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Abstract

It is argued that the high degree of trust in the Higgs particle before
its discovery raises the question of a Bayesian perspective on data
analysis in high energy physics in an interesting way that differs from
other suggestions regarding the deployment of Bayesian strategies in
the field.
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1 Introduction

Physicists had a remarkably high degree of trust in the existence of the Higgs
particle long before it was discovered at the LHC.1 It shall be argued in this

1This denotes the idea that some kind of Higgs-like particle existed. Whether the
Higgs sector was standard-model-like, supersymmetric, composite or else remained an
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paper that this specific phenomenon opens up interesting perspectives on the
role of Bayesian statistics in experimental high energy physics (HEP).2

Data analysis can be carried out within two different conceptual frame-
works. Frequentist data analysis provides likelihoods L(H|E), and p-values3

of a hypothesis H in dependence on data E. The likelihood L(H|E) is equal
to the probability P (E|H) of data E given the truth (or viability) of hy-
pothesis H. Bayesian data analysis, to the contrary, provides probabilities
P (H|E) of hypothesis H given data E. Unlike frequentist analysis, Bayesian-
ism thus offers a direct assessment of the chances that a hypothesis H be true
or viable.

The canonical approach towards empirical testing in HEP is based on
frequentism. The advantages of frequentism from a working physicist’s per-
spective are clear. Frequentism provides a framework for carrying out quanti-
tative data analysis without considering subjective prior probabilities. Like-
lihoods and p-values of hypothesis H for data E can be deduced from the
hypothesis itself, which allows extracting quantitative results in a univocal
way from measured data within a well-defined framework of theory-based
assumptions. To be sure, this does not mean that the decision whether to
endorse or reject a hypothesis is free from subjective considerations. That
decision is based on setting a significance limit for discovery. Choosing that
limit is based on subjective assessments of various kinds. However, those
subjective assessments do not interfere with the quantitative data analysis
itself.

Bayesian data analysis extracts P (H|E) from P (E|H) based on the Bayes
formula

P (H|E) = P (E|H)
P (H)

P (E)
(1)

This approach relies on subjective prior probabilities P (H) and P (E),
which introduce an element of subjective choice into data analysis that is
absent in the frequentist case. Generally speaking, there can be two kinds of
motivation for looking at Bayesian data analysis despite that disadvantage.
First, one may find frequentist data analysis epistemologically unsatisfactory
since it does not specify a probability for a theory’s truth or viability. At a
more pragmatic level, one finds contexts where a straightforward application

open question.
2To be sure, the Higgs particle is not the first example of a prediction in HEP that was

strongly believed before empirical confirmation. Still, it offers a particularly nice example
for discussing the probabilistic status of a hypothesis prior to empirical testing.

3We will come back to p-values in Section 3.
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of frequentist data analysis fails to provide the best characterisation of the
impact of some data E. Bayesian methodology can then be deployed in a
target-oriented way in order to optimize the results of data analysis.

Ideas to make use of the Bayesian perspective in HEP up to this point
have been of the second kind. Bayesian methods have been used, as we will
see more specifically in the next section, on a purely pragmatic basis while
keeping up the frequentist character of overall data analysis. The present
paper makes the point that the case of the conjecture and eventual discovery
of the Higgs particle gives reasons for going beyond such a purely pragmatic
deployment of Bayesian methods and think about an overall Bayesian em-
bedding of HEP data analysis. This does not imply that HEP data analysis
should switch to Bayesian methodology. It does mean, however, that keeping
in mind a Bayesian framework can help making the right choices in framing
data analysis.

The case of the Higgs search is of particular interest for our analysis be-
cause of the high degree of trust in the Higgs hypothesis long before the
Higss particle’s empirical discovery. As long as one is testing theories whose
viability remains unclear at the time of empirical testing, disregarding prior
probabilities and having a frequentist perspective on endorsing or rejecting
the theory based on the incoming data does not encounter the problems we
are going to discuss. In cases where a hypothesis is either taken to be very
probably viable or most probably false already before empirical testing, how-
ever, disregarding those convictions may lead to an inadequate understanding
of the results of data analysis. Attributing a substantial prior probability to
the hypothesis constitutes a natural way of dealing with situations of this
kind. The high level of trust in the Higgs particle before it was discovered
makes it a prime candidate for applying that strategy.4

In order to contrast the suggested role of a Bayesian perspective on data
analysis in the Higgs case with the way Bayesian methods have been used
in HEP before, we start with a brief look at an example of the latter kind

4Another excellent recent example is the case of a hypothesis that was considered
most likely false despite seemingly significant empirical data in its support. When the
OPERA experiment seemed to measure superluminal neutrinos in 2011, the very low prior
probability of the hypothesis that neutrinos could be faster than light (due to very strong,
data-based and conceptual trust in the viability of the theory of special relativity) led to
a situation where conventional frequentist methods of data assessments were disregarded
by most physicists in their assessment of the OPERA data and an implicitly Bayesian
assessment of the situation took over. While the prior probability of a mistake in the
OPERA experiment was arguably fairly low, it was still considered much higher than the
prior probability of neutrinos moving faster than light. In effect, Bayesian updating thus
led most physicists to infer from the data an experimental mistake rather than the truth
of the hypothesis.
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in Section 2. Afterwards, Sections 3 and 4 and 5 analyse the Higgs case.
Section 6 finally compares the two contexts and makes an attempt to specify
the significance of Bayesian reasoning in the Higgs context (and beyond).

Before entering the specific analysis, however, it seems adviseable to
say a few more words about the epistemic relation between frequentist and
Bayesian data analysis.

