Philosophy of Climate Science Part II: Modelling Climate Change 


1. Introduction 

After having discussed the empirical observation of climate change in Part I, we now turn to climate modelling, which is the focus of Part II. We start with a primer on climate modelling (Section 2) and then ask how climate models are confirmed (Section 3). Many models are used to make projections about the future climate, which raises the question of what the limits of such projections are (Section 4), and of how uncertainty in models can be understood (Section 5). A popular method of dealing with uncertainty is the use of model ensembles. We describe this method and discuss the difficulties that attach to it (Section 6), and then end with a brief conclusion (Section 7). 

2. A Primer on Climate Models

A climate model is a representation of certain aspects of the climate system. One of the simplest climate models is an energy-balance model, which treats the earth as a flat surface with one layer of atmosphere above it. It is based on the simple principle that in equilibrium the incoming and outgoing radiation must be equal (see Dessler 2011, Chapters 3-6, for a discussion of such models). This model can be developed further by dividing the earth into zones, allowing energy transfer between zones, or describing a vertical profile of the atmospheric characteristics. Despite their simplicity, these models provide a good qualitative understanding of the greenhouse effect. 

Modern climate science aims to construct models that integrate as much as possible of the known science (for an introduction to climate modelling see McGuffie and Henderson-Sellers 2005). Typically this is done by dividing the earth (both the atmosphere and ocean) into grid cells. At the time of writing, state-of-the-art global climate models had a horizontal grid scale of around 150km. Climatic processes can then be conceptualised as flows of physical quantities such as heat or vapour from one cell to another. These flows are mathematically described by fluid dynamical equations. These equations form the ‘dynamical core’ of a global circulation model (GCM). The equations typically are intractable with analytical methods and powerful computers are used to solve them. For this reason they are often referred to as ‘simulation models’. To solve equations numerically, time is discretised. Current state-of-the-art simulations use time steps of approximately 30 minutes, taking weeks or months in real time on supercomputers to simulate a century of climate evolution. 

In order to compute a single hypothetical evolution of the climate system (a ‘model run’), we also require initial conditions and boundary conditions. The former are a mathematical description of the state of the climate system (projected into the climate model’s own domain) at the beginning of the period being simulated. The latter are values for any variables which affect the system but which are not directly output by the calculations. These include, for instance, the concentration of greenhouse gases in the atmosphere at a given time, the amount of aerosols, and the rate of solar radiation received by the earth. Since these are drivers of climatic change, they are often referred to as external forcings or external conditions. Different models regard different physical quantities as boundary conditions.  For instance, in some models the atmospheric concentration of carbon dioxide is set to follow a predetermined pathway (and is hence treated as an external boundary condition), while other models directly simulate the carbon cycle (and hence regard it as a dynamical internal variable). Faster simulation time can be achieved by ‘switching off’ aspects of a complex model, for instance replacing an interactive ocean circulation by prescribed sea surface temperatures. 

Where processes occur on a smaller scale than the grid, they may be included via parameterisation, whereby the net effect of the process is separately calculated as a function of the grid variables. For instance, cloud formation is a physical process which cannot be directly simulated because typical clouds are much smaller than the grid. So the net effect of clouds is usually parameterised (as a function of temperature, humidity, etc.) in each grid cell and fed back into the calculation. Sub-grid processes are one of the main sources of uncertainty in climate models. 

There are currently around twenty complex climate models, which are under continuous development by national modelling centres like NASA, the UK Met Office, and the Beijing Climate Center. In order to be able to compare outputs of these different models, the Coupled Model Intercomparison Project (CMIP) defines a suite of standard experiments to be run for each climate model. One standard experiment is to run each model using the historical forcings experienced during the twentieth century, so that the output can be directly compared against real climate system data. Chapter 9 of the most recent report from Working Group I of the IPCC discusses model evaluation in some detail (IPCC 2013).

