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A man said to the universe:

“Sir, I exist!”

“However,” replied the universe,

“The fact has not created in me

A sense of obligation.”

— Stephen Crane

ABSTRACT

I explain the difficulty of making various concepts of and relating to probability precise,

rigorous and physically significant when attempting to apply them in reasoning about

objects (e.g., spacetimes) living in infinite-dimensional spaces, working through many

examples from cosmology. I focus on the relation of topological to measure-theoretic

notions of and relating to probability, how they diverge in unpleasant ways in the infinite-

dimensional case, and are difficult to work with on their own as well in that context.

Even in cases where an appropriate family of spacetimes is finite-dimensional, however,

and so admits a measure of the relevant sort, it is always the case that the family is
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not a compact topological space, and so does not admit a physically significant, well

behaved probability measure. Problems of a different but still deeply troubling sort

plague arguments about likelihood in that context, which I also discuss. I conclude that

most standard forms of argument used in cosmology to estimate the likelihood of the

occurrence of various properties or behaviors of spacetimes have serious mathematical,

physical and conceptual problems.
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1 Probabilistic Reasoning in Cosmology

There is, by any standard measure, exactly one actual cosmos, and its evolution cannot be repeated.

It is, therefore, perhaps surprising when one first learns that probabilistic reasoning of various kinds

pervades cosmology as a science—reasoning not just about the statistics of repeated and repeatable

subsystems of the cosmos, but reasoning that purports to assign probabilities to uniquely global

properties and structures of the cosmos itself. It should, therefore, perhaps not be surprising that

problems arise for probabilistic reasoning in this context peculiar to it.

Physicists and philosophers have tended to focus on problems with probabilistic reasoning in

cosmology that, in the end, boil down to one of the following two forms.

1. What can probability mean, when there is only one physical system of the type at issue to

observe?

2. How can one justify attributions of definite values of probability when one cannot measure

frequencies (because one cannot repeat experiments), which is to ask, what kinds of evidence

may be available to try to substantiate attributions of probability?
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I shall not address these sorts of questions and problems in this paper.1 I shall rather address the

relationship between topological and measure-theoretic methods in probabilistic reasoning and the

problems that arise for it in the case of infinite-dimensional spaces, as naturally occur in cosmology.

Although it is far more common to associate the mathematical theory of measure spaces with

probabilistic notions and reasoning, if one takes a broad-minded view of what counts as “probabilis-

tic” reasoning, then, in many areas of physics, topological concepts and methods ground much of

what it is reasonable to think of as probabilistic reasoning. This is particularly true in a science such

as cosmology, in which well defined probability measures over families of systems are few and far

between. In such situations, physicists often argue that a property or behavior of interest is typical

or generic or stable in a family of possible systems, or is scarce or meagre or rigid, and so on, with no

serious attempt to make those ideas quantitatively precise, though they clearly are intended to have

probabilistic import. Often, the arguments are grounded on topological considerations with gestures

at interpreting the conclusions in measure-theoretic terms so as to justify the intended probabilistic

import.

Say we are interested in the likelihood of the appearance of a particular feature (having a sin-

gularity, e.g.) in a given family of spacetimes satisfying some fixed condition (say, being spatially

open). If one can convincingly argue that spacetimes with that feature form a “large” open set in

some appropriate, physically motivated topology on the family, then one concludes that such space-

times are generic in the family, and so have high prior probability of occurring. If one can similarly

show that such spacetimes form a meagre or nowhere-dense set in the family, one concludes they

have essentially zero probability. The intuition underlying the conclusions always seems to be that,

though we may not be able to define it in the current state of knowledge, there should be a physi-

cally significant measure consonant with the topology in the sense that it will assign large measure

to “large” open sets and essentially zero measure to meagre or nowhere-dense sets. Similarly for

stability and rigidity: if one can show that a given feature is topologically stable under “small”

perturbations, one can conclude that the probability is very high that a spacetime approximately

satisfying the relevant conditions will still have the feature; if the feature is topologically rigid under

“small” perturbations, one can conclude that the probability is essentially zero that a spacetime

approximately satisfying the relevant conditions will still have the feature. In order to justify the

probabilistic nature of the conclusion, one again assumes the existence of an appropriate measure

consonant with the topology in the sense that the smallness of the pertubation is to be judged by the

fact that the resulting spacetime is in a neighborhood of the initial spacetime, of “small” measure.

In cosmology, reasoning of this form occurs ubiquitously, in the context of the following kinds of

problem:

1. characterizing the likelihood of observing certain kinds of events, given the situation of possible

observers in a spacetime, i.e., the fact that observers are limited in observations to what lies

in their past light-cone, by the sensitivity of their apparatus, by the amount of time a process

will emit energy of a given magnitude or greater, and by how far to the past of the observers

1See Ellis (2007) and Smeenk (2012, 2013) for excellent reviews and discussion of these questions and problems.
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such processes may occur

2. characterizing the likelihood that the value of a universal constant lies within a fixed range

3. characterizing the likelihood that cosmological initial conditions of a particular kind or form,

or having a particular property or characteristic, obtained

4. characterizing the likelihood that large-scale structure of a particular kind would form

5. characterizing the likelihood that a spacetime has a particular global (causal, topological,

projective, conformal, affine, metrical) property

Common specific examples of such problems are:

1. characterizing the likelihood that observers such as ourselves would come to exist in the sort

of spatiotemporal region we occupy in a spacetime of this sort

2. characterizing the likelihood that we are “typical” observers in the universe

3. characterizing the likelihood that the cosmological constant has any non-zero value, and has,

moreover, a value near that actually observed

4. characterizing the likelihood of various “fine-tuning coincidences”: the seeming equality of

densities of dark energy and dark matter in the current epoch; the approximate flatness of the

observed universe; the approximate isotropy and spatial homogeneity of the observed universe;

the seemingly required special entropic state of the very early universe; etc.

5. characterizing the likelihood that a spatially open spacetime is future-singular

In most branches of physics, one would address such problems by fixing an appropriate reference

class of physical systems and a physically significant probability-measure on that class. When one

cannot rigorously define such a measure, or one is not that interested in quantitative exactness,

one will often rest content with arguing (or just stipulating) that a physically significant measure

exists whose distribution of weight harmonizes in a particular way with a natural topology on the

class of systems, to wit, one assumes that non-trivial positivity of measure is at least strongly

correlated with openness of sets and likewise that smallness or nullness of measure is correlated

with topological meagreness of sets. In this case, one will base one’s estimates of likelihood on the

topological properties of the families of systems at issue.

Even in cases where one does have a well defined measure to give quantitative exactness to

estimates of genericity or typicality, however, one still needs the measure to harmonize with an un-

derlying reasonable topology in the appropriate way. The point is simple, though it does not seem to

be widely appreciated or even recognized, either in the physics or the philosophy literature: generic-

ity and typicality, roughly speaking, mean something like “most systems are similar in this respect”

(and mutatis mutandis for meagreness and scarcity); “most”, however, is a measure-theoretic notion,
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whereas “similar in this respect” is a topological notion.2 Most systems satisfy a property if the

family of such systems forms a set of large measure; a given family of physical systems are similar

in a given respect if the topological neighborhood-systems of the elements of the space representing

the physical systems stand in some appropriate relation to each other, which often will be as simple

as the fact that the family of elements representing the physical systems forms an open set.

