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Abstract

Subjective Bayesianism is a major school of uncertain reasoning and statistical
inference. Yet, it is often criticized for an apparent lack of objectivity. By and
large, these criticisms come in three different forms. First, the lack of constraints
on prior probabilities, second, the entanglement of statistical evidence and degree
of belief, third, the apparent blindness to bias in experimental design. This paper
responds to the above criticisms and argues in addition that frequentist statistics is
no more objective than Bayesian statistics. In particular, the various arguments are
related to different senses of scientific objectivity that philosophers have worked
out in recent years.

1 Introduction

Subjective Bayesianism is a major school of uncertain reasoning and statistical infer-

ence that is steadfastly gaining popularity. It is based on the subjective interpretation

of probability and describes how prior degree of belief in a scientific hypothesis is

updated to posterior degree of belief. Since degrees of belief obey the axioms of

probability, there is a straightforward connection between the mathematical theory of

probability and the epistemological question of which hypothesis is confirmed by the

evidence.

Yet, subjective Bayesian inference is often criticized for foundational reasons. More

often than not, these criticisms take issue with the apparent lack of objectivity: “a notion

of probability as personalistic degree of belief [...], by its very nature, is not focused
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on the extraction and presentation of evidence of a public and objective kind” (Cox

and Mayo, 2010, 298). This view is echoed in writings of well-known statisticians and

philosophers of science such as Fisher (1956), Mayo (1996), Popper (2002) and Senn

(2001, 2011).

Objectivity, however, is essential for a method of statistical inference, for it conveys

an image of epistemic authority and strenghtens our trust in science. The 2009 “Cli-

mategate” affair and the recent “replication crisis” in psychology (i.e., the widespread

failure to replicate experimental results due to various forms of bias, see Makel et al.,

2012), illustrate how an apparent lack of objectivity weakens trust in scientific findings.

The objectivity-related criticisms of Bayesian inference come, by and large, in three

different forms. First, the lack of constraints on prior probabilities, second, the entan-

glement of statistical evidence and degree of belief, third, the apparent blindness to

bias in experimental design. In the light of these objections, one is tempted to con-

clude that Bayesian inference cannot produce objective knowledge, is not suitable for

scientific communication and is therefore inferior to frequentist inference.

This paper responds to the above criticisms and debunks the view that subjec-

tive Bayesian inference cannot provide objective evidence (Section 2–4). I also argue

that frequentist statistics is no more objective than Bayesian statistics. In particular,

it augments the problem of publication bias in science (Section 5). The final section

concludes and embeds our discussion into a broader debate about different senses of

scientific objectivity (Section 6). Not all of the anti-Bayesian arguments do not refer

to one and the same conception of scientific objectivity (see Douglas, 2004; Reiss and

Sprenger, 2014, for a survey). Similarly, the defense of Bayesian inference concedes

that Bayesian inference is—like any method of inference—not fully objective in every

possible sense (e.g., intersubjective agreement), but it stresses that Bayesian inference

promotes various important senses of objectivity.

The paper does not claim originality for all rebuttals and counterarguments. Partly,

they are anticipated in the extant scientific literature. However, this paper takes a

more foundational perspective than most publications in the scientific or statistical

literature, and it relates technical and methodological arguments to the different senses

of scientific objectivity worked out by philosophers. It systematizes the debate about

the objectivity of Bayesian reasoning and shows how philosophical insights can be

used in scientific practice.
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2 Objection 1: The Choice of the Prior Distribution

Bayesian inference is based on prior probability distributions. Assume that you are

interested in assessing a hypothesis H0 ∈ H. You represent your prior belief in H0

by means of a probability distribution over the entire space of hypotheses H. Assume

further that your data D follow a definite probability distribution p(D|H) under all

possible hypotheses in H. Then, your posterior degree of belief in the null hypothesis

H0 can be calculated by the formula

p(H0|D) =
p(H0)p(D|H0)

p(D)
(1)

where p(D) is the marginal probability of data D. On the basis of the posterior prob-

ability p(H0|D), a Bayesian can then form a theoretical judgment about H0 or make a

practical decision. For example, if H0 is the hypothesis that a new medical drug is not

more efficacious than a placebo, and if H0 is sufficiently probable given the data, then

we will not pursue further development of the drug.

Subjective Bayesians such as Ramsey (1926) and de Finetti (1972) have stressed that

in principle, any coherent prior probability distribution can be defended as rational.

