   [10:  Suggested by Frederick Eberhardt. A similar proposal is made in Liu et. al., 2008, with the suggestion that variables and representations should be chosen so that causes have high causal power in the sense of Cheng (1997 ) with respect to their effects—see Section 11.  ] 


4.6) Look for variables that allow for the formulation of causal relationships that are stable in the sense that they continue to hold under changes in background conditions, in new populations or data sets etc.  See above for justification.  

4.7) In general, look for variables such that the resulting graph accurately represents dependency relations, avoids unexplained correlations in exogenous variables, structure in residuals,  and causal cycles with no obvious empirical rationale or interventionist interpretation.  
 
These conditions can (and should) be used conjointly or hierarchically. For example, one might choose, among those variables that are independently manipulable, those  that exhibit the strongest  and most stable correlations with target effects. Or, as in condition  4.4 , one might  choose variables that enable the formulation of relationships  that both satisfy the Causal Markov condition and  satisfy various other conditions such as specificity and stability. Taken individually, each condition may be  subject to endless counterexamples and relatively unconstraining. Taken together they may sometimes offer more helpful guidance.   

     5. Natural Properties as a Solution to Problems of Variable Choice 
 
One purported “solution” to the problem of variable selection is the metaphysician’s answer, provided in one form or another by such writers as Lewis (1983) and Sider (2011).  This appeals to some notion of  “perfectly natural properties”.   In one common formulation,  “fundamental physics” (or rather physics in some final, not yet achieved version) provides   information about which properties are the natural ones, although it is usually assumed, that this needs to be conjoined with   the metaphysician’s intuitive judgments about what is natural. These judgments are influenced in turn by such considerations as whether the predicates are overly “extrinsic” or  “disjunctive”. On a common extension of this view, predicates or properties   employed in theories in the  “special sciences” or in common sense are   ranked as more or less natural depending on how simple their definitions  in terms of the perfectly natural properties are. 
Despite the popularity of this idea, it does not seem a useful  source of advice about variable choice in science.   First, we have no current access to the properties that will be employed in  “ final” physics.  Moreover, the variables   currently regarded as  “natural”  in  physics  obviously were not identified    on the basis of apriori considerations   (deriving from  metaphysical intuition or considerations of syntactic form)  but rather were identified  aposteriori as the result of a long   process  of discovery driven by reasoning and empirical  evidence.  One would like to understand   the principles and considerations that have guided this process.  Invocations of  natural properties gives us little insight into  this.   In addition, we generally have no idea how to define variables figuring in the  special sciences in terms of  variables figuring in fundamental physics, hence we usually can’t judge  how “natural” such special variables are by reference to the standard described above.  Nor do we have a principled measure for evaluating the simplicity of the definitions of special science properties in terms of fundamental properties.   Insofar as we have any purchase on this issue, it seems a reasonable conjecture that   many   variables that seem useful in the special sciences   will have extremely complicated definitions   in terms of fundamental physics.  It is not clear why we should expect the contrast between those special science variables that are “good” or useful and those that are not should closely track simplicity of definition in terms of fundamental physics.  Insofar as there are general principles governing variable selection, one would hope that these can be applied directly to issues of causal analysis in the special sciences, so that it is these principles, rather than the connections between special sciences and physics, that furnishes guidance about which are good choices of variables.  
 There are at least two other points of contrast between approaches to the problem of variable choice that rely on natural properties  and the ideas explored below (including the criteria in Section 4).   First, the latter criteria are relational  in the sense that they have to do with how well   a collection of variables  taken as  group do together  in satisfying   those  criteria, where the criteria themselves also are applied jointly[footnoteRef:11].  Thus the focus is on how the variables relate to one another (on whether they “play well” together).  Such relational criteria   contrast with non-relational or individualistic  criteria for variable choice,  which can be applied to variables individually, independently of how they relate to other variables.    In the metaphysics literature, it often seems to be assumed that “natural” properties can be identified on the basis of criteria that are largely non-relational—as when certain properties are regarded as non –natural because they are overly disjunctive.  My view is  that causal analysis requires variables selected according to relational criteria, as illustrated by the criteria in Section 4,  many of which are relational.  For example whether a variable is logically connected to others depends upon which variables we include in our representation, whether a set of variables  allows for a sparse and stable causal graph satisfying CMC  depends on how these variables relate to one another,  and whether a variable can be altered by a single intervention depends upon which intervention variables our analysis recognizes (Section 7 ). [11:   This contrast between relational and non-relational criteria is due to David Danks.  ] 

   Second, defenders of the “natural property” idea tend to downplay the role of the goals or purposes of the inquirer in variable selection. Presumably, this is because the natural properties are  thought to be somehow dictated by metaphysical considerations that are   independent  of our  goals or what we want to do with the properties or variables in question. By contrast, my view, as explained above is that which variables 
 one should employ depends upon one’s  goals or purposes in using those variables,  with causal representation/explanation being one such goal. Variables that are most appropriate for causal explanation may be different than those that are most important for other goals such as prediction. Thus, I propose replacing the role assigned to  natural properties  by metaphysicians with  a methodological investigation  into which variables  best serve various goals of  inquiry. In this sense, what follows may be viewed as an instance of a more general project of “replacing metaphysics with methodology.” [footnoteRef:12]  [12:  See Hitchcock (2012) for an application of this general strategy in connection with issues concerning the metaphysics of events. 

