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Local Causality in a Friedmann-Robertson-Walker Spacetime

Joy Christian∗

Einstein Centre for Local-Realistic Physics, 15 Thackley End, Oxford OX2 6LB, United Kingdom

A local, deterministic, and realistic model within a Friedmann-Robertson-Walker spacetime with
constant spatial curvature (S3) is presented which describes simultaneous measurements of the spins
of two fermions emerging in a singlet state from the decay of a spinless boson. Exact agreement
with the probabilistic predictions of quantum theory is achieved in the model without data rejection,
remote contextuality, superdeterminism, or backward causation. A singularity-free Clifford-algebraic
representation of S3 with vanishing spatial curvature and non-vanishing torsion is then employed
to transform the model in a more elegant form. Several event-by-event numerical simulations of the
model are presented, which confirm our analytical results with the accuracy of 4 parts in 104 parts.

Unlike our most fundamental theories of space and time, quantum theory happens to be incompatible with local
causality [1]. This fact was famously recognized in 1935 by Einstein, Podolsky, and Rosen (EPR) [2]. They hoped,
however, that perhaps quantum mechanics can be completed into a locally causal theory by addition of supplementary
or hidden parameters. Today such hopes of maintaining both locality and realism within physics seem to have been
undermined by Bell’s theorem [1], with considerable support from experiments [3]. Bell set out to prove that no
physical theory which is realistic as well as local in a sense espoused by Einstein can reproduce all of the statistical
predictions of quantum mechanics [1]. The purpose of this paper is to show that it is, in fact, possible to reproduce
the statistical predictions of quantum states such as the EPR-Bohm state in a locally causal manner, in the familiar
Friedmann-Robertson-Walker spacetime (albeit viewed as a non-cosmological, terrestrial solution of Einstein’s field
equations).

A locally causal description of the measurement of the spins of two spacelike separated spin- 1
2
particles which were

products of the decay of a single spin-zero particle has been considered by Bell [1]. Based on Bohm’s version of the
EPR thought experiment, he considered a pair of spin- 1

2
particles, moving freely after the decay in opposite directions,

with particles 1 and 2 subject (respectively) to spin measurements along independently chosen unit directions a and
b, which may be located at a spacelike distance from one another. If initially the emerging pair has vanishing total
spin, then its quantum mechanical spin state can be described by the entangled singlet state,

|Ψn〉 =
1√
2

{

|n, +〉1 ⊗ |n, −〉2 − |n, −〉1 ⊗ |n, +〉2
}

, (1)

with n as arbitrary direction and σ · n |n, ±〉 = ± |n, ±〉 describing the quantum mechanical eigenstates in which
the particles have spin up or down in the units of ~ = 2.

Our interest lies in an event-by-event reproduction of the probabilistic predictions of this entangled quantum state
in a locally causal manner [1]. For any freely chosen measurement directions a and b in space there would be nine
possible outcomes of the experiment in general, regardless of the distance between the directions. If we denote the
angle between a and b by ηab and the local measurement results 0, +1, or −1 about these directions by A and B,
then quantum mechanics is well known to predict the following joint probabilities for these results:

P+−
12 (ηab) = P{A = +1, B = −1 | ηab}=

1

2
cos2

(ηab
2

)

, (2)

P++

12 (ηab) = P{A = +1, B = +1 | ηab}=
1

2
sin2

(ηab
2

)

, (3)

P−+

12 (ηab) = P+−
12 (ηab), (4)

P−−
12 (ηab) = P++

12 (ηab), (5)

P+0

12 (ηab) = P−0

12 (ηab) = P 0+

12 (ηab) = P 0−
12 (ηab) = 0, (6)

and

P 00
12 (ηab) = 0, (7)
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where the superscript 0 indicates no detection and the subscripts 1 and 2 label the particles [4]. The probability
that the spin of the particle 1 will be detected parallel to a (regardless of whether particle 2 itself is detected) is also
predicted by quantum mechanics. It is given by

P+

1 (a) = P−
1 (a) =

1

2
, (8)

and likewise for particle 2 being detected parallel to b. In what follows our goal is to demonstrate that, at least in
the Friedmann-Robertson-Walker spacetime IR× Σ with a constant spatial curvature, the above probabilities can be
reproduced within the original local model of Bell [1].