However, this attitude seems to jeopardize any claims to objectivity that subjective

Bayesians could possibly make. Often, there is not sufficient background knowledge

to establish consensus on prior probabilities. But if the choice of the prior is uncon-

strained, it is not clear what kind of epistemic warrant a Bayesian inference provides.

After all, the choice of the prior can hide all kind of pernicious values, e.g., financial

interests of the experiment sponsor. This is particularly worrying in sensitive subjects

such as medicine, where the need for impartial inference methods is particularly high,

due to the manifest financial interests in clinical trials and the ethical consequences of

wrong decisions. As the medical methodologist Lemuel Moyé writes:

Without specific safeguards, use of Bayesian procedures will set the stage

for the entry of non-fact-based information that, unable to make it through

the “evidence-based” front door, will sneak in through the back door of

“prior distributions”. There, it will wield its influence, perhaps wreaking

havoc on the research’s interpretation. (Moyé, 2008, 476)

The objection claims that Bayesians can bias the final result in their preferred direction

by choosing an appropriate prior. This objection is thus based on the value-free ideal
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that the core business of scientific reasoning, namely evaluating evidence, assessing

and accepting theories, should be free of non-cognitive values and individual biases—

a requirement that Bayesian inference seems to violate blatantly. Adherence to the

value-free ideal has, however, in one form or another, been upheld as a trademark of

scientific objectivity (e.g., Lacey, 1999; Reiss and Sprenger, 2014), and for practitioners,

it plays an even greater role due to regulatory constraints and conflicts of interests.

Even if one recognizes the philosophical problems with the value-free ideal, values

should still not be allowed to replace scientific evidence (Douglas, 2008, 2009). How

can Bayesian inference be safeguarded against this danger?

It is tempting to argue that various “objective Bayesian” techniques provide re-

lief for the Bayesian. After all, these approaches build on a highly developed math-

ematical theory in order to uniquely determine prior probabilities where theoreti-

cal background knowledge and empirical track record provide none (Bernardo, 1979;

Williamson, 2010). However, this escape route presupposes a waterproof philosophi-

cal justifcation of the objective Bayesian approaches, which is firstly difficult to achieve

and secondly beside the scope of this paper (=a defense of subjective Bayesian reason-

ing). The point of this paper is rather to explain why subjective Bayesian inference can

make claims to objectivity.

So a different defense is required. In fact, I will provide three of them.

The first defense notes that subjective opinion need not be the same as individual

bias. Two medical doctors may, on the basis of their experience, give a different judg-

ment about what might be a good therapy for a patient with a given set of symptoms.

The fact that they disagree does not mean that one of them or both are biased in a

certain way: they may just have enjoyed a different training, come from different dis-

ciplinary perspectives or have different experience in dealing with those symptoms.

Prior probability distributions provide a way to make explicit a judgment that is fed

by individual expertise and track record.

The second defense notes that also prior probabilities are open to rational criti-

cism. Whenever a prior distribution is used, be its shape conventional or peculiar, the

researcher should justify her particular choice and explain which considerations (the-

oretical and empirical ones) led her to this choice. This is also explicit in regulations

for medical trials, such as the guidelines for the use of Bayesian statistics, issued by

the Food and Drug Administration of the United States:

We recommend you be prepared to clinically and statistically justify your
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choices of prior information. In addition, we recommend that you per-

form sensitivity analysis to check the robustness of your models to different

choices of prior distributions. (US Food and Drug Administration, 2010)

The above quote hints to a second requirement in Bayesian reasoning: to perform a

sensitivity analysis on the choice of the prior and to check whether the main result of

the research remains intact under different prior assumptions. Such an analysis also

contributes to scientific objectivity in terms of “convergent objectivity” (Douglas, 2004,

2009, 2011), according to which a scientific result can claim to be objective when it is

validated from different assumptions and perspectives.

The bottom line of this defense is that the choice of the prior is just like any other

modeling assumption in science open to criticism. Frequentist statisticians are no

better off in this respect: they have to decide on the sample size, whether to per-

form a one-sided or a two-sided test, whether to use a uniform or a mixed effects

model, whether to run a parametric or a non-parametric test, and so on. All these

assumptions reveal to a certain extent prior expectations about the likely values of the

unknown parameter—e.g., a small sample size makes sense if we are interested in de-

tecting large effects, but not if we are interested in small effects. In fact, being explicit

about the prior assumptions in the Bayesian framework makes it easier to criticize a

particular choice, contributing to scientific objectivity in the sense of a process that is

transparently conducted and open to rational criticism (Longino, 1990).

