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ABSTRACT In this paper, I present a solution to the Doomsday argument based on a third type of 
solution, by contrast to on the one hand, the Carter-Leslie view and on the other hand, the Eckhardt et 
al. analysis. The present line of thought is based on the fact that both aforementioned analyses are 
based on an inaccurate analogy. After discussing the imperfections of both models, I present then a 
two-sided model that fits more adequately with the human situation corresponding to DA and 
encapsulates both Carter-Leslie's and Eckhardt et al.'s models. I argue then that this new analogy also 
holds when one takes into account the issue of indeterminism and the reference class problem. This 
leads finally to a novel formulation of the argument that could well be more consensual than the 
original one. 

 
 
In this paper, I present a solution to the Doomsday argument (DA, for short) based on a third type of 
solution, by contrast to on the one hand, the Carter-Leslie view and on the other hand, the Eckhardt et 
al. analysis. In section 1, I describe the Carter-Leslie view. In section 2, I review the Eckhardt et al. 
line of reasoning. I point out then in section 3 an atemporal-temporal disanalogy in the Carter-Leslie 
analogy, which leads to the description of a strengthened variation of this latter model. In section 4, I 
raise some criticisms against the Eckhardt et al. analogy, thus leading to reformulate this latter analogy 
more accurately. I present then in section 5 a new two-sided analogy that fits more adequately with the 
human situation corresponding to DA and encapsulates both Carter-Leslie's and Eckhardt et al.'s 
models. This leads to a novel formulation of the argument that could well be more consensual than the 
original one. I argue in section 6 that this last two-sided analogy also holds when one takes into 
account the issue of indeterminism. Finally, I show in section 7 that the two-sided model is also 
capable of handling the reference class problem.1 
 
 
1. The Carter-Leslie View 
 
Let us begin by sketching briefly the Doomsday argument. The argument can be described as a 
reasoning leading to a Bayesian shift, from an analogy between what has been termed the two-urn 
case2 and the corresponding human situation. Consider, first, the two-urn case (slightly adapted from 
Bostrom 1997):3 
 
                                                           
1 The solution to DA presented here is a somewhat condensed and enhanced version of the ideas expressed in 
Franceschi (2002), that also discusses at length the problems related to DA: God's Coin Toss, the Sleeping 
Beauty Problem, the Shooting-Room Paradox, the Presomptuous Philosopher. 
2 Cf. Korb & Oliver (1998). 
3 Cf. Bostrom (1997): 'Imagine that two big urns are put in front of you, and you know that one of them contains 
ten balls and the other a million, but you are ignorant as to which is which. You know the balls in each urn are 
numbered 1, 2, 3, 4 ... etc. Now you take a ball at random from the left urn, and it is number 7. Clearly, this is a 
strong indication that that urn contains only ten balls. If originally the odds were fifty-fifty, a swift application of 
Bayes' theorem gives you the posterior probability that the left urn is the one with only ten balls. (Pposterior 
(L=10) = 0.999990)'. 
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The two-urn case An urn4 is in front of you, and you know that it contains, depending on the 
flipping at time T0 of a fair coin, either 10 (tails) or 1000 (heads) numbered balls. The balls are 
numbered 1, 2, 3, .... At this step, you formulate the Hfew and Hmany assumptions with P(Hfew) = 
P(Hmany) = 0.5 and you try to evaluate the number of balls which were contained at T0 in the urn. 
You know all the above and you randomly draw a ball from the urn at time T1. Now you get the 
ball #5 at T1. You conclude then to an upward Bayesian shift in favour of the Hfew hypothesis. 

 
The two-urn case constitutes an uncontroversial application of Bayes' theorem. It is based on the two 
following competing hypotheses: 
 
 (H1few) the urn contains 10 balls 
 (H2many) the urn contains 1000 balls 
 
and the corresponding prior probabilities: P(H1) = P(H2) = 0.5. Taking into account the fact that E 
denotes the available evidence that the random ball is #5 and P(E|H1) = 1/10 and P(E|H2) = 1/1000, a 
Bayesian shift ensues from a straightforward application of Bayes' theorem. As a result, the posterior 
probability is such that P'(H1) = 0.99. 

Let us consider, on the other hand, the human situation corresponding to DA. Now being concerned 
with the final size of the human race, you consider the two following competing hypotheses:  
 
 (H3few) the number of humans having ever lived will reach 1011 (doom soon) 
 (H4many) the number of humans having ever lived will reach 1014 (doom later) 
 
Now it appears that each human has his own birth rank, and that yours is roughly 60x109. Let us 
assume then, for the sake of simplicity, that the prior probabilities are such that P(H3) = P(H4) = 0.5.5 
Now according to Carter and Leslie, the human situation corresponding to DA is analogous to the two-
urn case.6 Let us denote by E the fact that your birth rank is 60x109. Thus, an application of Bayes' 
theorem, taking into account the fact that P(E|H3) = 1/1011 and P(E|H4) = 1/1014, leads to a vigorous 
Bayesian shift in favor of the hypothesis that Doom will occur soon: P'(H3) = 0.999. For this reason, 
the Carter-Leslie line of thought can be summarized as follows: 
 
 (5) in the two-urn case, a Bayesian shift of the prior probability of Hfew ensues 
 (6) the situation corresponding to DA is analogous to the two-urn case 
 (7) ∴ in the situation corresponding to DA, a Bayesian shift of the prior probability of Hfew 

ensues 
 
From the Carter-Leslie's viewpoint, the analogy with the urn is well-grounded. And this legitimates 
DA's conclusion according to which a Bayesian shift in favor of doom soon ensues. This last 
conclusion appears paradoxical or at least counter-intuitive. But the task of diagnosing what is wrong, 
if any, with the Doomsday Argument proves to be very difficult and remains an open question. 

