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Abstract

I offer an alternative interpretation of classical statistical mechanics and the role of probability in the
theory. In my view the stochasticity of statistical mechanics is associated directly with the observables
rather than microstates. This view requires taking seriously the idea that the physical state of a statistical
mechanical system is a probability measure, thereby avoiding the unnecessary ontological presupposition
that the system is composed of a large number of classical particles.

1 Introduction
Among the most persistent questions in the philosophy of statistical mechanics is, ‘How are probabilities
in statistical mechanics to be understood?’ Especially in recent years, there have been many studies that
have taken up this interpretational question.1 The common approach taken is to investigate whether some
one of the familiar so-called ‘interpretations of probability’ makes sense of the application of probability in
the theory.2 On the whole, the conclusions of these various studies have not been encouraging.3 Certainly
some accounts of probability receive more attention than others, yet the debate continues and there remains
a distinct lack of real consensus on the physical, metaphysical, and conceptual significance of statistical
mechanical probabilities.4

I adopt a different approach to interpretation than the usual one, for I am skeptical that much light will be
shed on the probabilistic nature of statistical mechanics by relying solely on the fruits of conceptual analysis
to guide interpretation. I take probability in physics to be essentially a theoretical concept (Sklar, 1979). By
an interpretation of probability in a physical theory, I will mean in particular an account of what is randomly
∗Department of Philosophy, University of California San Diego, La Jolla, CA, USA. email: cdmccoy@ucsd.edu
1For a representative sample of such papers, see (Clark, 2001; Lavis, 2001; van Lith, 2001; Emch, 2005; Winsberg, 2008; Meacham,

2010). The issue is also treated prominently in several books and reviews (Sklar, 1993; von Plato, 1994; Guttmann, 1999; Uffink, 2007;
Frigg, 2008; Myrvold, forthcoming).

2The interpretation of probability is a distinctly popular and well-traveled topic in philosophy. There are many introductions to the
general literature, for example (Gillies, 2000; Galavotti, 2005; Mellor, 2005); one may also usefully consult the encyclopedia article by
Hájek (2012).

3Winsberg, for example, flatly observes that ‘most traditional accounts of objective chance have trouble making sense of non-
trivial chances in a deterministic world’ (Winsberg, 2008, 873). Although some assessments are sanguine about the prospects of an
interpretation, these tend to ignore obvious and serious problems with their favored interpretations.

4I set aside in this paper the cluster of interpretations that are characterized by their subjectivist or essentially epistemic character,
especially ones based on indifference principles or ignorance. I direct the reader to criticism elsewhere (Albert, 2000; Loewer, 2001;
North, 2010; Meacham, 2010). See (Uffink, 2011), however, for a friendly and thorough review of subjectivist interpretations.
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determined in the theory, that is, an account of the theory’s stochasticity. What is stochastic about a theory
can be usefully understood by investigating the answers to two questions:

1. To what are probabilities attached in the theory?

2. What are the random variables in the theory?

Accordingly, the alternative interpretation of statistical mechanical probabilities which I propose locates
the stochasticity of the theory in the system’s observables. The observable properties of the system are what
is random about statistical mechanical systems. Moreover, my main claim can be usefully understood as
stating that probabilities are attributed to observable outcomes, where the observables are treated as random
variables on the space of possible observable outcomes.

According to this interpretation one must reject the idea that the microstate of the system be understood
as the instantaneous state of a large collection of particles (on pain of contradiction); instead one should take
seriously the idea that probability measures represent the complete physical states of individual statistical
mechanical systems.5 This latter claim should not be misunderstood—probability measures only represent
the physical states of individual statistical mechanical systems qua statistical mechanical systems. There
certainly may be other accurate descriptions of the system in the terms of a microphysical theory, for example
especially in terms of an underlying quantum mechanical state.