The third defense observes that the role of priors in Bayesian inference differs

from the cliché picture that “any posterior can be justified by a suitable choice of

the prior”. This would indeed be true if posterior probabilities were the Bayesians’

preferred measure of evidence. However, while posterior probabilities are indeed

apt for individual decision-making, Bayesians typically use Bayes factors (Kass and

Raftery, 1995) for the quantification and communication of scientific evidence. For

examples from cognitive science, see Lee and Wagenmakers (2013) and Wetzels and

Wagenmakers (2012). They are defined as the ratio of posterior odds and prior odds,

are the standard choice for expressing the support for H0 over the alternative H1.

Equivalently, the Bayes factor can be expressed as the integrated likelihood of H0 over

H1 with data x.

B01(x) :=
p(H0|x)
p(H1|x)

· p(H1)

p(H0)
=

∫
θ∈Θ0

p(x|θ)p(θ)dθ∫
θ∈Θ1

p(x|θ)p(θ)dθ
(2)
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In the second formulation, we see that the Bayes factor expresses the ratio of the proba-

bilities of the data under H0 and H1, that is, the likelihoods. When these are composite

hypotheses, the Bayes factor is still affected by the prior probability distriution, but in

a more indirect way than the criticism claims: only the relative weight of the constituents
of H0 and H1 affects the weight of evidence. That is, we cannot manipulate the Bayes

factor in favor of the null hypothesis by assigning it sufficiently high prior probabili-

tity vis-à-vis the alternatives. Thus, the Bayesian cannot easily replace evidence with

values.

In a nutshell, screwing up a Bayesian analysis with a biased prior is as easy or

difficult as screwing up a non-Bayesian analysis with biased modeling assumptions.

We now move to the next objection: that Bayesians mix up belief and evidence.

3 Objection 2: Belief vs. Evidence

The second objection contends that scientific reasoning, and statistical analysis in par-

ticular, is not about assessing the subjective probability of hypotheses, but about find-

ing out whether a certain effect is real or due to chance. The task of science is to state

the objective evidence for the truth of the hypothesis. In this view, the Bayesian statisti-

cian commits a category mistake: she tries to answer a question that scientists are not

(and should not be) interested in. Statistical reasoning is about the truth of hypotheses

and the evidence for them, not about subjective plausibility judgments. Ronald A.

Fisher, one of the fathers of modern statistics, forcefully articulated this view:

Advocates of inverse probabilities [ascribing probabilities to scientific hy-

potheses given some data, J.S.] are forced to regard mathematical probabil-

ity, not as an objective quantity measured by observable frequencies, but

as measuring merely psychological tendencies, theorems respecting which

are useless for scientific purposes (Fisher, 1935, 6–7)

Royall (1997, 4) makes a similar distinction between three major questions in statis-

tical analysis: “What should we believe?”, “What should we do?” and “What is the

evidence?”. A good answer to one of them need not be a good answer to another

question. In subjective Bayesian inference, belief and evidence seem to be entangled,

however.

Underlying this objection is the idea of “concordant objectivity” Douglas (2009,

126–127) that assessments of evidence have to be intersubjectively agreed. As Quine
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(1992, 5) stated it: “The requirement of intersubjectivity is what makes science objec-

tive.” However, the “psychological tendencies” that correspond to personal degrees of

belief do not fulfil this requirement. How can scientists uphold an image of objectivity

and intersubjective agreement if their (Bayesian) data analysis yield different strengths

of statistical evidence?

Many philosophers and scientists share the view that subjective Bayesian inference

falls short of this goal. Williamson (2007) notes that “full objectivity—i.e. a single

probability function that fits available evidence” cannot be achieved in the subjective

Bayesian framework. Bem et al. (2011) quote an anonymous referee of their paper as

saying

I have great sympathy for the Bayesian position [. . . ] The problem in im-

plementing Bayesian statistics for scientific publications, however, is that

such analyses are inherently subjective, by definition [. . . ] with no objec-

tively right answer as to what priors are appropriate. I do not see that as

useful scientifically.

In other words, even if the priors are not contaminated by extra-scientific values (see

Section 2), they still mirror individual perspectives. The divergence between these

perspectives prevents us to reach intersubjective agreement on the observed evidence

and makes the interpretation and communication of evidence a very delicate matter.