At this point, it is worth mentioning in passing that the reasoning based on the two-urn case does not 
yield absolute certainty. This last reasoning is probabilistic and as such, it leads to a true conclusion in 
most cases. If the experiment is repeated many times and you bet accordingly, you will win in most 
cases. But it must be acknowledged that you will sometimes lose. For consider the situation where the 
coin lands heads and the number of balls in the urn is 1000. In this last case, if you get the ball #5, the 
reasoning based on the two-urn case leads to the false conclusion that the urn contains only 10 balls. 
However, this does not preclude us from regarding the corresponding reasoning as sound. For in the 
long run, it is reliable and yields many more true conclusion than false ones. The following table 
summarizes this situation: 

                                                           
4 Bostrom's original description of the two-urn case refers to two urns. For the sake of simplicity, I refer here to 
one single urn (containing either 10 or 1000 balls) instead of two, since it is equivalent to the original two-urn 
case. 
5 The reasoning remains unaltered if we consider some alternative prior probabilities (with 0 < P(H3) < 1). 
6 More precisely, Leslie considers an analogy with the lottery case. 
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two-urn case (numbered balls) 

toss outcome reference class (numbered balls) # prediction reasoning 
 tail (doom soon) 10 numbered balls #5 true sound 

heads (doom later) 1000 numbered balls #5 false sound 
 

 
 
2. The Eckhardt et al. Analysis 
 
A line of objection to the Doomsday argument initially raised by William Eckhardt (1993, 1997) and 
recently echoed by George Sowers (2002) and Elliott Sober (2003) runs as follows. The analogy with 
the urn at the origin of DA, so the objection goes, is ill-grounded. For in the two-urn case, the ball 
number is randomly chosen. But in the human situation corresponding to DA, our birth rank is not 
randomly chosen, but rather indexed on the corresponding temporal position. Hence, the analogy is ill-
grounded and the whole reasoning is invalid. Eckhardt notably stresses the fact that it is impossible to 
make a random selection when there exists numerous unborn members in the chosen reference class.7 
Sober (2003) argues along the same lines,8 by pointing out that no mechanism having the effect of 
randomly assigning a temporal location to human beings, can be exhibited. Lastly, such a line of 
objection has been recently revived by Sowers. He emphasizes that the birth rank of each human is not 
random, because it is indexed on the corresponding temporal position.9 

In parallel, according to the Eckhardt et al. analysis, the human situation corresponding to DA is not 
analogous to the two-urn case, but rather to an alternative model, the consecutive token dispenser. The 
consecutive token dispenser is a device, initially described by Eckhardt,10 that expels consecutively 
numbered balls at a constant rate: '(...) suppose on each trial the consecutive token dispenser expels 
either 50 (early doom) or 100 (late doom) consecutively numbered tokens at the rate of one per 
minute'. A similar device - call it the numbered ball dispenser - is also mentioned by Sowers:11 
 

There are two urns populated with balls as before, but now the balls are not numbered. Suppose you 
obtain your sample with the following procedure. You are equipped with a stopwatch and a marker. You 
first choose one of the urns as your subject. It doesn't matter which urn is chosen. You start the stopwatch. 
Each minute you reach into the urn and withdraw a ball. The first ball withdrawn you mark with the 
number one and set aside. The second ball you mark with the number two. In general, the nth ball 
withdrawn you mark with the number n. After an arbitrary amount of time has elapsed, you stop the 
watch and the experiment. In parallel with the original scenario, suppose the last ball withdrawn is 
marked with a seven. Will there be a probability shift? An examination of the relative likelihoods reveals 
no. 

 
Thus, according to the Eckhardt et al. line of thought, the human situation corresponding to DA is 

not analogous to the two-urn case, but rather to the numbered ball dispenser. And in this latter model, 
the conditional probabilities are such that P(E|H1) = P(E|H2) = 1. As a consequence, the prior 
probabilities of the two alternative hypotheses Hfew and Hmany are unchanged. Hence, the 
corresponding line of reasoning goes as follows: 

 
 (8) in the numbered ball dispenser, the prior probabilities remain unchanged 
 (9) the situation corresponding to DA is analogous to the numbered ball dispenser 
                                                           
7 Cf. (1997, p. 256): 'How is it possible in the selection of a random rank to give the appropriate weight to 
unborn members of the population?'. 
8 Cf. (2003, p. 9): 'But who or what has the propensity to randomly assign me a temporal location in the duration 
of the human race? There is no such mechanism.'. But Sober is mainly concerned with providing empirical 
evidence against the hypotheses used in the original version of DA. 
9 Cf. (2002, p. 40): 'My claim is that by assigning a rank to each person based on birth order, a time correlation is 
established (...).' and also (2002, p. 44): 'The doomsday argument has been shown to be fallacious due to the 
incorrect assumption that you are a random sample from the set of all humans ever to have existed.'. 
10 Cf. (1997, p. 251). 
11 Cf. (2002, p. 39). 
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 (10) ∴ in the situation corresponding to DA, the prior probabilities remain unchanged 
 
thus yielding P(Hfew) = P'(Hfew) and P(Hmany) = P'(Hmany). 
 
 
3. Strengthening the Carter-Leslie Analogy 

 
As we have seen, according to the Carter-Leslie view, DA is based on an analogy between the human 
situation corresponding to DA and the two-urn case. By contrast, from the Eckhardt et al. standpoint, 
the analogy associates the human situation corresponding to DA and the numbered ball dispenser. In 
what follows, I shall argue that both analogies suffer from some defects and consequently do not prove 
to be fully adequate. This leads finally to reformulating the analogy more accurately. 

Consider, on the one hand, the analogy with the two-urn case inherent to the Carter-Leslie view. Let 
us begin with the characteristics of the human situation corresponding to DA. A summary analysis 
shows indeed that this last situation is temporal. In effect, the birth ranks are successively attributed to 
human beings in function of the temporal position corresponding to their appearance on Earth. Thus, 
the corresponding situation takes place, say, from T1 to Tn, 1 and n being respectively the rank 
numbers of the first and of the last human. By contrast, the two-urn case is atemporal, for at the 
moment where the ball is randomly drawn, all balls are already present in the urn.12 Consequently, the 
two-urn case takes place at a given time T0. Thus, the situation corresponding to DA needs to be 
modeled in a temporal model, while the two-urn case is rendered in an atemporal one. In short, the 
situation corresponding to DA being temporal, and the two-urn case being atemporal precludes us 
from regarding the two situations as isomorphic.13 The importance of the atemporal-temporal 
disanalogy will become clearer later. Roughly, its importance rests on the fact that an atemporal model 
leads to one single model, while considering a temporal one leads to several competing probabilistic 
models. In addition, considering a temporal model is best suited for taking into account the issue of 
indeterminism and the reference class problem in the context of DA. In any case, at this step, it is 
apparent that the human situation corresponding to DA being temporal should be put in analogy more 
accurately with a temporal experiment. 

The atemporal-temporal disanalogy being stated, let us investigate now how this inconvenient could 
be overcome. Consider then the following experiment, which can be termed the incremental two-urn 
case (let us denote it by two-urn case++): 

 
The synchronic and deterministic two-urn case++ An urn is in front of you, and you know that it 
contains, depending on the flipping at time T0 of a fair coin, either 10 (tails) or 1000 (heads) 
numbered balls. At time T1, you randomly draw the ball #e from the urn and then replace it in 
the urn. Then a device expels at T1 the ball #1, at T2 the ball #2..., at Tn the ball #n.14 Now, 
according to the outcome of the random drawing performed at T1, the device stops at Te when 
the ball #e is expelled. At this step, you formulate the Hfew and Hmany assumptions with P(Hfew) = 
P(Hmany) = 0.5 and you try to evaluate the number of balls which were contained at T0 in the urn. 
Now you know all the above and you get the ball #5 at T5 when the device stops. You conclude 
then to an upward Bayesian shift in favour of the Hfew hypothesis. 