Although it is indeed common in the physics literature, especially in the so-called ‘Gibbsian’ approach
to the subject, to regard probability measures as the states of statistical mechanical systems, one still finds
rationalizations of an underlying particle ontology by proposing that probability measures represent ensem-
bles of systems (of particles). One of my principal contentions through advocating this view is that one
should simply forgo interpreting microstates as necessarily representing an underlying particle ontology of
statistical mechanics at all.6

Sklar has discussed the possibility of forgoing an ontological interpretation of microstates, but calls such
a move a ‘radical proposal for revising our basic ontology’ (Sklar, 1993, 363). Our present basic ontology,
however, surely does not come from classical particle mechanics. The world is, if anything, fundamentally
quantum mechanical. Thus, to suppose that statistical mechanical systems are necessarily composed of
classical particles is an overly strong ontological and foundational assumption, one which I claim we are
better off retreating from in the course of our foundational and philosophical investigations. Besides, recent
work in the philosophy of science and physics suggests that forgoing a fundamental ontology for statistical
mechanics may not be such a bad thing, as one may usefully regard statistical mechanics epistemologically
as a kind of ‘special science’ (Callender, 2011) and ontologically from a structuralist point of view (Ladyman
and Ross, 2007), in which case it makes little sense to presuppose a definite fundamental ontology for such
a ‘high level’ theory, at least without careful investigation of the relations between it and other physical
theories.

The paper proceeds as follows. First, I discuss the possibilities of characterizing the stochasticity of sta-
tistical mechanics, and show how my favored interpretation can be suggested by the formalism of the theory
(§1). I then argue that phase-space should be interpreted instrumentally in statistical mechanics (§2), using

5The notion that a probability measure is the state of a statistical mechanical system is quite frequently stated—for example: ‘By a
statistical state of the system we will mean a probability measure µ on the manifold U’ (Souriau, 1997, 271). What the interpretational
significance of such statements is taken to be, however, varies widely among physicists or is often simply not considered.

6To be sure, this idea is not entirely novel since similar views have been suggested before, most notably by Prigogine (See Prigogine
(1996) for a popular account of his views). My argument however does not depend at all on the dynamical considerations which
Prigogine argues makes a realist interpretation of phase points untenable. See (Batterman, 1991) for a philosophical evaluation of
Prigogine’s approach. The general view which I advocate here is discussed in the philosophical literature, as far as I am aware, only by
Sklar (1993, 7.IV.2, 9.III.1) (he pejoratively calls it the ‘radical’ or ‘revisionist’ ontological approach), and he appears to take Prigogine
alone as the source of the interpretation.
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as an example the phase-space formulation of quantum mechanics, where quantum states are representable
on phase-space; clearly in that case one would not assume that points of phase-space represent classical
states of particles. In §3 and §4 I argue for the viability of interpreting statistical mechanical observables as
the stochastic element of the theory: first by arguing that it provides better coherence between the ontology
and epistemology of statistical mechanics; second by showing how a commitment to a fundamental ontology
of classical particles can coherently be avoided. I conclude (§6) with some brief comments pointing to po-
tentially fruitful extensions of this work, for example to non-equilibrium statistical mechanics and quantum
mechanics.

Statistical mechanics encompasses a fairly diverse array of approaches and formalisms;7 to avoid exces-
sive complications I restrict my attention to equilibrium statistical mechanics. The case for an alternative
interpretation of probability made on its basis is of sufficient interest without immediately considering sta-
tistical mechanics in all its diversity.

2 Probability Spaces in Equilibrium Statistical Mechanics
A perspicuous formulation of statistical mechanics should be able to tell us what probabilities do in the the-
ory. This is accomplished in statistical mechanics through its essential incorporation of probability theory as
a way of deriving statistical predictions of observables. Precisely how probability is implemented formally
in the the theory is however quite flexible, as a consequence of which there exist physically-motivated alter-
native interpretations that identify different ‘things’ to which probability numbers are attached and different
elements of the framework as random variables—that is to say, what is stochastic in the theory.8 To be
sure, there is a standard view on the matter, namely that probabilities attach to microstates of the system
and observables are represented by random variables. My aim in this section is to demonstrate that there
exist plausible alternatives to the standard view based on two modifications: (1) where probabilities are
understood to attach to observable outcomes; (2) where microstates are understood as random variables.

An equilibrium statistical mechanical system is described by three things: a phase-space Γ, a (macro-
)state ρ, and a set of observables A. The notion of a phase-space is borrowed from classical particle me-
chanics, where it is the space of possible states. Encoded in a classical particle state x of Γ is the spatial
configuration of all individual particles as well as their states of motion, that is, their positions and momenta.
In statistical mechanics the elements x of Γ are referred to as microstates, and they are standardly interpreted
as representing the epistemically-inaccessible but real underlying microphysical states of motion of the sys-
tem. The macro-state ρ is a probability distribution on Γ, and the observables A, B,C, . . . ∈ A are random
variables on Γ, usually represented as maps Γ→ R.