In cosmology, however, the systems one most often focuses on are entire spacetimes, and families

of spacetimes usually form infinite-dimensional spaces of a particular kind. And now one comes to

the heart of the problem: it is a theorem (as I discuss in some detail in §3 below) that infinite-

dimensional spaces of that kind do not admit non-trivial measures that harmonize in the right way

with any underlying reasonable topology. It follows that one simply does not have available the

kinds of reasoning normally employed to draw even qualitative conclusions about the likelihoods of

properties or features or behaviors of spacetimes. To be clear, I do not claim that it is not possible to

draw well grounded conclusions about such likelihoods, only that arguments of the standard forms

cannot, not even in principle, be made rigorous, and so conclusions based on them are prima facie

suspect, and should be treated with far more caution and skepticism than is common in the physics

and philosophy literature. It is exactly the standard forms of argument, however, that cosmologists

make when reasoning about likelihoods.

In §2, I quickly review the basics of topology, measure theory and probability theory, emphasizing

technical and interpretative points that the rest of the paper relies on. Cognoscenti may want to

skip that section, though I do discuss some issues (such as the character of topologies on spaces of

functions, and the topological character of the uniqueness of the Lebesgue measure on Rn) sometimes

unfamiliar even to those with a solid grounding in topology and measure theory. I also present the

basic facts about topology in a somewhat unusual way, based on the idea of an accumulation point,

which is particularly suited to the goals of this paper. In my presentation of the basics of probability,

moreover, I focus on those foundational problems most relevant to the kinds of cosmological argument

I examine. In §3, I briefly rehearse the relevant aspects of topology and measure theory in the context

of infinite-dimensional Fréchet spaces, and conclude with a statement of the fundamental theorem

relevant to this paper and explain its import. In §4.1, I discuss the few well defined topologies on

families of spacetimes commonly used in cosmology, and show that they have severe problems of

physical interpretation on their own. In §4.2, I do the same for the only known example of a well

defined measure on a finite-dimensional family of spacetimes of real physical interest. I conclude in

§5 with a discussion of several standard cosmological arguments about likelihood in the context of

infinite-dimensional spaces of spacetimes, and show how the reasoning runs afoul of the mismatch

between topology and measure in such spaces.

2One can of course quantify similarity using a metric as well, but in this case the metric will give rise to a topology.

The measure will still have to harmonize with the metric and so will automatically harmonize (or not) with the

induced topology.
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2 Topology, Measure, Probability

2.1 Topological Spaces

A topology T is a family of sets, including the null set ∅, closed under arbitrary unions and finite

intersections.3 In particular, the union T of all elements of T itself belongs to T, and is called the

topological space with topology T. The elements of T are its open sets; a neighborhood of a point of

T is a subset of T, not necessarily in T, that contains an open set containing that point. In general,

one can associate many different topologies with the same set of points T. (We will, however, still

abuse notation and terminology in the usual way when no ambiguity can arise, sometimes referring

to a topological space simply by its associated set without specifying which topology on it we mean.)

As is always the case with mathematical fields of study, there are many ways to think about

the subject of topology, both in the sense of intuitive visualization and in the sense of rigorous

formalization. For our purposes, the sense in which topology captures the idea of the study of

“continuity”—what remains invariant under deformations of a space that don’t rip or puncture it

and don’t glue different parts together—is the most important.4 The neighborhoods of a topology

capture an idea of relative proximity relevant to the idea of continuity: two points of the underlying

set are in proximity (relative to the fixed topology) if the family of neighborhoods of one stands

in one of a number of relations to the family of neighborhoods of the other. Intutively speaking, a

neighborhood is a region of the space in which, at the point of which it is a neighborhood, “arbitrarily

small perturbations” don’t take one out of the region. If one thinks of the topology as capturing

something like a similarity relation among entities, then a neighborhood of an entity is a collection

of other entities similar to the first to some degree.

For our purposes, one of the most important of these relations among families of neighborhoods

is grounded on the idea of an accumulation point. Given any subset O ⊂ T (whether an open set or

not), an accumulation point of O is a point p such that every neighborhood of p has a non-trivial

intersection with O−{p}. In agreeably suggestive language, one may say that an accumulation point

is “arbitrarily close” to its associated set. Much information about the topology of a topological

space is encoded in the behavior of infinite sequences of points, and in particular by the situation

of any accumulation points they may have. (Indeed, under mild restrictions, which all the examples

we consider here satisfy, a topology can be fully characterized by the behavior of the accumulation

points of all infinite sequences.) A set is closed if it contains all its accumulation points.

Given a sequence P = {pi} (i ∈ I↑, the non-negative integers), we say P is eventually in a set O

if there is an m ∈ I↑ such that pn ∈ O for all n > m. Clearly, if there is a p such that a sequence P

is eventually in every one of its neighborhoods, then p is an accumulation point of P . In this case,

we say P converges to p.5 If a sequence converges at all, there may be more than one point the

3All the material I cover in this section is developed with thoroughness and illuminating insight in Kelley (1955).
4A topologist is a person who doesn’t know the difference between a coffee-cup and a doughnut.
5A sequence may have an accumulation point it does not converge to. A sequence is frequently in a set O if, for

every m ∈ I↑, there is an n > m such that pn ∈ O. If a sequence is frequently in every neighborhood of a point,

that point is a cluster point of a sequence. A cluster point is an accumulation point; a sequence may, but does not
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sequence converges to, depending on global properties of the topology. A topology is Hausdorff if

every two distinct points have disjoint neighborhoods. In a Hausdorff space, if a sequence converges,

its convergence point is unique.

A function from one topological space to another is continuous if the inverse image of an open

set in the range is an open set in the domain: if you tell me how proximate you want to be to a point

in the range, under the mapping, I’ll tell you how proximate you need to be to its pre-image in the

domain. Under mild conditions on the topology, the continuity of a function can be characterized by

the behavior of infinite sequences of points: roughly speaking, a function f is continuous if, for every

sequence P in the domain that accumulates at a point p, the sequence f [P ] in the range accumulates

at f(p).

Whether or not a given mapping between two point-sets is continuous depends sensitively on the

topologies one imposes on the sets. As a general rule, the fewer open sets a topology has, the easier

it is for a function having the space as its range to be continuous; contrarily, the fewer open sets a

topology has, the harder it is for a function having it as its domain to be continuous. The intuition

behind this rough claim is easy to grasp: the more open sets there are, the harder it is for a sequence

to have an accumulation point. Of two topologies on a given set, one is finer than the other if every

one of its open sets is also an open set of the other. (One also says that the other is coarser than

the one.) Finer topologies have more continuous functions from them; coarser topologies have more

continuous functions to them.

One of the most central and important ideas in topology is compactness. The motivation behind

the idea comes from the classic Heine-Borel Theorem. To state it, we need two more definitions.

An open cover of a subset of a topological space is a family of open sets whose union contains the

subset. A subcover of a cover is a subset of the cover that is also itself a cover.

Theorem 2.1.1 (Heine-Borel) Every open cover of a closed, bounded interval of R (under its

standard topology) has a finite subcover.

This is remarkable. No matter how large and fiendishly Baroque one makes an open cover of a

closed, bounded interval, one can always select a finite number of elements from it that will still

cover the interval. As with all the best theorems, the conclusion of the Heine-Borel Theorem has

become a definition of fundamental importance: a subset of a topological space is compact if every

one of its open covers has a finite subcover. (Of course, the entire space itself may be compact.)

Compact sets have particularly pleasant properties for our purposes, perhaps the two most

important of which are that, first, under mild restrictions on the topology, every infinite sequence in

a compact set has at least one accumulation point, and, second, under no restrictions at all on the

topology, the Cartesian product of any family of compact spaces is itself compact under the natural

product topology. (The latter statement is known as Tychonov’s Theorem.) Intuitively speaking,

then, compact sets don’t “extend out to infinity”, and they also contain “every point they could

possibly have had in the first place”—in a natural sense, they are bounded, and they don’t have

necessarily, converge to a cluster point. Roughly speaking, a sequence may ceaselessly approach arbitrarily close to

and then recede from a cluster point, but never come to remain permanently near it.
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any gaps or holes. An important weakening of the notion of compactness retains almost all its nice

properties: a topological space is locally compact if every point has a compact neighborhood.