 
The novelty in this variation is that the experiment presents a temporal feature, given that the random 
selection is made at T1 and the chosen ball is ultimately expelled at T5. It is also worth pointing out 
that in the synchronic and deterministic two-urn case++, the total number of balls in the urn is 
definitively fixed at T0, when the experiment begins. For this reason, the corresponding situation can 
be termed deterministic. An instance of the synchronic and deterministic two-urn case++ is as follows: 
 
                                                           
12 It could be pointed out that a small amount of time is necessary to perform the Bayesian shift, once the 
problem's data are known. But this can be avoided if one considers ideal thinkers, who perform Bayesian shifts 
at the time when they are informed of the data relevant to the corresponding situation. 
13 I borrow this terminology from Chambers (2001). 
14 From now on, I assume that the intervals of time, i. e. from T1 to Tn, are regular. Considering alternatively 
irregular intervals of time would not result in significant differences in the present account. 
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time T0 T1 T2 T3 T4 T5 
flipping tails      
range  1-10     

random #  5     
ball #  1 2 3 4 5 

  
At this step, it should be emphasized that anyone who accepts the conclusion of the two-urn case 
would also accept the Bayesian shift resulting from the incremental two-urn case. 

Furthermore, it appears that other variations of the incremental two-urn case can even be envisaged. 
For consider the following variant: 

 
The diachronic and deterministic two-urn case++ An opaque device contains an urn that has, 
depending on the flipping at time T0 of a fair coin, either 10 (tails) or 1000 (heads) numbered 
balls. At time T1, a robot inside the device draws a ball15 at random in the urn (containing the 
balls #1 to #n) and the device expels the ball #1; if the ball #1 has been drawn then the device 
stops at T1; else at T2, the robot draws a ball at random in the urn (now containing the balls #2 to 
#n) and the device expels the ball #2; if the ball #2 has been drawn then the device stops at T2; 
...; else at Ti, the robot draws a ball at random in the urn (now containing the balls #i to #n) and 
the device expels the ball #i; if the ball #i has been drawn then the device stops at Ti; else at Ti+1, 
etc. Now you know all the above and you get the ball #5 at T5 when the device stops.16 You 
formulate the Hfew and Hmany assumptions with P(Hfew) = P(Hmany) = 0.5 and you conclude to an 
upward Bayesian shift in favor of the Hfew hypothesis. 

 
In this last case, the random selection is performed gradually and is only made effective when the 
number of the randomly drawn ball equals the number corresponding to the temporal position, i. e. 
when the ball #i is drawn at Ti. This contrasts with the synchronic version of the experiment, where the 
random selection is made definitively at time T1. Nevertheless, in the diachronic and deterministic 
two-urn case++, the probability of drawing the ball #n at Tn still equals 1/n. Let us denote by E the fact 
of drawing the ball #5 at T5. It follows that the probability of drawing the ball #5 at T5 if the urn 
contains 10 balls is such that P(E) = 9/10 x 8/9 x 7/8 x 6/7 x 5/6 x 1/5 = 1/10. An instance of the 
diachronic and deterministic two-urn case++ is as follows: 
 

time T0 T1 T2 T3 T4 T5 
flipping tails      
range  1-10 2-10 3-10 4-10 5-10 

random #  4 7 9 6 5 
ball #  1 2 3 4 5 

 
where the random selection is only made effective at time T5. 

 
At this step, it should be pointed out that the incremental two-urn case (whether synchronic or 

diachronic) does not face the above-mentioned criticisms concerning the atemporal-temporal 
disanalogy between the human situation corresponding to DA and the original two-urn case. For it has 
been shown that the human situation corresponding to DA, being temporal, cannot be put in analogy 
with the two-urn case, which is atemporal. By contrast, the incremental two-urn case is a temporal 
experiment. Thus, the incremental two-urn case meets the above mentioned requirements concerning 
the analogy and can be put legitimately in analogy with the human situation corresponding to DA. In 
this context, we now face a variation of DA which can be stated explicitly as follows: 

 
 (11) in the incremental two-urn case, a Bayesian shift of the prior probability of Hfew ensues 
                                                           
15 After the ball is drawn, it is replaced in the urn. 
16 This can be equivalently rendered with the following computer algorithm: at T1, draw randomly a number 
between 1 and n; if 1 is issued then display 1 and stop; else at T2, draw randomly a number between 2 and n; if 2 
is issued then display 2 and stop; ...; else at Ti, draw randomly a number between i and n; if i is issued then 
display i and stop. 
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 (12) the situation corresponding to DA is analogous to the incremental two-urn case 
 (13) ∴ in the situation corresponding to DA, a Bayesian shift of the prior probability of Hfew 

ensues 
 
And this last variation is not vulnerable to the above objection. The analogy with the urn is now 
plainly plausible, since both situations are temporal. 

At this point, it is also worth scrutinizing the consequences of the incremental two-urn case (whether 
synchronic or diachronic) on the Eckhardt et al. analysis. For in the incremental two-urn case, the 
number of each ball expelled from the device is indexed on the rank of its expulsion. For example, you 
draw the ball #60000000000. But you also know that the preceding ball was #59999999999 and that 
the penultimate ball was #59999999998, etc. However, this does not prevent you from reasoning in the 
same way as in the original two-urn case and from concluding to a Bayesian shift in favor of the Hfew 
hypothesis. In this context, the incremental two-urn case has the following consequence: the fact of 
being time-indexed does not entail that the ball number is not randomly chosen. Contrast now with the 
central claim of the Eckhardt et al. analysis that the birth rank of each human is not randomly chosen, 
but rather indexed on the corresponding temporal position. Sowers in particular considers that the 
cause of DA is the time-indexation of the number corresponding to the birth rank.17 But what the 
incremental two-urn case and the corresponding analogy demonstrates, is that our birth rank can be 
time-indexed and nevertheless considered as random for DA purposes. And this point can be regarded 
as a significant objection to Sowers' analysis. This last remark leads to consider that the concrete 
analysis presented by Sowers does not prove however sufficient to solve DA. For the problem is 
revived when one considers the analogy between on the one hand, the human situation corresponding 
to DA and on the other hand, the incremental two-urn case. One can think that it is this latter analogy 
which constitutes truly the core of the DA-like reasoning. In this context, Sowers' conclusion 
according to which his analysis leads to the demise of DA appears far too strong. Echoing Eckhardt, 
he has certainly provided additional steps leading towards a resolution of DA and clarified significant 
points, but Sowers' analysis does not address veritably the strongest formulations of DA. 