Models can be put to different uses. For instance, simulation results can be used either to develop physical insight about the system by means of comparison with reality, or to make projections of future climate (see Held 2005 for a discussion of this contrast). ‘Projection’ is a technical term in the climate modelling literature and refers to a forecast that is conditional on a certain forcing scenario. The forcing scenario is specified by the amount of greenhouse gas emissions and aerosols added to the atmosphere, and these in turn depend on number of other factors such as changes in land use as well as future socioeconomic and technological developments. The essential task of climate policy is to compare these projections and decide what actions to take. Uncertainty about the climate impacts related to a particular forcing scenario derives from the different representations of climate within different models. 

3. Confirmation of Climate Models

In Section 3 of Part 1 we have seen that there are various ways data are obtained in climate science. Confirmation concerns the question whether, and to what degree, a certain model is supported by these data. To give an example, climate scientists often look at whether a model manages to simulate data of past temperature changes sufficiently well and if so, claim that the model is confirmed (Harvey and Kaufman 2002; IPCC 2013, Chapter 9; Knutti et al. 2003). 

In the case of climate models it is important to separate out variables we expect to have predictive skill from those we do not; confirmation concerns only the former. That is, model confirmation concerns certain variables of a model but does not extend to others (cf. Parker 2009). For example, one might claim that a certain climate model adequately predicts the global temperature increase by 2100 (relative to certain initial conditions and a certain emission scenario). Yet, one might also claim that the predictions of global mean precipitation by 2100 by the same model cannot be trusted.

It is widely held that many aspects of climate models are confirmed (Lloyd 2010). For instance, data confirm that models including natural and anthropogenic factors adequately retrodict the past mean temperature changes within a certain margin of error (cf. Section 5 in Part 1). To reach such a judgment a number of obstacles have to be overcome. We now review  the difficulties involved in confirming climate models. 

Suppose climate scientists find that a model retrodicts certain variables well and is thus confirmed (e.g., that the model’s predictions of global mean temperature changes can be trusted because it simulates the past temperature changes well). Further, suppose that another model does not predict certain variables well and is thus disconfirmed (e.g., that the model’s predictions of the global mean temperature changes cannot be trusted because it does not simulate past temperature changes well). Then one would like to know the reasons why the first model is successful and the second is not. Lenhard and Winsberg (2010) argue that this is hopeless: For complex climate models a strong version of confirmation holism makes it impossible to tell where the failures and successes of climate models lie. In particular, they claim that it is impossible to assess the merits and problems of sub-models, and parts of models more generally. They also argue that this strong form of confirmation holism is here to stay. Note that the issue here is not just the widely accepted claim of confirmation holism, i.e. that a single hypothesis cannot be tested in isolation because tests depend on auxiliary hypotheses. Lenhard and Winsberg defend the more radical claim that one will never be able to say where the successes and failures of climate models come from.

Lenhard and Winsberg present case studies (e.g., about the coupled model intercomparison project) which nicely illustrate some of the difficulties involved. Still, there remains a question whether complex models in climate science always suffer from this strong confirmation holism. Complex models have different modules, which can be run individually and as well as together. At least in certain cases, by comparing these individual and combined runs, it seems plausible that one can obtain an understanding of the effect of modules, and then could attribute successes and failures to certain submodels. Indeed, there are cases of this in the literature. For instance, Qu and Hall (2015) examine snow-albedo feedback of twenty-five climate simulations of the Coupled Model Intercomparison Project version 5. They find that while for some models the snow-albedo feedback is in line with the observations, for others it does not. A detailed analysis of different modules leads them to the conclusion that widely-varying treatments of vegetation masking of snow-covered surfaces are a major factor responsible for why some models are doing better than others.   

Data are often used in the construction of climate models. In particular, the values of many parameters of models are unknown because the physical processes are poorly understood and because parameters often stem from an attempt to simplify theory when it is available. Therefore, data are used to estimate these parameters (a process called calibration). For example, the net effect of cloud cover is estimated from observations rather than determined by a bottom-up theoretical calculation. 