A statistical mechanical system described as such naturally describes a probability space, where Γ is the
sample space, the set of events L is conveniently taken to be the set of (Lebesgue) measurable subsets of Γ,
and ρ is used to define a probability measure µρ:

µρ(U) =

∫
U
ρ dΓ, (1)

7‘Unlike quantum mechanics and relativity theory, say, statistical mechanics has not yet found a generally accepted theoretical
framework, let alone a canonical formulation. What we find in statistical mechanics is a plethora of different approaches and schools,
each with its own programme and mathematical apparatus, none of which has a legitimate claim to be more fundamental than its
competitors’ (Frigg, 2008, 101).

8From a purely mathematical point of view this should be unsurprising, since probability theory is not about probability spaces per
se. The same set of statistical outcomes can be modeled by various probability spaces with various choices of random variables. Thus
some interpretive work is required to establish which measure space is the ‘right’ one.
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where U is an element of L, and Lebesgue integration is with respect to the natural volume element dΓ on
Γ. It is clear, when the theory is formulated this way, that probabilities attach to micro-states, since ρ is
undertsood to be a map from Γ to [0, 1].

The empirical content of statistical mechanics is given by statistics of the observables, that is, expectation
values, variances, and so on.9 For example, the expectation value of an observable A is given by treating A
as a random variable on Γ associated to the probability measure µρ:

〈A〉ρ =

∫
Γ

ρ A dΓ. (2)

The standard view thus has probabilities associated to microstates and treats observables as random
variables. But what about the system is random? Is it the microstates or the observables? The answer is
surely not manifest—indeed some interpretive work is required.

One interpretation is that any statistical mechanical system possesses in addition to its macrostate ρ a
classical microstate x(t) (at time t) which evolves deterministically as in classical particle mechanics. The
only thing that could be random about a statistical mechanical system which is also a classical mechanical
system is its initial microstate x0. That is to say, for any statistical mechanical system there was a random
trial that determined the initial microstate x0, which state determines its future evolution and observable
properties just as in classical particle mechanics.10 But since a statistical mechanical system’s microstate
is presumed to be epistemically inaccessible (it cannot be determined through measurement because of the
large number of degrees of freedom), one can only compute the statistical consequences of this uncertainty in
order to derive predictions of the macroscopic observables. In this case the previous equation, the expectation
value, should be interpreted epistemically; the system’s macroscopic observables are actually determined
by classical mechanical observables ( real-valued functions on phase-space, in particular of the system’s
classical trajectory):

A(t) = A ◦ x(t). (3)

A second interpretation is possible in which microstates are understood to represent the state of a system
of particles. In this view microstates do not evolve deterministically as in classical particle mechanics.
Instead the microstate is itself taken to be stochastic. This can be made formally more manifest by treating
the microstate as a random variable on phase-space, and representing the observables in the same way as
observables in particle mechanics, namely real-valued functions on phase-space.11 Define a random variable
X : Γ → Γ on phase-space which is just the identity map between measure spaces Γ. Then the expectation
value of an observable can be written

〈A〉ρ =

∫
Γ

ρ (A ◦ X) dΓ. (4)

There is yet another possible interpretation of the expectation value of equation (2): the observables
themselves are stochastic. To make sense of this claim, however, one has to give up on the idea that sta-
tistical mechanical systems possess deterministically evolving microstates, since if the observables were
truly stochastic, then the system would have contradictory observable properties (the observables realized

9See also (Wallace, 2013b) for a clear and accessible account of how statistical mechanics is used to describe and predict statistical
phenomena.

10Strictly speaking the random trial does not need to determine the initial condition; there merely needs to be, at some time, a random
trial that determines the system’s micro-history.

11It seems that this view is also sometimes explicitly adopted in the physics literature: ‘As time passes, the system continually
switches from one microstate to another, with the result that, over a reasonable span of time, all one observes is a behavior “averaged”
over the variety of microstates through which the system passes’ (Pathria, 1996, 30).
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through the stochastic process and the observables determined by the microstate). This was the case with
the previous interpretation as well, but in this case I emphasize that there is also no need to give a realistic
interpretation of the microstates.