Finally, we record a few definitions and propositions that will play an important role in what

follows. A subset D of a topological space is dense if every point of the space is an accumulation

point of some sequence of points in D. Intuitively, D extends arbitrarily closely to every point of

the space. The rational numbers, for example, form a dense subset of R (indeed, a countable one).

A topological space is separable if it has a countable dense subset. A subset of a topological space is

nowhere dense if the union of the set and all its accumulation points do not contain an open set. If

a subset N is nowhere dense, then, given any point not in N , one can find a neighborhood around

that point such that no sequence in N accumulates on the neighborhood.

The case of most interest for us will be topologies on the family of continuous, differentiable

or smooth functions between two topological spaces—in particular, the family of cross-sections on

the fiber bundle of Lorentz metrics over a candidate spacetime manifold (connected, paracompact,

Hausdorff, four-dimensional).6 Consider two topological spaces T1 and T2, and the family of contin-

uous functions F from the former to the latter. Define N(K, O) := {f ∈ F : f [K] ⊂ O, for K ⊂ T1

compact and O ⊂ T2 open}. The family of all such collections, for all such K and O, forms a subbase

for the compact-open topology on F.7 A topology on F is said to be jointly continuous if the mapping

P : F × T1 → T2 that takes (f, p) to f(p) is itself continuous, in the product topology on F × T1.8

Say a topological space T is regular if for every p ∈ T and every neighborhood N of p, there is a

closed neighborhood U of p such that U ⊂ N . Then the following proposition captures the sense in

which the compact-open topology is the coarsest mathematically reasonable topology to impose on

a function space, so long as one wants that topology to respect the structure of the elements of the

space as functions.

Proposition 2.1.2 If the topological space T is locally compact and regular, then the compact-open

topology is the coarsest jointly continuous topology one can impose on the family of continuous

functions from T to any other topological space.

Most relatively well behaved topologies on spaces over which one considers spaces of functions—

and in particular all the ones we will consider here—are Hausdorff, separable, regular, and locally

compact.

6A topological space is connected if it is not the union of two open, nonempty, disjoint sets. The exact definition

of paracompactness is too involved to give here; suffice it to say that it means the space is not “too big”. Indeed,

one has to work hard to construct a topological space that is not paracompact (Hocking and Young 1988). In any

event, a theorem due to Geroch (1969) shows that a manifold has a Lorentz metric only if it is paracompact, so we

lose nothing by restricting attention to such manifolds.
7A base for a topology is a collection of open sets such that every other open set can be formed from a union of

sets in the base. A subbase is a collection of open sets such that one can form a base by taking finite intersections of

them.
8The product topology for the Cartesian product of two topological spaces is exactly what one would expect: all

sets of the form O1 ×O2, where O1 is an open set in the first factor and O2 open in the second, constitute a base for

the product topology.
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2.2 Measure Spaces

A σ-algebra is an ordered pair (S, Σ) consisting of a set S, and a non-empty collection of subsets of

S, Σ, closed under the operations of finite set-differences and countable unions.9 Where no confusion

can arise, we will often abuse notation in the standard way and refer to Σ itself as the σ-algebra.

Write ‘R↑’ for the set of non-negative real numbers.

Definition 2.2.1 A measure on a σ-algebra Σ is a function µ : Σ→ R↑ ∪ {∞} such that

1. µ(S) <∞ for at least one S ∈ Σ

2. for any countable, pairwise-disjoint family {Si} ⊂ Σ,

µ

(⋃
i

Si

)
=
∑
i

µ(Si)

A measure space is an ordered pair consisting of a σ-algebra and a measure on it; the elements of

the σ-algebra are called measurable sets. It follows from the definitions that the null set ∅ is always

measurable, and any measure assigns value zero to it.10 In general, however, the null set will not be

the only set assigned a measure of zero. We say a property that holds for all points of a measure

space except for a subset of measure zero holds almost everywhere.

A σ-algebra has much the same feel about it as a topology, naturally giving rise to the question

whether one can construct measures on topological spaces that relate in a natural way to the topology.

Definition 2.2.2 Let T be a Hausdorff compact topological space. The Borel sets B of T consist of

the smallest σ-algebra containing all its open sets. A Borel measure is a measure µ on the Borel

sets such that µ(C) <∞ for every compact set C.

A Borel measure, in an obvious and natural sense, respects the topology of the underlying topological

space.11 It is a simple matter to construct a natural Borel measure on R: one is uniquely picked

out by the requirement that µ([a, b]) = b − a for every real interval [a, b]. This measure suitably

generalized to Rn is not however unique, and its multiplicity can be traced to the fact that it lacks

one feature, completeness, that it is convenient to have: we say a measure is complete if every subset

of every set of measure zero is itself measurable (and so necessarily of measure zero).

An extension of a measure space (S, Σ, µ) is another measure space (S, Σ′, µ′) such that Σ ⊂ Σ′

and µ′(A) = µ(A) for all A ∈ Σ. The following is easily proven.

9All the material I cover in this section is developed with thoroughness and illuminating insight in Halmos (1950).
10While it is not unusual, it is also not entirely standard to demand condition 1 for a measure. I do it because it

simplifies matter greatly, in particular guaranteeing that the null set is measurable, of measure zero, without having to

require it as a separate axiom. Also, it seems to me a quite reasonable bare minimum one should require of something

one wants to call a measure, if it is to be useful in physics at all.
11Again, while not unusual, it is not wholly standard to demand that a Borel measure assigns finite measure to

all compact sets. And, again, this seems to me the minimum one should require of such a thing for it to be usefully

applicable in physics.
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Proposition 2.2.3 There is exactly one complete extension of all natural Borel measures on Rn

(for any n ∈ I↑).

Lebesgue measure µl on Rn is the unique complete extension of any of the natural Borel measures.

Any countable subset of Rn has Lebesgue measure zero, but uncountable subsets also can. The

Cantor Set is an example.

Let A be a subset of Rn; then, for any p ∈ Rn, denote by ‘A+ p’ the set that results by adding p

to every element of A, sometimes called the p-translate of A. Now, the following proposition shows

the most important properties of Lebesgue measure in relation to the natural topology and linear

structure on Rn.

Proposition 2.2.4 Lebesgue measure is locally finite, strictly positive and translation invariant,

i.e.:

1. every p ∈ Rn has an open neighborhood O such that µl(O) <∞

2. µl(O) > 0 for every non-empty open set O

3. for every measurable set A and every p ∈ Rn, µl(A+ p) = µl(A)

(Lebesgue measure is obviously not the unique measure satisfying these conditions, because there

are non-complete Borel measures that also satisfy them.) The translation invariance of Lebesgue

measure is commonly taken to be its most characteristic feature, to the point that any translation-

invariant measure on any linear space is often referred to as a Lebesgue measure. The analogous

property is particularly important in a measure that would be used to define a probability space

over a family of events that itself has an appropriate algebraic structure, for reasons I discuss in §2.3

below.

The following theorem captures the precise sense in which Lebesgue measure is the unique mea-

sure that respects both the topology and the linear structure of Rn.

Theorem 2.2.5 Lebesgue measure is the unique complete, translation-invariant measure on the

Borel sets in Rn.