When data have been used for calibration, the question arises whether the same data can be used to confirm the model. To come back to our example: if data about temperature changes are used to calibrate the parameter of a climate model, can the same data be used again to confirm it? If data are used for confirmation which have not already been used before for calibration, they are use-novel. If data are used for both calibration and confirmation, this amounts to double-counting. This raises the question whether double counting is acceptable. Many philosophers and climate scientists argue for a negative answer to this question (Lloyd 2010; Shackley et al. 1998; Worrall 2010). They think that double-counting is illegitimate and that data have to be use-novel to be confirmatory.   

Against this view, Steele and Werndl (2013) argue that, according to Bayesian and relative-likelihood confirmation, use-novelty is beside the point and double-counting is legitimate. In a Bayesian analysis data will always be used for calibration and, in many cases – in particular, when the model has a very good fit with the data and this fit is highly nontrivial – the same data will also confirm model. For instance, in standard linear regression all data are used to estimate the slope of the curve. Here the same data can also confirm the linear model if the fit between the data and the estimated linear curve is good.

Another statistical theory relevant to climate science is model selection theory (e.g. Michaelsen 1987). Steele and Werndl (2014) argue that the picture model selection theory presents us with about use-novelty is more nuanced than the commonly endorsed positions. More specifically, first, there are methods such as cross-validation where the data are required to be use-novel. For cross-validation the data are split up into two groups: the first group is used for calibration and the second for confirmation. Second, there are the methods such as the Akaike Information Criterion for which the data need not be use-novel. Still, there is a penalty term in the expression for the degree of confirmation penalising the use of data that have already been used for calibration. 

Finally, let us mention three other problems about calibration and confirmation. First, a common practice is to rule out those models that do not show a close enough fit with the data and use those that are left (weighted equally) for predictions. Here again the question arises why these predictions should be trusted and whether some of the models that are left are not better than others. Second, climate scientists question to what extent past data are relevant for assessing how well models predict the future. The worry is that processes important on longer time scales, such as changes in the ice coverage, will take the system out-of-sample with respect to existing observations, such that empirically-derived relationships and parameterisations could change significantly.  Because of this, they argue that it is really hard to tell how relevant past data are or that past data are not relevant at all for assessing the predictive accuracy of the models in the future. Consequently, past data cannot be relied upon for calibration or confirmation of models that concern the future (Oreskes et al. 1994; Parker 2009; Stainforth et al. 2007a, 2007b, Steele and Werndl 2013). Third, a fundamental worry about confirmation is that there is radical uncertainty about other possible climate models that could account for the data. In the Bayesian framework this implies that it is impossible to tell whether models are confirmed because the performance of the model at hand compared to all other possible models cannot be judged (Steele and Werndl 2013). For these reasons some climate scientists argue that complex models are just possibilities (Stainforth et al. 2007a and 2007b). We return to this position in Section 6 below.

4. The Limits of Climate Projections

Some climate research is undertaken in an ‘experimental’ spirit: ‘play’ around with models with the aim to gain insight about the physics of the earth system and its processes. This does not require the ability to produce reliable projections. However, much research these days is undertaken (and funded) with the aim of generating projections about the actual future climate, upon which policies are made and real-life decisions are taken. In these cases it is necessary to quantify and understand how good those projections are likely to be.

It is doubtful that this question can be answered along traditional lines. One such line would be to refer to the confirmation of a model against historical data (Chapter 9 of IPCC (2013) discusses model evaluation in detail) and argue that the ability of a model to successfully reproduce historical data should give us confidence that it will perform well in the future too. It is unclear at best whether this is a viable answer. The problem is that, climate projections for high forcing scenarios take the system well outside any previously experienced state, and at least prima facie there is no reason to assume that success in low forcing contexts is a guide to success in high-forcing contexts. Although we hope that the laws of physics will not alter in a warmer world, many of the relationships and parameters described numerically in models are derived semi-empirically, either by observation of real-world properties or by tuning the parameter in order to reproduce expected larger-scale behaviours. For example, a model calibrated on data from a world with the Arctic Sea covered in ice might no longer perform well when the sea ice is completely melted and the relevant dynamical processes are quite different. For this reason calibration to past data has at most limited relevance for a model’s predictive success (Oreskes et al. 1994; Stainforth et al. 2007a, 2007b, Steele and Werndl 2013).