One may find this last remark puzzling, since expectation values are computed by quantifying over mi-
crostates. Insofar as one thinks that realism is not an all or nothing affair with respect to a given formal
framework, that is, insofar as one is a selective realist, one is however within one’s rights to interpret some
aspects of a theory’s formalism instrumentally. Thus a selective realist may be completely satisfied to inter-
pret phase-space and its microstates as ontologically insignificant representational structure.

Although I find this position reasonable, it is nevertheless possible to mold the formalism somewhat so
that the interpretation of observables as stochastic becomes more manifest. Just as one can treat phase-space
as a probability space and the microstate as a random variable on this space (as in the second interpretation),
one can treat the image set of any observable as a probability space, and the observable outcomes as random
variables on these spaces. By this mild subterfuge one can remove all reference to phase-space and its
microstates (should one for example be worried about Quinean quibbles).

Given the probability space (Γ,L, ρ), it is trivial to construct these spaces. Let A be an observable of
a statistical mechanical system. The measurable space associated with it is the image set A[Γ] of A with
measurable sets LA = {A[U]}, for sets U ∈ L. Let ρ be the state of the system with respect to the measurable
space (Γ,L). The state ρA of the system with respect to measurable space (A[Γ],LA) is given by A∗ρ, the
pushforward of ρ under A.12 One now has constructed a new probability space (A[Γ],LA, ρA).

Expectation values of the system are then computed according to the following formula:

〈A〉ρA =

∫
A[Γ]

ρA A dA. (5)

The statistics predicted from formalizing statistical mechanics in this way, namely on probability spaces
A[Γ] of observables, is of course identical to the statistics predicted from formalizing it on phase-space (as a
probability space). It is so by construction. Moreover this set of probability spaces suggests a different inter-
pretation which is less apparent in the standard formulation. In this interpretation probabilities are attached
to observable outcomes, and those observable outcomes are treated as random variables. Together they
formally represent the stochasticity of the observables, and thereby the stochasticity of statistical mechanics.

3 Interpreting phase-space
It may have occurred to the reader that the outcome probability spaces just constructed, that is those of the
form (A[Γ],LA, ρA), are objectionably parasitic on the phase-space probability space. That is not really the
case, since one could just as well work the other direction, that is, by choosing a ρA and pulling it back to
phase-space. Certainly the pullbacks are not going to be unique in general, but what is to worry? One just
has to insure that the pullbacks of the set ρA = {ρA, ρB, . . . } agree, and then one has the resources at hand to
do the business of statistical mechanics.

Still, I suspect many find great significance in the fact that statistical mechanics is generally formulated
on phase-space, perhaps find it auspicious even.13 But it may also be historical accident and naiveté. I

12You can think of this map as using A to pull back measurable sets of the image set of the observable to Γ and then using ρ to
compute the set’s probability.

13‘In statistical mechanics, we have, instead [of what is the case in quantum mechanics], built into the very mathematics from which
the probability distributions are derived the underlying phase-space with its pointlike representatives of exact micro-states’ (Sklar, 1993,
291).
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certainly grant that the phase-space probability space is instrumentally useful, since having a single state on
it unifies the observable content of the system in a single space. Indeed, that is just what a state is supposed to
be anyway: a unified representation of the observable content of the system. Once one has it, it is a separate,
interpretive matter to determine whether one should use phase-space or some other probability space with
enough representational content to coordinate the observational content of the physical system. By exhibiting
alternative formal presentations of statistical mechanics in the previous section, I have shown then that the
traditional, customary interpretive choice is not uniquely justified merely because of a traditional, customary
choice in formalism.

If phase space should not be taken too seriously for purposes of ontology, then why would phase-space
ultimately be a good way to represent statistical mechanical states? My considered view is that phase-space
has enough representational content that it can be usefully used to represent not only statistical mechanical
states but underlying physical structure as well. To explain its utility in this latter respect one would wish to
have a microphysical theory that can represent its own states as probability measures on phase-space. Classi-
cal particle mechanics, the theory typically thought of as providing the underlying microphysics of classical
statistical mechanics, cannot realize macrostates in this way, for a classical mechanical state on phase-space
is merely a ‘sharply-peaked’ distribution.14 If one therefore wishes to understand from where statistical
mechanical states come, one should look elsewhere for the provision of phase-space representations.