It is clear that a ”philosophical” justification for assessing a theory’s vi-
ability based on frequentist data analysis must rely on some wider epis-
temological framework: it has to be clarified on what basis the likelihoods,
p-values and error probabilities that are calculated in a frequentist framework
are supposed to justify the endorsement or rejection of a given hypothesis.
The debate on how this should be best understood goes back to the calssical
works of Fisher, Neyman and Pearson. In recent philosophy of science (Mayo
2000, Mayo and Spanos 2006, Staley 2004) have argued that the endorsement
or rejection of theories can and should be justified based on the concept of
the ”severity of testing” without any reference to the probability of a the-
ory’s truth. Others have argued that a full understanding of the epistemic
status of frequentist data analysis can only be acquired by relating a theory’s
likelihood to its probability, which amounts to embedding frequentist data
analysis within a framework of Bayesian epistemology. (see e.g. Howson
2000.5)

It is probably fair to say that most statisticians in HEP (and other re-
search fields) think that frequentist data analysis does require a Bayesian
epistemic embedding. Nevertheless, they normally refrain from making that
embedding explicit within data analysis itself. There is a wide consensus
in the field that data analysis should be carried out in a way that makes
the published quantitative results reproducible by anyone who knows exper-
iment, data and the theory that is tested.6 The introduction of priors puts
this inter-subjective quality of the published data into jeopardy. In some
special cases, however, HEP-statisticians have suggested Bayesian elements
of reasoning in order to extract satisfactory quantitative results from the
data. Examples are Robertson and Knapp 1988, Cousins 1994, Read 2002
and Lyons 2013. Clearly, Bayesian ideas were deployed in those cases with
the principle of a general Bayesian embedding of data analysis in mind. The

5Howson points out that Mayo’s strategy achieves decoupling from the theory’s truth
probability only at the price of becoming insensitive to the threat of the so-called base-rate
fallacy. Therefore, Howson argues, Mayo’s reasoning cannot justify trust in a theory that
has been ”severely tested” in Mayo’s sense.

6It will be important for the analysis of later sections that this requirement can’t be
upheld for the interpretation of the published data.

4



explicit goal, though, was to use Bayesian strategies in a limited way that
kept subjective assessments of prior probabilities out of the game as much as
possible. In the following section, we have a look at one particular example
of this strategy.

2 Excluding Unphysical Parameter Values

It sometimes happens that a data-based frequentist determination of the ex-
pected value of a given parameter suggests a value that is physically meaning-
less or impossible. A nice example was the measurement of neutrino masses
in the 1980s based on tritium beta decay - well before the eventual conclu-
sive measurement of non-zero neutrino masses. The tritium beta decay rate
had been calculated to depend on the squared mass of the electron neutrino
generated in the decay process. The probability of emitting an electron with
total energy E in beta decay was found to be

dN(E) = K|M |2F (Z,R,E)peE(E0 − E)((E0 − E)2 −m2
νc

4)1/2dE (2)

with a term K containing some coupling constants, a transition matrix
element M, a Coulomb correction term F, the electron momentum pe and the
total energy E. Of interest for our purposes is solely the dependence on the
squared neutrino mass m2

ν . Based on fundamental laws of physics, a neutrino
mass squared term only made physical sense if it was larger than or equal to
zero. Due to statistical fluctuations, however, the measured decay rate could
lead to likelihoods L(m2

ν |E) which had the highest values for negative m2
ν . In

the given case, the experimental results in the late 1980s gave a confidence
interval of m2

ν = (−54±30)eV 2. Statisticians thus faced the question how to
deal with a result that put the entire 1σ confidence interval in the physically
meaningless regime. Apart from the counter-intuitive appearance of that
result, the problem arose how to extract the optimal physical interpretation
from the data. The issue of primary interest addressed by the experiment
was to specify an upper bound on the electron neutrino mass. Even when
choosing a significance level that was sufficiently high for putting the upper
bound for m2

ν above zero, that bound seemed misleading for the following
reason: one knew from the fact that the likelihoods peaked well below zero
that the data was statistically off towards too low m2

ν values and thus led
to an underestimation of the value of the upper mass-square bound. But
a straightforward frequentist analysis provided no way to account for that
knowledge.
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Several possible remedies for this problem were discussed. One of those
suggestions, realized in Robertson and Knapp 1988 and discussed e.g. in
Cousins 1994, adopted a Bayesian perspective in order to limit the statistical
analysis to the physically allowed parameter region. This was done by at-
tributing prior probability zero to the physically meaningless negative mass
square values and assuming a uniform distribution of prior probabilities for
physically meaningful mass-square values. On that basis, one could extract
from the same data as before a positive expectation value for the squared
neutrino mass and a higher bound on the neutrino mass.

Two conceptual issues come along with the suggested use of Bayesian
methodology, however. The first one is of immediate relevance for extract-
ing probabilities of physical hypotheses from the data and was discussed in
Cousins 1994. As mentioned above, the Bayesian analysis in the given case
relies on assuming a uniform prior probability distribution for the allowed
parameter region. It is by no means clear, however, with respect to which
entity the distribution should be uniform. Coming from the formula for beta
decay, the most natural choice would be a uniform probability distribution
over the parameter m2

ν . But one might also assume a uniform probability
distribution over mν based on the argument that mν is the basic physical
concept in the given case. One might even find reasons for making other
choices that are different from both previous ones. Each choice leads to a
different upper bound for the neutrino mass. Conceptually, what lies behind
this problem is the fact that we have no cogent basis for attributing spe-
cific probabilities to specific mass values. Our epistemic position might just
as well be characterized as a suspension of judgement with respect to the
neutrino mass within the physically allowed region. A suspension of judge-
ment, however, cannot be expressed in terms of probability distributions in
a Bayesian framework. (See e.g Norton 2008 for a discussion of that point.)