This brings into focus the fact that there is no general answer to the question of the trustworthiness of model outputs. Our aim here is to draw attention to the problem, and make some progress in framing it. Assume the task is to predict the occurrence of an event some time in the future under a given emission scenario. In general, the trustworthiness of such a prediction depends on at least five factors: 

· The lead-time, detailing how far in the future the event is to occur. For instance, if in the year 2014 the increase in global mean temperature by 2050 is predicted, the lead-time is 36 years. 
· The time scale, specifying the event’s temporal extension. An event can occur at a specific instance of time (e.g. the maximum temperature in July 2090) or can be an average over a longer time or a number of events (e.g. the average maximum summer temperature between 2080 and 2099).
· The spatial extension, specifying the event’s geographical size. Events can be relatively precisely located (e.g. the number of storms hitting Florida between 2080-2099) or occur on larger scales (e.g. the average maximum wind speed over North America between 2080-2099)
· The specificity, indicating how precisely the event is circumscribed. Events can be only vaguely specified (e.g. there is an upward trend in the global mean temperature), or be given precisely (e.g. global mean temperature will have increased by 3.7 degrees by 2010). 
· The physical understanding of the causal relationships involved. Some events are brought about by one well-understood physical mechanism, while others are the result of a number of poorly understood factors. 

There is widespread consensus that predictions are better for longer time scales, larger spatial averages, low specificity and better physical understanding. All other things being equal, shorter lead times are easier to predict than longer ones. Global mean temperature trends are considered trustworthy and it is generally accepted among scientists that the observed upward trend will continue (Oreskes 2007). The latest IPCC report (IPCC 2013, Summary for Policymakers, section D.1) states, with ‘very high confidence’, that ‘models reproduce observed continental-scale surface temperature patterns and trends over many decades, including the more rapid warming since the mid-20th century and the cooling immediately following large volcanic eruptions’.

By contrast, controversy besets the other end of the spectrum. Some believe that current models are capable of providing detailed information about the future local climate. The United Kingdom Climate Impacts Program’s UKCP09 project, for instance (Sexton et al. 2012, Sexton and Murphy 2012), aims to make high-resolution probabilistic projections of the climate up to 2100 based on HadCM3, a global climate model developed at the UK Met Office Hadley Centre. Probabilities are given for events on a 25km grid for finely defined specific events such as changes in the temperature of the warmest day in summer, the precipitation of the wettest day in winter, or the change in summer-mean cloud amount, with projections given for thirty year segments out to 2100. It is projected, for instance, that under a medium emission scenario there is a 0.5 ‘probability level central estimate’ for the reduction in summer mean precipitation in central London to be between 20% and 30% (Jenkins et al. 2009, p. 36). 

The trustworthiness – and policy-relevance – of such projections has been disputed.  A model has structural model error if the model’s dynamics differs from the dynamics in the target system. Frigg et al. (2014a) point out that any structural model error in nonlinear models may compromise the ability to generate decision-relevant predictions. Furthermore, there is little reason to expect that post-processing of model outputs can correct for the consequences of such errors (Frigg et al. 2014b; 2015), except by the introduction of subjective probabilities, as is used by IPCC (2013, Chapter 12). This casts doubt on our ability, today, to make trustworthy, high-resolution probabilistic projections out to the end of this century. The research question is to determine the timescales on which such projections are likely to be reliable, and beyond those timescales to estimate the effect of model inadequacy. Where is the boundary between trustworthy and non-trustworthy projections? That is, where in between global temperature trends and precise projections on a 25km grid does trustworthiness come to an end? This is a crucial – and eminently policy-relevant – question in the epistemology of climate science, and one that is hitherto unsolved. 