Quantum mechanics is one appealing place to look. Indeed there is a well-known, straightforward,
and illuminating way to represent quantum states and operators on phase-space, namely through the use of
Wigner functions and Weyl transforms.15 Let ρ be a density operator that represents a (mixed) quantum
state, that is,

ρ =
∑

s

ps|Ψs〉〈Ψs|, (6)

where ps is the probability of the system being in a particular pure quantum state |Ψs〉 in a set of pure states
indexed by s. The Wigner function Wρ transforms a quantum state ρ into a function on phase-space. It is a
map Wρ : Γ→ R that may be defined as follows:

Wρ(q, p) =
1

πN/2

∫
dNγ e2ipy/~〈q − γ|ρ|q + γ〉, (7)

where local coordinates q (position) and p (momentum) have been introduced on 2N-dimensional phase-
space Γ. If the Wigner function is a probability measure on phase-space (it is not necessarily so), then it
may (at least formally) serve as a ‘statistical mechanical state’. Quantum mechanical observables may be
transformed similarly (such transforms are called Weyl transforms) into functions on phase-space, that is,
classical observables. The statistical mechanical expectation value of an operator A, then, is simply given by
an integral over phase-space:

〈A〉ρ =

∫
Γ

Wρ A dΓ, (8)

much as in statistical mechanics.
I give the example of quantum mechanics on phase-space not to make the case that this is precisely how

statistical mechanical states come about in general. I mean to show rather that phase-space is plausibly a
vehicle for representing underlying microphysical structure in an indirect way, and therefore that there is no
mystery about its appearance in the formalism of statistical mechanics. The fact that quantum mechanics

14In fact equilibrium statistical mechanics is naturally seen as a more general theory than classical mechanics, in that it can represent
classical mechanical states as well as more general statistical states.

15See, for example, the textbook by Kim and Noz (1991), or the accessible introduction by Case (2008). The formalism is also
described in (Wallace, 2012).
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is representable on phase-space, even though quantum mechanics is not a theory of classical microstates,
suffices to establish this point.16 For this reason it also is not necessary to reformulate statistical mechanics
to avoid referring to phase-space, as one may wish to do to avoid quantifying over microstates. Phase-space
is, I expect, of significant practical and heuristic value in establishing the sort of inter-theoretic relations
which are needed to illuminate the foundations of statistical mechanics.

4 Epistemology and Ontology in Statistical Mechanics
It is widely presumed that the foundations of statistical mechanics is an enterprise centrally concerned with
completing the project of the founders of statistical mechanics (Wallace, 2013b, 2), that is, reducing ther-
modynamics to the mechanical motion of molecules (Callender, 1999, 2001) - ‘nought but molecules in
motion’ in Maxwell’s memorable phrase. Philosophers and physicists regularly adopt the traditional pre-
supposition of a classical ontology of particles moving in space as featured in this traditional foundational
project. It is moreover natural to borrow this ontology from classical particle mechanics, since classical
statistical mechanics is ‘built on top of’ classical particle mechanics. Thus individual statistical mechanical
systems are presumed to have a classical mechanical state (a ‘microstate’) that evolves deterministically and
has determinate physical properties, just as in classical particle mechanics.

It is a central assumption of statistical mechanics, however, that a system’s microstate is in general
epistemically inaccessible—if it were accessible, then probabilities would not have to be introduced in the
theory.17 Statistical mechanical probabilities are introduced to classical particle mechanics by associating
probability measures to particular aggregations of microstates (‘macrostates’), that is, a probability measure
is a map Γ → [0, 1]. These probabilities are of course crucial for deriving the theory’s objective empirical
content, yet their role in the traditional interpretation is puzzling, at least on the face of it.18 Macrostates have
no influence on the behavior of individual microstates, as the latter are understood to evolve deterministically
and therefore in ignorance of this probabilistic element.19