Our strategy in dealing with this objection is twofold: First, we will show how

Bayesian measures of evidence justify objective claims. Second, it will be argued that

frequentist inference is no guarantee for intersubjective agreement on the evidence. By

contrast, the same data can look very differently if two different frequentists analyze

them.

Let us first look at the standard Bayesian measure of evidence, the Bayes factor. As

already mentioned, the Bayes factor in favor of H0 over H1 with data x is defined as

follows:

B01(x) :=

∫
θ∈H0

p(x|θ)p(θ)dθ∫
θ∈H1

p(x|θ)p(θ)dθ
(3)

It has already been said that the Bayes factor only depends on the relative prior weight

of the components of H0 and H1, but not on the prior probability of H0 and H1 as a

whole. It is important to realize that this dependency is benign and not pernicious.

Imagine the frequent case that we are testing the null hypothesis that a certain inter-
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vention, e.g., taking vitamin C tablets as a cure for the common flu, has no effect at all:

H0 : θ = 0 and H1 : θ 6= 0, where θ is the variable denoting the effect size. Of course,

it is implausible that the effect of the vitamin C intervention is exactly zero: the tables

will cause a biochemical reaction in the human body even if it is negligibly small. The

test aims at finding out whether we can use the null hypothesis as a simple, precise,

but strictly speaking wrong idealization of a complex reality. However, in order to

assess whether a finding is evidence for or against H0, we need to know which effect

sizes are plausible at all. Only if this is clarified, we can state meaningfully that the

observed results speak in favor of or against the null hypothesis.

This argument echoes the old insight that the term “evidence in favor of a hypothe-

sis” does not make sense unless relativized to an alternative (Hacking, 1965; Spielman,

1974; Royall, 1997). The alternative H1 : θ 6= 0 is underspecified unless we make judg-

ments of relative plausibility over the individual components of the hypothesis. In

particular, the likelihood of H1, p(E|H1), cannot be calculated otherwise. In the ab-

sence of clear theoretical guidance or a track record of past data, the Bayesian will plug

in the subjective judgment of a knowledgeable scientist. It is hard to imagine what else

he or she should do. Asking for fully intersubjective evidence in such a case demands

a stronger conclusion than our epistemic situation warrants. Plausibility judgments

are thus no danger to scientific objectivity, but required for a meaningful statistical

analysis.

We now turn to the negative part of our response—arguing that frequentists suffer

from problems which are greater than those of Bayesians.

The most widespread method of frequentist statistics is to test null hypotheses and

assess the evidence with the help of p-values or observed significance levels. Given a

statistic z(X) that measures the disagreement of data X with the hypothesized param-

eter value, the p-value is equal to the probability (under the null) that z takes an even

more extreme value than the one it has actually taken:

p := pH0(z|X| > z(x)) (4)

where X denotes a random variable standing for the observed data and x the actually

observed data. For example, if p = 0.02, this means that if the null hypothesis is true,

a result that diverges even more from the null hypothesis than the actual result would

only be expected in 2% of all cases.
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What does such a p-value or “observed level of significance” mean from an inferen-

tial perspective? According to the classical frequentist school, the smaller the p-value,

the stronger the evidence against the null hypothesis, and the less are we justified to

believe that it is true:

[. . . the feeling induced by a test of significance has an objective basis in

that the probability statement on which it is based is a fact communicable

to and verifiable by other rational minds. The level of significance in such

cases fulfills the conditions of a measure of the rational grounds for the

disbelief [in the null hypothesis] it engenders. (Fisher, 1956, 43)

One question to ask is whether p-values have indeed any connection to rational (dis)belief

in the null hypothesis (see also Berger and Sellke, 1987). It is well-known that p-values

alone do not suffice to infer to the improbability of the null hypothesis; some assump-

tion on the prior plausibility of the null hypothesis has to be made. This “base rate

fallacy” continues to haunt statistical practictioners, as observed in the surveys by

Oakes (1986) and Fidler (2007). But my point is a different one. It claims that p-values

are not suitable as measures of evidence even independent of their abuse in practice.

First, in a very large study, almost any effect size, even a negligibly small one,

will be sufficient to trigger a “significant finding” and a very low p-value. Whereas

p-values are indicative of larger—and scientifically more significant—effect sizes in

smaller trials (e.g. Lindley, 1957; Sprenger, 2013; Robert, 2014). That is, p-values are a

highly contextual measure of evidence whereas Bayes factors always denote the ratio

by which a result is more expected under H0 than under H1. That is, Bayes factors

measure the discriminatory power of the evidence. They are therefore much easier to

interpret across different contexts and in this sense also more objective.