To this end, consider a spacelike hypersurface Σ = S3 in a Friedmann-Robertson-Walker solution with κ = +1,

ds2 = dt2 − a2(t) dΣ2, dΣ2 =

[

dρ2

1− κ ρ2
+ ρ2dΩ2

]

, (9)

where Σ=S3 can be recovered by introducing χ= sin−1ρ. Now, for κ = +1, the tangent bundle of S3 happens to
be trivial: TS3 = S3 × IR3. This renders the tangent space at each point of S3 to be isomorphic to IR3. Thus local
experiences of the experimenters within S3 are no different from those of their counterparts within IR3. The global
topology of S3, however, is dramatically different from that of IR3 [5][6]. In particular, the triviality of TS3 means
that S3 is parallelizable [5]. Therefore, a global anholonomic frame can be specified on S3 that fixes each of its points
uniquely [5][6]. Such a frame renders S3 diffeomorphic to the group SU(2) — i.e., to the set of all unit quaternions:

S3 =

{

H(I · v, η)
∣

∣

∣

∣

||H(I · v, η) || = 1

}

. (10)

Here we have parameterized each quaternion H ∈ S3 as

H(I · v, η) = exp { (I · v) η } (11)

such that I · v, with a trivector I, is a bivector rotating about some vector v ∈ IR3, and η is half of the angle by which
H stands rotated about v. As in these definitions, in what follows we will be using the notation of geometric algebra
[6][7][8]. Accordingly, all vector fields in IR3 such as v and w will be assumed to satisfy the geometric product

vw = v ·w + v ∧w, (12)

with the duality relation v ∧w = I · (v ×w). In the next steps it will be useful to recall that (v ∧w)† = −(v ∧w).

Consider now two unit quaternions from the closed set S3, say Po(n ∧ eo, ηneo
) and Qo(z ∧ so, ηzso), defined as

Po = cos( ηneo
) +

n ∧ eo

||n ∧ eo||
sin( ηneo

) (13)

and

Qo = cos( ηzso) +
z ∧ so

||z ∧ so||
sin( ηzso), (14)

where n ∈ TpS
3 ∼= IR3 is an arbitrary unit vector in the tangent space TpS

3 at some point p of S3, z is a fixed reference
vector in TqS

3 at a different point q of S3, and eo and so are two other tangential vectors in TqS
3. Here the bivector

I · eo may be thought of as representing an individual spin within the pair of decaying particles in the singlet state,
and the bivector I · so may be thought of as representing the spin of the composite pair [4]. Note that, although Po

and Qo are normalized to unity, their sum Po +Qo need not be. In fact, they satisfy the following triangle inequality
for arbitrary pairs of such quaternions,

||Po + Qo|| 6 ||Po|| + ||Qo|| , (15)

reflecting the metrical structure of S3. Moreover, since S3 is closed under multiplication, we also have ||PoQo|| = 1.

These constraints lead us to the following choice for the set of initial (or complete[1]) states (Po, Qo) of our physical
system:

Λ =
{

(Po, Qo)
∣

∣

∣
||Po +Qo|| = N ( ηneo

, ηzso) ∀n
}

, (16)
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FIG. 1: The local results A (a; eo, so) and B(b; eo, so) are deterministically brought about by the common cause (eo, so).

where the value N of the norm is given by the variable

N ( ηneo
, ηzso) = 1 + sin2(ηneo

) +



−1 +
2

√

1 + 3
(ηzso

κπ

)





2

, (17)

which is necessarily a function of the angles ηneo
and ηzso . Note that we have allowed all three possible curvatures of

Σ, with κ = −1 being equivalent to ηzso → 2π − ηzso . The significance of this form of N will become clear soon.

If we now substitute expression (17) into the inequality

||Po||2 > ||Po + Qo|| − 1 , (18)

which follows from multiplying the inequality (15) with ||Po|| = 1 on both sides and simplifying, then [upon using

||Po||2 = cos2( ηneo
) + sin2( ηneo

) (19)

from Eq. (13)] the triangle inequality (15) simplifies to

| cos( ηneo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

. (20)

In what follows it is very important to recognize that this constraint is simply an expression of the intrinsic metrical
and topological structures of S3, and as such it holds for all vectors n for a given pair of initial states (eo, so); and,
conversely, for all pairs of initial states (eo, so) for a given choice of vector n. This can be easily verified by starting,
for example, with a different pair of quaternions, say with the pair P′

o(n
′ ∧ eo, ηn′eo

) and Qo(z ∧ so, ηzso), where

P′
o = cos( ηn′eo

) +
n′ ∧ eo

||n′ ∧ eo||
sin( ηn′eo

), (21)

and arriving at a similar constraint as the one in Eq. (20):

| cos( ηn′eo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

. (22)

This procedure can then be repeated for all vectors n′, and—for a given vector n—for all pairs of states (e′o, s
′
o).

