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Abstract 

Lawton’s contingency thesis (CT) states that there are no useful generalizations (“laws”) at the 

level of ecological communities because these systems are especially prone to contingent 

historical events. I argue that this influential thesis has been grounded on the wrong kind of 

evidence. CT is best understood in Woodward’s (2010) terms as a claim about the instability of 

certain causal dependencies across different background conditions. A recent distinction between 

evolution and ecology reveals what an adequate test of Lawton’s thesis would look like. To date, 

CT remains untested. But developments in genome-level ecology and molecular ecology point in 

promising directions.  
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1. Introduction  

Ecologist J.H. Lawton has developed one of the most influential recent critiques of community 

ecology (Lawton 1999). His discussion is framed around the question of whether community 

ecology admits of “general laws.” This branch of ecology studies multi-species assemblages. It 

thus focuses on a level of biological organization above (single species) populations but below 

entire ecosystems. Lawton argued that there are no “useful generalizations” or “laws” at the 

community level as such. His reason is that communities are subject to a wide range of 

contingencies that make it impossible to generalize from one instance to the next. For example, 

particular communities are shaped by different geological events. They each receive a different 

pool of migrants in a particular order. They experience different patterns of fire, flood, storm, 

and so on. These one-off events can dramatically impact the composition of a community. 

Hence, Lawton proposes that the rules governing community composition are transitory and 

idiosyncratic. However, he thinks that there is hope for generality at other levels of ecological 

investigation. Law-like regularities obtain at the (lower) population level and at the (more 

inclusive) macroecological level. They are found at the population level, according to Lawton, 

because these systems are simpler and behave in a more uniform fashion. By contrast, at the 

macroecological level regional contingences become less influential. At this level, one looks at 

ecosystems on a broad geographic and temporal scale, “whereby a kind of statistical order 

emerges from the scrum” (Lawton 1999, 183). These considerations inspired Lawton to 

pronounce the end of community ecology as a viable discipline: 

In sum, community ecology may have the worst of all worlds. It is more complicated 

than population dynamics, so contingent theory does not work, or rather, the contingency 

is itself too complicated to be useful. But paradoxically, community ecology is not big 



2 
 

and bold enough to break out of the overwhelming complexity within which it appears to 

be enmeshed. All this begs the question of why ecologists continue to devote so much 

time and effort to traditional studies in community ecology. In my view, the time has 

come to move on. (Ibid)  

Many ecologists have heeded this suggestion. Lawton’s paper has received an average of 37 

citations per year since its publication, mostly endorsing his contingency thesis. Others who view 

their research as significant beyond the local field or stream find Lawton’s conclusion 

unbearably pessimistic (Chave 2013). These community ecologists soldier on in the search for 

generality despite Lawton’s warnings. Here I argue that they are correct in doing so.  

 Lawton’s argument assumes that if a community has been influenced by unique historical 

events, then it cannot be explained in terms of law-like processes. I argue that this assumption is 

confused about the explanatory roles of ecology and history. Specifically, it views these two 

types of explanation as mutually exclusive. An alternative framework has recently been 

developed in the field of genome-level ecology (Linquist et al. 2013). To assess whether 

“communities” of genetic elements can be explained using models and concepts borrowed from 

ecology, Linquist et al. (2013) found it helpful to distinguish ecological from evolutionary modes 

of explanation. The key idea is that ecological and evolutionary (or historical) explanations make 

different idealizing assumptions about the same underlying process. In its pure form, ecological 

explanation treats focal entities (genetic elements, populations, communities, etc.) as static types 

while focusing on how their intrinsic properties interact with features of the environment. 

Evolutionary explanation, in its pure form, takes into account changes in focal entities over time 

while ignoring relations to particular features of the environment. More will be said, 

momentarily, about these two modes of explanation and how they are sometimes used conjointly 
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–such as in explanations of evolution by natural selection. The important thing to note is how 

this picture refutes Lawton’s argument.  

