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and Eric Winsberg §3

1Munich Center for Mathematical Philosophy, Ludwig Maximilians Universität Munich
2Department of Philosophy, University of Bristol

3Department of Philosophy, University of South Florida

June 24, 2016

Abstract

Analogue simulation is a novel mode of scientific inference found in-
creasingly within modern physics, and yet all but neglected in the philo-
sophical literature. Experiments conducted upon a table-top ‘source sys-
tem’ are taken to provide insight into features of an inaccessible ‘target
system’, based upon a syntactic isomorphism between the relevant mod-
elling frameworks. An important example is the use of acoustic ‘dumb
hole’ systems to simulate gravitational black holes. In a recent paper
it was argued that there exists circumstances in which confirmation via
analogue simulation can obtain; in particular when the robustness of the
isomorphism is established via universality arguments. The current pa-
per supports and extends these claims via an analysis in terms of Bayesian
confirmation theory.
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1 Introduction

The concept of ‘Analogue Simulation’, introduced in (Dardashti et al. 2015),
can be understood as a particular mode of analogical reasoning: it involves
making inferences about one physical system by consideration of another
physical system that shares certain common features. In a case of analogue
simulation the analogical relationship between the two systems is established
via a ‘syntactic isomorphism’ between the modelling frameworks used to de-
scribe each system. Such relationships can be found, for example, between
models of black holes and fluid mechanical analogue ‘dumb holes’ (Unruh
1981) and certain applications of relativistic quantum mechanics and models
of trapped ions (Gerritsma et al. 2010). Significantly, within these pairs of sys-
tems, one half is typically either experimentally inaccessible (e.g. black holes)
or displays phenomena that are difficult or impossible to test (e.g. Zitterbewe-
gung in relativistic quantum mechanics). Thus, it is, prima facie, understand-
able why experimental scientists have been pursuing the practice of analogue
simulation with such enthusiasm (Steinhauer 2014).

Analogue simulation is a new inferential tool found at the cutting edge of
modern science that we see good reasons to take as potentially transformative.
In this paper we will use a Bayesian analysis to explicate the formal structure
of inferences that analogue simulation can allow us to make. It was argued
in (Dardashti et al. 2015) that there is a difference of kind between the type
of inferences that can be licensed by ‘Analogue Simulation’ and those that are
supported by more traditional ‘Arguments by Analogy’. In particular, unlike
in the case of arguments by analogy, it was claimed that there exists circum-
stances in which ‘confirmation via analogue simulation’ can obtain. The two
key results of this paper are: i) support for the confirmation claim via the
proof of two relevant theorems; and ii) a formal model for ‘multiple source’
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analogue simulation displaying the generic feature of ‘saturation’ in confirma-
tory power.

2 Analogue Simulation

The particular importance of analogue simulation derives from the relative
strength of inferences that it licences. We can compare a case of analogue
simulation with a prototypical analogical argument, where two systems share
some positively analogical feature, and this similarity is used to infer the ex-
istence of further similarities.1 Typically analogical arguments have the form
of abstract speculative inferences regarding possible features of one system
(‘the target’) based on known features of another system (‘the source’). Classic
examples are Reid’s argument for the existence of life on other planets based
upon life on earth (Reid and Hamilton 1850) or Hume’s argument for animal
consciousness based upon human consciousness (Hume 1978).

Analogical arguments can play an important heuristic role in scientific prac-
tice: they can provide ‘cognitive strategies for creative discovery’ (Bailer-Jones
2009, p.56). Analogical arguments are not, however, typically taken to be able
to provide Bayesian confirmation of a hypothesis regarding the target sys-
tem. From a Bayesian perspective on confirmation, evidence for a hypothe-
sis can count as confirmatory only if the probability of the hypothesis given
the evidence together with certain background assumptions is larger than the
probability of the hypothesis given only the background assumptions. In a
persuasive analysis, Bartha (2010, 2013) contends that we should take the in-
formation encapsulated in an analogical argument to already be part of the
background knowledge, and thus the probability of a hypothesis regarding
the target system to be identical before and after including the information en-
capsulated in an analogical argument. Rather one assumes that arguments by
analogy to establish only the plausibility of a conclusion, and with it grounds
for further investigation (Salmon 1990; Bartha 2010). On this analysis, it is not
in principle possible for analogical arguments to confer inductive support for a
hypothesis. That is, although analogical arguments can certainly be stronger
or weaker, even the strongest possible analogical argument cannot confer con-
firmation in a Bayesian sense: they are abstract inferences that can only ever
support plausibility claims rather than providing inductive evidence.