The second point is of a more general epistemic nature. The use of
Bayesian methodology along the described lines is a helpful and viable
methodological move in data analysis. Statisticians had good reasons for
trusting Formula (2) and for working within its framework. On that ba-
sis, it made sense to apply Bayesian methods in order to account for the
impossibility of negative mass squares.

It is important to emphasise, however, that the way Bayesian method-
ology is deployed in the given case does not reflect a genuinely Bayesian
epistemic perspective on data analysis. For the (canonical) Bayesian epis-
temologist, the interesting and genuinely scientific part of the process of
probability assessment is the updating of probabilities under incoming data.
Prior probabilities are necessary for getting the process started but should
never dogmatically predetermine the outcome of the process. In the given
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case, however, that is exactly what is happening. By setting to zero the
probabilities of those true decay rates which correspond to negative mass
square values according to Formula (2), one disregards the possibility that
Formula (2) could be incorrect in a way that dissolves the rigid connection
between the given true decay rates and negative mass square terms. In other
words, setting the probabilities of those true decay rates to zero is based on
implicitly assuming probability 1 for the viability of Formula (2). A fully
Bayesian epistemic approach to the scenario, however, would avoid attribut-
ing probability 1 to any theory relevant to the data.7 That would correspond
to attributing a probability slightly lower than 1 to Formula (2), which in
turn would mean that measured decay rates which correspond to negative
mass square values according to Formula (2) would lower the probability of
the viability of Formula (2).8 If the trust in Formula (2) is very high, pri-
ors for true decay rates corresponding to negative mass squares based on
Formula (2) would still be very low. As long as the significance of the incom-
patibility between measured decay rates and Formula (2) were not very high,
the resulting a posteriori probabilities for the ”positive mass square” region
would be very similar to the results given by deploying the ”zero probabil-
ity” method. The important point, however, is that the method chosen by
the physicists was based on avoiding a non-generic assessment of the actual
degree of trust they had in the viability of Formula (2) in the given context.
Thereby, they avoided a fully Bayesian epistemic perspective on the physical
context they analysed.

Applying Bayesian methods in order to exclude negative mass squares
thus has a peculiar tinge. It consists in choosing one probability value (zero)
that would not be used in an epistemically Bayesian spirit at all and speci-
fying another one (uniform distribution based on a selected measure) whose
specification is not justified by our knowledge of the system. It thus amounts

7It would mean going too far to assert that probabilities zero or ”zero for all practical
purposes” must not occur in Bayesian analysis. If a hypothesis H is directly inconsistent
with a certain empirical outcome E, Bayesian updating under data E sends the posterior
probability P (H|E) to zero. We may call that ”zero for all practical purposes” because
of the Duhem-Quine thesis, which rejects the idea of an inconsistency between data and
an individual hypothesis. One may always save the hypothesis by rejecting other, albeit
well entrenched, hypotheses. But one may in certain cases deem that possibility negligable
for all practical purposes. The step of setting to zero negative mass square values is of a
more problematic kind, however, since it sets to zero the probability of an experimental
outcome, namely of certain electron emission rates.

8Note that this form of Bayesian analysis would indeed correspond to actual reasoning if
measured ”negative mass square” values became overly significant. In that case, physicists
would start wondering whether something is wrong with Formula (2) or the basic physical
laws that forbid negative mass squares.
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to the use of prior probabilities precisely in those contexts where they seem
to have no satisfactory epistemologically Bayesian interpretation. This does
not discredit the given strategy as a viable method of data analysis. But
Bayesian reasoning as deployed within this framework must be understood
as a mere technical tool and does not amount to a coherent epistemically
Bayesian viewpoint on data analysis. The overall mindset in the given case
remained frequentist and was just ”enriched” by Bayesian elements in order
to extract optimized quantitative results.

The analysis discussed in this section is an example of the ’objectified’
approach to Bayesian data analysis normally adhered to by Bayesians in
HEP. This approach avoids addressing the individual subjective element of
prior probabilities by relying on generic choices for priors that can be used
universally in given types of analysis: a uniform probability distribution for
allowed parameter regions, probability zero for excluded parameter regions,
probability 1/2 for a null hypothesis, or the like.

In the following sections, we will argue that the significance of Bayesian
reasoning in the context of Higgs physics is of a different kind. An explicit
quantitative use of Bayesian analysis may actually be less advantageous in
the Higgs context than in the case that was described in the present section.
However, in order to obtain a conceptually coherent understanding of data
analysis it seems helpful to choose an epistemically Bayesian perspective that
is based explicitly on an individually chosen subjective prior that expresses
the high degree of trust in the Higgs hypothesis before the discovery of the
Higgs particle.

3 Assessing the Look Elsewhere Effect

In July 2012, CERN announced the discovery of a Higgs-like scalar particle
(ATLAS 2012, CMS 2012). Subsequent closer data analysis (somewhat) con-
clusively identified this particle as a Higgs particle. An earlier announcement
in December 2011 had already stated an overall signal of close to 4 σ com-
bined significance. The well established convention in HEP to call a signal
a discovery only once it exceeds 5 σ significance implied that the December
2011 data was not called a discovery but only ”significant evidence” for a
Higgs-like particle in official announcements. ”Unofficially”, however, the
status quo after December 2011 gave rise to a debate on the actual signifi-
cance of the data. This debate was analysed from a philosophical perspective
in Dawid 2015. In the following paragraphs, we will rehearse that analysis.
Later on, we will embed it in a fully Bayesian framework.

Roughly, one could distinguish two positions in the 2011 debate. On the
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one side, there were those who in effect stuck to the letter of the discovery cri-
terion and warned of exaggerated trust in data that was insufficient according
to that criterion. We will call that position the experimentalist’s position. On
the other side, there were those who argued that the fact that the observed
data fit in so nicely with the existing knowledge from theoretical analysis
and older data made that present data substantially more trustworthy than
it would seem at first sight (more trustworthy, that is, than those 4-σ signals
which had turned out to be statistical fluctuations in other contexts in the
past.) This position shall be called the theoretician’s position.