A useful analogy can be drawn to the field of developmental biology. In this field, a 

purely genetic explanation attempts to idealize over environmental differences, while a purely 

environmental explanation ignores genetic differences and focus on just environmental 

influences. The field of genetics has moved beyond the simple-minded idea that evidence of an 

environmental influence negates the possibility of a genetic explanation (Sober, 2000). Rather, 

geneticists have developed statistical techniques for determining, given a certain pattern of 

variation in some trait, how much of it is explained by genetic and environmental factors, 

respectively. The same approach applies to historical and ecological factors and their influence 

on community composition. When we adopt this approach, it becomes apparent that Lawton’s 

contingency thesis is based on the wrong kind of data. He argues from evidence of contingency 

in particular communities to the conclusion that patterns of variation among communities cannot 

be explained by ecological laws. This would be like inferring from evidence of a genetic 

influence on some trait, in a particular individual, that variation among individuals cannot be 

explained by environmental factors. In both cases the reasoning is fallacious. Thus, it remains an 

open question whether, or the extent to which, ecological communities can be explained in terms 

of law-like relations to the environment.  

   This essay will proceed as follows. Section 2 offers a more precise statement of 

Lawton’s contingency thesis by drawing on Woodward’s (2010) concepts of stability and 

contingency. Section 3 reviews Lawton’s evidence for the contingency thesis. Section 4 

introduces the operative distinction between ecology and evolution (or history). Section 5 applies 
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this distinction to the community level and explains why Lawton’s evidence falls short of 

supporting his conclusion.  

 

2. Interpreting Lawton 

Philosophers and ecologists disagree about the conditions for natural laws (Colyvan 2003; Lange 

2005; Lockwood 2008). My current aim is not to wade into these disputes. Instead, I offer an 

interpretation of what Lawton meant by “contingent” and how to best define the field of 

community ecology. Clarifying these terms is a necessary first step in understanding his 

argument that there are no stable (or law-like) generalizations in this field.  

 Lawton distinguishes laws from patterns on the grounds that, “Patterns are regularities in 

what we observe in nature; that is, they are ‘widely observable tendencies;’” whereas laws are 

the “general principles that underpin and create the patterns” (1999; 178). This statement 

suggests that Lawton views laws as causal generalizations, while patterns are mere correlations.  

Lawton notes that patterns can vary in their generality: “Indeed they raise the vexing problem of 

how many exceptions to general patterns might exist before we would no longer regard them as 

patterns” (ibid). A similar problem arises for laws regarding their generality. Although some 

interpretations of Lawton take him to view laws as universal or exceptionless (Roughgarden 

2009), this would render Lawton’s position rather uninteresting. Exceptions are found even in 

the laws of chemistry and physics (Cartwright 1983). Hence it would be no surprise to find 

exceptions in ecological laws also (Colyvan and Ginzburgh 2003).   

 Lawton’s position is better stated using philosopher James Woodward’s (2010) concepts 

of causal stability and contingency. For Woodward, causal relations are represented as 
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counterfactual dependencies among variables. Thus, some variable Y is counterfactually 

dependent on another variable X just in case, for some set of background conditions B, an 

intervention that changes only the value of X will result in a corresponding change to Y. The 

stability (or contingency) of a dependency is defined by the range of background conditions (B) 

across which it obtains. Thus, a highly stable (for current purposes, law-like) relationship 

between X and Y is one that holds across a wide range of background conditions. Contingency is 

the opposite of stability, where a dependency is restricted to a limited range of background 

conditions.  

 These ideas are easily transferred to community ecology. Typical dependent variables (Y) 

in this field include species richness, average abundance, or trophic structure of a community. 

These are ensemble properties of multi-species assemblages. Typical independent variables (X) 

include the abundance of a general predator, degree of niche overlap, or other factors thought to 

impact a community. Background conditions (B) come in at least two dimensions: taxonomic 

distance (e.g. different phyla or families) and habitat type (e.g. aquatic, marine, and terrestrial 

habitats). Thus, in some communities it has been observed that increasing the abundance of the 

top predator increases the diversity of shared prey. This causal relation is stable, in Woodward’s 

sense, to the extent that it holds true for different taxa or across different habitats. A relatively 

contingent ecological dependency is one that holds for few taxa or habitat types.    