Analogue simulation, by contrast, is an essentially empirical activity: it is a
technique for learning about the world by manipulating it. In order for the iso-
morphisms between modelling frameworks to be constructed it is typically the

1The literature on analogical reasoning in science is fairly extensive, with particularly note-
worthy contributions by Keynes (1921), Hesse (1964, 1966), (2009) and Bartha (2010, 2013). See
also Norton (2011) for an importantly different take on analogical arguments. Norton’s analy-
sis focuses on analogical arguments that proceed via subsumption of the target system into a
larger class of entities, including the source system. There are interesting parallels between the
structure of such inferences and our notion of analogue simulation supported by universality
arguments.
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Figure 1: Analogue simulation schema.

case that the source system has to be specifically prepared so that the relevant
equations match those that describe the target system. Essentially, we manip-
ulate the source such that certain explicit modelling assumptions, matching
those for the target, obtain. Analogue simulation thus resembles a form of
experimentation, involving the ‘programming’ of a physical system such that
it can be used to ‘simulate’ another physical system. Thus, we see that con-
clusions from the philosophical analysis of analogical argument should not be
taken to be readily extendible to cases of analogue simulation in contempo-
rary science. Rather, we must look for a more specialised analysis to assess the
philosophical foundations of analogue simulation.

Following the analysis of (Dardashti et al. 2015) we can characterise a case
of analogue simulation as follows (see Figure 1). For certain purposes and
to a certain degree of desired accuracy, modelling framework M is adequate
for modelling a target system T within a certain domain of conditions DM.
For certain purposes and to a certain degree of desired accuracy, a modelling
framework A is adequate for modelling a source system S within a certain do-
main of conditions DA. There exists exploitable mathematical similarities be-
tween the structure of M and A sufficient to define a syntactic isomorphism
within the domains DM and DA. We are interested in knowing something
about the behaviour of a system T within the domain of conditions DM. For
whatever reasons, we are unable to directly observe the behaviour of a sys-
tem T in those conditions to the degree of accuracy we require. We are, on
the other hand, able to study a system S , and after having put it in suitable
conditions are able to detect some analogue behaviour E .

The paradigm case of analogue simulation is the simulation of an astro-
physical black hole via a fluid mechanical ‘dumb hole’ (Unruh 1981). For that
case, S would be the dumb hole, A the relevant equations in continuum fluid
mechanics, and DA the conditions in which these equations are adequate (e.g.
length scales in which the molecular nature of fluids is not important). T
would then be an astrophysical black hole,M the relevant equations in semi-
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classical gravity, and DM the conditions in which these equations are adequate
(e.g. length scales in which the quantum nature of spacetime is not impor-
tant). In this case the system T is inaccessible, since we are unable to probe
astrophysical black holes experimentally. A particular phenomenon we would
like to test is Hawking’s famous prediction that black holes radiate (Hawk-
ing 1975). The key virtue of the analogue models of black holes is then that
there is a fluid analogue of Hawking radiation, E . Recent experiments (Stein-
hauer 2014) point towards observation of the relevant E . Can the framework
of analogue simulation be used to justify the claim that we have ‘confirmed’
the phenomenon in the target system?

In both this specific case and in general there are reasons to be sceptical.
This is because, as noted in (Dardashti et al. 2015), the fact that A is adequate
for S in DA need not be connected to the question of whetherM is adequate
for T in DM. Prima facie, we have no good reason, for example, to expect that
the length scale at which a fluid model breaks down because of the molecular
nature of fluids is connected to the length scale at which a black hole model
breaks down because of the quantum nature of spacetime. The prima facie in-
dependence of the two domains of conditions means that the behaviour of the
analogue system might not be a good guide to the behaviour of the target sys-
tem, even if the relevant syntactic isomorphism holds. In such circumstances
it would not be appropriate to claim one can have confirmation via analogue
simulation: we have no reason to believe that an analogue behaviour E is rele-
vant evidence for the behaviour of the system T . What we need are additional
arguments that connect the realisation of the two domains of conditions, and
thus imply that the relevant syntactic isomorphism holds between adequate
modelling frameworks. It is only then that we can argue that the analogue
behaviour E is relevant evidence for the behaviour of the system T , and thus
that there can be confirmation via analogue simulation.