] 

 
6. Transformations of variables.

      In a  common case involving variable selection, we possess some current stock of variables (perhaps  inherited from previous theories, perhaps chosen because these are variables that we can measure or manipulate) and then consider   how these might be used to  characterize new variables.  This helps to motivate the following discussion of transformations of variables in which one begins with a set of variables and then considers what happens if these are transformed by various functions.  In particular, I consider three possible cases:
 
(i) Cases in which variables, X, Y, Z etc. are transformed by individually by   functions F, G, H into other variables F(X), G(Y), H(Z).   
 
 (ii) Cases in which different variables are “mixed” by functional    transformations to form new variables.  That is, we define new variables A, B from the old ones– e.g.,  A= X+Y, B=X-2Y+ Z.

(iii) Cases in which variables that characterize micro-states of system are aggregated by some procedure into macro-variables, where the aggregation procedure is represented by a function. For example, the kinetic energy of each  individual molecule in a gas is summed to provide their total or, alternatively,  average kinetic energy.   (This might be thought of as an instance of (ii) but is distinctive enough for separate mention.)  
 
In each case, if the original variables X, Y, Z stand in some relationship R, we can ask how various transformations of those variables, F(X), G(X, Y) etc. will be related. Do the transformations “preserve” R or  instead change R in various ways? When R is some relationship which is important for causal inference (or for the characterization of  causal relationships) we are in effect exploring some of the ways in which transformation of variables affects  causal inference.    In this section, I explore some aspects of this question for cases in which R is the relation of  statistical (in) dependence,  and conditional (in)dependence. (Obviously there are other relationships that important for causal inference[footnoteRef:13].)   Such results as I am able to describe are perhaps of some interest in their own right and have   implications for  many of the  criteria  ( 4.1-4.7), as I note below. I also describe several questions that I am unable to answer but which others may find worth exploring.   [13:  For example, one might take  R  to be a difference-making or dependency relationship of some kind appropriate to characterizing causation—R might be understood   in terms of counterfactual dependence, statistical dependence or along interventionist lines.  For each of these understandings of R, one   can ask questions parallel to those described above about how   the R-relation between variables behaves under various transformations of those variables.] 

	Here then are some observations about how features of functional transformations interact with facts about statistical (in)dependence, with _|_ representing independence and _ /|_ dependence . 

  (6.1) For some functions F and G, and random variables X, Y
   X _ /|_ Y, but F (X) _|_ G(Y).

As a trivial illustration let F (X) be the constant function F(X)=c. Thus some functional transformation of variables can destroy unconditional statistical dependence relationships.  To the extent we wish to employ information about such dependence relations for causal inference, we may wish to avoid such transformations (but see below for qualifications on this) . 

(6.2) By contrast,  if X _  |_ Y, and F, G are measurable functions, then  F(X)_  |_ G(Y).   That  is, transformation of  (single) variables by measureable functions always preserves independence[footnoteRef:14]. [14:   See Bass, 2014, p 8 for discussion. Basically this follows because the sigma-field generated by F(X) is a subfield of the sigma field generated by X and similarly for Y and G(Y). Hand-wavey proof in order to avoid measure-theoretic complications: Knowing the values of X conveys information about the values of F(X) but the latter can only be a subset of the information carried by the values of X. Similarly the information carried by the values of G(Y) can be thought of as a subset of the  information carried by the values  of Y.   Thus if  X_|_Y,   then F(X) should not tell us anything about G(Y).  If it did—if F(X) _/|_ G(Y)—this could only happen because values of X contain information about values of Y. ] 


(6.3)   If X _ /|_Y, and F and G are bijective (1-1 and onto) then F(X) _ /|_G(Y) – that is, statistical dependence is preserved for such functions[footnoteRef:15].  [15:  Proof: Assume for purposes of contradiction that F, G are bijective and (i) X _ /|_Y but (ii) F(X) _ |_G(Y). Then F-1, G-1 are also functions, and hence  from (ii) and (6.2), F-1  (F(X))= X _ |_ Y= G-1(G(Y), which contradicts (i). ] 


 Although transformation by bijective functions is thus sufficient for the preservation of unconditional dependence between two random variables, obviously it is not necessary for F, and G to be bijections to preserve  dependence.  This leads one to ask whether there is some interesting (non-trivial) general condition C that F and G must meet that is necessary for preservation of  dependence– that is, some result of the form:

(6.4) If X _ /|_Y  F(X) _ /|_G(Y), then F, G  meet condition C.

In general whether particular functional transformations of X and Y  will  “undo” a dependence relation  between  them  will depend on the details of  that  dependence   relation. This might be thought to suggest there are no general results of the form sought. A tempting intuition is that the functions that transform dependent variables into independent ones are   “rare” or “unusual” (or at least rare or unusual for “most” non-special patterns of dependence between X and Y) since such functions would need to operate in such a way that they exactly undo the dependence between X and Y. [footnoteRef:16]   [16:   A further thought is that  the more interesting practical question is which transformations take relationships of dependency into relationships of “almost” independence—i.e.,  relationships that are sufficiently close to independence as to be indistinguishable from it for various purposes.   ] 