From hereon, we will consider only Borel measures that are, like Lebesgue measure, strictly non-

negative (i.e., ones that assign negative values to no measurable set).

2.3 Probability

Measures allow for one elegant and important way to formalize the notion of probability: a probability

space is an ordered pair consisting of a σ-algebra (P, Π) and a strictly positive measure µ on it such

that µ(P) = 1. Intuitively speaking, the elements of P represent the totality of possible outcomes for

some family of phenomena we are interested in, those of Π the collections of outcomes to which it

makes sense to assign probabilities, and the value assigned by µ to an element of Π the probability

of that collection of outcomes. It is trivial to show that a probability space satisfies the standard

Kolmogorov axioms of probability theory.
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It is of fundamental importance to recognize that, when one wants to be precise, clear and

unambiguous, it never makes sense to ask for “the probability” simpliciter of some event or collection

of events. One must have in hand a probability space that includes the event or collection of events

in its σ-algebra (or, at least, some structure formally equivalent to one). In general, for any given

event or collection of events, there will be many, many, many such probability spaces, with different

σ-algebras and with different measures. Picking the most appropriate σ-algebra for the question

or investigation at hand is known as the reference-class problem. I am not aware of any standard

name for the problem of picking the most appropriate measure, but it is equally as important and

difficult in general as the reference-class problem. The kinds of consideration that should bear on

those choices will depend on the nature of the subject matter one is treating, and on the nature of

the problem concerning that subject matter. In physics, of course, when using measures to assign

probabilities to collections of events, one wants to find a σ-algebra that represents “all appropriately

similar events”, where the similarity has manifest physical significance for the problem at issue, and

to fix a measure on it that captures a property of real physical significance shared by the events that

relates in a clear, direct, determinate way to the probabilities one wants to characterize.12 Without

having made sure that the measure latches on to and respects a physically significant feature of the

problem space with manifest relevance to the determination of probabilities, there will be no reason

to think of the values the measure assigns as representing real physical probabilities. All these issues

play a crucial role in attempts to evaluate the soundness of many kinds of argument in cosmology.

Although measures on their own can be used to define probability spaces, it is often the case

that topological considerations play an important role in probabilistic reasoning. It is almost always

desirable, for instance, especially in physics, for an appropriate probability measure to be a Borel

measure, and in particular to assign non-zero probability to any collection of outcomes that forms

an open set in a physically natural topology. This captures the idea that, if an event has non-zero

probability (measure greater than zero), then “arbitrarily small” perturbations of it shouldn’t render

the result impossible, i.e., send it into a set of measure zero. One can guarantee this by having the

original event lie in an open set, which, because the measure is Borel, will have positive measure.

If this were not the case, then, given the necessarily limited precision of observations in physics, we

would find ourselves in the position of predicting outcomes with non-zero probability that we could

never in principle observe.

Topology plays other important roles in probabilistic reasoning as well. In many cases, the

quantitative exactness delivered by a measure is either not feasible or not desirable. Sometimes

it is enough merely to know that an event is very likely or not likely at all, without attaching

a quantitatively exact probability to it. Let’s say that we make a prediction for the dynamical

evolution of a system starting from a set of exact initial conditions. We want to know how likely it is

that the system, if prepared with approximately those initial conditions will evolve in approximately

the predicted way. (Roughly speaking, this is known as the Hadamard stability problem for the

initial-value formulation of the system.) One natural way to make the question precise is to find

12Peirce (1878a, 1878b) gives a particularly beautiful discussion of these issues, although of course he does not use

the language of measures.

Erik Curiel 11 September 13, 2015



Measure, Topology, Probability in Cosmology

appropriate topologies for the space of initial conditions and the space of dynamical evolutions,

define the mapping taking initial conditions to dynamical evolutions, and determine whether it is

jointly continuous. (“Do arbitrarily small perturbations of the initial conditions leave the later

dynamical behavior essentially unchanged?”) If so, then, if the prediction is sound and if we have

good reason to believe that the system starts with initial conditions close enough to the exact initial

conditions used to generate the prediction, it is very likely that we will get the expected behavior

even though we know that, due to the finite exactness of measurement and preparation, the system

almost certainly did not start with those exact initial conditions. If the mapping is not jointly

continuous, then it may be very unlikely that we will get the expected behavior, no matter how

close to the exact initial conditions the system starts evolving from. (This is one of the reasons why

it is almost always desirable, from a physical point of view, to have one’s function-space topology

be jointly continuous.)

In a closely related vein, say that we have found an appropriate topology for the space represent-

ing the possible states of a type of system, and that, moreover, the points of that space representing

the system as possessing a certain property with values in a fixed range form an open dense subset.13

Then there is a natural sense in which it is overwhelmingly likely that an appropriately random sam-

pling of such systems will all evince values for the given property falling within the fixed range. If

the subset is nowhere dense, it is very unlikely to find a system having the property with value in

the fixed range in an appropriately random sample.14 Of course, one must bear in mind that such

conclusions depend not only on the physical propriety of the topology one has fixed on the space of

states, but, at least as importantly, they depend on the propriety of the mechanism one has chosen

to construct the random sample. If one’s sampling mechanism is biased in some way, then it doesn’t

matter how “appropriate” one’s measure is—one will not get physically reliable results. Again, these

issues play a crucial role in the evaluation of many kinds of cosmological argument.

Finally, one can use measures in similar ways to draw qualitative judgments about the likelihood

of an event or kind of event: a property that holds almost everywhere in an appropriate measure

space will be very likely to occur, and one that holds in a set of measure zero will be very unlikely,

even if the measure is not a probability measure, so long as one has been able to demonstrate an

appropriate relation between the measure and the relevant physical properties of the system at issue.

It is only in the latter case that the value the measure attributes to a set may reasonably be thought

of as a representation of a real physical probability for the class of events in the set.

13If the topology arises from or is compatible with a complete metric, one can use the more general criterion that

the set be a Gδ-set, i.e., that it be a countable intersection of open dense subsets, in so far as the complement of a

Gδ-set in this case is nowhere dense.
14If the topology arises from or is compatible with a complete metric, one can use the more general criterion that

the set be meagre, i.e., that it be a countable union of nowhere dense subsets, in so far as the complement of a meagre

set in this case is dense. (This is known as the Baire Category Theorem.)
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3 Topology and Measure in Infinite-Dimensional Spaces

Now, as we have seen, there is a natural sense in which, in Rn, Lebesgue measure respects both

the topology and the linear structure, both of which are desirable features in a measure one wants

to found probabilistic reasoning on, for the reasons discussed in §2.3, inter alia. The situation in

infinite-dimensional spaces, therefore, as we will see, poses considerable problems for the hopeful

physicist. This matters because, for our purposes—the application of probabilistic reasoning to

families of spacetimes—the natural spaces one works with are spaces of functions (Lorentzian metrics

on differential manifolds). These spaces tend to be infinite-dimensional spaces with natural (locally)

algebraic structures accruing to them.

To apply probabilistic reasoning to families of spacetimes, one must first choose what sort of

spacetime metric one is going to work with, Cn or C∞. Each has virtues and demerits. To see what

is at issue in a simpler setting, consider the set of functions on the unit disk. For Cn functions, we

have the norm

‖f‖ = sup |f |+ . . .+ sup |∇(n)f |

resulting in a Banach space, since this norm is complete for any finite n—because the disk is compact

and the functions are continuous, the supremum is always finite. (A Banach space is a normed vector

space, complete with respect to the metric the norm induces.) For C∞, we do not get a Banach

space because the resulting infinite sum may not converge. Instead, we define

�f� =
sup |f |

1 + sup |f |
+ . . .+

1

2n
sup |∇(n)f |

1 + sup |∇(n)f |
+ . . .

which manifestly converges. This operation defines a metric in the obvious way,

(f, g) = �f − g�

and this metric is complete in the sense that all its Cauchy sequences converge to a point in the

space. This operation, however, does not define a norm, since it is not the case that

�af� = |a|�f�

for scalar a. (There is no norm for C∞ functions that both accounts for all their derivatives and, in

a natural sense, extends the norm for Cn functions.) The metric is, however, manifestly invariant

with respect to translations. The resulting space is a Fréchet space: a metrizable, locally convex

vector space, complete with respect to a translation-invariant metric.