 Lawton defines community ecology as the study of sets of coexisting species interacting 

at local scales. This discipline is distinct from population ecology, he claims, insofar as 

community ecologists study assemblages greater than just two or three species. Although some 

community ecologists might object to this restriction on their discipline, it is not an issue that I 

consider here. However, I do take exception to Lawton’s requirement that community ecology 
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studies only local interactions. The question of how to circumscribe communities as objects of 

study remains a challenging issue (Sterelny 2006). Lawton suggests that community ecology 

restricts its focus only to local interactions, so that processes like immigration, emigration, or 

other meta-community dynamics fall under the purview of macroecology. This will strike many 

as an artificial way to distinguish these disciplines. Community ecologists should be allowed to 

circumscribe the boundaries of their subject matter as they see fit and as nature dictates.   

 Instead of drawing the community/macroecology distinction in terms of local/non-local 

interactions, a more useful distinction is drawn between the kinds of processes that these 

disciplines investigate. Community ecologists have traditionally set aside questions about long 

term evolutionary processes, focusing instead on the relatively short term processes governing 

the abundance and distribution of species. Strategically, this simplification makes sense if it 

indeed turns out that evolutionary processes have only a marginal influence on community 

composition and abundance. Community ecologists also tend to ignore changes in community 

composition considered over geological time scales. Over such extended periods, community 

composition and dynamics are expected to vary considerably (Kricher 1998). By contrast, the 

macroecological perspective, which Lawton favours, takes both evolutionary and historical 

processes into account. As Lawton explains, “macroecology is a blend of ecology, biogeography, 

and evolution and seeks to get above the mind-boggling details of local community assembly to 

find a bigger picture” (1999, 183).  My suggestion is simply that the distinction between 

community ecology and macroecology is best drawn by focussing on the kinds of process that 

these disciplines investigate. Community ecology ignores, as a simplifying assumption, 

evolutionary and historical changes in the focal entities that it investigates; while macroecology 

attempts to incorporate those changes as well as the events and processes that generate them. 
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This way of drawing the distinction avoids thorny issues about how to draw the boundaries 

around a community or what constitutes a “local” scale.  

 To summarize my interpretation of Lawton’s position: the counterfactual dependency 

relations identified for multi-species assemblages are unstable (contingent) across different 

background conditions such as distinct taxa and habitats. But contingency is reduced either by 

dropping down to the population level, or, by taking into account broad evolutionary or 

geological times scales. I refer to this as the contingency thesis.  

3. Evidence for the Contingency Thesis  

Lawton’s central piece of evidence in support of the contingency thesis is based on his 20 years 

researching a particular bracken fern community located in Skipwith, England. He explains that 

the relative abundances of these 17 insect species were highly predictable over short (multi-year) 

time periods – rare species stay rare and more common ones remain common. He adds that the 

composition of the community is constrained by a species of predatory ant. From Woodward’s 

perspective we can think of this as an invariance relation in which abundance of the predator (X) 

influences composition of the other members of the insect community (Y). However, Lawton 

suggests that this relationship is not stable across different background conditions (B).  

I observed an average of about 17 herbivorous insects feeding on bracken at Skipwith 

each year. Why 17? In crude order of magnitude terms, why not 2? Or 170? This most 

basic aspect of community structure may have surprisingly little to do with the local 

processes that dominate so much of traditional thinking in community ecology. (1999, 

184)  
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Lawton goes on to identify two different types of “filter” that, he thinks, determine community 

composition to a greater degree than those considered by community ecologists. The first is a 

historical or evolutionary filter: “understanding the origins of the pool requires a knowledge of 

the evolutionary history of the biota, of geology, of plate tectonics, and so on” (ibid). He 

suggests, for example, that if members of this community had arrived in a different order it 

would have altered the relationship between predator and prey abundances. Lawton’s suggestion 

is that any number of one-off events could have significantly impacted community dynamics. 

Since historical events presumably differ from one community to the next, he reasons, different 

communities will not obey the same causal dependencies.   