A related question is whether there is some sense in which “most”  (non-bijective)   functions   that aggregate  sets of  micro-variables  X1, .. Xn  and Y1..Yn into macro-variables  M (X) , M(Y) preserve  whatever dependencies  are present among the Xi, Yi, so that M(X), M(Y) are also dependent . If so, there will be a sense in which aggregation procedures into macro-variables that undo some dependencies (allowing us to “see” other dependencies among the macrovariables that would otherwise be lost in an overwhelming web of complex dependencies)  are relatively “special”. This fits the intuition that it is often difficult (and valuable) to find such aggregation procedures. 
I noted above that transformation of variables by functions that are not bijections  can  sometimes destroy dependence among those variables,  depending on the details of the case.  Of course, non –existence of an inverse corresponds to a kind of “coarse-graining” or “multiple realizability” in which  different values of X and Y  are transformed into the same values of F(X)  and G(Y).  Such transformations destroy information and can sometimes completely destroy dependence information—i.e. coarse graining the original variables which are statistically dependent may result in new variables that are independent.  It might seem that  such transformations are always    to be avoided, since this involves loss of information that is relevant to causal inference, but it is arguable that   this is not always the case.  Even if a transformation  replaces dependent variables with independent variables, there may be advantages to this[footnoteRef:17].  In particular, if transforming dependent variables  produces independencies or near independencies among some of the  transformed  variables while preserving dependencies among others,  this may make it easier to find patterns among the latter.   For example, aggregating information about individual molecules into very coarse-grained information about such thermodynamic variables as temperature, volume, and pressure allows us to formulate a simple relationship among those variables while ignoring almost all other features of the gas.  It is interesting that most ways of aggregating information about individual molecules do not have this property (Callen, 1985). To at least some extent we choose conceptualizations of variables or transformations of variables with an eye to yielding enough independencies   (and a limited enough set of dependence relations) to make tractable causal analysis possible—this is one consideration among many that guides variable choice.  [17:   A similar suggestion that independencies can be valuable is made in Danks  (Forthcoming). ] 

 In general, the surprising thing (at least to me) is that there is so much independence or near independence among coarse-grained macro-variables that we are able to find, given how intricately and complexly things are often connected at a more micro-level. Such independencies among some macro-variables sometimes  allow  us to formulate relatively simple and stable relations involving a small number of the remaining macro- variables, thus reducing the number of variables  and degrees of freedom required to describe behavior by a huge amount. 
So far I have focused on what various functional transformations do to variables that are unconditionally dependent or independent. What about conditional (in)dependence?  For example, can one have X _  |_   Y|Z but X _  /|_Y|F (Z) for some function F?    Salmon (1984) provides an illustration of just this possibility, discussed in more detail in Section 9.  Conditional on Z= the precise physical state of the cue ball and eight ball at the moment of their collision, whether the eight ball drops into the corner pocket and whether the cue ball drops are independent, but they become dependent when we transform   Z to the more coarse-grained variable C= {collision, non-collision}. This raises the following question, which I pose as worth further exploration: for what functions F, is it true that
   (6.4)  X _|_ Y|Z  X _ |_Y|F( Z)? 
 For example, is it sufficient that  F be a bijection?

7. “Mixing” Variables  

My focus in section 6 was on transformations of single variables (or   aggregations of  different values of  a single variable.) What about cases in which new variables are defined in terms of operations on several  different  variables – e.g., we begin with X, Y and then define the new variables A= X+Y, B=X-Y?
We’ve already observed that such transformations can destroy (or create) apparent dependence relations. If X and Y are statistically independent, A=X+Y, B=X-Y will be dependent, except in special cases. This will affect any causal inference procedure that tracks (in)dependence relationships and will also affect the conclusions about causal relationships reached by many accounts that rely on a difference-making or dependency conception of causation. Assuming that not all cases of dependence created in this way should be interpreted as true causal claims, this observation points to the need to find further constraints   on the variables involved in such claims and their relationship-- constraints  that yield the result that not all such relationships are causal.   A standard move is to claim that  variables like A and B above are  “logically” or “conceptually”  (hereafter  “logically related”) and that  “logically related” variables cannot stand in causal relationships.  
But what exactly does it mean to say that variables are “logically related” and how can we recognize when this is the case? After all, in the above example, if we had begun with A and B as our variables, we could have defined X= (A+B)/2, Y= (A-B)/2. By “reasoning” parallel to that employed above, we could apparently infer that X and Y are “logically related”[footnoteRef:18].   This suggests that whatever “logically related” means, it is not a relation whose presence can be read off just from syntax. A prima-facie attractive strategy for dealing with this problem  (or at least it is attractive to anyone who favors an interventionist framework for thinking about causation, as I do) is this: if X, Y are  “good”  variables,  then we should expect that it is possible to intervene (and arguably to intervene  “locally”—see below)  to change the value of  each of them independently of the value of the other and that this should be so for each combination of such values.  More specifically, one might think that  if  X and Y are “good” variables, then it should be possible to intervene to change X to any of its values, while holding Y fixed  at any of its values and vice-versa. One might then argue that if X and Y are good variables, then A and B will not be,  on the grounds that any single (“local”)  intervention on A must also change B, since such an intervention on A must change either X or Y or both and thus will change B[footnoteRef:19]. One might hope   this is a way of cashing out the idea that A and B are “logically connected” in a manner that makes them unsuitable variables for purposes of causal inference—the logically connected variables are just those that we cannot separately intervene on via a single “local” intervention.   [18:  See Spirtes, 2009 for a similar observation. I am much indebted to this extremely interesting paper.   ]  [19:   Danks (personal communication) suggests that this notion of “independent manipulability” might be operationalized, in the case of structural equations and directed graph representations,  in terms of   the assumption of  “independent noise distributions. ” That is,  in cases in which each variable is influenced by an additive noise or error term, we might  choose variables so that  the  distributions of the noise term are (approximately) independent of one another and perhaps also so that errors are independent of  the other independent variables   in the equations in which the errors occur.  This corresponds to the idea that Nature can independently “manipulate” each variable. This idea is exploited in machine learning algorithms for causal inference.   ] 