It was argued in Dawid 2014 that the described difference of opinion could
in effect be understood as a controversy between the adherents to a rigid
frequentist approach to data analysis (who endorsed the experimentalist’s
position) and those who admitted elements of Bayesian reasoning.

In order to understand this point, we first have to look at some basics
of the Higgs search and the role of the look elsewhere effect (LEE) in data
analysis. The LHC experiments count signatures which could have been
created by a new scalar particle. The number of those candidate events is
then compared to the calculated background, that is to the expected num-
ber of signatures which look the same on a scattering picture but are not
generated by an exchange of the new particle that is searched for. Since all
involved processes are quantum processes, the numbers of background events
are probabilistically distributed. The farther the observed number of events
lies above the expected background, the less likely it is that it consists of
background events alone.

The first step in HEP data analysis is the test of a null hypothesis N that
asserts that no so far unobserved particles contribute to the generation of the
observed data E. Data analysis is carried out in a frequentist framework in
terms of p-values. The local p-value of a measured signal (that is of a certain
number of signatures of a given type) with a specific characteristic parameter
value (corresponding to a certain mass of the scalar particle) expresses the
probability that a signal of at least the measured significance is produced
when the null hypothesis is true.

An instructive way of understanding local p-values is in terms of error
probabilities. The statement: ”The measured signal S has p-value p” is
equivalent to the statement: ”assuming that the null hypothesis is true, the
strategy of rejecting the null hypothesis based on any signal as strong or
stronger than S has a probability p of mistakenly rejecting the null hypoth-
esis” (that is of making a type I error).

The local p-value does not constitute a good basis for assessing the gen-
uine significance of a signal, however. Data analysis should reject a null-
hypothesis only if the probability of making a type I error (the error of
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rejecting a hypothesis that is true) in the entire experimental run is very
small. The nature of HEP experiments, however, make local p-values the
wrong number for characterizing that probability. Experiments like ATLAS
or CMS at the LHC search for new particles within a wide range of possible
mass values. Anywhere within the tested parameter range, statistical fluctu-
ations of the size of the observed signal could arise. So the probability that
a true null hypothesis is rejected based on a given significance criterion in a
full experiment is related to the probability of the occurrence of a fluctuation
of the given strength anywhere in the entire tested parameter range rather
than at one specific parameter value. This effect is called the look elsewhere
effect (LEE).

Obviously, the probability to find a fluctuation anywhere within the tested
parameter range is much higher than the probability to find a fluctuation of
that size specifically at the energy scale where the signal was actually found.
Roughly, the factor that relates the two probabilities is the tested energy
range over the width of the measured signal. Therefore, in order to specify
a kind of p-value that is a reasonable indicator of the error probability, one
must correct the local p-value by the stated factor. Accounting for LEE by
multiplying the local p-value by that factor leads to the specification of a
global p-value that is taken to provide the most adequate characterization of
the actual significance of measured data.

While global p-values are calculated and stated in HEP-publications, the
”official” discovery criteria are nevertheless bound to local p-values, which
constitute the experimental result that can be stated most straightforwardly.
The very high discovery limit of 5 σ, however, is motivated in part by the fact
that LEEs of 100 or more are common in HEP and have to be absorbed in
the discovery limits for local p-values in order to have a sufficiently small risk
of false discovery announcements. Looking specifically at the Higgs search,
the LHC experiments were indeed sensitive to scalar particles within a wide
mass range. Accounting for that range generated a LEE of roughly the order
100.

The described situation provides the background for the conflicting as-
sessments of the December 2011 data. The adherents to the theoretician’s
position made the following points. First, a rigid 5 σ criterion is not the most
accurate way to account for the actual significance of our data. What one
should do instead is evaluate the specific experimental situation. Specifically,
one should quantify the actual LEE in the given case. Second, when doing so,
it is not sufficient just to specify the tested parameter range. What we rather
have to do is take into account all we know or believe to know about HEP
already. In the given case, there were good theoretical reasons for expecting
a very specific kind of scalar particle, namely a Higgs particle. Further, there
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was good evidence already before December 2011 that the mass of the Higgs
particle, if it existed at all, had to lie within a rather narrow mass range.9

The signal found in 2011 indeed lay within that narrow mass range. The the-
oretical knowledge that the Higgs particle was the most likely candidate for
a new scalar field in conjunction with experiments which constrained Higgs
particles to specific mass values, according to the theoretician’s perspective
was reason enough to consider a reduced LEE that accounted only for the
allowed Higgs mass region. Therefore, the global p-value of the measured
signal had to be stated to be much lower than naively assumed, which meant
that a signal with a local p-value of 4 σ could be taken (at least inofficially)
as practically a discovery.

The experimentalist’s position rejected this line of reasoning. Taking into
account our trust in the existence of the Higgs particle while searching for that
very particle seemed to violate the impartiality of the experimental process.
Therefore, from the experimentalist’s perspective, any reduction of LEE on
that basis amounted to a distortion of the experimental result and had to
be rejected. Thus the measured 4 σ result had to be considered no better
than any of those 4 σ effects that had turned out to be due to statistical
fluctuations in the past.

It is rather straightforward to understand the described difference of opin-
ion in terms of a controversy between a rigidly frequentist and a partly
Bayesian perspective. The rigid frequentist, that is the endorser of the em-
piricist’s position, holds that any reference to prior probabilities is a dis-
tortion of the objective data and has to be rejected. The Bayesian, to the
contrary, is ready to account for theory-based trust in a given theory by
introducing prior probabilities for the truth or viability of that theory.