Is it true in such a large space that every well-behaved vector field has unique integral curves (a

necessity, e.g., for certain forms of local stability analysis)? In a Banach space, yes, but in a Fréchet

space, no. (Sometimes there are no integral curves, sometimes they are not unique.) As an example

of the way things can go awry, consider a map φ from functions on the disk to functions on the disk

defined as follows:15

φ(f) = ξn∇nf
15I thank Bob Geroch for conversations in which we worked out the details of this example.
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for ξa a vector field on the disk. φ wants to be a linear functional on our space of functions, i.e., to

be a vector field on the vector space of functions on the disk, but, while it is in fact a vector field

on the Fréchet space of C∞ functions, it is not one on the Banach space of Cn functions, since for

f ∈ Cn it is not necessarily the case that ∇af ∈ Cn. On the Fréchet space, however, the vector

field resulting from this mapping does not yield unique solutions—when one slides a function along

the disk, as the mapping in effect asks one to do, one gets to make up whatever one wants to fill up

the “back” part of the disk, as the “front” part of the function slides off the disk, i.e.,

d

dt
f(t, 0) = ξn∇nf(t, 0)

has no unique integral curves. So one can have unique integral curves, but no vector field (on Banach

space), or a vector field but no unique integral curves (on Fréchet space).

In general, however, there may be difficulties with defining tangent vectors to curves on a Fréchet

space. In a Banach space B, γ : R→ B has derivative v ∈ B if, ∀ε > 0, ∃c > 0 such that

‖γ(t)− γ(t0)− (t− t0)v‖ ≤ c|t− t0|2

for |t − t0| < ε. In a Fréchet space, however, one has no norm, only a metric, and if one uses the

metric to try to define derivatives, nice properties like “sum of two differentiable vector fields is a

differentiable vector field” will likely fail since one does not have the nice norm properties.

Now, once one has bitten the bullet and chosen to work with the type of space one considers the

lesser of two evils, one might have thought that all one’s travail would be behind one. Sadly, no.

Theorem 3.1 The only locally finite, translation-invariant Borel measure on an infinite-dimensional,

separable Fréchet space is the trivial measure ( viz., the one that assigns measure zero to every mea-

surable set).

Thus, since a Banach space is automatically a Fréchet space, any translation-invariant measure on

any reasonably well behaved infinite-dimensional space assigns infinite measure to all open sets,

unless the measure is the trivial measure.16

Before we abandon all hope, however, the hopeful cosmologist can now point out that the family

of Lorentz metrics on a fixed manifold is not actually a Fréchet space: in particular, it is not a

vector space, since the sum of two Lorentz metrics is not in general itself a Lorentz metric. In fact,

the family of Lorentz metrics forms a Fréchet manifold, an infinite-dimensional manifold G with

the local structure of a separable Fréchet space F , rather than the local structure of Rn as for an

ordinary differential manifold. (See Geroch 1975 for a rigorous characterization of such manifolds

and a discussion of their properties.) For such a manifold, it is not required that the subsets that

define the charts themselves have a full vector-space structure. (In fact, they usually won’t.) One

demands for the charts (Ui, φi) only that:

1. the union of all Ui is the entire manifold G

16See, e.g., Hunt, Sauer, and Yorke (1992) for a discussion of the theory, and some interesting possible generalizations

of relevant measure-like notions to the infinite-dimensional case, which I hope to discuss in future work.
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2. each φi is a bijection from Ui to an open subset of F (where the topology is determined by

the translation-invariant metric on F )

3. for all i and j, φi[Ui ∩ Uj ] is an open set in F

4. for all i and j, φi ◦ φ−1j [Ui ∩ Uj ] has continuous Fréchet derivatives up to whatever order one

requires for the manifold17

Given any two Lorentz metrics gab and hab on a spacetime manifold such that the null cones of one

are contained in the other, there is always a small enough ε that gab + εhab and gab − εhab are also

Lorentz metrics. One can use such sets of Lorentz metrics to construct the local Fréchet structure

of the manifold of all Lorentz metrics.

Now, it is a theorem that all separable Frćhet manifolds are diffeomorphic to an open subset of

the separable, infinite-dimensional Hilbert space (Sudakov 1960; Yamasaki 1985; Henderson 1969),

itself a Fréchet space. There now follows from theorem 3.1:18

Theorem 3.2 There is no locally translation-invariant Borel measure on an infinite-dimensional

Fréchet manifold.

“Locally translation-invariant” means the following: fix a point g of the manifold, a chart (O, φ)

containing the point and a measurable neighborhood N of g contained in O; then any translation of

N using the local Fréchet linear structure that leaves N entirely in O preserves the measure of N . For

the cases of interest to us, the measure should respect such “local, first-order translations”, because

those are exactly the kinds of perturbations that cosmologists always consider when discussing the

genericity and stability of properties of spacetimes.

4 Topologies and Measures on Families of Spacetimes

Even though, as should now be clear, we cannot hope for the most satisfactory framework—a well

behaved Borel measure—on which to found probabilistic reasoning about families of spacetimes, we

may still hope to find topologies or measures on their own appropriate for addressing specific sorts

of problems. Perhaps, the hope goes, we can find a well behaved, physically significant measure that

will return probabilities in such a way that its lack of relation to a topology will not necessarily lead

to conundrums or implausibility. Or perhaps we can find a topology that, though not related to a

measure, will still allow us to reason qualitatively about likelihoods in a physically significant way.

Alas, in the event, things do not look good.

4.1 Topologies

Fix a candidate spacetime manifold M , and consider the family G of all Lorentz metrics on it, i.e.,

the family of all cross-sections of the fiber bundle of Lorentz metrics over M . There are two standard

17See Geroch (1975) for a definition of the Fréchet derivative.
18I do not know of a proof of this theorem in the literature, but it is not difficult to show.
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topologies relativists impose on G when addressing problems related to likelihoods. The first is a

standard compact-open topology on a function space; the second is a standard Whitney topology

on a function space.19 (The compact-open is strictly coarser than the Whitney, unless M itself is

compact, in which case the two coincide; we will not consider that case.) The idea behind each is to

fix a standard of “distance” between Lorentz metrics by fixing an arbitrary positive-definite metric

on M and using it to assign magnitudes to the algebraic differences of Lorentz metrics. As we shall

see, both have severe problems of physical interpretation, which can in large part be traced to the

fact that the positive-definite metrics themselves used to fix the similarity relations among Lorentz

metrics have no physical significance.20

Roughly speaking, the compact-open topology cares only whether or not metrics are similar on

bounded regions in the interior of the spacetime manifold; it does not care about their relative

asymptotic behavior. To characterize it, we must define the neighborhoods of a given Lorentz

metric gab. A neighborhood N(hab, K, ε; gab) is determined by a positive-definite metric hab on M ,

a compact subset K of M , and a real number ε > 0. A Lorentz metric g′ab is in the neighborhood if

and only if hmnhrs(gmr−g′mr)(gns−g′ns) < ε everywhere in K. The family of all such neighborhoods

forms a subbase for the compact-open topology.21 The compact-open topology has the pleasant

properties of being locally compact, Hausdorff and regular (because the fiber bundle of Lorentz

metrics over M is). It also, according to proposition 2.1.2, is the coarsest mathematically reasonable

topology to use on G.