 The second sort of filter that Lawton identifies is spatial. He proposes that local 

community dynamics are often influenced by such factors as their distance from a source of 

migration or overall meta-community structure. Lawton seems to be relying here on the 

aforementioned stipulation that communities are essentially local. In the previous section I 

argued that community ecologists are not required to restrict their focus to local species 

assemblages (whatever that might turn out to mean). Rather, they are free to expand or contract 

their field of investigation as the situation demands. Thus, if Lawton thought that the 

composition of his bracken fern community was largely influenced by immigration from another 

community down the road, he might just have considered them together as a single unit. Lawton 

distinguishes community ecology from macroecology in such a way that the former is limited 

both temporally and spatially in its purview. I argue that the field does in fact take on a different 

character when historical and evolutionary considerations are taken into account. But it is less 

committed to a particular spatial scale. Hence, we can restrict our focus to the first of Lawton’s 
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two filters and ask whether a science of ecological communities can find generality while 

ignoring historical and evolutionary considerations.   

4. Distinguishing Evolution from Ecology 

What then is the relationship between ecology and history? For that matter, what makes a 

generalization ecological in the first place? A candidate solution to these questions has recently 

emerged within the field of genome-level ecology (Linquist et al. 2013). This burgeoning sub-

discipline applies ecological thinking at the level of the genome, viewing families of mobile 

genetic elements as akin to species and stable features of the genome as their environment 

(Brookfield 2005). As is often the case, applying a familiar theory to a novel domain requires 

close attention to its core commitments. This has led to the following operational definitions of 

“evolution” and “ecology.”  

1) A strictly evolutionary approach investigates change in some focal entity over successive 

generations without taking into account its relationships to particular features of the 

environment.  

2) A strictly ecological approach assumes (for simplicity) no change in the focal entities 

themselves, but focuses instead on relationships between those entities and particular 

features of their environment. 

In the following section I apply these definitions to the community level and explain how a 

strictly evolutionary approach is equivalent to what Lawton would classify as an historical 

approach. The remainder of this section explicates this distinction and shows how it can be used 

to determine the extent to which some patterns calls for an ecological or evolutionary 

explanation.  
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 It is important to note that each mode of investigation is being defined here in its strict or 

pure form. This is just to say that, considered on its own, each approach makes different sorts of 

idealizing assumptions. For example, some of Michael Lynch’s work on the evolution of genome 

size exemplifies a purely evolutionary approach (Lynch and Conery 2003, Lynch 2007). His 

“mutational hazard” model proposes that large amounts of genome evolution can be explained 

just in terms of mutation rate (M) and effective population size (Ne). The focal entities in this 

case are populations of genomes. M and Ne are independent variables that apply to intrinsic 

features of a genome population –they ignore relations to specific features of the environment. It 

is assumed that when Ne is low the influence of selection on genome evolution is negligible. 

This is just to say that particular features of the environment are ignored by this model under 

certain conditions (see Linquist et al. 2015 for a more detailed discussion). Suppose, then, that 

the dependent variable of interest is variation in the overall genome size across a range of 

eukaryotic genomes. Lynch might explain this pattern of variation by appealing to mutation rate, 

the length of time over which the populations have been isolated, and the respective population 

sizes. This would qualify as a strictly evolutionary explanation according to Definition 1, since 

the pattern is being explained in terms of changes in the focal entities while idealizing away from 

their relations to particular features of the environment.  

 Strictly ecological explanations are perhaps even more familiar. Ecologists routinely 

conduct studies of populations that focus exclusively on their relation to the environment while 

ignoring changes in the focal entities themselves. For example, the introduction of the Canadian 

beaver to Argentina in the 1940s led to a population explosion. Here the focal entity is a 

particular population and the relevant dependent variable is its growth rate. Ecologists attempt to 

determine which of several possible ecological variables (e.g. lack or predators, suitability of 
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foliage) best explain the much higher rate of population growth in Argentina compared to North 

America. These studies attempt to account for differences in this dependent variable in terms of 

various relations to the environment. However, they do so without considering whether northern 

and southern populations differ genetically. That is, ecological studies tend not to consider 

whether there has been change in the focal entities that might account for their differential 

growth rates. Presumably there are good reasons for thinking, in this case, that genetic 

differences are negligible. The relevant point is that this mode of explanation is purely ecological 

in that it assumes of focal entities that they are a static type (beavers are beavers, regardless of 

the population) while focusing on their relation to the environment.    