Second, even when the observed results are very unexpected under the null, they

do not tell strongly against the null unless those results are more likely under some

alternative hypothesis. For each experimental result, however unlikely it is, we can

construct an alternative hypothesis that explains it well. And when, like in many cases

of real hypothesis testing, there is always an alternative hypothesis which explains the

data better than the null hypothesis (e.g., because the alternative comprises a large

spectrum of parameter values), judgments of plausibility are required to determine

whether a given low p-value really justifies rejection of the null. For example, reject-

ing the null hypothesis that a soothsayer has no extrasensory capacities—and inferring

to the existence of such capacities—requires an extremely low p-value since we do not
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have any scientifically plausible theory of extrasensory powers. On the other hand, the

fairly implausible null hypothesis that exercise and body weight are uncorrelated may

be appropriately rejected at the standard 5% level (p < 0.05). What I am arguing here

is the following: requiring different observed significance levels in different contexts is

nothing but a hidden judgment of plausibility which the frequentist makes as well as

the Bayesian. Frequentists possess a higher degree of “procedural objectivity” (Dou-

glas, 2009, 125–126) than Bayesians because their inference is more standardized, but

the appearance of impartiality actually works backwards: valuable factors for statis-

tical inference cannot be accommodated into their standardized procedures. As Fine

(1998, 14) put it: “Bias and the impersonal are quite happy companions.”

Third, frequentists may draw very different consequences from the same data.

For example, when we conduct a simple experiment to learn about a parameter in a

Bernoulli (“success of failure”) trial such as the toss of a coin, we can either choose a

Binomial design (fixed sample size) or a Negative Binomial design (fixed number of

failures). For the same data set (e.g., nine successes and three failures), the calculated

p-values for the null hypothesis H0 : θ = 0.5 against the one-sided alternative H1 :

θ > 0.5 will be different. The p-value in the Binomial design (N=12) will be above the

conventional significance cutoff p = 0.05, whereas the Negative Binomial design will

interpret the same data as significant evidence against the null hypothesis. When both

trials terminate at the same moment, with the same data set and still reach different

conclusions, the intentions in the head of the experimenter—what they would have done

if different data had been observed—influence the strength of the evidence (Edwards

et al., 1963).

The dependency on these counterfactual intentions undermines the advantage in

concordant objectivity and freedom of idiosyncratic bias that the frequentist claims to

have over the Bayesian. Imagine two scientists arguing about the proper evidential

interpretation of an experiment and then discovering that they only disagree because

they had two different sampling protocols in mind! Frequentist inference does not

provide an objective “view from nowhere in particular” (Nagel, 1986) any more than

Bayesian inference does. The problem of retrieving the “correct” experimental design

for calculating p-values is especially salient in more complex examples, such as scan-

ning for correlations in a large set of variables, where exploratory data analysis is hard

to separate from quantifying evidence and proper statistical inference.

Taken together, we see that the claim that p-values provide a more objective, in-

tersubjectively compelling measure of evidence than Bayes factors is not tenable. It
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is an illusion to neatly separate statistical evidence from judgments of plausibility. In

fact, the Bayesian offers a more coherent, transparent and stringent picture than her

frequentist counterpart. We now move to the next objection which maintains that

Bayesian inference is blind to bias in experimental design.

4 Objection 3: Experimental Design and Error Control

The third objection can best be motivated with an example from medicine. Random-

ized Controlled Trials (RCTs) are currently the gold standard within evidence-based

medicine (see Worrall, 2008, for a critical discussion). They are usually conducted as

sequential trials allowing for monitoring for early signs of effectiveness or harm. In

sequential trials, data are typically monitored as they accumulate. That is, we have in-

terim looks at the data and we may decide to stop the trial before the planned sample

size is reached. By terminating a trial when overwhelming evidence for the effective-

ness or harmfulness of a new drug is available, the prohibitive costs of a medical trial

can be limited and in-trial patients are protected against receiving inferior treatments.