It is important to understand, however, that the endorser of the theoreti-
cian’s position does by no means choose a fully Bayesian perspective on data
analysis. As already pointed out in Section 1, HEP-physicists tend to agree
on the goal to keep quantitative scientific data analysis inter-subjective: data
analysis should be carried out in a way that makes the published quantitative
results reproducible by anyone who knows experiment, data and the theory
that is tested. A fully Bayesian perspective would amount to calculating the
posterior probability for the Higgs hypothesis based on subjective priors by

applying the Bayes formula P (H|E) = P (E|H)
P (H)

P (E)
. As discussed above,

these priors would be informed by knowledge about the theoretical context.

9This knowledge, as of December 2011, was partly based on calculations which showed
that a Higgs with a higher mass would have had an observable effect already in earlier
experiments based on virtual Higgs effects, even though no real Higgs particles would have
been generated there.
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Nevertheless, they would be specific and non-generic quantitative expressions
of subjective expectations by individual scientists regarding the theory’s vi-
ability. A fully Bayesian approach thus would bluntly violate the condition
of inter-subjectivity, which renders it just as unacceptable from the theoreti-
cian’s as from the experimentalist’s perspective. What the endorser of the
theoretician’s perspective subscribes to is accounting for prior probabilities
in the interpretation of the data that leads up to specifying a discovery crite-
rion. This part of data analysis is based on subjective considerations anyway,
which means that a reliance on subjective priors looks much easier to accept.
The prior probability for the Higgs hypothesis provides the basis for reducing
LEE, which in turn can justify a less stringent criterion for calling a set of
data a discovery of new physics.

This is roughly the line of reasoning presented in (Dawid 2014). In the
next section, we want to go one step further and ask whether the theoretician’s
position can be understood and motivated from an epistemologically fully
Bayesian perspective on HEP data analysis.

4 LEE from a Bayesian perspective

From a Bayesian perspective, one needs to express the frequentist results,
that is local and global p-values, in terms of P (N |E): one asks for the prob-
ability of N given the collected data E. P (N |E)/P (N) is the only legitimate
basis for characterizing the Bayesian confirmation value of empirical data E.
The problem is that neither the probabilities of signals stronger than the
measured signal (which enter the calculation of the p-vale) nor any reference
to LEE show up explicitly in P (N |E)/P (N). Thus the question arises: can
the Bayesian analysis explain why it makes sense to account for both in a
frequentist context?

The focus of this section will be on the role of LEE. We will show that a
satisfactory Bayesian understanding of reduced LEE can indeed be achieved
once one is ready to assume that p-values do have some relevance as an
indicator of P ((N |E) at all.

The local p-value expresses the probability that the measured number of
Higgs candidate events or a higher number is produced at the given mass
scale when the null hypothesis is true. In terms of conditional probabilities,
one may express this as

p(E,N) = 2P (E+|N) (3)

where E+ is the datum that the experiment has produced the number of
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events that was actually measured or a higher number. (The factor 2 enters
because the Poisson distribution has an upper and a lower tail.) We can
think of E+ in terms of a counting device that counts events of a certain
kind - that is, in our case, Higgs candidates in particle collisions - but cannot
count beyond the number of events that have actually been counted: we thus
don’t know whether any events in excess of that number have occurred.

The connection that will be established in this section is between global
p-values and the probability P (N |E+). Of course, we must keep in mind that
our actual data is E rather than E+, which means that the most adequate
verdict on N based on the data is given by P (N |E). Specifying the relation
between P (N |E+) to P (N |E), however, requires further assumptions on the
spectrum of alternatives to N . Some comments on the nature of that relation
in the Higgs case will be given at the end of this section.

It is clear that the frequentist approach cannot account for those elements
of Bayesian data assessment which are based on prior probabilities of the
involved data and hypotheses. Thus, a Bayesian justification of the use of
global p-values in frequentist data analysis must amount to demonstrating
that global p-values provide the values closest to P (N |E) (or, for the time
being, P (N |E+)) that can be reached after discarding the direct contributions
of the (subjective) prior probabilities of the theories involved.

We assume that a scalar particle is searched for within a given mass
range and a significant signal E is found at at some mass scale. That is,
the null hypothesis N that no scalar particles contribute to the measured
signal has a very small p-value. Apart from N , we distinguish between the
Higgs hypothesis H and other new physics (to be denoted by ¬H ∧ ¬N)
that allows for a scalar particle within the tested mass range. The three
alternatives exhaust the space of possibilities. The Bayesian law and the law
of total probability with respect to E+ then give:

P (N |E+) = P (E+|N)
P (N)

P (E+)
(4)

P (E+) = P (N)P (E+|N) + P (H)P (E+|H)

+P (¬N ∧ ¬H)P (E+|¬N ∧ ¬H) (5)

The smallness of the p-value implies that the data E+ is highly improbable
if N is true. Therefore, we can write

P (E+) ∼= P (T¬N)P (E+|T¬N)

= P (H)P (E+|H) + P (¬N ∧ ¬H)P (E+|¬N ∧ ¬H) (6)
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Now we know the following:

1: The Higgs hypothesis H implies the existence of the Higgs particle.
2: Old data has excluded a Higgs particle with a mass outside a given

parameter range R at 2 σ confidence level.
Therefore the Higgs hypothesis in conjunction with old data implies (with

some confidence) a scalar particle somewhere within the parameter range R
of size R where we have R/W = CLEE.