 Of course, many patterns in nature cannot be explained either in strictly evolutionary or 

strictly ecological terms. Often the two types of factor interact. In these cases, it is often 

necessary to consider how relations between the focal entity and its environment influence 

subsequent changes in the entities. This would qualify as a combined, eco-evo explanation – one 

that incorporates both evolutionary and ecological factors. Explanations of evolution by natural 

section are a familiar example (e.g. Endler 1986).  

Eco-evo explanations are undeniably more epistemically demanding than either pure form of 

explanation. For this reason it is often preferable to first establish whether a purely evolutionary 

or purely ecological model will account for most of the variation in some variable of interest. It 

is prudent to address this question before attempting to consider both evolutionary and ecological 

factors in conjunction. There is no need to adopt a more complicated hybrid model if a simpler 

model will do.  

  Within genome-level ecology a straightforward strategy has been developed to determine 

the extent to which a given pattern can be explained by ecological or evolutionary factors 
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(Linquist et al. 2013). One begins with a dependent variable of interest. A population of entities 

is then selected in which there is variation in the dependent variable. Variation in the dependent 

variable is required in order to determine the relative contributions of ecological and 

evolutionary factors. The next step is to identify independent ecological and evolutionary factors 

that are likely to influence the dependent variable. It is here that definitions 1 & 2 come into 

play. Evolutionary variables are ones that identify changes in the focal entities over time. For 

example, in the case of genome ecology, phylogenetic distance is used as a proxy for their 

evolutionary or historical divergence (ibid). Ecological variables are features of the environment 

thought to stand in a casual relation to the dependent variable. Admittedly, it is conceptually and 

empirically challenging to identify independent (ecological and evolutionary) variables that are 

suitable for this kind of an analysis. Those variables must themselves vary among entities in the 

sample population. Only then can one determine how much of the variation in the dependent 

variable correlates with ecological and evolutionary factors, respectively. But once the relevant 

variables are identified, conducting this type of analysis is a fairly simple matter of partitioning 

variance.  

5. Identifying Generality at the Community Level 

Recall that Lawton was worried about the disproportionate influence of historical “filters” on 

communities. He proposed that various one-off events would dramatically alter their composition 

and dynamics. We can think of these events as equivalent to the evolutionary factors identified in 

Definition 1. Imagine a community that experiences some unpredictable disruption such as a fire 

or flood.  On the one hand, this might seem to be an ecological influence since it is externally 

imposed on the community. However, by hypothesis these are one-off events. Hence they cannot 

be treated as variables that take on various values across a range of communities. To treat these 
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events in such a fashion would just be to regard them as ordinary ecological factors. To be sure, 

in some instances fire or flood might be viewed as quantitative ecological variables. But we are 

interested here in what it means for these rare events to serve as a historical filter that potentially 

mitigates an ecological explanation. To view these events as historical contingencies, I suggest, 

involves viewing them just in terms of their effects the structure of token communities and not, 

as it were, as general types of causes. In other words, when considering the impact of one–off 

events the relevant question concerns their impact on a population of communities, and not 

whether the event was a fire, flood, or some other factor per se. Insofar as these events have the 

same type of effect there is no point in distinguishing them. By analogy, Lynch’s model is 

interested in how changes in Ne impact the fixation of alleles. It doesn’t matter about which 

particular events lead up to a change in Ne. For explanatory purposes these “environmental” 

factors are treated as a generic kind of cause. Hence the explanation abstracts away from 

particular relationships to the environment. Much the same applies to sorts of the one-off events 

that Lawton was concerned about.   

 Let us then consider how Definitions 1 and 2 are applied to an ecological community. 