Let us consider the nature of possible arguments that would connect the
realisation of the domains of conditions, DM and DA. The most plausible
candidates for such arguments would come from additional knowledge of the
underlying physics that are supported by empirical evidence. The arguments
would thus be ‘model-external’, in the sense that they are arguments given
in addition to the modelling frameworks M and A, and they would also be
‘empirically grounded’. We will abbreviate such arguments ‘meega’. An im-
portant example of such meega, relevant to the ‘dumb hole’ simulation of
Hawking radiation, are universality arguments. Such arguments are based
upon the insensitivity of the Hawking flux to arbitrary modifications of the
dispersion relations used in both the dumb hole and black hole models (Un-
ruh and Schützhold 2005). In (Dardashti et al. 2015) it was argued that these
universality arguments can be used to ground claims for the confirmation of
gravitational Hawking radiation given its simulation in analogue ‘dumb hole’
experiments. Other potential examples of meega are: i) arguments from one
theory, such as Quantum Field Theory in the context of the Newton-Coulomb
syntactic isomorphism , see §3.2 of (Dardashti et al. 2015)); ii) arguments from
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two theories, such as the relationship between electric current and fluid flow in
certain special circumstances (Logan 1962); and iii) arguments based on piece-
meal adjustment of the computational scheme to match observed phenomena
in the context of computer simulation (Winsberg 2010).

The analysis and articulation of such examples is a large project that will
not be further pursued here. Rather, we would like to consider whether confir-
mation via analogue simulation can be established in principle, given meega.
To this end, in the following section, we will introduce the Bayesian framework
for probabilistic confirmation and analyse a simple analogue simulation set up
with a single source and some (rather abstract) notion of meega, captured in
a propositional variable X. We will then, in Section 4, extend this analysis to
the case of analogue simulation with multiple source systems, with a view to
capturing the essential inferential features of analogue simulation supported
by universality arguments, such as the ‘dumb hole’ case.

3 Bayesian Confirmation

The key claim that we wish to investigate is that, in certain circumstances, ana-
logue simulation can provide inductive support for a hypothesis regarding the
target system, on the basis of empirical evidence regarding the source system:
i.e. it can give us confirmation.2 In what follows we give a Bayesian network
representation of the proposed inferential structure of analogue simulation
defended in (Dardashti et al. 2015) and show that the evidence in the source
system can provide confirmation of hypotheses regarding the target system in
certain circumstances.

3.1 Analogue Simulation Without Confirmation

Let us start with the representation of the target system T . We denote by M a
propositional variable that takes the two values:

M : The modelling framework M provides an empirically adequate descrip-
tion of the target system T within a certain domain of conditions DM.

¬M : The modelling frameworkM does not provide an empirically adequate
description of the target system T within a certain domain of conditions
DM.

The adequacy of the modelling framework T depends on whether the back-
ground assumptions which justify the empirical adequacy of the modelling
framework obtain. We denote with XM the random variable with the values:

2For models of confirmation in terms of the Bayesian framework see (Hartmann and
Sprenger 2010; Bovens and Hartmann 2004) or for the hypothetic-deductive framework see
(Betz 2013). Throughout this paper, we follow the convention that propositional variables are
printed in italic script, and that the instantiations of these variables are printed in roman script.
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XM : The background assumptions xM = {x1
M, x2

M, ..., xn
M} are satisfied for

system T .

¬XM : The background assumptions xM = {x1
M, x2

M, ..., xn
M} are not satisfied

for system T .

The role of the background assumptions is to define and justify the domain of
conditions for the model. These assumptions involve knowledge, both theoret-
ical and empirical, that goes beyond what is encoded within the model. Such
knowledge need not be in the form of a simple, unified framework. Rather the
background knowledge of the people who build and use models can contain
an incompletely integrated set of explicit and tacit ideas about when a partic-
ular modelling framework will be adequate for a particular purpose and to a
particular desired degree of accuracy.