 	  I don’t want to reject this idea[footnoteRef:20].  However,  as Spirtes (2009) brings out, in a discussion that will receive more attention below,   it depends on assumptions about how to count or individuate interventions (or at least about what counts as a single local intervention).    Suppose one intervenes in such a way that,   expressed in terms of X and Y,   both X and Y  are changed by the same amount a, so that A changes by 2a, while B remains unchanged.   Of course, when viewed from the perspective of X and Y, this involves “two” interventions, or at least an apparently “non-local” intervention that changes the values of both X and Y. The challenge is to explain why this could not also be viewed, from the perspective of A and B, as a “single” intervention which just changes A while leaving B unchanged . In some cases, considerations of spatio-temporal locality may be helpful. As Spirtes observes, if the events corresponding to the taking of various values by X and Y are at spacelike separation,  it might be argued that we have a principled basis  for claiming that any operation that involves setting values of  both these variables must involve  causally distinct interventions. On the other hand, as Spirtes also notes, many “events” and  instantiations of particular values of variables  in biology,  and the social and behavioral sciences (as well as common sense) are either spatially or temporally extended  or perhaps lack a  definite spatio-temporal location   – think of a central bank’s intervention to alter the money supply or the stimuli presented in a typical psychological experiment and the subsequent mental processing. In such cases, considerations of spatio-temporal locality by themselves may be unhelpful in determining what counts as a single intervention.   [20:  Indeed, I make use of a version of it in Author, forthcoming. ] 

 		I take this to suggest that in many cases choosing variables and deciding what counts as single interventions on each of those variables are all part of the same package—we choose or adopt both together. (This is another illustration of the  “relational” character of criteria for variable choice.) If we think in terms of some specified set of allowable intervention-like operations Oi that might be performed on some system with variables Vi, then we might require that these should  “line up” in the right way in the sense that it should be possible to intervene with operations from Oi on each of the Vi individually.  (However, we leave open the possibility that there may be some other set of intervention-like operations Oi * that line up instead with another set of variables Vi * that are their targets. ) This amounts to a kind of consistency requirement: don’t choose  variables such that they cannot be separate, independent targets for interventions (given your conception of what counts as a single intervention).  Such a constraint need not be empty: in many areas of investigation one begins by empirically discovering  (and exploring the consequences of) the existence of some   set of operations or manipulations that one (that is, macroscopic agents like us, with available macroscopic manipulative techniques) can perform on  systems of interest—one discovers, e.g., that there are  specific experimental procedures for  manipulating the temperature and pressure of a gas, for allowing it to expand isothermally and adiabatically and so on.   Given some specified set of operations  Oi and a candidate variable Vj  one might discover that it is very hard to use  any of these operations to manipulate just Vj. This would be evidence that   Oi and Vj are not well matched and might suggest that one should either look for some different set of variables or try to find different manipulative techniques or both. To the extent that there is some fixity or structure to the set of available manipulations with which one begins an investigation, this consideration can thus constrain variable choice[footnoteRef:21].  [21:   Many philosophers, especially those with a metaphysical bent, may be inclined to resist the suggestion that considerations having to do with what we can actually  manipulate should influence choice of variables for causal representation on the grounds that this makes variable choice excessively “pragmatic” or even “anthropocentric”. But (i) like it or not, “actually existing science” does exhibit this feature, and (ii) it is methodologically reasonable that it does—why not adopt variables which are such that you can learn about causal relationships by actually manipulating and measuring them and, other things being equal, avoid using variables for which this not true? Moreover,  (iii) at least in many cases, there are “objective” considerations rooted in the physical nature   of the systems under investigation that explain why some variables that can be used to describe those systems are manipulable and measurable by macroscopic agents like us and other are not. For example, any such manipulable/ measurable variable will presumably need to be temporally stable over macroscopic scales at which we operate. The physics of gases explains why, e. g., pressure has the feature and other variables we might attempt to define do not—again, see Callen, 1985, who emphasizes the importance of considerations having to do with actual manipulability in characterizing fundamental thermodynamic variables. The contrast between “heat” and “work” represents another interesting illustration, since this is essentially the contrast between energy that can be manipulated by a macroscopic process and energy that is not so controllable. Presumably one does not want to conclude that this contrast is misguided. ] 

	  Particularly when   dealing with different scales or levels of description some sort of  relativization of the notion of  what counts as a single intervention to a set of variables (or vice-versa) seems  both unavoidable and unobjectionable. Consider intervening on the temperature of a gas in a closed container by placing it in a heat bath. From the perspective of statistical mechanics one might think of this as involving a very large number of manipulations of individual molecules, albeit manipulations that are not independent of each other. From the perspective of thermodynamics, this may look like a single macroscopic intervention on the whole gas. Thermodynamic variables like temperature and pressure are variables that fit with or are well suited to be targets of macroscopic manipulations of a sort we are able to perform.  