 
 

4. Refining the Exchardt et al. Analogy 
 
Let us consider, on the other hand, the analogy with the numbered ball dispenser, which is 
characteristic of the Eckhardt et al. line of thought. As mentioned above, Eckhardt describes the 
consecutive token dispenser, where the tokens are expelled from the urn at constant rates ('one per 
minute'). Sowers also describes an analogous experiment, where the balls are expelled from the urn 
and numbered accordingly, at the constant18 rate of one per minute. In this last experiment, the balls 
are numbered in the order of their expulsion from the urn. 

However, the numbered ball dispenser can be criticised on the grounds that its protocol seems 
inaccurately defined. This inaccuracy concerns in particular the mechanism that expels a given ball #n 
at Tn. What makes the device stops at Tn after the ball #n has been expelled? The numbered ball 
dispenser seems to be designed for whatever way of choosing a given ball. So, could it be said, any 
mechanism for choosing the ball #n would be acceptable. But this won't do as a response, I think. For 
consider a deterministic situation, where the total number of balls in the urn is already fixed before the 
experiment begins. And suppose that a device chooses a ball at random at T1 in the urn, say #5, and 
expels then accordingly the ball #5 at T5. But it appears now that the corresponding situation is fully 
                                                           
17 Cf. Sowers (2002, p. 40): 'My claim is that by assigning a rank to each person based on birth order, a time 
correlation is established in essentially the same way that the stopwatch process established a correlation with 
the balls.'. 
18 It could be pointed out that both Eckhardt's and Sowers' experiments do not exactly correspond to the human 
situation corresponding to DA. For in this latter situation, the humans appear on Earth at variable intervals of 
time, while Eckhardt and Sowers consider constant rates. However, this last disanalogy can be regarded as a 
minor qualm. For both Eckhardt's and Sowers' experiments could be eventually restated with items which are 
expelled at irregular rates instead of constant ones. In this context, a constant rate numbered ball dispenser can 
even be regarded as a useful simplification, for our present purposes of modeling the human situation 
corresponding to DA. 
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isomorphic with the synchronic and deterministic two-urn case++. Thus, at least on one particular 
interpretation, the numbered ball dispenser proves to be identical to the synchronic and deterministic 
two-urn case++. But as we have seen, this latter experiment leads to a straightforward Bayesian shift in 
favour of the Hfew hypothesis, in opposition with the numbered ball dispenser where the prior 
probabilities remain unchanged. However, such interpretation of the numbered ball dispenser should 
be arguably discarded, on the grounds that it is at the opposite of the Eckhardt et al. viewpoint. But 
this shows that the protocol of the numbered ball dispenser stands in need of refinement and must be 
defined more accurately. This urges us to search another interpretation of the protocol of the numbered 
ball dispenser that fits more adequately with the spirit of the Eckhardt et al. line of thought. 

Let us consider, second, another interpretation. Such interpretation arises from Sowers' description of 
the numbered ball dispenser. Sowers mentions in effect that the last ball is #7 ('In parallel with the 
original scenario, suppose the last ball withdrawn is marked with a seven'). Now let us repeat the 
experiment many times. In the long run, the numbered ball dispenser will always yield the ball #7 (or 
alternatively, a small number). Under this interpretation, the repeatability of the experiment show that 
the numbered ball dispenser has a bias towards #7. Let us call it the biased numbered ball dispenser. 
Although it should be acknowledged that this is also one possible interpretation of the numbered ball 
dispenser, I don't think neither that it fits adequately with what Sowers' has in mind. For it seems that 
Sowers' is concerned with a last ball expelled which is marked with whatever number (recall: 'In 
general, the nth ball withdrawn you mark with the number n'). For that reason, this second 
interpretation should also be rejected. 

Let us consider then a third alternative interpretation. For it seems that an adequate interpretation of 
the numbered ball dispenser must do justice to Eckhardt' idea that it is impossible to make a random 
selection when there exists numerous unborn members in the reference class. Both previous 
interpretations of the numbered ball dispenser fail to incorporate this last idea. But consider now the 
following variation of the numbered ball dispenser: 

 
The synchronic and deterministic numbered ball dispenser An opaque device contains an urn 
that has 10 balls at T0, but will ultimately have either 10 or 1000 numbered balls. The final 
number of balls in the urn will be determined by the flipping of a fair coin at T0. If heads, it will 
add 990 numbered balls (#11 to #1000) in the urn a given time Ti (1 ≤ i < 10), say at T6. If tails, 
it will do nothing at T6. At time T1, you randomly draw the ball #e from the urn and then replace 
it in the urn. Then a device expels at T1 the ball #1, at T2 the ball #2..., at Tn the ball #n. Now, 
according to the outcome of the random drawing performed at T1, the device stops at Te when 
the ball #e is expelled. At this step, you formulate the Hfew and Hmany assumptions with P(Hfew) = 
P(Hmany) = 0.5 and you try to evaluate the number of balls which were contained at T0 in the urn.  
You formulate the Hfew and Hmany assumptions relating to the total number of balls in the urn at 
T6 with P(Hfew) = P(Hmany) = 0.5. Now you know all the above and you get the ball #5 at T5 
when the device stops. You conclude then that the prior probabilities remain unchanged. 

 
An instance of the synchronic and deterministic numbered ball dispenser is then as follows: 
 

time T0 T1 T2 T3 T4 T5 
flipping tails      
range  1-10 2-10 3-10 4-10 5-10 

random #  8 3 9 9 5 
ball #  1 2 3 4 5 

 
The novelty in this variation is that the urn contains 10 balls at the beginning but 990 other balls are 
eventually added later, say at T6, depending on the outcome of a coin's toss. If the coin lands tails, 
nothing is done at T6 and the urn remains with only 10 balls, the ball being drawn continuously in the 
range [1, 10]. If the coin lands heads, 990 balls are added in the urn at T6. In this last case, the ball is 
drawn in the range [1, 10] until T6, but from T6 onwards, the ball is drawn in the range [1, 1000]. The 
protocol of this experiment can be described more generally in the following terms: if the urn contains 
only 10 balls, a ball is drawn randomly in the range [1, 10]. But if the urn contains 1000 balls, a ball is 
drawn randomly in the range [1, 1000]. Thus, the ball is drawn randomly, according to the actual 
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number of balls in the urn. At this step, it should be apparent that this last protocol does do justice to 
Eckhardt's idea that it is impossible to make a random selection when there exists numerous unborn 
members in the reference class. In the present experiment the 990 balls that are added at T6 represent 
those unborn members and the random process operates in the range [1, 10] until T6, even in the case 
where the reference class will ultimately contain 1000 balls. Under these conditions, the synchronic 
and deterministic numbered ball dispenser appears well as a more robust variation of the numbered 
ball dispenser, that also vindicates Eckhardt's insights. This last variation does not face the above 
criticism of inaccuracy in its protocol. In addition, it incorporates an element of randomness, which is 
in line with our intuition that we are in some sense random humans. In this latter situation, it would be 
plainly erroneous to conclude to a Bayesian shift in favor of the Hfew hypothesis. What is rational to 
infer in this situation, rather, is that the prior probabilities remain unchanged. 