With this in mind, we can introduce the random variables A and XA for
the source system S . Where A is a propositional variable that takes the two
values:

A : The modelling framework A provides an empirically adequate description
of the source system S within a certain domain of conditions DS .

¬A : The modelling framework A does not provide an empirically adequate
description of the source system S within a certain domain of conditions
DA.

and XA is the random variable with the values:

XA : The background assumptions xA = {x1
A, x2

A, ..., xk
A} are satisfied for sys-

tem S .

¬XA : The background assumptions xA = {x1
A, x2

A, ..., xk
A} are not satisfied for

system S .

The systems T and S are assumed to differ in terms of their material con-
stituency and the fundamental laws governing their dynamics. This means
that the background assumptions behind the models M and A can reason-
ably be assumed to be very different. Given this, it is justified, prima facie, to
assume that XM and XA are probabilistically independent. Furthermore, we
have assumed that the source system is empirically accessible meaning we can
gain empirical evidence regarding (at least) some of its consequences. We can
encode this by introducing a variable E corresponding to the two values, E, the
empirical evidence obtains, and ¬E, the empirical evidence does not obtain.

We can represent all the variables introduced thus far as well as the proba-
bilistic dependancies using a Bayesian network (Bovens and Hartmann 2004).
The random variables are represented as ‘nodes’ in the network (i.e. circles)
and the probabilistic dependancies as directed edges (i.e. arrows). We draw
an arrow between two nodes when the variable in the ‘parent node’ has a di-
rect influence on the variable in the ‘child node’. Probabilistic independence
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Figure 2: One source system without meega.

is represented implicit by the absence of an arrow between two nodes. The
entire set up thus far is represented by the Bayesian network in Figure 2.

The assumption that XA and XM are probabilistically independent is equiv-
alent to us having reasons to believe that there do not exist meega connecting
the realisation of the domains of conditions, DA and DM. In these circum-
stances, the evidence E in system S will be irrelevant to what we believe about
the modelling frameworkM. Confirmation via analogue simulation does not
hold without meega. This is despite the syntactic isomorphism that exists be-
tween M and A. The isomorphism merely implies that there will be a term
within the modelling language ofM that is counterpart to the term within A
that refers to E . On our view, such a syntactic relationship between modelling
frameworks has, on its own, no evidential force.

Here it might be objected that this final statement is too strong. What if, for
instance, we had ten syntactically isomorphic systems, and found that nine of
them operate according to the same laws. Surely this finding would raise the
probability that the tenth also operates according to these laws? Does this not
suggests that the possibility of these systems operating according to similar
laws always had a non-zero probability?

In responding to this objection we must draw again the distinction be-
tween: i) similarity as to syntactic form of laws used to adequately model two
systems; and ii) similarity as to the material constituency and dynamics of two
systems. Our claim is that in circumstances where we know that the source
and target system differ significantly in the second physical respect the close-
ness of the relationship in the first syntactic respect is not evidentially relevant.
This claim stands up even to the hypothetical counter-example. Let us assume
that we have ten materially and dynamically very different systems that ade-
quately modelled by syntactically isomorphic laws. If we were to find evidence
(probabilistic or otherwise) of a physical connection between nine of the ten
systems of laws that would certainly encourage us to look for a physical basis
for the relevant connection – we would assume, most likely, that they would be
members of the same ‘universality class’.3 It would still not however, in-and-
of-itself, warrant drawing a further evidential connection to the tenth system.

3See for example (Batterman 2000; Batterman 2002).
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The tenth system is, by assumption, materially and dynamically very different
to the other nine, so we cannot purely on the basis of the syntactic isomor-
phism assume it to be within the same ‘universality class’. Membership of
such classes always depends upon the physical relationship between systems,
not syntactical relationships.

3.2 Analogue Simulation With Confirmation

The key idea behind analogue simulation supported by meega is that there
exists empirically grounded arguments that function as inferential links be-
tween the background assumptions of both the model of the source system and
the model of the target system.