Suppose that the focal entities are insect communities such as the one Lawton observed. In order 

to conduct a regression analysis we require a population of these communities that vary in some 

(quantitative) dependent variable. Following Lawton, let’s choose rank abundance as the 

relevant dependent variable. This standard measure in community ecology plots the relative 

abundances of community members against their rank in abundance, thus generating a curve 

with a particular shape for each community. The advantage of this as a dependent variable is that 

it provides a common measure for comparing taxonomically distinct communities.   



14 
 

 Lawton’s example of predator density is a suitable independent ecological variable, 

provided that it also varies across the set of communities in the sample. Of course, numerous 

other ecological variables might be selected. It bears mentioning that there is a considerable 

danger of false negatives when applying this framework to test for ecological influences on some 

dependent variable. Unless one selects the correct independent variable(s), an ecological 

influence could easily be overlooked.   

  A greater challenge concerns the selection of historical variables. In the case of genome-

level ecology, phylogenetic relatedness served as a proxy for historical or evolutionary distance. 

Thus, it was possible to determine how much of the variation among genomes in a sample 

correlates with phylogenetic distance. The problem is that prototypical communities are less 

cohesive than genomes. Their members move independently from one community to another. 

Hence one cannot easily reconstruct a phylogenetic tree for a population of communities. How 

then might one identify a quantitative variable to stand in for historical distance? 

 These limitations are indeed challenging when it comes to most prototypical 

communities. It might simply turn out that assemblages of macro flora and fauna are poor 

choices for testing the contingency thesis. However, recent years have seen increased interest in 

molecular and genome-level ecology. Diverse communities containing thousands of 

microorganisms can be contained in a single test tube (Swenson et al. 2000), or, in the case of 

gene families, uploaded to a database. These communities are easily isolated as cohesive units 

with divergent histories. Thus the molecular and genetic levels offer ample opportunity to test for 

the influence of chance historical events on (albeit unconventional) communities. With this 

qualification in mind we can imagine how one might test for the stability of an ecological 

relationship. This would involve comparing the influence of ecological and evolutionary 
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variables across a range of different taxa and habitat types. There are a wide range of molecular 

and genetic systems in which these experiments could be conducted. Similarly, the dependency 

between predator abundance and rank abundance could be tested across a range different habitat 

types. Lawton’s contingency thesis would predict little stability in ecological relationships 

among these different types of community and distinct habitats. To date, no adequate test of this 

hypothesis has been conducted.        

 Thinking back to Lawton’s argument it becomes clear that he was in no position to 

pronounce the demise of community ecology. It is a straightforward fallacy to assume that the 

presence of a historical explanation for some particular community undermines the explanatory 

power of ecological laws. Nor would it make quantitative sense to ask, “How much of the 

Skipwith bracken fern community was determined by its historical and ecological factors, 

respectively?” Any given community will be influenced by both. To partition the relative 

contributions of ecology and history one must compare a population of communities in which 

there is variation in the dependent variable of interest. One also requires a way to quantify 

ecological and historical influences on that dependent variable. Only then, by looking for 

ecological correlations that obtain across a range of background conditions, can one determine 

the stability or contingency of an ecological dependency.  

6. Conclusion 

Perhaps the take-home message from this discussion is that demonstrating contingency in 

community ecology is no simple affair. Only certain communities will lend themselves to the 

kind of quantitative analysis that I have outlined.  There are significant challenges associated 

with identifying and measuring the relevant variables. Even if one finds an apparent influence of 

history on the dependent variable, there will be looming questions about whether some 
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unidentified ecological variable is perhaps being overlooked. To make matters more complex, an 

assessment of stability or contingency must proceed across a diverse range of taxa and habitats. 

In fairness to Lawton, neither the conceptual framework nor the requisite data were available at 

the time he was writing. However, I have suggested that recent advances in molecular and 

genome-level ecology make it easier to test his contingency thesis. As it stands, Lawton’s thesis 

has been supported by the wrong kind of data. It therefore remains an open question whether 

there are stable ecological generalizations at the community level.  
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