Yet it is the macrostates that have observable consequences in the form of statistical predictions (expec-
tation values, variances,...). So why posit an ontology of particles with additional dynamical constraints,
then, when such a posit is beyond our epistemic reach? I take it to be a plausible, defeasible principle that
‘ontology should recapitulate epistemology.’ What I mean by this is that we should accept some degree of
anti-metaphysical ‘positivism’ in scientific metaphysics, namely by only accepting the existence of entities

16Contra Sklar: ‘In quantum mechanics, the mathematical apparatus posits no further underlying ‘point’ phase-space state of the
system beyond the probability distribution. Indeed, classical phase-space is rejected altogether and is replaced by a phase-space in
which the mathematical representatives of the probability distributions (or, rather, the probability amplitudes from which the probability
distributions are constructed by multiplying one of them by its complex conjugate - Hilbert space vectors) are the ‘atoms’ (Sklar, 1993,
291).

17Although some textbooks do not even mention microstates, those that do often point out this epistemic assumption explicitly:
‘...even though the energy is fixed, the system could exist in any one of a number of different microscopic states consistent with that
energy. If we only know the total energy, we have no way of distinguishing one microscopic state from another’ (Reichl, 1998, 341);
‘A macroscopic physical object contains so many molecules that no one can hope to find its dynamical state by observation’ (Penrose,
1970, 2); ‘The definition requires one to know the initial positions and velocities of all n particles and to follow these motions for all
time. Since n is typically of the order of 1024, this is of course impossible’ (Ellis, 2006, 65).

18‘If the laws are deterministic then the initial conditions of the universe together with the laws entail all facts—at least all facts
expressible in the vocabulary of the theory. But if that is so there is no further fact for a probability statement to be about’ (Loewer,
2001, 610); ‘The fundamental problem with understanding the probabilities in statistical mechanics to be objective is that we are meant
to posit a probability distribution over a set of possible initial states, while we suppose, at the same time, that in fact only one of these
initial states actually obtained’ (Winsberg, 2008, 873).

19This apparent tension has led to many efforts at establishing a philosophical account of ‘objective chances’ to resolve it. See, for
example, (Loewer, 2001; Hoefer, 2007; Maudlin, 2007; Ismael, 2009).
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when we have adequate reasons to believe that they exist, and otherwise remaining agnostic (if not skeptical
of unduly speculative metaphysics).

The view of statistical mechanics where microstates faithfully represent actual configurations of par-
ticles in motion appears to flout this principle flagrantly. Thus, for the sake of scientific respectability, the
microstate reifier must take on the burden of explaining why the ontology of statistical mechanics can diverge
from the epistemology of statistical mechanics. I certainly do not suggest that such explanations cannot be
provided, but I do insist that it is a significant interpretive cost in comparison to the simpler view that I
advocate.

In my view the ontology of statistical mechanics includes statistical mechanical systems, that is, those
systems, like boxes of gas and the early universe, that are well-described by the theory. The theory describes
systems in terms of statistical mechanical states—probability measures—and stochastic observables, the
combination of which can be used to derive accurate statistical predictions of observational outcomes.20

There is no analogous mystery of what probability is doing in the theory as there is in the traditional view.
Probability merely describes the stochastic nature of statistical mechanical systems, which fact is responsible
for the statistical observable outcomes of said systems.

On this score my favored interpretation comes out ahead of the traditional presuppositions, yet I certainly
do not take this to be a decisive point. My aim in setting it out is primarily to push back against a default
presumption in favor of the traditional view.21 With respect to the interpretation of statistical mechanics,
understood as an autonomous physical theory, I urge that on the basis of a plausible philosophical principle
there should on the contrary be a default presumption in favor of the ontologically less profligate interpre-
tation. With respect to foundational questions about statistical mechanics, however, indeed something more
must be said.

5 Alternative Foundations
In the traditional interpretation a particular foundational relationship is assumed between statistical mechan-
ics and classical mechanics (Wallace, 2013a). One point of view is to take classical particle mechanics as
a fundamental theory22—at least more fundamental than classical statistical mechanics—and statistical me-
chanics as a ‘higher level’ theory that successfully describes a particular set of phenomena—thermodynamic
phenomena—despite practical limitations in accessibility to the ‘lower level’ details. It is also sometimes
supposed, however, that statistical mechanics is a fundamental theory of sorts, and that the probabilities are
somehow objective features of an otherwise classical mechanical world of particles moving in space (Albert,
2000; Loewer, 2001).