However, such truncated trials are often seen as problematic. In a review of 134

trials stopped early for benefit, Montori et al. (2005) point to an inverse correlation

between sample size and treatment effect: the smaller the sample size achieved by the

trial at the moment of stopping, the larger the estimate it provided for the effect. These

findings are supported by a more recent study by Bassler et al. (2010) where truncated

trials report significantly higher effects than trials that were not stopped early. While

the authors of these studies do not object to monitoring and truncating trials in general,

they advocate that results (e.g., effect size estimates) from such trials be treated with

caution. Truncating a trial seems to introduce a bias toward overestimating effect sizes.

A good measure of statistical evidence should take this into account.

Bayesian measures of evidence such as the Bayes factor do not depend on sampling

protocol or experimental design. By decoupling statistical inference method from the

sampling protocol and the experimental design, the Bayesian is unable to discover

that an experiment was conducted in a biased way. Indeed, critics of Bayesian infer-

ence such as Deborah Mayo (1996) complain that ignoring the sampling protocol (e.g.,

treating a truncated trial like a fixed sample trial) “can lead to a high probability of

error, and [...] this high error probability is not reflected in the interpretation of data”

(Mayo and Kruse, 2001) on the Bayesian and related accounts. In the context of medi-

cal research, the Bayesian seems to provide carte blanche for implementing any design
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that favors the interests of the sponsor (e.g., a pharmaceutical company) rather than

finding out the true efficacy of the drug.

The first thing to note is that higher effect sizes in truncated trials are not surpris-

ing, but predictable (Goodman et al., 2010): highly efficacious treatments will naturally

be more prone to early termination for benefit. That is, when the actual effect is large,

we will more probably observe a large effect in the population and decide to terminate

the trial. Hence, the observed difference in estimated effect size is precisely what we

should expect. Comparing truncated to completed trials amounts, as highlighted by

Berry et al. (2010), to selecting the trials to be compared on the basis of their outcome.

In this context, prior knowledge or empirically-based prior expectations are highly

relevant for sound decision-making. Imagine that we are interested in the relative

risk reduction which a medical drug provides. A Bayesian represents her uncertainty

by means of a prior probability distribution over that quantity. By means of Bayes’

Theorem, this distribution is updated to a posterior probability distribution that syn-

thesizes the observed evidence with the background knowledge. Then, the Bayesian

framework naturally accounts for the intuition that truncated trials should be treated

with caution: for the same observed effect size, small sample sizes change the prior

distribution less than large sample sizes. The posterior distribution visualizes these

differences in an intuitive way that can be directly used for decision-making (Good-

man, 2007; Nardini and Sprenger, 2013).

In other words, the worry about Bayesian inference as unable to detect bias pre-

supposes a frequentist understanding of the evidence. By amalgamating prior expec-

tations with observed evidence for the purpose of decision-making, Bayesians auto-

matically correct for the smaller sample size that truncated trials possess.

Second, that Bayes factors do not depend on the sampling protocol does not mean

that Bayesians should just ignore all matters of experimental design. Procedural objec-

tivity in the form of following certain regulatory constraints and standard procedures

can be helpful to eliminate certain forms of institutional bias. In fact, guidelines for

the use of Bayesian statistics (such as the ones issued by the Food and Drug Ad-

ministration) stress that Bayesians should be as conscious and diligent in matters of

experimental design as frequentists. For instance, also from a Bayesian perspective, a

test with high type I and type II errors is evidently a bad test. The point of disagree-

ment is different: while the frequentist bases her post-experimental evaluation of the

evidence on the pre-experimental design and the properties of the entire experiment,

the Bayesian considers these properties as essential for obtaining valid data, but as
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orthogonal to the question of how to interpret them once they are in.

This concludes our discussion of the standard arguments against the lack of ob-

jectivity in Bayesian inference. We will now turn the tables and show that the use of

frequentist inference is one of the probable causes of publication bias that many fields

of science, especially psychology, suffer from.

5 Counterargument: Frequentism and Publication Bias

In recent years, the topic of publication bias in science has been in the limelight (e.g.

Ioannidis, 2005; Ioannidis and Trikalinos, 2007; Francis, 2014; Francis et al., 2014). Au-

thors mainly explore the effects of the so-called file drawer effect (Rosenthal, 1979) on

science: the fact that results which fail to support an interesting hypotheses are rarely,

if ever published. In the context of frequentist significance testing, this means that

experimental data which fail to be significant at the conventional 5% level often don’t

make it past the peer review process—either because the referees fail to see an inter-

esting result in non-significant data or because of self-censoring: authors don’t submit

such studies in the first place.