8. Variables and Values. 
 
     A closely related issue  is this: when is it appropriate to represent some aspect of the situation being modeled by means of two or more different variables and when instead is it appropriate to use a single variable? A frequently discussed example  involves “switching”: a train   approaches a fork   with two branches, each of which leads to the same station.  If a switch is set to one setting, the train will go down the right hand track to the station; if it is set to the only other possible setting, the train will go down the left hand track to the station.  Suppose the former occurs. One way of representing this scenario is (i) in terms of a single variable S, with values 1 and 0 representing whether  the switch is set so as to send the train down the  right hand or left hand track (T=1, T= 0). Another apparent possibility is (ii) to employ two different variables,  RH= 1, 0 depending on whether the train goes down the right hand track or not and LH= 1, 0 depending on whether the  train goes down the left hand track or not.   The accounts  of actual causation adopted by a number of authors  (Hitchcock, 2001, Halpern and Pearl, 2005, Woodward, 2003) reach different conclusions about whether  the  position of the switch ( and whether the train goes going down the right hand track) is an actual cause of the arrival of the train,  depending on which variables (S, T versus S, RH, LH) are used to model the situation)[footnoteRef:22]: T =1 and S=1  are not judged to be actual causes of the arrival while RH= 1 is. If, as I have been supposing, it is built into the statement of the problem (it is a constraint that is assumed to be inviolable) that there are only two possibilities—  the train must go down either the right  or  left hand track and  it cannot traverse both or neither—then the  choice  of a single variable S (or T) seems preferable to the use of the two variables LH, and RH and the   claim that S=1 is not  an actual cause of arrival is the correct conclusion. The rationale is broadly the same as that (can be thought of as an extension) of the argument of adopted in Section 7: Whether or not one is willing to think of RH and LH as “logically connected”, it is built into the statement of the problem that certain combinations of values for these variables such as  RH=1, LH =1 and RH= 0, LH = 0 are not possible. Other things being equal, one should exclude choices of variables which are such that certain combinations of values for those variables are assumed, as part of the set-up of the problem, to be impossible. As this example illustrates, the relevant notion of “impossibility” here may include more than logical impossibility narrowly construed— it may include constraints that arise on the basis of spatio-temporal or compositional relationships.   [22:    Very roughly this is because in cases of this sort,  all these accounts employ (for this case)  some variant on the following test for whether X taking some value x is an actual cause of Y taking value y: draw a directed graph of the causal structure,  and then examine each directed path from X to Y. If, for any such path, fixing variables along any other path from X to Y at their actual values, the value of Y depends on the value of X, then X is an actual cause of Y. If  RH and LH are employed as  variables, then fixing LH  at its actual value (LH=0), the arrival (A) of the train depends on the value of RH.  On the other hand, if a single variable S is employed, there is only a single path from S to A. In this case the value of A does not depend on the value of S since the train will arrive for either value of S. ] 

 	This example also illustrates another point. When  considering the values of a single variable, we want those values to be logically exclusive, in the sense that variable X’s taking value v excludes X’s also taking value v’ where v v’.  We also want our variables to take  a range of values   corresponding to the full range of genuine or serious possibilities that can be exhibited by the system of interest. Thus logical relations (of exclusion) are what we should expect among values of a single variable, while for different variables we should expect compossibility of different combinations of values for those variables. (In other words, exclusion relations among values tell us that we are dealing with a single variable with different values, rather than different variables[footnoteRef:23].)    Noting that RH=1 excludes   LH=1 is a clue that we should collapse these two variables into a single variable like S; on the other hand if it is a genuine possibility that the train might split in two, and in this way travel down both tracks at one or alternatively fail to travel down either track (e.g., it derails), then the choice of the single variable S is inadequate since its two values don’t correspond to all of the possibilities.   [23:   Similar points hold for the representation of type-level causal relationships. Given a structure  (i) in which distinct variables X and Y are represented as joint effects of a common cause C, we might instead (ii) collapse X and Y into a single variable Z   represented as  the single   effect of C. (i) and (ii) involve  different, non-equivalent assumptions about causal relationships. Criteria like those described above can be used to guide which choice is appropriate. ] 

Using the ideas just described, Hitchcock (2012) considers an example in which a camper C prone to causing fires will go camping in June unless there is a forest fire in May. If C goes camping in June, this will result in a forest fire in June.  One possibility is to represent the occurrence of a forest fire by   a single variable F   taking the values 0 or 1 depending on whether a  forest fire occurs (at any time) or not. A second possibility is to represent the occurrence of a fire by a variable F’  taking three values depending on whether no fire occurs (= 0), a fire occurs in May (=1) , or a fire occurs in June (=2) .  A third possibility is to use two different variables  F1 and F2, with F1 taking values 1 or 0 depending on whether  a fire occurs in May and F2 taking values 1 or 0 depending on whether a fire occurs in June. The appropriateness of this third choice depends on whether it is a genuine possibility that a fire might occur or not in May and that, consistently with this,  a fire might occur or not in June. Adopting the second   representation with a single variable F’ amounts to the assumption that it is impossible for a fire to occur both in May and in June (since this would require   both F’= 1 and F’= 2). As Hitchcock shows, the first choice of variables allows no consistent representation of the situation, while the second leads to a cyclic solution (assuming we include a variable representing the camper’s decision to go camping) in which intervening on whether there is forest fire in June leads the camper to go camping in June.  Although some systems do exhibit causal cycles, this isn’t one of them – the representation clearly gets the causal order wrong, on any generally accepted theory of causation, including interventionism. The third representation is consistent, contains no cycles and is the only one that represents that intervening on whether the fire occurs in May will affect the camper’s decision to go camping in June. This example illustrates how violation of principles having to do with whether variables should be regarded as distinct can result in (other sorts of) causal pathologies.  