At this step, it is worth pointing out that a diachronic variation of the preceding experiment can even 
be envisaged. For consider the following variant of the numbered ball dispenser: 

 
The diachronic and deterministic numbered ball dispenser An opaque device contains an urn 
that has 10 balls at T0, but will ultimately have either 10 or 1000 numbered balls. The final 
number of balls in the urn will be determined by the flipping of a fair coin at T0. If heads, it will 
add 990 numbered balls (#11 to #1000) in the urn a given time Ti (1 ≤ i < 10), say at T6. If tails, 
it will do nothing at T6. At time T1, a robot inside the device draws a ball19 at random in the urn 
(containing the balls #1 to #10) and the device expels the ball #1; if the ball #1 has been drawn 
then the device stops at T1; else at T2, the robot draws a ball at random in the urn (now 
containing the balls #2 to #10) and the device expels the ball #2; if the ball #2 has been drawn 
then the device stops at T2; ...; else at Ti, the robot draws a ball at random in the urn (now 
containing the balls #i to #n) and the device expels the ball #i; if the ball #i has been drawn then 
the device stops at Ti; else at Ti+1, etc. You formulate the Hfew and Hmany assumptions relating to 
the total number of balls at T6 with P(Hfew) = P(Hmany) = 0.5. Now you know all the above and 
you get the ball #5 at T5 when the device stops. You conclude then that the prior probabilities 
remain unchanged. 

 
 

5. A Third Route 
 
Given the above developments, we are now in a position to evaluate the adequacy of the analogy 
inherent to DA. We now face two competing analogies with the human situation corresponding to DA. 
At this step, the question that arises is the following: is the human situation corresponding to DA 
analogous to the two-urn case++ or to the numbered ball dispenser. For we are now in presence of two 
alternative models for the analogy with the human situation corresponding to DA: (i) the - synchronic 
or diachronic - deterministic two-urn case++ and (ii) the - synchronic or diachronic - deterministic 
numbered ball dispenser. As we have seen, these two variations are strong variations of their 
respective models, since they are not vulnerable to several objections that can be raised against the 
original ones. 

Consider, to begin with, the part of the experiment that takes place from to T1 to Tn. Consider, first, 
the analogy between the human situation corresponding to DA and the incremental two-urn case. As 
we have seen, this latter version constitutes a strong variation of the argument in the sense that it is not 
open, first, to the charge of putting in correspondence an atemporal model with a temporal situation. 
This last variation is not vulnerable, second, to the objection that arises from the Eckhardt et al. 
analysis, according to which our birth rank is not random because it is time-indexed. Let us question 
now whether the human situation corresponding to DA is analogous or not to the part of the 
experiment that takes place from to T1 to Tn in the incremental two-urn case. At this step, it appears 
that both situations are temporal and relate to numerous objects (or individuals) whose number is that 
of their expulsion (or birth) rank. Thus, the part of the experiment that takes place from to T1 to Tn 
proves to be fully analogous to the human situation corresponding to DA. In this sense, the analogy 
proves to be strongly established. 

                                                           
19 After the ball is drawn, it is replaced in the urn. 
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Let us turn now to the analogy between the human situation corresponding to DA and the - 
synchronic or diachronic - deterministic numbered ball dispenser. Just as with the incremental two-
urn case, it appears that the part of the experiment that takes place from to T1 to Tn is entirely 
analogous to the human situation corresponding to DA. This should not be surprising because the 
external parts of both the incremental two-urn case and numbered ball dispenser are identical. For an 
external observer, there is no difference between the two experiments. The upshot is that for what 
concerns the part of the experiment that takes place from to T1 to Tn, there is no difference between the 
incremental two-urn case and the deterministic numbered ball dispenser. Hence, both models 
incorporate adequately the corresponding features of the situation corresponding to DA. 

 
Let us turn now to the random process. In the synchronic and deterministic two-urn case++, the 

random drawing takes place at T0. In the same way, this random drawing also occurs at T0 in the 
synchronic and deterministic numbered ball dispenser. For in both synchronic experiments, the 
random selection of a numbered ball is made at that very moment. Now does an analogous random 
selection take place with the same degree of certainty at the eve of the beginning of humankind? Do 
we have any evidence that such random selection has occurred just before the birth of the first human? 
No. For we lack any proof that the birth rank of future humans is determined by a random selection 
having occurred just before the beginning of humankind. We currently lack evidence of any such 
random process. In the case of the human situation corresponding to DA, the occurrence of such 
random selection remains fully hypothetical. However, this latter disanalogy does not appear to be a 
fundamental one. In effect, it appears that both synchronic models admit of a diachronic variation. For 
in both the diachronic and deterministic two-urn case++ and the diachronic and deterministic 
numbered ball dispenser, the random process is performed diachronically and is made gradually from 
to T1 to Te. Now it appears that both models are capable of modelling adequately the random process20 
that determines the birth rank of each human. Whether such random drawing has been made before the 
beginning of humankind or perhaps more plausibly, during the course of the existence of the human 
race does not matter. For both the deterministic two-urn case++ and the deterministic numbered ball 
dispenser admit of variations that model adequately these two situations. 

 
What precedes casts light on the crucial point that the experiment analogous to the human situation 

corresponding to DA should reflect this last property, namely that both the two-urn case++ and the 
numbered ball dispenser are capable of modelling properly the situation corresponding to DA. Now 
the question that arises is the following: Does there exist an objective criterion allowing the 
preferential choice of one of the two competing models? Is there any clue that allows to prefer the 
incremental two-urn case or the numbered ball dispenser? The answer is no. We currently lack any 
objective criterion allowing to choose between the two alternative analogies. In the lack of the relevant 
evidence, it is then wise to retain both models as roughly equiprobable. What remains in force, thus, is 
an indeterminate situation. We currently lack any objective criterion allowing to choose on rational 
grounds between the two-urn case++ and the numbered ball dispenser. In consequence, the preferential 
choice of either the two-urn case++ or the numbered ball dispenser appears well as a one-sided attitude. 
It appears now that an adequate model should reflect the fundamental property of being two-sided. At 
this point, we are in a position to describe a new model for the human situation corresponding to DA 
which is not open to the charge of being one-sided: 

 
The two-sided model With a probability P such that 0 < P < 1, a device performs (whether 
synchronically or diachronically) either a numbered ball dispenser or a two-urn case++. Now 
you get the ball #e at Te when the device stops. Given the Hfew and Hmany assumptions and 
P(Hfew) = P(Hmany) = 0.5, how would you update your prior probabilities? 