If we now let eo ∈ TqS
3 and so ∈ TqS

3 be two random vectors, uniformly distributed over S2, and let ηzso be a
random scalar, uniformly distributed over [0, π], then we can simplify the set (16) of complete or initial states as

Λ=







(Po, Qo)

∣

∣

∣

∣

∣

| cos( ηneo
)| > −1 +

2
√

1 + 3
(ηzso

κπ

)

∀n







. (23)
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By the previous results this set is invariant under the rotations of n. Consequently, we identify n as a detector
direction, and define the measurement events observed by (say) Alice and Bob—along their freely chosen detector
directions n = a and n = b—by two functions of the form

± 1 = A (a; eo, so) : IR
3× Λ −→ S3 ∼= SU(2) (24)

and

± 1 = B(b; eo, so) : IR
3× Λ −→ S3 ∼= SU(2). (25)

These functions are identical to those considered by Bell [1] apart from the choice of their codomain, which is
now the compact space S3 instead of a subset of IR. That such maps indeed exist can be seen easily by noting that
Po → ±1 as ηneo

→ 0 or π. More explicitly, we construct

S3 ∋ ±1 = A (a; eo, so) = − sign{cos(ηaeo
)} for a given so (26)

and

S3 ∋ ±1 = B(b; eo, so) = + sign{cos(ηbeo
)} for the same so. (27)

Evidently, these functions define strictly local, realistic, and deterministically determined measurement events.
Apart from the common cause (eo, so), which originates in the overlap of the backward lightcones of Alice and
Bob as shown in Fig. 1, the event A = ±1 depends only on the measurement direction a chosen freely by Alice;
and analogously, apart from the common cause (eo, so), the event B = ±1 depends only on the measurement
direction b chosen freely by Bob. In particular, the function A (a; eo, so) does not depend on either b or B, and the
function B(b; eo, so) does not depend on either a or A , just as demanded by Bell’s formulation of local causality [1].

Now, to calculate the joint probabilities for observing the events A = ±1 and B = ±1 simultaneously along the
directions a and b, we follow the well known analysis carried out by Pearle for a formally similar local model [4]. Pearle
begins by representing each pair of decaying particles by a point r in a state space made out of a ball of unit radius
in IR3. His state space is thus a well known representation of the group SO(3), each point of which corresponding
to a rotation, with the direction r of length 0 6 r 6 1 from the origin representing the axis of rotation and the angle
πr representing the angle of rotation. The identity rotation corresponds to the point at the center of the ball. If we
now identify the boundaries of two such unit balls, then we recover our 3-sphere, diffeomorphic to the double covering
group of SO(3), namely SU(2). The pair of particles in this state space is represented by the quaternion Qo defined
in Eq. (14), which is rotating about the axis z×so

|| z×so||
by the angle 2ηzso , with the unit vector so sweeping a 2-sphere

within the 3-sphere [6][8].

The relationship between the rotation angle πr within Pearle’s state space SO(3) and the rotation angle 2ηzso within
our state space SU(2) ∼= S3 turns out to be simple:

cos
(π

2
r
)

=



























−1 +
2

√

1 + 3
(ηzso

κπ

)

= f(ηzso), (28)

−1 +
2

√

4− 3
(ηzso

κπ

)

= f(π − ηzso). (29)

This can be recognized by first solving Eq. (28) for
ηzso

κπ
and then differentiating the solution with respect to r, which

gives the probability density worked out by Pearle:

p(r) =
1

κπ

dηzso
dr

(r) =
4π

3

sin(π
2
r)

{

1 + cos
(

π
2
r
)}3

, 0 6 r 6 1. (30)

This function specifies the distribution of probability that a pair of particles is represented by the point r in the unit
ball. Integrating this distribution from 0 to r we may also obtain the cumulative probability distribution in the ball:

C(r) =

∫ r

0

p(u) du = −1

3
+

4

3
{

1 + cos
(

π
2
r
)}2

. (31)

This function specifies the probability of finding the pair in any state up to the state r within Pearle’s state space.
From solving Eq. (28) we see, however, that it is equal to our ratio

ηzso

κπ
, and therefore also specifies the probability of

finding the pair in any initial state up to the state so.
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For a given reference vector z, the above relations allow us to translate between our representation in terms of the
states (eo, so) in SU(2) and Pearle’s representation in terms of the states r in SO(3). We can therefore rewrite our
geometrical constraint (20) in terms of his state r as

| cos( ηaeo
)| > cos

(π

2
r
)

and | cos( ηbeo
)| > cos

(π

2
r
)

, (32)

where our vector eo is related to his vector r as eo = r/r. We are thus treating the axis eo and the angle πr of the
rotation of the spin as two independent random variables.

The equalities in the above inequalities correspond to the boundaries of the two circular caps on the spherical
surface of radius r within the SO(3) ball considered by Pearle. The intersection of the two circular caps is then

I(πr, ηab) = 4r2
∫ π

2
r

η
ab

2

dξ

√

√

√

√1−
{

cos
(

π
2
r
)

cos(ξ)

}2

if ηab 6 πr, (33)

and zero otherwise. This area is derived by Pearle in the Appendix A of his paper. It is, however, not the correct
overlap area for our model. What has been overlooked in Pearle’s derivation are the contributions to I(πr, ηab) from
the relative rotations of the state eo = r/r along the directions a and b. While the state eo can be common to both
a and b, the corresponding rotations πr cannot be the same in general about both a and b. An example of the
difference can be readily seen from the relations (28) and (29), while heeding to the double covering in SU(2):

π∆r =











































2 cos−1



−1 +
2

√

1 + 3
(

ηab

π

)



 if 0 6 ηab 6 π
2
,

(34)

2 cos−1



−1 +
2

√

4− 3
(

ηab

π

)



 if π
2
6 ηab 6 π.

Evidently, ∆r = 0 when ηab = 0 or π, and maximum when ηab=
π
2
. More generally, the effective radius of the spherical

surface to which the circular caps belong must be “phase-shifted” to r′ = r
√

h(ηab) in our SU(2) model, where

h(ηab) =
3π

8

{

sin2(ηab)

π sin2
(

1

2
ηab

)

+ ηab cos(ηab)− sin(ηab)

}

(35)

is the inverse of the function derived in Pearle’s Eq. (23). The correct overlap area is then obtained by replacing r by
r′ in the differential area dA=r2dω in Eq. (33) so that

I(πr, ηab) −→ J (πr, ηab) = h(ηab) I(πr, ηab). (36)

Using the probability density (30) and the overlap area (36), we can now calculate various joint probabilities as

P+−
12 (ηab) = P−+

12 (ηab) =

∫ 1

η
ab

π

p(r)
J (πr, ηab)

4πr2
dr

=
1

2
cos2

(ηab
2

)

(37)

and

P++

12 (ηab) = P−−
12 (ηab) =

∫ 1

1−
η
ab

π

p(r)
J (πr, π − ηab)

4πr2
dr

=
1

2
sin2

(ηab
2

)

. (38)

These calculations of the joint probabilities are analogous to those by Pearle, except for using the area J (πr, ηab).
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Although the statistical effects of the constraints (32) in our model turn out to be almost identical to those in
Pearle’s model, the characteristics of the two models are markedly different. In our model the vectors eo and so
ensure in tandem that there are no initial states for which

| cos( ηneo
)| < cos

(π

2
r
)

= −1 +
2

√

1 + 3
(ηzso

κπ

)

. (39)

Consequently, the detectors of Alice and Bob can receive the spin states eo only if the constraints (32) are satisfied.
In other words, unlike Pearle’s model, our model is not concerned about data rejection or detection loophole. In
particular, in our model the fraction g(ηab) of events in which both particles are detected is exactly equal to 1:

g(ηab) =
P+−
12 (ηab)

1

2
cos2

(

ηab

2

) =
P++

12 (ηab)
1

2
sin2

(

ηab

2

) = 1 ∀ ηab ∈ [0, π]. (40)