5. Coming to Grips with Uncertainty

Uncertainty features prominently in discussions about climate models, and yet is a concept that is poorly understood and that raises many difficult questions. In most general terms uncertainty is lack of knowledge. The first challenge is to circumscribe more precisely what is meant by ‘uncertainty’. A typical reaction to this quest is to draw a distinction between uncertainty and risk. On a common view we are faced with risk if we are in a situation in which we are uncertain about the occurrence of certain events, but are able to attach precise probabilities to them. If, by contrast, if relevant probabilities are either unavailable, or only partially available, we face uncertainty.[footnoteRef:1] For example, we make a decision under risk if we bet on getting ‘black’ when drawing balls from urn which contains a known proportion of well-mixed black and red balls; we operate under uncertainty if we do not know the proportion, or do not even know whether there are balls with colours other than black and red in the urn.  [1:  This distinction has become standard in the philosophical literature on decision theory (see, for instance, Sturgeon 2008). It is often attributed to Knight (1921), but it is hard pin it down in the original text and Knight scholars have doubted that the attribution is correct (Cooke 2014). Note, however, that this terminology is not standardised across scientific disciplines and, in many circumstances exactly the opposite definitions are used. ] 


Describing uncertainty as a situation without precise probabilities provides a first point of orientation, but it leaves many difficult questions unanswered. First, what is the reason for there not being precise probabilities? Do we not have sufficient information to commit to a particular probability measure, or are we unsure about the events space itself? If the latter, are there known unknowns, or do we reckon with unknown unknowns? Second, can uncertainty be quantified? There not being probabilities does not ipso facto exclude the existence of other quantitative measures for uncertainty. Third, how can uncertainty be communicated to decision-makers? Fourth, what is a rational way of making decisions under uncertainty? 

This list is neither exhaustive, nor are the questions independent from one another. We now review the contributions made to the first, second and third questions in the climate science context. The second and the fourth question have attracted some attention in decision theory, and more will be said about them from that point of view in Part III.

One reaction to the first problem is to devise a classification of different kinds of uncertainties. A number of proposals have been made, but the discussion is still in a ‘pre-paradigmatic’ phase. Smith and Stern (2011, 4821-4824) identify four relevant varieties of uncertainty: imprecision, ambiguity, intractability and indeterminacy. Spiegelhalter and Riesch (2011) consider a five-level structure with three within-model levels – event, parameter and model uncertainty – and two extra-model levels concerning acknowledged and unknown inadequacies in the modelling process. Wilby and Dessai (2010) discuss the issue with reference to what they call the cascade of uncertainty, studying how uncertainties magnify as one goes from assumptions about future global emissions of greenhouse gases to the implications of these for local adaption. Petersen (2012, Chapters 3 and 6) introduces a so-called uncertainty matrix listing the sources of uncertainty in the vertical and the sorts of uncertainty in the horizontal direction. Lahsen (2005) looks at the issue from science studies point of view and discusses the distribution of uncertainty as a function of the distance from the site of knowledge production. And these are but a few of the many proposals currently available.

In response to the second problem number of methods to quantify uncertainty have been devised. Among these ensemble methods occupy centre stage and we turn to them in the next section. A number of authors emphasise the limitations of model-based methods (such as ensemble methods) and submit that any realistic assessment of uncertainties will also have to rely on other factors, most notably expert judgement. Petersen (2012, Chapter 4) outlines the approach of the Netherlands Environmental Assessment Agency (PBL), which sees expert judgment and problem framings as essential components of uncertainty assessment. Aspinall (2010) suggest using methods of structured expert elicitation. Specifically, he proposes the use of the so-called Cooke method, which is based on individual expert elicitation and followed by weighted judgment aggregation to assess the level future climate uncertainty. So quantifying uncertainty is no less a formidable task than classifying it. 