Here W is the signal width and CLEE is the look elsewhere factor. Assum-
ing (i) that the probability of the existence of a Higgs particle is uniformly
distributed over the allowed mass region and (ii) that data E roughly cor-
responds to the expected significance of a Higgs signal (which means that
P (E+|H) ∼= P (E−|H)) , we can thus write

P (E+|H) ∼=
1

2CLEE
(7)

so that

P (E+) ∼= P (H)
1

2CLEE
+ P (¬N ∧ ¬H)P (E+|¬N ∧ ¬H) (8)

This gives

P (N |E+) ∼= P (E+|N)
P (N)

P (H) 1
2CLEE

+ P (¬N ∧ ¬H)P (E+|¬N ∧ ¬H)
(9)

At this point, we have to account for the scentists’ assessment of the
prior probability of H. Scientists expected that the Higgs hypothesis was
likely true, which justifies attributing a high prior probability to it. In fact,
we wouldn’t even need a high absolute value for P (H) for our purpose. It
would be sufficient to assume that the P (H) is considerably higher than
P (¬N ∧¬H), the prior probability of the scenario that a scalar particle that
is observable at the LHC must be accounted for by some other new theory.
We thus assume

P (¬N ∧ ¬H) << P (H) (10)

Moreover, we have no reason to assume that other theories of new physics
than the Higgs mechanism will lead to a scalar particle with a mass within
the parameter range R. Therefore, we have
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P (E+|¬N ∧ ¬H) <<
1

2CLEE
(11)

Assuming (10) and (11) or even making the weak assumption that P (H)
is not much smaller than P (¬N∧¬H) in conjunction with a strong version of
(11) suppresses the second term in the denominator of Equation (9) against
the first one, which leads to

P (N |E+) ≈ 2P (E+|N)CLEE
P (N)

P (H)
= p(E,N)CLEE

P (N)

P (H)
(12)

P (N)

P (H)
accounts for the subjective priors which influence P (N |E+).

They are ignored in a frequentist approach. The remaining expression
p(E,N)CLEE is the global p-value.

We thus have shown that CLEE is required for providing a characterisation
of the significance of data E that comes as close to P (N |E+) as possible
without explicitly introducing prior probabilities in the data analysis.

At this point we have to come back to the relation between P (N |E+) and
P (N |E). Without making assumptions on the most probable predictions be-
yond the null hypothesis N , nothing can be said about this relation. Based
on the assumption that the Higgs hypothesis is the most probable alternative
to N , however, and considering the case that it predicts roughly a signal of
the significance of E, one can make an estimate. The easiest way to proceed
is to replace the Poisson distribution by a continuous Gaussian probability
distribution so that likelihoods correspond to probability densities. Roughly,
P (E+|H) ∼= 1/2 is then of the same size as P (E|H) (which is close to the
maximum of the Gaussian curve). Therefore, when we replace E+ by E in
Equation (4) and repeat the entire analysis up to Equation (12), we find that
the difference between P (N |E+) and P (N |E) by and large corresponds to
the difference between P (E+|N) and P (E|N). If P (E|N) is out on the tail
of the Gaussian curve, P (E|N) provides a significantly larger number than
P (E+|N). The ratio between P (E|N) and P (E+|N) increases with higher
significance of data E. 10 P (N |E+) thus tends to give a substantially smaller
probability of the null hypothesis than P (N |E). Understanding the p-value
in terms of a probability of the null hypothesis thus would significantly un-
derestimate that probability. Still, disregarding the potentially strong impact

10At 5 σ, the p-value is about 6 times the probability density. Accordingly, P (N |E+)
would underestimate the probability of the null hypothesis by a factor 6.
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of prior probabilities, the p-value does offer a rough indication of the size of
P (N |E).

The quantitative difference between P (N |E+) and P (N |E) offers one
more conceptual reason for the very high general discovery criteria in HEP.
On the basis of such a high general discovery criterion, it then makes sense
to give a Bayesian argument for the deployment of a reduced LEE and there-
fore for a lower individual discovery criterion in special cases like the Higgs
search. The reduced LEE factor that is extracted based on the theoretician’s
perspective thus does have a meaningful and consistent interpretation within
a Bayesian framework.

There is no comparable way of making sense of the experimentalist’s un-
derstanding of LEE within a Bayesian framework. From the experimentalist’s
perspective, the look elsewhere effect (to be called LEE as opposed to the
theoretically informed LEE) is specified simply by considering the tested en-
ergy range R̄ of size R̄ without making any specific assumptions with respect
to the prior probability of the Higgs hypothesis or any other theory. In order
to make sense of LEE along the lines of the previous Bayesian analysis, we
would need the relation

P (E+|¬N) ∼=
1

2C̄LEE
(13)

to hold, in analogy to Equation (7). This relation could only be estab-
lished if we assumed that, under the condition ¬N , the expectation value for
the number of scalar particles to be found with a mass within the parameter
range R̄ was 1 and the probabilities of mass values were uniformly distributed
within R̄. In that case, accounting for LEE would indeed amount to spec-
ifying a global p-value p((E,N) in a way that differs from P (N |E+) only
by disregarding the subjective priors for the spectrum of possible theories,
just like in the theoretician’s case. But there is no legitimation for that set
of assumptions. From the theoretician’s perspective, the assumption is un-
tenable since it is at variance with the use of the reduced LEE in Equation
(7). And from the experimentalist’s perspective, one knows nothing about
the empirical implications of ¬N . There is no basis for assuming that the
Higgs hypothesis H is more likely than any of the many potential unknown
theories about new physics. Therefore the experimentalist’s perspective of-
fers no access to P (E+|¬N) whatsoever. We conclude that it is impossible
to make sense of the experimentalist’s LEE within a Bayesian framework. In
order to motivate the specification of LEE, we must endorse a ttheoretician’s
position that allows us to specify prior probabilities for the existence of a
scalar particle within the tested energy range.
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We thus have seen that the theoretician’s position not only implicitly
employs Bayesian elements of reasoning but actually constitutes the only
coherent understanding of LEE from an epistemically Bayesian perspective.