Clearly, a measurement event cannot occur if there does not exist a state which can bring about that event. Since the
initial state of the system is specified by the pair (eo, so) and not just by the vector eo, there are no states of the system
for which | cos( ηneo

)| < f(ηzso) for any vector n. Thus a measurement event cannot occur for | cos( ηneo
)| < f(ηzso),

no matter what n is. As a result, there is a one-to-one correspondence between the initial state (eo, so) selected from
the set (23) and the measurement events A and B specified by the Eqs. (26) and (27). This means, in particular,
that the “fraction” g(ηab) in our model is equal to 1 for all ηab, dictating the vanishing of the probabilities

P 00
12 (ηab) = 1 + g(ηab)− 2 g(0) = 0, (41)

which follows from Pearle’s Eq. (9). Moreover, from his Eq. (8) we also have P+0

12 (ηab) =
1

2
[ g(0)− g(ηab)], giving

P+0

12 (ηab) = P−0

12 (ηab) = P 0+

12 (ηab) = P 0−
12 (ηab) = 0. (42)

Together with the probabilities for individual detections,

P+

1 (a) = P−
1 (a) = P+

2 (b) = P−
2 (b) =

1

2
g(0) =

1

2
, (43)

the correlation between A and B then works out to be

E(a, b) = lim
n≫ 1

[

1

n

n
∑

i=1

A (a; eio, s
i
o) B(b; eio, s

i
o)

]

=
P++

12 + P−−
12 − P+−

12 − P−+

12

P++

12 + P−−
12 + P+−

12 + P−+

12

= − cos (ηab) . (44)

Since all of the probabilities predicted by our local model in S3 match exactly with the corresponding predictions of
quantum mechanics, the violations of not only the CHSH inequality, but also Clauser-Horne inequality follow [3][8].

We have verified the above results in several event-by-event numerical simulations [9][10], which provide further
insights into the strength of the correlation for different values of κ. As we discussed above, the rotation angle ηzso
and the cumulative distribution function C(r) are related by κ as

ηzso
π

= κC(r), (45)

where |κ| 6 ∞ can be interpreted as a strength constant. It is easy to verify in the simulations [9][10] that EPR-Bohm
correlation results for κ = +1, whereas linear correlation results for κ = 0. The unphysical, or PR box correlation
can also be generated in the simulation by letting κ > +1. On the other hand, setting κ = −1 [which is equivalent to
letting ηzso → 2π − ηzso in Eq. (20)] leads back to the linear correlation [9][10]. The crucial observation here is that
the strong, or quantum correlations are manifested only for κ = +1. Consequently, they can be best understood as
resulting from the geometrical and topological structures of the quaternionic S3, as defined, for example, in Eq. (10).

This conclusion can be further substantiated by first reflecting on a non-quaternionic or vector representation of the
3-sphere to model rotations, and then returning back to the quaternionic representation to appreciate the difference.
It is well known that tensors such as ordinary vectors are not capable of modelling rotations in the physical space,
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1 2

a

a′

b

b′

Source

π
0 −→ γ + e

− + e
+

Total spin = 0

FIG. 2: A spin-less neutral pion decays into an electron-positron pair. Measurements of spin components on each separated
fermion are performed at remote stations 1 and 2, providing binary outcomes (respectively) along arbitrary directions a and b.

let alone modelling spinors in a singularity-free manner [6][8]. However, in the present context we are not interested
in modelling all possible rotations and their all possible compositions in the physical space. We are only interested
in establishing the correct correlation between some very special limiting points of the 3-sphere, namely between
its scalar points such as A (a, λ) = ±1 and B(b, λ) = ±1 , with λ being the “hidden variable” in the sense of Bell
[1][6][8]. It turns out that in that case we can indeed model rotations (or more precisely, their spin values) by means
of ordinary vectors and their inner products, but not with a single Riemannian metric [10]. A one-parameter family of
effective metrics is required to model the relative spin values correctly. Given two vectors u and v, their inner product
g(u, v, η) is defined by the constraint | cos(u, v) | > f(η) ∈ [0, 1], with the two extreme cases, namely | cos(u, v) | > 0
and | cos(u, v) | > 1, quantifying the weakest and the strongest topologies, respectively. Here the weakest topology
dictated by | cos(u, v) | > 0 is the topology of IR3, where relatively few vectors u and v are orthogonal to each other.
The strongest topology dictated by | cos(u, v)| > 1, on the other hand, is more interesting, since in that case nearly
all of the vectors u and v are orthogonal to each other. All intermediate topologies are dictated by the effective metric

g(u, v, η) =

{

u · v if |u · v| > f(η)