As regards the third problem, the most prominent framework for communicating uncertainty is the IPCC’s. The latest version of the framework, which is used throughout AR5, is explicated in the ‘Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties’ and further explicated in (Mastrandrea et al. 2011). The framework qualifies the ‘degree of certainty’ on a qualitative scale from very low to very high. Certainty is function of two features: the type of evidence and the degree of agreement. The Guidance Note also advises communicating uncertainty at an appropriate level of precision and gives examples of a number of different levels. A discussion of this framework can be found in Budescu et al. (2014) and Adler and Hadorn (2014). 

It should also be noted that the role of ethical and social values in relation to uncertainties in climate science is controversially debated. Winsberg (2012) appeals to complex simulation modelling to argue that results produced by climate scientists are influenced by ethical and social values. More specifically, his argument is that assignments of probabilities to hypotheses about future climate change are inﬂuenced by ethical and social values because of the way these values come into play in the building and evaluating of climate models. Parker (2014) objects that often it is not social or ethical values but pragmatic factors that play a role in evaluating and building climate models. She also objects that focussing on precise probabilistic uncertainty estimates is misguided and argues that uncertainty about future climate change is more appropriately depicted with coarser estimates, which are less influenced by values. She concludes that while Winsberg’s argument is not mistaken, it exaggerates the influence of ethical and social values. Finally, Parker argues that a more traditional challenge to the value-free ideal of science fits to the climate case: it can be argued that estimates of uncertainty are themselves always somewhat uncertain; thus offering a particular estimate of uncertainty involves value judgements (cf. Douglas 2009; for further literature on this topic see also Intemann, forthcoming).

6. Model Ensembles

Many investigations into the climate system are now made with an ensemble of models rather than with a single model.[footnoteRef:2] Current estimates of climate sensitivity and increase in global mean temperature under various emission scenarios, for instance, include information derived from ensembles containing multiple climate models. The reason to use ensembles is the acknowledged uncertainties in individual models, which concern both the model structure and the values of parameters in the model. It is a common assumption that ensembles help mitigate the effects of these uncertainties either by producing and identifying ‘robust’ predictions, or by providing estimates of this uncertainty about future climate change.  [2:  Parker (2013) provides an excellent discussion of ensemble methods and the problems that attach to them. ] 


Before discussing the epistemic function of ensembles, a distinction needs to be made between two types of ensembles. As we have seen above, a climate model has a number of parameters in it. Some represent physical magnitudes such as the viscosity of water, while others are ‘effective summaries’ of sub-grid processes that are not explicitly resolved (such as cloud coverage). A perturbed parameter ensemble (PPE, sometimes alternatively a ‘perturbed physics ensemble’) explores how sensitively the outputs of one model depend on the parameters by running the same underlying model a number of times, each time with different parameter values. In this way the ensemble explores the impact of parametric uncertainty on predictions (i.e. a sensitivity analysis with respect to the chosen parameters). By contrast, a multi model ensemble (MME) consists of several different models – i.e. models that differ in mathematical structure and physical content rather than only in parameter values. Such an ensemble is used to investigate how predictions of relevant climate variables are impacted by uncertainty about the model structure. 

A result is robust if all or most models in the ensemble show the same result. If, for instance, all models in an ensemble show more than 4º increase in global mean temperature by the end of the century when run under a certain emission scenario, this result is robust. Lack of robustness would clearly be good reason to doubt a result; there is also a pervasive intuition in the scientific community that robustness warrants increased confidence in predicted outcome. 

Does robustness justify increased confidence? Parker (2011) discusses this problem in detail and reaches a sober conclusion: ‘When today’s climate models agree that an interesting hypothesis about future climate change is true, it cannot be inferred […] that the hypothesis is likely to be true or that scientists’ confidence in the hypothesis should be significantly increased or that a claim to have evidence for the hypothesis is now more secure’ (ibid. 579). One of the main problems is that if today’s models share the same technological constraints posed by today’s computer architecture and understanding of the climate system, then they inevitably share some common errors. Indeed such common errors have been widely acknowledged (see, for instance, Knutti et al. 2010) and studies have demonstrated and discussed the lack of model independence (Bishop and Abramowitz 2013; Jun et al. 2008a; 2008b). But if models are not independent, then agreement between them carries little, if any, epistemic weight. 