9. The Role of the CMC.  

   Many common causal inference procedures, such  as those described in Spirtes, Glymour and Scheines (2000), assume some version of  the Causal Markov condtion described under 4.4.  I do not want to enter here into the controversies  surrounding the status of this condition, but instead want to consider how it interacts with issues having to do with variable selection. Spirtes  (2009 ) considers a system  of structural equations  and an associated directed acyclic graph (DAG) which are “time –index free”:   this means there  that  given a DAG in which the variable types are temporally indexed—e.g., At, A t+1, …Bt, B t+1, Ct, C t+1….—there is a total ordering  O of the variable types in the graph such that for each variable of each type and all times t, there is no edge from a variable later than  in the ordering O to a variable earlier in the ordering[footnoteRef:24].  In the particular example Spirtes considers,  there is a population  of units u consisting of pairs of particles, 1 and 2,  with the positions at various times t  of the particles in each of these pairs represented by variables Position_1[u, t], Position_2 [u, t] and  the value of the position variable for each particle  caused by the position of that particle at a previous time and nothing more. (There is thus no interaction between the particles.) Assuming that the initial positions of the particles at t = 0 are not correlated,  this system has a particularly simple graphical representation that  satisfies CMC,  in which the position of particle 1 at each time is the sole cause of its position at the immediately following time and similarly for particle 2.    [24:  To use Spirtes’ example, the variables might be ordered as <A,B,C>,  where each temporally indexed A variable is directly caused only by other A variables (which are not later in the ordering <A,B,C>), each temporally indexed B variable is directly caused only by A variables (which are not later in the ordering <A,B,C>), and each temporally indexed C variable is directly caused only by B variables (which are not later in the ordering <A,B,C>). The time-index free graph thus allows one to collapse the temporal structure in the original graph consistently with the causal ordering. ] 

Suppose one  now defines new variables which are mixtures of Position_1 [t], Position_2 [t], 

 C[u,t] = 2  Position_1[u,t] + Position_2[u,t]
D[u,t] = Position_1[u,t] + 2  Position_2[u,t] 

 The relation between these new variables can also be represented by a time- index free graph in which no causal relationships are represented:

C    D 

Figure 9.1

Given their definitions C and D will be correlated, despite the fact that according to 9.1, C does not cause D and D does not cause C. Moreover, as Spirtes argues,  there are no obvious candidates for a hidden common cause that would explain this correlation.  Graph 9.1 thus involves an apparent violation of  CMC.  One might consider taking this by itself to indicate that there is something “wrong” with the variables  C and D in comparison with the variables Position_ 1, Position_ 2 which do result in a graph satisfying CMC. In other words, one might adopt the following as a ceteris paribus principle governing variable selection:

(S) If possible, choose variables such that the graphical representation of the system of interest satisfies CMC. 

As Spirtes remarks, under some parametric assumptions (e.g., that the variables are binary), it is not always true that one can  find some  transformation of  variables  by mixing  such that  the transformed variables will satisfy CMC.  In such cases, the claim that some system satisfies CMC for some set of transformations of its variables represents a real empirical constraint.   However, in other cases, it will always be possible to find transformations of variables such that the transformed variables will satisfy CMC—indeed in the case of linear Gaussian systems there will be an infinity of such transformations.   Thus, whatever else may be said about (S), it is a rather weak constraint, when taken by itself. On the other hand, one might hope that combining S with other principles governing variable choice as in Section 4   might provide stronger constraints.    This is one illustration of the general theme that in evaluating various constraints on variable choice we should consider how they function together, rather than evaluating them in isolation.  
 As an illustration, return to the example from Salmon (1984) in section 6.  With C representing whether or not a collision occurs,  the first ball is more likely to fall into a corner pocket (A) if the second ball falls into another pocket (B).   Thus P(A.B/C)>  P(A/C). P(B/C)– i.e., C fails to screen off A from B and the graph
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Figure 9.2 
 
fails to satisfy CMC. Spirtes, Glymour and Scheines (2000)  argue –  surely correctly– that this failure of screening-off is a consequence of the coarse-grained character of C. If we were to replace C with a finer grained variable C* representing the exact details of the position of the balls, the momentum of the cue ball etc., then C* would screen off A from B and CMC would hold for the graph 

A C* B.  

Figure 9.3


Intuitively C* is, ceteris paribus, a “better” variable than C –it is better in the sense that it is more informative about the conditions under which A and B  will occur than  C would be. It is also better in the following respect: if one were to employ causal inference procedures like those in Spirtes, Glymour and Scheines, 2000 (or pretty much any other standard causal modeling procedure), with   A, B and coarse –grained C, assuming that the system satisfies CMC for these variables alone, one would be led to an incorrect  graph  with an additional arrow from A to B (or vice-versa), as well as arrows from C to A and from C to B.  
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 Figure 9.4

This graph is incorrect in the straightforward sense that the arrow from A to B implies that some intervention on  A  will alter B and this is not true of the example as described.  By contrast the graph in Figure 9.3 is causally correct.  (This also serves as another illustration of the way in which different choices of variables, C and C*, will lead, given common inference procedures to different and inconsistent causal conclusions.)  Note  that both 9.3 and 9.4 satisfy CMC.  This further illustrates the point that  simply requiring that  variables be chosen in such a way that the resulting graph satisfies CMC is not by itself a very helpful constraint; indeed any fully connected graph will satisfy CMC[footnoteRef:25].  However, when conjoined with other constraints, such as information about the behavior of some variables under interventions on others (which might be supplied by experimentation) or information from some other source about causal relationships among variables, the requirement that variables be chosen in such a way that the resulting graph satisfies CMC while also meeting these other constraints  does have real teeth[footnoteRef:26].  In the example above, if one knows that A does not cause B and B does not cause A, then  the fact that the graph 9.2 with C fails to satisfy CMC can suggest that C is not a “good” variable.   [25:   Moreover, for any graph with a substantial number of variables, there will be a large equivalence class of such fully connected graphs that capture the (in)dependence relations.  Absent some other source of information, one will not know which if any of these graphs is correct-- a point to which I will return in Section 10. ]  [26:  Of course there are other constraints as well that might be combined with CMC—one of the best known and most powerful is faithfulness in the sense of Spirtes, Glymour and Scheines, 2000. Reasons of space prevent consideration of this constraint interacts with variable choice. ] 