In his influential 2005 paper, “Why most published research findings are false”,

John Ioannidis sets up a simple mathematical model of how the failure to take into

account non-significant findings biases our scientific knowledge. Let R be the ratio

of the number of true causal relationships (corresponding to a false null hypothesis)

to false causal relationships (=the null effect) in a scientific discipline. Assume that a

causal relationship is tested with type I error rate α (that is, the probability of falsely

rejecting the null and inferring that there is a genuine effect) and power 1− β (that is,

the probability of inferring the alternative when it is true is 1− β). In that case, the

probability that a significant finding is true is

p = R
1− β

R (1− β) + α
(5)

which implies that a significant finding is more probably true than false if and only if

(1− β)R > α. Taking the conventional α = 0.05 significance threshold and the already

quite optimistic power of 80%, we see in Figure 1 that for a sufficiently small ratio of

true to false causal hypotheses (that is, those with a negligible effect size), there may

be more false than true published research findings.

Hence, what gets published under the heading of scientific findings or scientific
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Figure 1: An illustration of publication bias through the file drawer effect in a concrete
example.

knowledge is very different from the set of true hypotheses. By contrast, published

findings may sketch a very biased picture, where a substantial part of published find-

ings is not indicative of a real effect. As a consequence, many published findings are

not replicable. This effect is the more pronounced the more significant or impressive

an effect has been in the original publication (e.g., Makel et al., 2012). When several

research teams independently test one and the same null hypothesis, publication bias

can be especially painful since only the significant results will be published while the

other ones end up in the file drawer. Even if the null hypothesis is literally true and

most teams draw this conclusion, the published studies will indicate the presence of an

effect and severely bias the available evidence.

Of course, non-significant results sometimes get published in practice. This may

happen when they report an unsuccessful replication of a previously observed spectac-

ular effect (e.g., the failure of Galak et al. (2012) to replicate the psi effect postulated by

Bem (2011)), or when the journal employs a pre-registration practice where the papers

are peer-reviewed before data collection. Nowadays, some high-ranking journals en-

courage this practice and publish results of pre-registered studies—in psychology, for

instance Social Psychology, Psychonomic Bulletin & Review or Perspectives on Psychological
Science). But overall, this is still rather an exception than the rule.

Admittedly, the choice to publish results (almost) only if they are significant is

nothing that the frequentist methodology can be blamed for. No way of analyzing
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data and quantifying evidence will eliminate publication bias: it is a very human

tendency to publish exciting results (=strong evidence for a hypothesis) rather than

boring results (=weak evidence). This problem needs to be tackled at the level of

the reviewing process, for instance, by deciding on the acceptance of papers before

data collection, rather than in the foundations of statistics. My point is, however, that

the frequentist framework, with its dichotomous distinction between “significant” and

“non-significant” results encourages and reinforces these bad practices. Only results

that speak against the null hypothesis allow a quantification of the evidence in terms

of p-values, whereas non-significant results (with p-values greater than .05) do not

have a valid statistical interpretation, e.g., supporting the null hypothesis. This makes

it especially difficult to publish results in favor of the null: when p > .05, there is no

gradation of the strength of the evidence (and frequentists agree that large p-values

are essentially meaningless), unlike in the “significant” case, where levels of evidence

are measured according to whether p < .05, p < .01 or p < .001.

This is different in Bayesian inference. While the concept of “strong evidence”

means “strong evidence against the null” in frequentist statistics, Bayesians can pub-

lish strong evidence against and for the null hypothesis. Even if we have a peer review

system that demands a certain strength of the evidence in published research reports,

Bayesian statistics is less entangled with publication bias than frequentist statistics.

While a lot of inconclusive findings will still be suppressed, at least the publishable

findings will be balanced in the sense that they are representative of the ratio of true

to false null hypotheses.

The point I make here is almost Kuhnian: in the frequentist paradigm, it is im-

possible to say that strong evidence in favor of the null hypothesis has been found.