0 if |u · v| < f(η),
(46)

where (47)

f(η) := −1 +
2

√

1 + 3
(

η
π

)

with η ∈ [0, π] , and u · v := cos(u, v). (48)

Evidently, the orthogonality of the vectors u and v is defined here by the condition g(u, v, η) = 0, depending on the
parameter η ∈ [0, π]. It is this one-parameter family of metrics that has been implemented in the simulations [9][10].
The slight change in the notation of the distribution function from that in Eq. (20) is only for the coding convenience.

Returning to the singularity-free representation of S3 specified in Eqs. (10) to (14), it is worth recalling that angular
momenta are best described, not by ordinary polar vectors, but by pseudo-vectors, or bivectors, that change sign upon
reflection [6]. One only has to compare a spinning object, like a barber’s pole, with its image in a mirror to appreciate
this elementary fact. The mirror image of a polar vector representing the spinning object is not the polar vector that
represents the mirror image of the spinning object. In fact it is the negative of the polar vector that does the job.
Therefore the spin angular momenta considered previously are better represented by a set of unit bivectors using the
powerful language of geometric algebra [7]. They can be expressed in terms of graded bivector bases with sub-algebra

Lµ(λ)Lν(λ) = − δµν −
∑

ρ

ǫµνρ Lρ(λ) , (49)

which span a tangent space at each point of S3, with a choice of orientation λ = ± 1 [6]. Contracting this equation on
both sides with the components aµ and bν of arbitrary unit vectors a and b then gives the convenient bivector identity

L(a, λ)L(b, λ) = − a · b − L(a × b, λ) , (50)
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which is simply a geometric product between the unit bivectors representing the spin momenta considered previously:

L(a, λ) = λ I a = λ I · a ≡ λ(ex ∧ ey ∧ ez) · a = ±1 spin about the direction a (51)

and L(b, λ) = λ I b = λ I · b ≡ λ(ex ∧ ey ∧ ez) · b = ±1 spin about the direction b , (52)

where the trivector I := ex ∧ ey ∧ ez with I2 = −1 represents the volume form on S3 and ensures that L2(n, λ) = −1.

We are now in a position to derive the singlet correlation once again in a succinct and elegant manner. To this end,
let the spin bivectors ∓L(s, λk) emerging from a source be detected by the detector bivectors D(a) and D(b), giving

S3 ∋ A (a, λk) := lim
s1 →a

{

−D(a)L(s1, λ
k)
}

=

{

+1 if λk = +1

− 1 if λk = − 1

}

with
〈

A (a, λk)
〉

= 0 (53)

and S3 ∋ B(b, λk) := lim
s2 →b

{

+L(s2, λ
k)D(b)

}

=

{

− 1 if λk = +1

+1 if λk = − 1

}

with
〈

B(b, λk)
〉

= 0 , (54)

where we assume the orientation λ of S3 to be a random variable with 50/50 chance of being +1 or − 1 at the moment
of the pair-creation, making the spinning bivector L(n, λk) a random variable relative to the detector bivector D(n):

L(n, λk) = λk D(n) ⇐⇒ D(n) = λk L(n, λk) . (55)

Moreover, as demanded by the conservation of angular momentum, we require the total spin to respect the condition

− L(s1, λ
k) + L(s2, λ

k) = 0 ⇐⇒ s1 = s2 ≡ s [cf. Fig. 2]. (56)

The expectation value of simultaneous outcomes A (a, λk) = ±1 and B(b, λk) = ±1 in S3 then works out as follows:

E(a, b) = lim
n→∞

[

1

n

n
∑

k=1

A (a, λk) B(b, λk)

]

(57)

= lim
n→∞

[

1

n

n
∑

k=1

[

lim
s→a

{

−D(a)L(s, λk)
}

] [

lim
s→b

{

+L(s, λk)D(b)
}

]

]

(58)