 An additional possible heuristic suggested by this and other examples is: choose variables such that a graph results which not only satisfies CMC but which is  relatively stable (in the sense described in Section 10 ) and relatively sparse in the sense that  there are relatively few connections between variables in the graph.   To put the idea in a negative way:  if for some set of variables V, assuming CMC leads to a graph that is very non-sparse (e.g., close to fully connected, as Figure 9.4 is)  and some different set of variables V* leads to a much sparser graph, consider replacing V with V*. Glymour is perhaps sympathetic to something like this heuristic in his (2007), which I discuss   below.        

10.  Stability   

   Suppose the relationship between  X and Y satisfies whatever conditions one holds are minimally sufficient for X to cause Y.   This might mean the relationship satisfies (M) or that it meets some alternative requirement.  
   In principle, a causal relationship so understood might hold in some particular set of background circumstances Bi  (or for some very specific population P) but not continue to hold in various other background circumstances different from Bi  or in populations different from P.   (Think of the background circumstances as whatever is not included in X and Y.) To the extent this is so, the causal relationship is relatively unstable.  To the extent that the XY relationship would continue to hold over a  “large” or important a range of other background circumstances different from Bi, it is relatively stable[footnoteRef:27].   Stability thus has to do with the extent to which a causal relationship is   exportable from one set of circumstances or another. It does not seem controversial that, other things being equal, it is preferable to identify more rather than less stable causal relationships--  more stable relationships are more generalizable and provide more information relevant to manipulation and control.[footnoteRef:28]  Stability considerations are relevant to decisions about choice of variables because some sets of variables may enable the description of more stable causal relationships than others, given what we are able to know and calculate.   [27:   For more on stability, see Woodward, 2006, 2010 ]  [28:    In addition when purported causal relationships are relatively unstable, holding only in a narrow range of circumstances, grounds for worry about “overfitting” become more pronounced.   ] 

  As an illustration  (see Kendler 2005), suppose gene G has been identified and we are considering two possible  descriptions of  its phenotypic effects.  According to the first, G is a gene that causes a taste for bungee- jumping (B) and high stakes gambling S. According to the second, G causes risk-taking behavior R where R is taken to have the value “present” as long as the subject engages in some risk taking behavior or other, which might include high stakes gambling, automobile racing, dueling and so on.  Thus we are faced with a variable choice problem regarding which variable is best for characterizing the effect of G.   Depending on the empirical details of the case, the G R relationship might be more stable than the G B relationship, even if it is true that in  some background circumstances, manipulating G alters the probability of B, causal inference algorithms return an arrow from G to B and so on. The G B relationship might be relatively unstable because, among those with G, B will be present only in circumstances in which the relevant technology is available and subjects have been exposed to B as a possibility.  By contrast the G R relationship may hold as long as there is some avenue for the expression of some form of risky behavior. In such a case, Kendler argues that it is preferable to characterize the phenotypic effect in terms of R rather than B. There are obvious methodological rationales for this preference, both within interventionism and other frameworks for thinking about causation. The G R relationship  is more informative and more readily generalizable to new forms of risk-taking behavior[footnoteRef:29]. Moreover, when  a relation X—>Y is relatively stable (at least under changes that are likely to occur around here right now), this simplifies the task of causal representation. One can draw a single arrow from X to Y without adding lots of additional arrows into Y from  other variables  Zi variations in which affect the overall X Y relationship and which are thus required to achieve stability. If you must add a large number of additional arrows from additional variables Zi into Y to achieve stability (i.e. only the structure with arrows from all of the Zi into Y is stable), you end up with a very non-sparse graph. So other things being equal, finding stable relations also tends to facilitate sparseness.      [29:  At the risk of belaboring the obvious, let me emphasize that this is not a matter of the  G R relationship being more likely to be true; it is rather that this relationship provides information about something that we want to know about. ] 