An example from Geroch (1971) shows, however, that its physical significance is questionable at

best. Consider the sequence of metrics on R4 of the form diag(tm, −1, −1, −1), for m ∈ I+ (the

strictly positive integers), where tm := 1 +
m

1 + (x−m)1/2
, x being a global Cartesian spacelike

coordinate function. Roughly speaking, each of these metrics is essentially flat almost everywhere

except for a sharp peak of curvature around the t-y-z-hypersurface defined by x = m. As m increases,

moreover, this peak of curvature becomes higher and sharper, as it moves further out along the x-

axis. It does not seem physically reasonable that such a sequence should converge to Minkowski

spacetime, since the spacetimes in it have curvature that in a sense one can make precise grows

without bound, and yet that is what it does under the compact-open topology.22 The problem is

that the compact-open topology is too coarse—it does not have enough open sets to stop pathological

sequences from converging.

Roughly speaking, the Whitney topology cares whether or not metrics are similar on the entire

19Geroch (1971) calls the former the coarse and the latter the fine topology. Hawking (1971) calls the latter the

open topology, and calls a yet finer topology the fine topology. We shall not consider here the fine topology of Hawking

(1971), for, as we shall soon see, the Whitney topology already has “too many open sets”. Another common class of

topologies used in relativity theory are the Sobolev topologies, which play an important role in the analysis of the

Cauchy problem in general relativity (Ringström 2009). Since these are even finer than the finest one Hawking (1971)

considers, and since we shall not discuss the Cauchy problem, we shall, again, not worry about them.
20See Geroch (1967, 1971) and Fletcher (2015) for insightful discussions of these problems.
21One can also form compact-open topologies that account for derivatives of the Lorentz metrics and how they

differ, but we will not need to do so.
22This sequence of metrics does not converge at all under the Whitney topology, which one may perhaps think of

as the “correct” or “naturally expected” result.
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spacetime manifold, including their relative asymptotic behavior. A neighborhood N(hab, ε; gab) of

a given Lorentz metric gab is determined by a positive-definite metric hab on M , and a real number

ε > 0. A Lorentz metric g′ab is in the neighborhood if and only if hmnhrs(gmr − g′mr)(gns − g′ns) < ε

everywhere in M . The family of all such neighborhoods forms a subbase for the topology.23 The

Whitney topology also has the pleasant properties of being locally compact, Hausdorff and regular

(because the fiber bundle of Lorentz metrics over M is).

The Whitney topology fares even worse than the compact-open one with regard to physical

significance, as examples from Geroch (1970, 1971) again show. Consider the sequence of metrics

on R4 of the form diag(tm, −1, −1, −1), for m ∈ I+, where now tm := 1 +
1

m2 + x2 + y2 + z2
.

Each metric in this family is essentially flat almost everywhere except for a spherically symmetric

bump of curvature centered on the origin; this bump, moreover, decreases smoothly to zero as m

increases. This sequence, however, does not converge to Minkowski spacetime under the Whitney

topology. Even more egregiously, the one-parameter family of metrics {λgab}, for λ ∈ R+ (the set

of strictly positive real numbers), where gab is any Lorentz metric on any non-compact M , fails

to be a continuous curve under the Whitney metric. But each metric in the family represents the

same physical spacetime! Multiplying a spacetime metric by a constant does nothing other than

change the effective units one (implicitly) uses to quantify physical magnitudes such as mass and

acceleration.24 The problem now is that the Whitney topology is too fine—it has so many open sets

that almost no reasonable sequence will converge.

One could perhaps argue with some justice that Geroch’s example speaking against the compact-

open topology is not so bad as to preclude its usefulness in many cases and for many purposes, and

I would not necessarily disagree. The problem arises in the example because the compact-open

topology, roughly speaking, does not contain enough open sets to control the similarity relations

between metrics with respect to their asymptotic behavior. In other words, it does not care about

global similarity, only local similarity. For the sorts of problems for which one would want to use

a topology on a family of spacetime metrics to ground qualitative probabilistic reasoning in the

context of cosmology, however, it is exactly the global similarity of metrics that will in general be at

issue. We will see physically important examples of this in §5 below. The Whitney topology rules

unhelpfully in such simple and fundamental cases as to make it, to my mind, never a viable option

for addressing global issues.25

It will be useful to conclude the section by considering problems with these topologies in the

23One can also form Whitney topologies that account for derivatives of the Lorentz metrics and how they differ,

but again we will not need to do so.
24The compact-open topology seems to get both of these examples right: under it, the sequence converges to

Minkowski spacetime, and the one-parameter family forms a continuous curve.
25One may thus wonder about the usefulness of the Sobolev measures used in analyzing the stability of the Cauchy

problem in general relativity, for those topologies are always strictly finer even than the Whitney topology. In fact,

though, in this case the promiscuity of the topologies is a virtue—one wants to show stability under as difficult

conditions as possible. Even though one may not be able to elucidate the physical significance of the Sobolev

topologies, they are surely finer than any topology one will be able so to elucidate, and so stability under the Sobolev

topologies ensures stability under more restrained, more physically plausible ones, whatever they may be.
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context of a more physically interesting example, to substantiate my claims. Consider the question

of the stability of the occurrence of singularities in the family of metrics over a given manifold. One

wants to show that the occurrence of a singularity is (topologically) stable “under small perturba-

tions”. (I discuss this question, and the problems facing attempts to address it, in more detail in §5

below.) In this case, the impropriety of the Whitney topology can be easily illustrated by noting that

any reasonable sense of “small perturbation” will yield an operation discontinuous with respect to it.

For example, given a spacetime (M, gab), one might define a small perturbation as follows. Consider

a one-parameter family of spacetimes Mε := {(M, (1 +φλ)gab) : λ ∈ [0, ε)}, for some small ε, where

each φλ is a non-negative smooth function on M such that 0 ≥ supM φλ′ < λ′ < supM φλ < λ, for all

λ′, λ ∈ [0, ε), and the family of functions {φλ} varies smoothly with respect to λ in the supremum

norm, and the supremum approaches zero “slowly”.26 Then(
1 +

dφλ
dλ

∣∣∣∣
λ=0

)
gab

is a small perturbation off gab. It is easy to see by construction that Mε forms an everywhere discon-

tinuous curve on the family of metrics with respect to the Whitney topology, and so any property

of (M, gab) one may want to consider is trivially stable under such small perturbations. (The only

physically reasonable “small perturbation” continuous with respect to the Whitney topology is the

identity operation.)