5 LEE and non-empirical theory confirma-

tion

Section 2 addressed a context where Bayesian elements of reasoning were
considered in physical data analysis itself. Sections 3 and 4 discussed a case
where one step in physical data analysis, the specification of LEE, could be
modified based on considerations which involved Bayesian reasoning. In the
present Section, we will consider an even more central role of Bayesian rea-
soning. As it stands, those considerations may be called purely philosophical.
Still, they do raise some questions that may become increasingly relevant for
an overall physical understanding of theory confirmation.

Once again, we start with the observation that high energy physicists had
a high degree of trust in the existence of a Higgs sector already before a Higgs
candidate was empirically discovered. The trust in the Higgs mechanism was
based on a combination of two arguments. First, it relied on a ’no alternatives
argument’ (NAA): there seemed no plausible way to give a coherent overall
description of microphysics that did not involve a Higgs sector. NAA was
applied to a very specific empirical question. One must clearly distinguish
between the general hypothesis that some Higgs sector existed and more
specific conjectures regarding the detailed form of that Higgs sector (whether
scalars were fundamental or composite, whether there existed one or several
scalar particles, whether or not there was low energy supersymmetry, etc.).
NAA was used with respect to the first question. It was not used with
respect to the second, where a wide variety of alternatives were - and still
are - considered. NAA thus was - and always is - a strategy for assessing
the prospects for the next step of theory building. It is not a strategy for
announcing final or ultimate solutions.

In order to be convincing, NAA had to be supported by a second type
of argument, to be called the meta-inductive argument from predictive suc-
cess in the research program (MIA). Let us introduce MIA right away for
the specific case of the Higgs hypothesis. The Higgs hypothesis is part of
the standard model of particle physics. The motivation for developing the
Higgs mechanism was to make gauge field theories like the standard model
consistent with the observation of fermionic mass spectra and massive vector
bosons. Now the standard model made a wide range of predictions apart
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from the predictions of a Higgs boson. All those other predictions were em-
pirically confirmed between 1974 and 1994. Trust in the predictions of the
standard model was, in one way or the other, always based on a no alterna-
tives argument. Roughly, the chain of reasoning was the following. We have
no plausible alternative to quantum field theory as a theory of interacting
relativistic quantum objects at the electroweak scale. A fully consistent for-
mulation of quantum field theory requires a renormalizable theory. Gauge
field theory seems to be the only approach that brings about renormalizabil-
ity. On the basis of the observed data, the standard model makes a certain
prediction. This prediction, then, seems unavoidable based on the above line
of reasoning.

Each time experimentalists succeeded in testing a standard model pre-
diction, they confirmed that prediction, starting with neutral currents over
symmetries of gauge couplings to new fermionic particles and specific vector
Bosons for strong and (electro)weak interactions. This series of empirical
successes amounted to strong confirmation of the standard model. At a
meta-level, however, it also confirmed the hypothesis that theoretical claims
in the standard model context which were made based on no-alternatives
arguments had a high chance of being predictively successful. Based on this
meta-inductive argument (MIA), it seemed justified to take NAA very seri-
ously in the case of the Higgs mechanism as well.

The question now arises as to what status can be attributed to NAA
and MIA. In a Bayesian context, this question can be stated in a clear-cut
way. Both NAA and MIA rely on observations at a meta-level. In the case of
NAA, this is the observation, call it FH

A , that no alternatives to theory H have
been found. In the case of MIA it is the observation FH

M that theories which
belong to the same research program as H and to which NAA is applicable
tended to be empirically successful in the past. The question is whether or
not FH

A and FH
M increase the probability of the viability of theory H. If they

do, they must be acknowledged as theory confirmation in a Bayesian sense.
If they don’t, neither NAA nor MIA are genuine arguments for the viability
of H and both should be discarded.

Observations FH
A and FH

M don’t lie within the intended domain of hypoth-
esis H, i.e. they cannot be predicted by H. Therefore, they do not constitute
evidence that is canonically understood to confirm H. In Dawid, Hartmann
and Sprenger 2014, it was shown that NAA nevertheless provides the basis
for theory confirmation in a Bayesian sense.

In the following, I will briefly rehearse the basic line of reasoning that
leads to establishing that NAA amounts to confirmation.

We assume that there exists a specific but unknown number k of possible
scientific theories that satisfy reasonable scientificality conditions C, explain
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the collected data D and predict the outcomes of a set of future experiments
E .

We then introduce the binary propositional variables T and FA.
T takes the values

T The hypothesis H is viable (that is, empirically adequate within a given
regime).

¬T The hypothesis H is not viable.

Note that we talk about a theory’s viability rather than truth. This em-
phasises the limited context of applicability of theory assessment. we are
not interested in absolute truth but in a theory’s predictive success within a
certain regime. FA takes the values

FA The scientific community has not yet found an alternative to H that
fulfills C, explains D and predicts the outcomes of E .

¬FA The scientific community has found an alternative to H that fulfills C,
explains D and predicts the outcomes of E .

Since FA does not lie in the intended domain of H, we introduce an
additional variable Y that mediates the connection between T and FA. Y
has values in the natural numbers, and Yk corresponds to the proposition
that there are exactly k hypotheses that fulfil C, explain D and predict the
outcomes of E .

Next, we make the following rather weak and plausible assumptions.11

A1. The variable T is conditionally independent of FA given Y :

T ⊥⊥ FA|Y (14)

A2. The conditional probabilities

fkj := P (FA|Yk) (15)

are non-increasing in k for all j ∈ N and non-decreasing in j for all
k ∈ N.