The assumption of a necessary relationship between classical and statistical mechanics in these ways
should, it seems to me, strike us as somewhat odd—again, the world is quantum mechanical, so far as we
know, not classical mechanical.23 Assuming that the ontological foundation of classical statistical mechanics

20It may seem we have lost a spacetime picture by speaking of the theory in these terms, but that is not necessarily so. The phase-
space formulation can be used, for example, to represent external constraints like the volume of the system.

21‘As far as things look now, nothing in statistical mechanics forces us to abandon the appropriate exact micro-states posited by the
underlying dynamical theory, be it classical or quantum in nature’ (Sklar, 1993, 418); ‘Classical theorists who want to remain realists
about exact states and unique trajectories need not be terribly moved by [Prigogine’s] argument. They may claim that it just begs the
question. It seems to me that nothing short of bona fide no-hidden-variables proof can genuinely compel one to give up the concept of
an exact state’ (Batterman, 1991, 260).

22‘Mechanics is a completely general theory, that is it ought to give a complete description of any physical situation to which it
applies’ (Clark, 2001, 271).

23‘Why should we consider quantum issues when working in the foundations of statistical physics? The simple (too simple) answer
is that classical physics is false. If our purpose, in doing foundational work, is to understand the actual world, it is necessary to use a
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is the same as found in classical particle mechanics not only faces the epistemological challenge raised
already, but it is quite unnecessary, since there are these days other potential fundaments for the former
besides the latter.24

A key virtue of adopting the alternative interpretation of statistical mechanics which I am advocating
is that it avoids any unwarranted and necessary commitment to a particular fundamental ontology and
foundation for the theory. Sklar finds this ‘revisionist ontology’ objectionable precisely because it fails
to complete the historical project of statistical mechanics. As he says, ‘denying the existence of the exact
micro-states...doesn’t seem to help us at all in resolving the most crucially puzzling questions such as those
centered around the origin of time-asymmetry’ (Sklar, 1993, 366). On the contrary, I believe denying a par-
ticle ontology for statistical mechanics will help solve those problems, namely by re-directing foundational
efforts from the fruitless search for explanations mired in the classical thinking of outmoded science to other
avenues of explanation based on our best understanding of current physics. Avoiding ontological commit-
ments does not force one to be agnostic about foundational matters; rather the interpretation encourages the
fruitful reorientation of foundational investigations into statistical mechanics from the intra-theoretic to the
inter-theoretic.

How can this alternative interpretation coherently avoid the commitment to a particular foundational
viewpoint? One appealing way is to understand statistical mechanics as a ‘special science’ (Callender,
1997; Callender and Cohen, 2010; Callender, 2011).25 For Callender statistical mechanics is a theory like
those found in biology or economics:

It’s a new special science, one that grounds and unifies a lot of macroscopic behavior. It too
is restricted to certain kinds of systems, in this case macroscopic systems whose energy and
entropy are approximately extensive. (Surely a better characterization can be given, but this
will do for now.) The claim is that the [statistical mechanical] probabilities only kick in when
we have systems meeting such a description. Once they develop, one uses [statistical postulates]
to great effect. But one does not use it to describe and explain the frequency with which such
systems develop in the first place. The science of statistical mechanics is about systems with
certain features. Yet it’s no part of the science to say anything about the frequencies of these
systems themselves (Callender, 2011, 110).

That is just to say that it’s a job for another theory with greater explanatory resources. Indeed, it may be
a job for other theories, since it is certainly open that the probability measures which serve as statistical
mechanical states may be mutliply-realized in distinct physical structures, such that reductive and emergent
relations between those structures and their statistical mechanical descriptions are system-dependent.

Thinking of the theory as a special science gives reason to avoid unnecessary commitments to a particular
fundamental ontology, at least from the point of view of the special science. Structuralism encourages the
further view that it is unnecessary to posit any theoretical ontology over and above the structure given by
the theory in the theory itself. Structuralism, in its most benign form, should certainly not be seen as an
effort to ‘get rid of’ ontology altogether, but rather as an effort to proof our metaphysical thinking of naive
ontological prejudices—especially such as that the world is made up of individual classical particles).26

theory which validly describes that world’ (Wallace, 2001, 1).
24The founders of statistical mechanics had an excuse, as they were not so spoiled for choice in alternatives!
25The particular interpretation advocated here differs somewhat from Callender’s own position, at least in the details. For example, he

says that ‘the special-sciences view doesn’t claim that macroscopic systems aren’t composed of particles that always evolve according
to microdynamical laws. They are’ (Callender, 2011, 110). While I certainly do not make the claim that macroscopic systems are not
composed of particles, neither do I claim that they necessarily are so composed.