= lim
n→∞

[

1

n

n
∑

k=1

lim
s→a
s→b

{

−D(a)L(s, λk) L(s, λk)D(b) ≡ q(a, b; s, λk)
}

]

(59)

= lim
n→∞

[

1

n

n
∑

k=1

lim
s→a
s→b

{

−λk L(a, λk) L(s, λk)L(s, λk) λk L(b, λk)
}

]

(60)

= lim
n→∞

[

1

n

n
∑

k=1

lim
s→a
s→b

{

−L(a, λk) L(s, λk)L(s, λk) L(b, λk)
}

]

(61)

= lim
n→∞

[

1

n

n
∑

k=1

L(a, λk)L(b, λk)

]

(62)

= − a · b − lim
n→∞

[

1

n

n
∑

k=1

L(a × b, λk)

]

(63)

= − a · b − lim
n→∞

[

1

n

n
∑

k=1

λk

]

D(a × b) (64)

= − a · b + 0 . (65)

Here the integrand of (59) is necessarily a unit quaternion q(a, b; s, λk) since S3 remains closed under multiplication;
Eq. (58) follows from Eq. (57) by direct substitution of the functions A (a, λk) and B(b, λk) from the definitions (53)
and (54) together with the conservation condition (56); Eq. (59) follows from Eq. (58) as a special case of the identity

[

lim
s1 →a′

{

−D(a)L(s1, λ
k)
}

] [

lim
s2 →b′

{

+L(s2, λ
k)D(b)

}

]

= lim
s1 →a

′

s2 →b
′

{

− D(a)L(s1, λ
k)L(s2, λ

k)D(b)

}

, (66)
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which can be verified either by immediate inspection or by recalling the elementary properties of limits; Eq. (60) follows
from Eq. (59) by using Eq. (55), and thereby setting all bivectors in the spin bases; Eq. (61) follows from Eq. (60) by
recalling that scalars such as λk commute with bivectors and using λ2 = +1; Eq. (62) follows from Eq. (61) by using the
conservation of spin angular momentum (56) and the fact that all unit bivectors such as L(s, λk) square to −1; Eq. (63)
follows from Eq. (62) by using the geometric product or identity (50) and from recognizing the fact that there is no third
spin about the direction a× b once the two spins are already detected along the directions a and b; Eq. (64) follows
from Eq. (63) by using Eq. (55) and summing over the counterfactual detections of the “third” spins; and finally Eq. (65)
follows from Eq. (64) because the scalar coefficient of the bivector D(a × b) vanishes in the n → ∞ limit. Note that
apart from the assumption (55) of initial state λ the only other fact needed in this derivation is the conservation of
zero spin angular momenta (56). These two ingredients are necessary and sufficient to dictate the singlet correlations:

E(a, b) = lim
n→∞

[

1

n

n
∑

k=1

A (a, λk) B(b, λk)

]

= − a · b . (67)

This demonstrates that EPR-Bohm correlations are correlations among the scalar points of a quaternionic 3-sphere.
Given this result, it is not difficult to derive the corresponding upper bound on the expectation values within S3 [6][8]:

| E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) | 6 2
√
2 . (68)

We have verified both of the above results in several numerical simulations [10][11][12]. The simulations are instructive
on their own right and can be used for testing the effects of topology changes when the parameter η ∈ [0, π] is varied.

In this paper we have shown that it is possible to reproduce the statistical predictions of quantum mechanics in a
locally causal manner, at least for the simplest entangled state such as the EPR-Bohm state. In particular, we have
shown that such a locally causal description of the singlet state in the sense of Bell is possible at least within the
spherical topology of a well known Friedmann-Robertson-Walker spacetime, viewed as a non-cosmological, terrestrial
solution of Einstein’s field equations. More specifically, we have presented a local, deterministic, and realistic model
within such a Friedmann-Robertson-Walker spacetime which describes simultaneous measurements of the spins of two
fermions emerging in a singlet state from the decay of a spinless boson. We have then shown that the predictions of this
locally causal model agree exactly with those of quantum theory, without needing data rejection, remote contextuality,
superdeterminism, or backward causation. A Clifford-algebraic representation of the 3-sphere with vanishing spatial
curvature and non-vanishing torsion then allows us to transform our model in an elegant form. Several event-by-event
numerical simulations of the model have confirmed our analytical results with accuracy of at least 4 parts in 104 parts.
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