In his (2007) Glymour describes work on climate teleconnections in which data on temperature, atmospheric pressure etc.  are measured  at  many different locations around the planet and then aggregated to form macro-level indices. With the right choice of aggregation procedure, the resulting indices stand in dependence and independence relations described by a relatively simple and  sparse  structure  that satisfies  CMC.  Furthermore both this  causal structure and the associated screening-off relations  are relatively temporally stable – they continue to hold over time.  The aggregation procedures used to form the index variables are of course many- to –one and, as  Glymour remarks (and we have seen in Sections 6-7 ), it will not be true for most possible aggregation procedures that they preserve  whatever screening-off  relationships are present among the locally measured micro-variables. Instead aggregation is likely to destroy such relationships (or even add new ones.) For this reason it is also not true for most ways of defining aggregate variables that the inferred causal relationships among them will be sparse, stable and satisfy CMC.  On the contrary, most ways of aggregating micro-variables into macro-variables lead to causal graphs relating those macro-variables that are extremely complex,   not temporally stable, and do not satisfy CMC. Thus finding a representation of causal relationships among macro-variables that does have these features is a real constraint and one that relates to goals of causal analysis.  This is, as Glymour claims,  some  reason for supposing  that the chosen aggregate variables in question are  “good” variables. 
An additional consideration which also connects to issues about stability concerns the possibility of “ambiguous manipulations”, in the sense of Spirtes and Scheines, 2004.  In their illustration, early investigations into the effect of cholesterol on heart disease (D) just measured total cholesterol (TC) which they treated as the sum of low density  (LDC) and high density cholesterol (HDC). It was eventually realized that LDC and HDC have quite different effects on  D with higher levels of LDC increasing the probability of   D and higher levels of HDC decreasing the probability of  D. Thus an intervention that sets TC to value v (e.g. via a drug) is ambiguous (with respect to D) in the sense that the effect on  D depends on the precise mix of LDC and HDC involved in this   particular realization of TC= v.  Assuming that different realizations of value v for TC on different occasions involve different amounts of HDC and LDC , this will show up in in an unstable relationship between TC and  D; higher TC will seem to cause  D in some situations  (and to raise the probability of  D by varying amounts in different cases) and to protect against it in others. This instability will be present even in well-designed non-confounded experimental manipulations of TC.  In this particular case it seems uncontroversial that LDC and HDC are, ceteris paribus, better variables than TC if one is interested in their effects  on D—better because they have (or at least come closer to having) homogeneous (and more stable) effects on D[footnoteRef:30].  It seems a reasonable conjecture that  similar  problems associated with heterogeneous effects of  the same values of candidate causal variables depending on how these are realized are quite common in the social and behavioral sciences, especially  when one considers that variables that  can be measured are often proxies for the variables of real interest. For example, in an investigation of the effect of education on health outcomes or income, years in school may be used as a measure of education, but of course different schools vary in educational quality,  resulting in apparently unstable effects of education (as measured) on outcome variables across different situations. One might try to correct for this by constructing a better education variable that incorporates some measure of school quality but there are obvious  practical limits on our ability to do this  and so we may be stuck with heterogeneous  or “ambiguous” variables despite the instability they engender.  This heterogeneity may be one important factor that contributes to the empirically observed instability of many causal relationships (including those estimated from RCTs) in the social and behavioral sciences.)  [30:  Note that this is a matter of the relation between, on the one hand TC and D, and on the other hand, LDC, HDC and D, thus again illustrating the theme that relations among variables matter for variable choice. ] 


11.  Specificity and Sparsity 

 The   criteria discussed above are by no means exhaustive. Two other, related criteria that legitimately influence variable choice are specificity and sparseness.  For present purposes,  a causal relationship  X Y   is non –specific  to the extent that X has many other effects of some specified sort besides Y and  also to the extent that Y has many other causes besides  X. Causes that are non-specific figure in non-sparse causal representations in the sense that variables in such representations are connected to many other variables. Sometimes representations   involving variables figuring in non-specific causal relationships  can be replaced with representations involving new variables standing in more specific  causal relationships.  Thus, if X is represented as having many different effects Y1,… Yn, one may look for some single new variable Z that characterizes what all of those effects have in common—the characterization of the phenotypic effect of gene G in terms of risk-seeking behavior described in section 10 provides an illustration.    The idea of looking for so-called endophenotypes and common pathways associated with diseases like schizophrenia that are  causally influenced by many different genetic and environmental factors  provides another illustration: one seeks to replace a representation according to which many different, disparate factors causally influence  disease D with a representation in which a single factor E is the proximate cause of D.  
	It seems uncontroversial that, as a descriptive matter, both scientists and ordinary folk often prefer more sparse causal representations involving specific causes[footnoteRef:31].   There  are also possible normative rationales for such a preference.  As  with stability, more specific causal relationships are often more readily learnable than less specific relationships and are less likely to reflect overfitting.  To the extent that a graph is non-sparse and highly connected,  it is  more likely that  there is a  equivalence class of other  graphs,  indistinguishable on available evidence, with differently oriented arrows. So any individual graph in this class may not be a reliable source of information about the results of interventions.   In addition  it is often desirable, from the point of view of a concern with manipulation  to discover causally  specific relationships  and specific causes when they exist: they afford opportunities for  targeting specific effects and avoiding other effects that are undesirable. Chemotherapy, for example, is a very non-specific causal agent in comparison with agents that might be used specifically for the genetic manipulation of tumors. When relationships involving the latter exist, they are worth discovering. In biological contexts, causal specificity is of interest in part because of its connection to notions of signaling and information transmission (Woodward, 2010). [31:   For evidence regarding lay subjects in support of this claim, see Lu et al. (2008 ).   The authors model causal learning within a Bayesian framework which assumes subjects have  generic priors that favor the learning of what the authors call “sparse and strong” causal relationships over alternatives.  Strength in this context means that   causes have high “causal power” in the sense of Cheng, 1997—“power” is a stability-related notion. Sparseness means, roughly, that relatively few causal relationships are postulated—this is obviously related to specificity.  Lu et al.  present evidence that, as a descriptive matter, subject’s learning conforms to what would be expected if they were guided by such priors and they also gesture at a normative rationale for their use—they facilitate learning and have an information-theoretic justification in the sense that strong and sparse causes are more informative about their effects.] 


12. Conclusion  

 The considerations proposed above may be largely misguided, but they do have, in comparison with  the  usual appeals in discussions of variable choice to  notions like “naturalness”  or  “simplicity”,   the  advantages of being somewhat more precise and of standing in various structural relations that might be further explored.  And their justification, such as it is, does not need to be left at the level of what seems “intuitive” but can be connected to goals of inquiry in ways I have tried to demonstrate. So we have at least the possibility of learning in what respects they are misguided and improving them. 
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