 
Now, whatever the chosen random number, the device expels the ball #1 at time T1, the ball #2 at time 
T2, ..., the ball #e at time Te. This last experiment presents the following property: there is no external 
difference whether the performed experiment is a numbered ball dispenser or a two-urn case++. Let us 
analyze then the two-sided model in more detail. On the one hand, the situation that takes place from 

                                                           
20 To put it metaphorically. Needless to say, such random process need not be taken at face value. 
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T1 to Tn does reflect the part of the human situation corresponding to DA that takes place from the 
beginning of humankind21 to our current birth. On the other hand, the characteristics of the random 
process that takes place at T0 (synchronically) or from T1 to Te (diachronically) now correspond 
adequately to our current situation. Finally, the corresponding line of reasoning is as follows: 

 
 (14) the situation corresponding to DA is either analogous to the incremental two-urn case or to 

the numbered ball dispenser 
 (15) in the incremental two-urn case, a Bayesian shift of the prior probability of Hfew ensues 
 (16) in the numbered ball dispenser, the prior probability remains unchanged 
 (17) ∴ in the situation corresponding to DA, either a Bayesian shift of the prior probability of 

Hfew ensues or the prior probability remains unchanged 
 
in replacement of the steps (5)-(7) of the Carter-Leslie line of reasoning and of the steps (8)-(10) of the 
Eckhardt et al. line of argument. 

 
 

6. The Issue of Indeterminism 
 

Let us examine now whether the two-sided model is affected or not by the issue of indeterminism in 
the context of DA. This last issue is an important one, since it has notably motivated Eckhardt's above-
mentioned point that it is impossible to make a random selection when there exists numerous unborn 
members in the reference class. At this step, it is worth noting that the preceding experiments suggests 
that some variations are capable of handling an indeterministic situation, namely where the total 
number of balls in the urn is unknown at the time where the experiment begins and is only determined 
with certainty during the course of the experiment. As an example, the following variation takes into 
account an indeterministic situation: 

 
The diachronic and indeterministic two-urn case++ An opaque device contains an urn that has 
10 balls at T0, but will ultimately have either 10 or 1000 numbered balls. The final number of 
balls in the urn will remain undetermined until an internal mechanism will flip a fair coin at a 
given time Ti (1 ≤ i < 10). If heads, it will add 990 numbered balls (#11 to #1000) in the urn at 
Ti. If tails, it will do nothing. At time T1, a random generator inside the device issues a number 
in the range [1, 1000] and the device expels the ball #1; if the number 1 has been issued then the 
device stops at T1; else at T2, the random generator issues a number in the range [2, 1000] and 
the device expels the ball #2; if the number 2 has been issued then the device stops at T2; ...; else 
at Ti-1, the random generator issues a number in the range [i-1, 1000] and the device expels the 
ball #i-1; if the number i-1 has been issued then the device stops at Ti-1; else at Ti (1 ≤ i < 10), 
the random generator issues a number in the range [i, n] (the total number of balls in the urn 
after the flipping of the coin is n) and the device expels the ball #i; if the number i has been 
issued then the device stops at Ti; else at Ti+1, etc. Now you know all the above and you get the 
ball #e at Te when the device stops. You formulate the Hfew and Hmany assumptions relating to 
the total number of balls in the urn after the flipping of the coin with P(Hfew) = P(Hmany) = 0.5. 
Now you know all the above and you get the ball #5 at T5 when the device stops. You conclude 
then to an upward Bayesian shift in favor of the Hfew hypothesis. 

 
An instance of the diachronic and indeterministic two-urn case++ is then as follows: 
 

time T0 T1 T2 T3 T4 T5 
flipping    tails   
range  1-1000 2-1000 3-1000 4-10 5-10 

random #  857 326 92 9 5 
ball #  1 2 3 4 5 

 

                                                           
21 To be accurate: from the beginning of the chosen reference class. 
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The novelty in this variation is that it takes into account an indeterministic situation. In effect, the 
number of balls present in the urn is unknown at the time where the first ball is expelled from the 
device and is only determined at Ti. Such a variation shows that a random selection can even be made 
when the number of balls in the urn is unknown at the time where the random process begins. And this 
appears as a counter-example to Eckhardt's attack against the random sampling assumption in DA, 
based on the impossibility of making a random selection when there exists many unborn members in 
the given reference class. But the diachronic and indeterministic two-urn case++ shows that a random 
selection can even be made, under certain indeterministic circumstances. 

However, it should be acknowledged that this only partly undermines Eckhardt's point and that this 
latter experiment does not handle every type of indeterministic situation. For it could be retorted that 
Eckhardt could provide a counterpart of the diachronic and indeterministic two-urn case++. In effect, 
Eckhardt could reply that what he has in mind is an experiment of the following type: 
 

The diachronic and indeterministic numbered ball dispenser An opaque device contains an urn 
that has 10 balls at T0, but will ultimately have either 10 or 1000 numbered balls. The final 
number of balls in the urn will remain undetermined until an internal mechanism will flip a fair 
coin at a given time Ti (1 ≤ i < 10). If heads, it will add 990 numbered balls (#11 to #1000) in 
the urn at Ti. If tails, it will do nothing. At time T1 a robot inside the device draws a ball at 
random in the urn (containing the balls #1 to #10) and the device expels the ball #1; if the 
number 1 has been issued then the device stops at T1; else at T2, a robot inside the device draws 
a ball at random in the urn (containing the balls #2 to #10)  and the device expels the ball #2; if 
the number 2 has been issued then the device stops at T2; ...; else at Ti-1, a robot inside the 
device draws a ball at random in the urn (containing the balls # i-1 to #10) and the device expels 
the ball #i-1; if the number i-1 has been issued then the device stops at Ti-1; else at Ti, a robot 
inside the device draws a ball at random in the urn (containing the balls #i to # n) (the total 
number of balls in the urn after the flipping of the coin is n) and the device expels the ball #i; if 
the number i has been issued then the device stops at Ti; else at Ti+1, etc. Now you know all the 
above and you get the ball #5 at T5 when the device stops. You formulate the Hfew and Hmany 
assumptions relating to the total number of balls in the urn after the flipping of the coin, with 
P(Hfew) = P(Hmany) = 0.5. You conclude then that the prior probabilities remain unchanged. 