Indeed, null hypotheses play an important role in science: they are simple, precise,

easily testable and often express theoretically important claims such as equality of

means in two populations, additivity of factors, causal independence, etc. (e.g., Gallis-

tel, 2009; Morey et al., 2015). Finding evidence for the null hypotheses may sometimes

be less spectacular than rejecting it, but especially if we are interested in scientific ob-

jectivity, we need an instrument to evaluate the evidence in their favor. The frequentist

methodology, with its one-sided way of quantifying statistical evidence, therefore pro-

motes publication bias and the file drawer effect, whereas Bayesian inference stands

orthogonal to it.
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6 Conclusion: A Digression on Scientific Objectivity

The concept of scientific objectivity is a notoriously difficult one, having various as-

pects and interpretations. It is a commonly shared view, though, that objective con-

clusions support the epistemic authority of science, distinguishing it from religion or

political ideology. No wonder that statistical approaches are also valued according to

their ability to provide an image of objectivity. Objective reasoning can manifest itself

in different ways, e.g., leading to intersubjective agreement on evidence, freedom of

extra-scientific values and idiosyncratic bias, standardization of inference procedures,

a priority for evidence over values, responsiveness to criticism, and so on. The stan-

dard criticisms of Bayesian inference relate to selected aspects of the complex notion

of scientific objectivity.

First, there is the idea that subjective Bayesian inference is particularly vulnerable

to the intrusion of extra-scientific values since there is apparently no restriction on

choosing prior probabilities. However, this objection overlooks that value-ladenness is

to some extent inevitable in all forms of statistical inference (e.g., Rudner, 1953). Also

methodologists in the frequentist camp such as Fisher (1956) and Mayo (1996) have

emphasized the necessity to apply informed judgment in statistical inference, rather

than just following automatic procedures. But even without the comparison to other

frameworks, Bayesians have the resources to counter the objection. Prior degrees of

belief can incorporate valuable expertise and background information, they can be

fruitfully criticized like any statistical model assumption, and they can be separated

from statistical evidence (Section 2).

Second, there is the inability to state scientific evidence in a way that is not entan-

gled with (possibly idiosyncratic) judgments of plausibility. On the face of it, frequen-

tist inference seems to have an edge here. But a closer look reveals that frequentist

inference, if it wants to be menaningful, requires the same—albeit implicit—subjective

assumptions about the plausibility of hypotheses as Bayesian inference. In the highly

standardized picture of frequentist inference, important factors for assessing scientific

evidence drop out of the picture. Therefore, Bayes factors are a convincing alternative

which are also transparent about the subjective compoment in inference (Section 3

and 4). It is also argued that frequentist methods of evidence augment the problem of

publication bias whereas Bayesian methods may help to make meaningful evidential

statements in favor of the null hypothesis and thereby alleviate the problem (Section

5).
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Third, also from the point of view of establishing intersubjective agreement, Bayes

factors do not perform worse than their frequentist counterpart since they describe

the degree to which the evidence changes one’s prior probabilities, rather than the

posterior probabilities themselves (Section 3).

Finally, I would like to gloss aspects of objectivity that relate to interaction and

mutual criticism in a research community. Here, Helen Longino (1990) has forcefully

argued that scientific objectivity is also about the structure of scientific discourse: the

possibility of openly criticizing each other’s assumptions, providing a floor for the

exchange of rational arguments, etc. In this respect, Bayesian inference fares much

better than frequentist inference, which only provides an image of schein-objectivity:

Bayesian inference is perfectly honest and transparent about the assumptions it makes

and distinguishes clearly between prior belief, evidence, and conclusions (=posterior

belief). This allows for a straightforward detection of inappropriate bias, such as prior

assumptions that heavily favor a particular hypothesis. Moreover, it provides a coher-

ent framework for assessing what happens when the prior assumptions on a param-

eter value are varied. The dependency on individual degrees of beliefs, hidden and

implicit in other schools of statistical inference, can be seen as an asset of subjective

Bayesianism from the vantage point of scientific objectivity.

In the light of these arguments, claims that subjective Bayesians cannot quantify

evidence in an objective way must be rejected as unjustified. They rely on a too sim-

plified picture of scientific objectivity, on a caricature of Bayesian inference and on a

blind eye regarding the shortcomings of classical, frequentist inference.

I would like to conclude with an apology. The treatment of various deep issues

in statistical methodology in this paper was by necessity superficial. However, the

paper was not intended as a principled comparison of subjective Bayesian and fre-

quentist inference. Rather, I wanted to motivate that subjective Bayesian reasoning is

an appropriate tool for quantifying evidence and for making objective scientific in-

ferences. Common language may suggest the contrary, but this impression is based

on a naïve and outdated conception of objective inference as “free of any subjective

component”. On a more appropriate reading of scientific objectivity that takes into

account the diversity and complexity of that concept, subjective Bayesian inference is

no less objective than its frequentist counterpart, perhaps even more.
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