When ensembles do not yield robust predictions, then the spread of results within the ensemble is often used to quantitatively estimate the uncertainty of the outcome. There are two main approaches to this. The first approach aims to translate the histogram of model results directly into a probability distribution. These methods assign higher probabilities to outcomes on which more ensemble members agree: in effect the guiding principle is that the probability of an outcome is proportional to the fraction of models in the ensemble which produce that result. The thinking behind this method is first to treat models as exchangeable sources of information (in the sense that there is no reason to trust one ensemble member any more than any other), and then invoke a frequentist approach to probabilities. As we have seen above, the assumption that models are independent is problematic for a number of reasons. But there is a further problem: current MMEs are ‘ensembles of opportunity’, grouping together existing models. Even the best currently available ensembles such CMIP5 are not designed to systematically explore all possibilities (nor were they developed independently) and it is therefore possible that there are vast classes of models that produce entirely different results. There is thus no reason to assume that the frequency of ensemble results should double as a guide to probability. The IPCC acknowledge this limitation (see discussion in Chapter 12 of IPCC 2013) and thus downgrade the assessed likelihood of ensemble-derived confidence intervals.  For instance, the 5-95% range of model results for global mean temperature change in 2100, under forcing scenario RCP8.5, is 2.6 to 4.8 degrees (IPCC, 2013, Table SPM.2).  This result is not presented as ‘very likely’ (>90% chance), which would correspond to a direct use of model frequencies as probabilities; instead, it is deemed only ‘likely’ (>66% chance).  In this way the ensemble information is used, but supplemented with expert judgement about the chance that models are misinformative. In effect, 24% of the probability mass has been reassigned in an undetermined manner, which we might interpret as a probability of approximately up to 1-in-4 that something occurs which the models are incapable of simulating. Note that the IPCC’s assignment of numerical probabilities to certain terminology is intentionally imprecise, which in this context reflects the difficulty in interpretation of language, the need for fairly wide categories, and the impossibility of accurately quantifying subjective judgements about the capability of models.  The important point is that this reassignment is non-negligible and points to a significant likelihood of climate model inadequacy resulting in incorrect projections for 2100.

A more modest approach regards ensemble outputs as a guide to possibility rather than probability. On this view the spread of an ensemble presents the range of outcomes that cannot be ruled out. The bounds of this set of results – sometimes referred to as a ‘non-discountable envelope’ – provide a lower bound of the uncertainty (Stainforth et al. 2007b). In this spirit Katzav (2014) argues that a focus on prediction is misguided and that models ought to be used to show that certain scenarios are real possibilities. 

While undoubtedly less committal than the probability approach, also non-discountable envelopes raise serious questions. The first is the relation between non-discountability and possibility. Non-discountable results are ones that cannot be ruled out. How is this judgment reached? Do results which, given current knowledge, cannot be ruled out indicate possibilities? If not, what is their relevance for estimating lower bounds? Betz (2015), for instance, argues that climate models cannot be interpreted as serious possibilities because their assumptions are known to be false. Furthermore, it is important to keep in mind that the envelope just represents some possibilities. Hence it (as with the IPCC method described above) does not indicate the complete range of possibilities, making certain types of formalised decision-making procedures impossible. 

7. Conclusion 

In this paper we have reviewed issues and questions that arise in connection with climate models. We have done this from philosophy of science perspective, and with special focus on epistemological issues. Needless to say, this is not the only perspective. Much can be said about climate science from the points of view of science studies, sociology of science, and political theory. For want of space we have not been able to review contributions from these perspectives and refer the interested reader to Oreskes and Conway (2012) for an analysis of climate change from such an angle. 
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