 
An instance of the diachronic and indeterministic numbered ball dispenser is as follows: 
 

time T0 T1 T2 T3 T4 T5 
flipping    tails   
range  1-10 2-10 3-10 4-10 5-10 

random #  7 6 10 7 5 
ball #  1 2 3 4 5 

 
To the difference of the preceding case, the random drawing of the ball is made here in the range [1, 
10] until the flipping of the coin. This increases the probability that the device stops, says at T5, even if 
the urn will ultimately contain 1000 balls, after the coin has eventually landed heads. In such a case, 
the drawing of the ball #5 at random gives us no grounds for concluding to a Bayesian shift in favor of 
the Hfew assumption. In effect, in this last situation, it is very probable to draw a number in the range 
[1, 10], even if the coin lands heads at Ti. 

The upshot is that taking into account the issue of indeterminism gives us no clue to decide whether 
the incremental two-urn case or the numbered ball dispenser is an adequate model for the human 
situation corresponding to DA. For both models admit of a variation which is capable of modeling the 
human situation corresponding to DA, even if it is of an indeterministic nature. Hence, whether the 
situation is inderministic or not, we still find ourselves on the third route. 
 

 
7. The Reference Class Problem 
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At this stage, it is worth recalling the reference class problem.22 Roughly, it is the problem of how to 
define 'humans'. More accurately, it can be stated as follows: How can the reference class be 
objectively defined for DA-purposes? For an extensive or restrictive definition of the reference class 
can be given. An extensively defined reference class would include for example the somewhat exotic 
future evolutions of humankind, for example with an average I.Q. of 200 or with backward causation 
abilities. Conversely, a restrictively designed reference class would only include those humans who 
correspond accurately to the characteristics of, say, homo sapiens sapiens, thus excluding the past 
homo sapiens neandertalensis and the future homo sapiens supersapiens. To put it more in adequation 
with our current taxonomy, the reference class can be defined at different levels which correspond 
respectively to the supergenus superhomo, the homo genus, the homo sapiens species, the homo 
sapiens sapiens subspecies, etc. At this step, it appears that we lack an objective criterion to choose the 
corresponding level non-arbitrarily. 

Leslie's treatment of the reference class problem is exposed in the response made to Eckhardt (1993) 
and in Leslie (1996).23 Leslie's response to the reference class problem is as follows. According to 
Leslie, one can choose the reference class more or less as one wishes, i.e. at a somewhat arbitrary 
level. Once this choice is performed, it suffices to adjust the prior probabilities accordingly to get the 
argument moving. Leslie's sole condition is that the reference class should not be chosen at an extreme 
level of extension or of restriction.24 In addition, Leslie addresses the resulting fact that each human 
belongs to several different classes, restrictively or extensively defined. However, this is not a problem 
from Leslie's standpoint, since the argument works for all these classes. In effect, a Bayesian shift 
ensues for whatever reference class arbitrarily chosen, at a somewhat reasonable level of extension or 
of restriction. Leslie illustrates this point with an urn analogy. To the difference of the two-urn case, he 
considers an urn that contains balls of different colors, say red and green. A red ball is drawn from the 
urn. In this context, from a restrictive viewpoint, the ball is a random red ball and there is no 
difference in this case with the classical two-urn case. But from a more extensive viewpoint, it is also a 
random red-or-green ball.25 According to Leslie, although the prior probabilities are different in each 
case, a Bayesian shift ensues in both cases.26 In sum, on Leslie's view, the reference class problem can 
be overcome because the argument works for all reference classes. For that reason, Leslie's account 
can be termed an undifferentiated account of the reference class problem. 

At this step, it appears that the incremental two-urn case and the numbered ball dispenser can be 
easily adapted, in order to incorporate the elements of the reference class problem. In both models, it 
suffices to consider that the 10 first balls are red and that the 990 remaining balls are green ones. Now 
the urn is filled with red-or-green balls and a given red ball (or a green ball) can also be considered as 
a red-or-green ball. In particular, this provides an adequate framework for modeling the paradigm case 
of the neandertalian. Leslie addresses in effect the case of a neandertalian who would have 
implemented a DA-like reasoning:27 
                                                           
22 The reference class problem in probability theory is notably exposed in Hájek (2002, s. 3.3). For a treatment 
of the reference class problem in the context of DA, see notably Eckhardt (1993, 1997), Bostrom (1997, 2002, 
ch. 4 pp. 69-72 and ch. 5), Franceschi (1998, 1999).  The point of Franceschi (1999) is that the reference class 
problem also arises in confirmation theory. 
23 In the part entitled 'Just who should count as being human?' (pp. 256-63). 
24 Cf. 1996, p. 260: 'Widenings of reference class can easily be taken too far.' and p. 261: 'Again, some ways of 
narrowing a reference class might perhaps seem inappropriate.'. 
25 Cf. Leslie (1996, p. 259): 'Suppose all the balls in the urn are numbered. A ball is drawn. It turns out to be 
bright red. Note that it is not only a bright red ball whose number has been drawn at random from the numbers 
of all the bright red balls in the urn, but also a red-or-reddish ball whose number has been drawn at random from 
the numbers of all the red-or-reddish balls in the urn.'. 
26 Cf. Leslie (1996, pp. 258-9): 'The thing to note is that the red ball can be treated either just as a red ball or else 
as a red-or-green ball. Bayes's Rule applies in both cases. When we're interested in how many red balls there are 
in the urn, we need to treat the ball just as a red ball. The 'prior probabilities' entering into our Bayesian 
calculation are then probabilities for such and such numbers of red balls. When, in contrast, what interests us is 
how many red-or-green balls the urn contains, then we have to treat the red ball as red-or-green. 
Correspondingly, the prior probabilities entering into the calculation are the prior probabilities of various 
numbers of balls in the red-or-green-ball class. [...] All this evidently continues to apply to when being-red-or-
green is replaced by being-red-or-pink, or being-red-or-reddish.'. 
27 Cf. (1992, pp. 527-8). 
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Consider the protest that any Stone Age man who had used the argument would have been led to the 
erroneous conclusion that the human race would soon die out. A first reply is: So what? It is not a defect 
in any merely probabilistic argument if it leads someone improbably situated - someone very early in 
time, maybe, or someone who has thrown a dozen dice with eyes shut and expects (mistakenly, in view of 
what is actually on the table) not to see a dozen sixes upon opening them - to an erroneous conclusion. 
 