26‘We are not ’anti-ontology’ in the sense of urging a move away from electrons, elementary particles etc. and towards ’observable
structures’ or the S-matrix or whatever; rather, we urge the reconceptualization of electrons, elementary particles and so forth in
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Such ontological prejudices can impede progress in understanding the foundations of physics, and may
even impede physics beyond foundational matters, since as Cao (2003, 5-6) observes, ‘an ontological com-
mitment made in a scientific discipline also dictates its theoretical structure and the direction of its evolution.’
An ontological commitment to classical particles dictated the theoretical structure of statistical mechanics,
and has since largely dictated the direction of its evolution both within physics and especially philosophy.
We now know more and better, and therefore a foundational account that presupposes a particle ontology
should be viewed as the depreciated metaphysical fiction of a former time. The alternative account proposed
here provides one coherent starting point to move forward beyond it.

6 Concluding Remarks
The prejudice in foundational work on statistical mechanics towards interpreting microstates as representing
the states of systems of particles has unfortunately suppressed consideration of alternative interpretations
of the theory and its probabilities.27 The only criticisms of this account have been overstated as well.28

Although the limited discussion of this alternative has so far centered around Prigogine’s work, the general
view, independent of his specific proposals, is quite plausible on the philosophical and theoretical grounds
promoted here. No doubt much work remains to flesh out the view, but I hope to have established that it can
and should be taken seriously as a viable alternative to the traditional attitudes.

As I have argued, to metaphysically reify the microstates of phase-space is to make suppositions about
an underlying ontology, suppositions that have no grounds in the empirical or even the theoretical facts
of statistical mechanics. There is no need to be alarmed at the deferral of foundational questions to other
theories or the rejection of a particular fundamental ontology by rejecting this move. If one understands
statistical mechanics structurally and as a sort of special science, then there is no need for it to justify itself
or to seek answers within its own framework. There is surely some story as to why statistical mechanical
systems behave as they do, have the states that they do, and are well represented in a phase-space picture.
But I have insisted that this story plausibly involves more fundamental theories in an essential way.

Adopting this interpretation of statistical mechanical states opens up many new possibilities for foun-
dational and philosophical work. I will mention a couple; the reader can no doubt envision more. In the
first place the possibility of interpreting statistical mechanics in this way makes for a stronger connection
to the interpretation of quantum mechanics and the measurement problem. There are interesting analogies
(and dis-analogies) between popular interpretations of quantum mechanics and the ways of interpreting the
stochasticity of statistical mechanics and its statistical predictions. Secondly, taking probability measures
seriously as statistical mechanical states also suggests that the Hamiltonian dynamics of classical particle
mechanics is inappropriate for describing the dynamics of non-equilibrium statistical mechanics. Since
the action of a Hamiltonian defined on phase-space on probability measures defined on phase-space is non-
dissipative, no statistical mechanical state will ever approach equilibrium. Although particle-based intuitions
lead to non-equilibrium equations of motion like the Fokker-Planck equation (Kadanoff, 2000, Ch. 6), the
interpretation I advocate would seem to suggest viewing these intuitions as heuristic. It may therefore open
up alternative ways of understanding the utility of such equations in non-equilibrium statistical mechanics.29

structural instead of individualistic terms’ (French and Ladyman, 2003, 37).
27Sklar (2009) for example does not mention any such alternatives, such as the one developed here, in his Stanford Encyclopedia of

Philosophy entry on the philosophy of statistical mechanics.
28‘All in all, the positing of genuine tychistic states for systems and of the probability distributions invoked by statistical mechanics

as representing the individual states of such systems seems pretty implausible’ (Sklar, 1993, 292).
29‘These equations are just convenient to use; we know how to use them but do not fully understand why they can be so useful’ (Ma,

1986, 367).
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