Non-trivial small perturbations defined in this way can easily be constructed so as to be con-

tinuous with respect to the compact-open topology, so this looks initially more promising. For the

treatment of singularities, though, the compact-open topology is not physically appropriate. If one

characterizes a singularity by the existence of incomplete, inextendible causal geodesics, then the

compact-open topology will never be able to discriminate singular from non-singular metrics: it

is only in highly pathological cases that incomplete, inextendible geodesics are contained in com-

pact subsets of a spacetime (Curiel 1999). Every open neighborhood of a singular metric in the

compact-open topology contains non-singular metrics, and vice-versa. There are no other well de-

fined topologies on the family of Lorentz metrics standardly used by physicists.27

4.2 Measures

The space of Lorentz metrics over a manifold—the family of possible spacetime models having that

as its underlying manifold—is an infinite-dimensional Fréchet manifold, and so by theorem 3.2 it

has no non-trivial Borel measure. The only rigorously defined measure on a reasonably interesting

family of spacetimes is the Gibbons-Hawking-Stewart (GHS) measure µghs on “minisuperspace” Γ

(Gibbons, Hawking, and Stewart 1987). Roughly speaking, Γ comprises the family of initial data

26Since the family of Lorentz metrics is a locally convex space, all the (1 + φλ)gab will also be Lorentzian for small

enough ε.
27In order to try to address such problems with the compact-open and the Whitney topologies, Fletcher (2014)

constructs a novel topology, in some ways similar to the compact-open topology but which yields the “natural” answers

for Geroch’s examples I discussed above. It would be of great interest to determine whether Fletcher’s topology is

appropriate for the characterization of the stability of singularities not confined to compact subsets of spacetime.
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for FLRW spacetimes with compact Cauchy surfaces, sourced by a minimally coupled homogeneous

scalar field. A little more precisely, one constructs the constraint-reduced phase space for an appro-

priately gauge-fixed Hamiltonian formulation of general relativity; restricting attention to compact

3-geometries sourced by homogeneous, minimally coupled scalar fields, one finds that the resulting

space, remarkably, simplifies to the point that it itself is only four-dimensional. In essence, the

reduced phase space is fully parametrized by the field-intensity φ of the scalar field and the Hub-

ble expansion factor a on a Cauchy surface, and their “time-derivatives”, φ̇ and ȧ, off the Cauchy

surface; these quantities are constant on the Cauchy surface by homogeneity of the spacetime. The

standardly defined Liouville measure on this phase space (modulo a few technical difficulties that do

not concern us) is the GHS measure. All of a sudden, things are looking up for our eternally hopeful

cosmologist who would engage in probabilistic reasoning, at least with regard to this (admittedly

quite restricted, but still physically important) family of spacetimes—we have a rigorously defined

Borel measure on a finite-dimensional space. (A Liouville measure is always a Borel measure.) It

is not long, however, before a bucket of cold water is dashed in her face with the realization that,

even though the space is finite-dimensional and the measure is Borel, it cannot be turned into a

probability measure, for the measure it assigns the entire phase space is infinity—Γ is not compact.

Still, let us see whether we may not salvage something useful from this mess. We want to see

whether the GHS measure can support any, even weak, form of probabilistic reasoning. Say we want

to determine whether we can meaningfully attribute a probability to the occurrence of a physical

property X, given the fixed reference class Γ. Let PX ⊂ Γ be the family of spacetimes evincing X.

There are four cases to consider.

1. PX is not measurable

2. µghs(PX) <∞

3. µghs(Γ \ PX) <∞

4. µghs(PX) =∞ and µghs(Γ \ PX) =∞

In the first case, we can say nothing at all, but one assumes or stipulates or hopes or demands or

pleads or dreams that physically significant properties will not manifest such topological pathology

in their distribution across spacetimes. In the second case, one can unambiguously attribute a

probability of zero to it, and in the third a probability of one. In the fourth, one can say nothing

simple or straightforward, without ambiguity, but now one does not even have the solace of yelling

at the property and demanding that it not be pathological, as in the first case, for there is nothing

pathological about such topological behavior at all.

There is, however, a “natural” schema for regularization procedures that one can use to try to

derive a finite probability in such cases.28 One approximates PX by a nested sequence of finite-

measure subsets of Γ, such that the union of the sequence is PX and the sequence of measures of

the subsets, appropriately weighted, converge to a finite value in [0, 1]:

28I follow here the exposition of Schiffrin and Wald (2012).
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1. assume Γ is σ-finite (i.e., is a countable union of subsets of finite measure)

2. find “physically appropriate” nested sequence of subsets of Γ, {Si} (i ∈ I+), such that Γ =
⋃
i Si

and µghs(Si) <∞

3. define Pr(PX) = lim
i→∞

µghs(PX ∩ Si)
µghs(Si)

Minisuperspace is σ-finite, so we’re off to a good start. The serious problem arises with the second

condition: one can get pretty much any answer one wants by judicious choice of {Si}, i.e., different

regularization procedures can yield wildly different results.

A simple example illustrates the general form of the problem. What is the probability that a

randomly chosen natural number is even? Prima facie, the question makes no sense. Let’s fix a

regularization procedure to attempt to address it. Let Si be the subset consisting of the first i

natural numbers, in their normal ordering; then the regularization procedure yields the well defined

probability 1
2 for a natural number’s being even. Now, however, order the natural numbers as follows,

{1, 3, 2, 5, 7, 4, . . .}, and again let Si be the subset consisting of the first i numbers. This yields a

well defined probability, but now it is 1
3 .

In cosmology, the problem is nicely illustrated by attempts to calculate the probability of inflation

for spacetimes in Γ. Using regularization procedures derived from arguments based on (topological)

stability of initial conditions yielding “slow-roll” inflation, Gibbons and Turok (2008) deduced ex-

tremely low probability for N � 1 e-foldings of inflation, whereas Carroll and Tam (2010) deduced

extremely high probability for N � 1 e-foldings of inflation. Both analyses, moreover, have strong,

physically plausible justifications for the regularization procedures they employ (i.e., their choice

of {Si}). The resolution to this seemingly paradoxical state of affairs is that, in fixing the choice

of {Si}, they each used a different criterion for topological stability for initial conditions yielding

inflation. Roughly speaking, Carroll and Tam (2010) characterized topological stability based on

the behavior of spacetimes entering an inflationary phase, whereas Gibbons and Turok (2008) did so

based on spacetimes leaving the inflationary phase. This difference naturally leads them to consider

the weight the GHS measure assigns to physically quite different open sets in Γ. It should therefore

be no surprise that those open sets get assigned divergent weights.29

Even in the cases where one can unambiguously attribute a probability to the occurrence of a

property based on µghs, one must ask about the physical significance of that probability, which, if

it indeed has any, must come from the physical significance of the GHS measure itself, if it indeed

has any. Schiffrin and Wald (2012) argue persuasively on multiple grounds that, at best, much

work must be done to justify the physical significance of the GHS measure, and, at worst, it has

none. They note that the standard justifications for the use of a Liouville measure are given by

arguments based on special properties of the dynamical evolution of the system at issue and in

particular on how it equilibrates. In particular, the arguments rely on the fact that the amount of

29My diagnosis of the conflict between the two conclusions is in some ways similar to that of Schiffrin and Wald

(2012), but also differs in one important way, viz., my emphasis on the role topological stability plays in their arguments

in fixing the open sets whose measures are relevant to the problem.
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time the system spends in a portion of phase space is proportional to its Liouville measure. Those

arguments, however, are not available when:

1. the system is not ergodic

2. OR one has not waited a time much greater than the equilibration time after the system was

prepared

3. OR the system has a time-dependent Hamiltonian that varies on a timescale that is small or

comparable to the equilibration time

All of those conditions hold, however, for the canonical “dynamics” of that sector of general relativity

represented by minisuperspace and its Hamiltonian. The system is not ergodic because the phase

space has infinite measure—the dynamics cannot adequately explore the entire energy hypersurface

in any finite time. For the same reason, there is no finite time in which the system can explore

enough of the energy hypersurface in order for one to be able to conclude that it has satisfactorily

equilibrated: the system always “remembers” its initial state, which precludes true statistical equi-

libration. That the time-dependent Hamiltonian in this case varies over timescales small compared

to the equilibration time follows for the same reason.