From the above excerpt and the fact that Leslie considers the neandertalian's conclusion as erroneous, 
it is implicit that the corresponding reference class is the somewhat extensively defined homo sapiens 
species. Now the homo sapiens species (red-or-green balls) has historically included the homo sapiens 
neandertalensis subspecies (red balls) and then the homo sapiens sapiens subspecies (green balls). 
Leslie acknowledges the fact that a neandertalian who would have implemented a DA-like reasoning 
relating to the homo sapiens reference class would have been led to a false conclusion. But as Leslie 
explains, this is due to the above-mentioned28 fact that the reasoning based on the two-urn case does 
not yield absolute certainty. In the neandertalian case, the doom later hypothesis (heads) has been 
finally confirmed and the neandertalian had concluded falsely to a nearest extinction. But her 
anthropic reasoning were nevertheless sound. The following table summarizes the corresponding 
situation: 
 

incremental two-urn case (red-or-green balls - homo sapiens) 
toss outcome reference class (balls) reference class (humans) # prediction reasoning 

tail (doom soon) 10 red-or-green balls 107 homo sapiens #5 true sound 
heads (doom later) 1000 red-or-green balls 

(10 red balls and 990 
green balls) 

1010 homo sapiens 
(107 homo sapiens 

neandertalensis and 
1010 - 107 

homo sapiens sapiens) 

#5 false sound 

 
At this step, it appears that Leslie's treatment of the neandertalian case is fully in adequation with the 
incremental two-urn case. 

But let us plug alternatively this situation into the numbered ball dispenser model. Consider, as an 
example, the diachronic and indeterministic numbered ball dispenser.29 Now it appears that the 
neandertalian who would have based her reasoning on this latter model would have been right if she 
has reasoned as follows: It is well possible that some unborn members are not currently taken into 
account and hence, my birth rank cannot be considered as random in the corresponding reference 
class. Consequently, I better leave my prior probabilities unchanged. Now it should be apparent that 
the diachronic and indeterministic numbered ball dispenser also fits adequately with the neandertalian 
case. The upshot is that if the adequate model is a numbered ball dispenser, then the just-mentioned 
reasoning is entirely in accordance with this latter model. 

Under these circumstances, it appears that the situation arising from the reference class problem 
parallels that of the issue of indeterminism in the context of DA. In effect, it appears that the paradigm 
case of the neandertalian can be modeled in two different ways. Just as in the issue of indeterminism, 
the neandertalian case can be rendered either by an incremental two-urn case, or by a numbered ball 
dispenser (whatever the chosen variations, i.e. synchronic or diachronic, deterministic or 
indeterministic). It follows that both models are capable of rendering the corresponding analogy. 
However, this has significant consequences, since the former leads to a Bayesian shift, while the latter 
leaves the prior probabilities unchanged. 
 

I have expressed my own view on the reference class problem in Franceschi (1998, 1999). By 
contrast to Leslie's viewpoint, it can be characterized as a differential account of the reference class 
problem. Let us examine how it handles the neandertalian case.30 It is worth pointing out first that 
Leslie's account of the neandertalian case is only concerned with the homo sapiens reference class. But 

                                                           
28 Cf. §1. 
29 The same goes for the other variations of the numbered ball dispenser. 
30 Adapted from Franceschi (1998, p. 243). 
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my point is that the neandertalian can consider himself at a somewhat extensive level, as a member of 
the homo sapiens species (as Leslie emphasizes) or at a slightly more restrictive level, as a member of 
the homo sapiens neandertalensis subspecies. And the consequences of this choice are not negligible. 
In effect, had the neandertalian identified the reference class with the homo sapiens neandertalensis 
subspecies, her anthropic prediction would have been then successful. But the corresponding anthropic 
prediction would have failed if she had chosen, more extensively, the homo sapiens species as the 
relevant reference class. At this step, it should be pointed out that the history of humankind is such that 
the extinction of the early homo sapiens neandertalensis subspecies has been followed by the 
appearance of our current homo sapiens sapiens subspecies. Thus, the doom later hypothesis for the 
homo sapiens reference class has been historically confirmed. But the point is that a doom later 
hypothesis from the homo sapiens class viewpoint is also a doom soon hypothesis from the homo 
sapiens neandertalensis class standpoint. More generally, it appears that a doom later situation for a 
given reference class is also a doom soon situation for a more restrictive reference class. Furthermore, 
such type of situation among evolutionary species is very widespread. For the extinction of our current 
homo sapiens sapiens subspecies could well be followed by the survival of the homo sapiens 
supersapiens subspecies. Consider also, at a greater level of restriction, a reference class consisting of 
all homo sapiens sapiens having not known of the computer. Doesn't there exist serious grounds for 
considering that this last reference class is promised to a nearest extinction? More generally, for 
whatever chosen reference class, I can still choose a slightly more extensive class that will survive. 
And it should be pointed out that this ambivalent effect has the effect of depriving the original 
argument from its initial terror. At this step, it should be apparent that the consideration of a 
differential treatment of the reference class problem renders DA innocuous. Finally, this gives a way 
of accepting its conclusion by rendering the argument less counterintuitive than in its original 
formulation. 

 
Now the preceding remarks concerning the reference class problem can be combined with the 

conclusion of the preceding developments relating to the analogy with the urn. Let us recall the 
conclusion of the amended DA based on the two-sided analogy: for a given reference class, a Bayesian 
shift possibly ensues. In effect, it has been shown that DA only possibly works, for a given class. And 
this leads to a novel formulation of the argument. For if there existed a given reference class for which 
the argument were conclusive, there could well exist a more extensive class for which the argument 
would fail. This vindicates the differential treatment of the reference class problem and finally renders 
the argument innocuous, by depriving it of its initially associated terror. At the same time, this leaves 
room for the argument to be successful for a given reference class, but without its counterintuitive 
consequences. 

To sum up now. What results from the foregoing developments is that the Doomsday Argument 
must be weakened in two ways. First, the analogy underlying the argument must be defined more 
accurately. As we have seen, this can be done with the help of the two-sided model, which does justice 
to the respective insights of both the incremental two-urn case and numbered ball dispenser. Within 
this new two-sided model, the Bayesian shift associated with the Doomsday Argument now appears 
just as a possible inference from the premises, and not as an absolutely certain consequence. Second, 
the reference class problem must be taken into account, thus leading to the conclusion that the 
Doomsday Argument could work but without its originally associated terror. This has the effect of 
rendering the conclusion of the argument less counter-intuitive than in its original formulation. Given 
these two sidesteps, it seems that the resulting novel formulation of the argument could be more 
consensual than the original one. 

Lastly, what precedes casts light on an essential facet of the Doomsday Argument. For on a narrow 
sense, it is an argument about the fate of humankind. But on a broad sense (the one I have been 
concerned with) it emphasizes the difficulty of applying probabilistic models to real-life situations,31 a 
difficulty which is usually largely underestimated. This opens a path to a whole field of practical 

                                                           
31 This important underpinning of the argument is also underlined in Delahaye (1996). This is also the main point 
of Sober (2003). 
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interest, consisting of a taxonomy of probabilistic models, whose philosophical importance would 
have been unravelled without John Leslie's robust and courageous defence of the argument.32 
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