11In Dawid, Hartmann and Sprenger 2014, the set of assumption is a little more extensive
since our assessment of the scientists’ capacity of developing new theories is included in the
analysis. For our present purposes, however, it is sufficient to state the following reduced
set of assumptions.
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A3. The conditional probabilities

tk := P (T|Yk) (16)

are non-increasing in k.

A4. There is at least one pair (i, k) with i < k for which (i) yi yk > 0 where
yk := P (Yk), (ii) fij > fkj for some j ∈ N, and (iii) ti > tk.

Assumption 1 implies that we would learn nothing new about the via-
bility of H from our failure to find alternatives to H if we knew how many
alternatives actually existed. Assumptions 2-4 amount to the requirement
that there is at least a very mild dependence between the actual number of
alternatives and both the probability of H being viable and the probability
that no alternatives to H were found.

On that basis, the following theorem is proved in Dawid, Hartmann and
Sprenger 2014:

Theorem 1. If Y takes values in the natural numbers N and assumptions
A1 to A4 hold, then FA confirms T, that is, P (T|FA) > P (T).

FA thus constitutes confirmation of H. Applying this statement to the
case of the Higgs particle, we are therefore allowed to say: the observation
that no alternatives to the standard model approach that included a Higgs
mechanism were found increased the probability of the viability of the Higgs
hypothesis. It is legitimate to talk about non-empirical theory confirmation
of the Higgs particle already before its empirical discovery.

A similar argument can be made with respect to MIA (work in progress).
In fact, there is an interesting mutual connection between MIA and NAA. We
saw already that NAA enters MIA: in MIA, only theories to which NAA is ap-
plicable are considered. On the other hand, NAA without support from MIA
remains very weak. While it can be formally established that FH

A constitutes
confirmation of H, the strength of this confirmation cannot be specified based
on NAA alone. There are two possible explanations of FH

A : either there ac-
tually are very few alternatives or scientists are just not clever enough to find
them. FH

A on its own, even after continued and intense unsuccessful searches
for alternatives, can never distinguish between the two possible explanations
and therefore can never strengthen one compared to the other. MIA, to the
contrary, can distinguish between the two. Predictive success obviously can-
not be explained by insufficient capabilities of the involved scientists. It can
be explained, however, by a lack of possible alternatives: if very few pos-
sible alternatives to the theory that was developed exist, chances are good
that the developed theory will be empirically successful. MIA therefore, by
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favouring the hypothesis of few possible alternatives over the hypothesis of
insufficient capabilities of involved scientists, can establish the significance of
NAA in a given research context. On that basis, a more thorough analysis
of the theoretical context of H can strengthen FH

A further and eventually
lead to the degree of confidence in the Higgs hypothesis that was prevalent
among high energy physicists in the one or two decades before its empirical
confirmation.

The Bayesian approach thus offers a justification for understanding NAA
and MIA in terms of theory confirmation. This is of interest for the discussion
of the previous Section in two ways. First, once one has chosen a Bayesian
perspective with respect to NAA and MIA, any attempt of relating non-
empirical to empirical theory confirmation seems to require a Bayesian per-
spective on the entire process. Therefore an analysis along the lines discussed
in Section 4 seems essential for acquiring a coherent overall understanding
of theory confirmation. Second, the use of priors for the Higgs hypothesis in
the context of specifying LEE gains authority by our current analysis. Since
the prior probabilities deployed in the context of empirical confirmation of
the Higgs hypothesis themselves constitute results of a process of significant
non-empirical theory confirmation based on NAA and MIA, they must not
be treated as arbitrary speculations. Rather, they should be seen as the
expression of early confirming steps which constitute an integral part of the
overall process of theory confirmation. Scientists are well justified to take
them seriously.

Of course, the problem remains that non-empirical theory assessment
does not provide objective numbers based on the collected data. Thus, there
remains the clear-cut distinction between likelihoods and p-values which can
be univocally extracted in a frequentist framework and the Bayesian proba-
bilities which can not.

6 Conclusion

The three described contexts show three different roles of a Bayesian perspec-
tive in HEP data analysis. In the first case, we saw a technical utilization of
Bayesian methodology within a solidly frequentist context of analysis.

The second case showed how a specific element of data analysis, the treat-
ment of LEE, can find a clearer interpretation within a Bayesian epistemic
framework. That interpretation proved capable of deciding for or against spe-
cific approaches towards LEE based on their compatibility with a Bayesian
epistemic embedding. Nevertheless, the core data analysis remained based
on the extraction of local p-values, which is an entirely frequentist form of
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analysis.
The third case interpreted the assessment of the status of the Higgs hy-

pothesis before the discovery of the Higgs particle as a form of theory con-
firmation by non-empirical evidence - that is by observations which do not
lie within the intended domain of the confirmed hypothesis. This concept
makes sense only within a Bayesian framework and therefore suggests a fully
Bayesian perspective. Any coherent characterization of the transition from
a phase of non-empirical theory confirmation to the discovery of correspond-
ing particles must be based on a Bayesian overall perspective as well, which
speaks in favour of an epistemically Bayesian embedding of frequentist data
analysis.

The second and third case arise in connection with the Higgs discovery
because of the high degree of theory based trust in the Higgs hypothesis.
They are of wider interest however, in the light of recent developments which
indicate a rapproachment of HEP and cosmology. As exemplified by the
recent scientific debate on empirical confirmation for cosmological inflation,
situations where empirical data is available but inconclusive may become a
standard situation when assessing the viability of modern theories in HEP
and cosmology. A coherent understanding of this kind of situation arguably
may be based on understanding the relation between empirical and non-
empirical theory confirmation which, in turn, seems to suggest an epistem-
ically Bayesian framework of analysis. The Higgs hypothesis seems a good
test case to that end.
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