In the face of these problems, Hollands and Wald (2002) and Schiffrin and Wald (2012) conclude

that the only justification for the use of a Liouville measure in cosmology, in our current state of

knowledge, is the bare assumption of the conceit of Penrose (1979), to wit, that the universe’s initial

conditions were, by some appropriate process, randomly selected from a probability distribution

fixed by the Liouville measure—the “creator” blindly threw a dart at a dartboard whose values are

distributed according to it. Schiffrin and Wald (2012, p. 20) drily observe that this “has the status

of an unsupported hypothesis.” I demur. There is no tongue long enough and no cheek deep enough

to endow this assumption with the honorific ‘hypothesis’. There is no known physical justification

for the use of the Liouville measure in cosmology.

5 Genericity, Stability, and Prediction

As I already remarked above, the space of Lorentz metrics over a manifold—the family of possible

spacetime models having that as its underlying manifold—is an infinite-dimensional Fréchet man-

ifold, and so by theorem 3.2 it has no non-trivial Borel measure. Standard probabilistic forms of

argument in cosmology, however, mix topological and measure-theoretic concepts and methods in

a way that depends on relations between topology and measure that are guaranteed to obtain only

for Borel measures. In particular, those standard forms (always implicitly) assume at least one of

the following propositions.

• Fix a “randomly selected” spacetime with a given property; if “small perturbations” (in a

topological sense) destroy that property, then the collection of spacetimes with that property

has zero measure. (The property is “scarce”; theorems showing the existence of the property

are “rigid”.)
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• Fix a “randomly selected” spacetime with a given property; if “small perturbations” (in a

topological sense) preserve that property, then the collection of spacetimes with that property

has large (or at least discernibly non-zero) measure. (The property is “generic”; theorems

showing the existence of the property are not “rigid”.)

• If the collection of spacetimes with a given property has large (or at least discernibly non-zero)

measure (“generic”), then that property is topologically stable under “small perturbations”

(not “rigid”).

• If the collection of spacetimes with a given property has zero measure (“scarce”), then that

property is topologically unstable under “small perturbations” (“rigid”).

The probabilistic element of the conclusions can be expressed using the idea of likelihood (in a

non-technical sense). Standard arguments then take the following form. Assume that the property

is generic and that observations we make indicate that the actual spacetime approximately satisfies

the conditions of an existence theorem for that property; then the topological stability under small

perturbations entailed by genericity guarantees that the inevitable inaccuracies and inexactitudes

in the observations cannot block the inference that the likelihood that the property obtains in the

actual universe is high; and so we conclude that the likelihood is in fact high. Because one does

not have a Borel measure in infinite-dimensional Fréchet spaces, however, none of these propositions

hold in general for the space of Lorentz metrics over a fixed manifold.30

A good example of a powerful probabilistic conclusion based on topological reasoning dressed

up in measure-theoretic clothing pertains to the likelihood of finding singularities in a certain class

of spacetimes. Geroch (1966) conjectured that essentially all spatially closed spacetimes either

have singularities or do not satisfy the SEC, or, somewhat more precisely, that singularities are

generic and their occurence is stable in the family of spatially closed spacetimes.31 One compelling

way to make Geroch’s conjecture precise is given by the so-called Lorentzian splitting theorems.32

These theorems may be thought of as rigidity meta-theorems for singularity theorems invoking the

30Hawking (1971) is particularly clear and explicit in sketching what I just proposed as a typical scheme for this

sort of argument, though he does not note the mathematical issues I focus on.
31The strong energy condition requires that for any timelike vector ξa, Rmnξmξn ≥ 0, where Rab is the Ricci tensor

associated with the spacetime metric.
32In order to state the most relevant splitting theorem, we need two definitions. First, the edge of an achronal,

closed set Σ is the set of points p ∈ Σ such that every open neighborhood of p contains a point q ∈ I−(p), a point

r ∈ I+(p) and a timelike curve from q to r that does not intersect Σ. Second, let Σ be a non-empty subset of

spacetime; then a future inextendible causal curve is a future Σ-ray if it realizes the supremal Lorentzian distance

between Σ and any of its points lying to the future of Σ (Galloway and Horta 1996); mutatis mutandis for a past

Σ-ray. (If γ is a Σ-ray, it necessarily intersects Σ.)

Theorem 5.1 (Lorentzian splitting theorem) (M, gab) be a spacetime that contains a compact, acausal spacelike

hypersurface Σ without edge and obeys the SEC; if it is timelike geodesically complete and contains a future Σ-ray

γ and a past Σ-ray η such that I−(γ) ∩ I+(η) 6= ∅, then it is isometric to (R × Σ, tatb − hab), where (Σ, hab) is a

compact Riemannian manifold and ta is a timelike vector-field in M.

In particular, (M, gab) must be globally hyperbolic and static. See Galloway and Horta (1996) for a proof.
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strong energy condition, for the splitting theorems show that, under certain other assumptions,

there will be no singularities only when the spacetime is static and globally hyperbolic.33 The

reasoning then runs, static and globally hyperbolic spacetimes are “of measure zero” in the space

of all spacetimes, and so being free of singularities is, under the ancillary conditions, unstable

under arbitrarily small perturbations; thus, the likelihood of a “randomly selected” spatially closed

spacetime being singularity-free is very low.34 These conclusions, however, are simply not justified

in the absence of a Borel measure, even if one had a physically appropriate topology to use for the

rigorous characterization of stability in the first place.

An example of a different sort is provided by the sort of anthropic argument given by Barrow and

Tipler (1988) and Weinberg (1987) to predict “the most likely” range of values for the cosmological

constant Λ. The argument runs as follows:

1. work with a family of near-FLRW spacetimes (i.e., ones derived by allowing small perturbations

off FLRW spacetimes, introducing small inhomogeneities);

2. then the existence of large, gravitationally bound systems places upper and lower bounds on

possible values of Λ—if Λ is too positive, then potentially bound systems would be pulled

apart, and if it is too negative, then the universe would recollapse before they can form;

3. argue for the topological stability of the formation of such bound systems under small changes

in the value of Λ;

4. use an anthropic argument (the presence of conscious observers as a selection effect, assuming

we are typical observers, i.e., that the value of Λ in our spacetime is typical of spacetimes

with such observers) to fix the shape and peak of an appropriate measure on the family of

near-FLRW spacetimes;

5. predict that the probability of the occurrence of a cosmological constant with a value lying in

the range fixed in the second step is high, according to the posited measure.

The inadmissibility of the reasoning should, again, be clear. The argument assumes that there

exists a measure and a topology that harmonize in such a way as to allow one both to characterize

topological stability under small perturbations and to characterize typicality of a class of observers

in a consistent way. On any reasonable family of near-FLRW spacetimes, however, there will be

no such measure and topology, for the inhomogeneities ensure that the family will form an infinite-

dimensional space.

33See Beem, Ehrlich, and Easley (1996, ch. 14) for a beautiful discussion of the rationale behind and intent of

rigidity theorems, as well as an exposition of many of the most important ones.
34See, e.g., Hawking (1971), Penrose (1979), and Senovilla (1998) for examples of physicists explicitly using such

measure-theoretic language to characterize the genericity of the occurrence of singularities in these families of space-

times, based on topological stability of the occurrence of singularities. Those same physicists also offer similar

arguments for the genericity of singularities in spatially open spacetimes. One can make the conjecture in this case

precise by using a variation of the Lorentzian splitting theorem given in footnote 32 (Galloway and Horta 1996); see,

e.g., Ringström (2009), for arguments of the sort I criticize based on the Lorentzian theorem for the spatially open

case.
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My arguments do not show that the conclusions of the sorts of arguments I have considered in

this section are necessarily wrong, only that the arguments currently given for those conclusions,

in their present form, have serious mathematical, physical and conceptual problems that must be

addressed before any real confidence can be had in those conclusions.
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