In the case where there is no meega, evidence in A provides inductive sup-
port for the adequacy of the background assumptions XA alone. On the other
hand, with meega, evidence in A will also support the background assump-
tions XM. This support is limited to the elements of the assumptions that are
actually addressed by the specific meega – the ‘common background assump-
tions’. So while meega may relate two background assumptions, say x1

A and
x2

M, the other background assumption will, of course, remain independent un-
less they are linked via another meega. The inductive support that analogue
simulation with meega will then provide for M will depend on how certain we
are about the adequacy of the related background assumptions. If we have al-
ready independent grounds on which to assign high probabilities to x1

A or x2
M,

then there is not much added in terms of inductive support we gain through
meega. In the context of simulating Hawking radiation via ‘dumb holes’, the
universality argument provides the link between the background assumptions,
which is here the independence of the phenomenon in each system from the
respective influences of the higher energy theories. The independence claim,
however, is probably the least supported of the background assumption and
is thus the route via which analogue simulation can provide strong inductive
support for black hole Hawking radiation.4

In order to make explicit calculation tractable we will subsume both the
meega and the common background assumptions within a single variable X.
The binary value X has the values:

X : there exist meega in support of common background assumptions.

¬X : there does not exist meega in support of common background assump-
tions

So X expresses a rather general claim, which can plausibly be assumed to
be uncertain. If we were certain about X, the inference from A to M would
be blocked. We will say more about this later. We will also subsume the
remaining background assumptions, that is those that are not addressed by
meega, under the nodes M and A.

4Unruh for instance even asks that ‘if the derivation relies on such absurd physical assump-
tions, can the result be trusted?’ (Unruh 2014, p.534)
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X

M A

E

Figure 3: Simplified network for one source system with meega.

Under the conditions of our assumptions, the simplified Bayesian network
given in Figure 3 will then adequately model the chain of inferences involved
in analogue simulation supported by meega. We would like to show that E
confirms M within a Bayesian theory of confirmation. This requires that one
proves that P(M|E) > P(M). For this purpose we need to specify all prior
probabilities of the ‘parent node’ in the Bayesian network (i.e., X) and the
conditional probabilities for the other ‘child nodes’, given the values of their
parents.

Let us simplify our notation by using the following shorthand:

P(X) = x P(M|X) = mx

P(A|X) = ax P(E|A) = ea.

The probabilities of the corresponding negated propositions are denoted with
a bar, viz. P(A|X̄) = ax̄, P(Ā|X) = āx and P(Ā|X̄) = āx̄.

The first central assumption is that the prior probability of X lies in the
open interval (0,1):

0 < x < 1. (1)

The conditional probabilities are then constrained by the following assump-
tions:

mx > mx̄ (2)
ax > ax̄ (3)
ea > eā. (4)

The statements (1)-(3) encode probabilistically the concept of meega since they
allow for the possibility of a background assumption that supports both M
and A. The statement (4) encodes probabilistically that the empirical evidence
actually plays the role of evidence in favour of the model A.

With these assumptions one can prove (see Appendix A) the following the-
orem:

Theorem 1: P(M|E) > P(M), if (1), (2), (3) and (4) are satisfied.

10



The satisfaction of Theorem 1 implies that E confirms M within a Bayesian
analysis of confirmation. Within the framework of analogue simulation, pro-
vided we have some meega with prior probability that is neither unity or zero,
confirmation of a hypothesis regarding the target system can obtain based
upon evidence relating to the source system. It is important to note again, that
having independent grounds on which to support one of the common back-
ground assumptions will ‘block’ the inductive support E can give for M as that
background assumption already has a large marginal probability. This does
not pose a problem for this account but offers a way to distinguish between
those circumstances in which the novel empirical evidence E can provide sub-
stantial inductive support for M and those circumstances it cannot be used for
that purpose.

An important implication of the Bayesian analysis relates to the role of the
syntactic isomorphism. The structure of the Bayesian network is such that the
syntactic isomorphism is not explicitly represented. Furthermore, based upon
the network, even if no syntactic isomorphism obtains between the modelling
frameworksM and A, one could sensibly talk about confirmation of M by E,
provided there exists some non-empty set of shared background assumptions.
The key point is that in such circumstances although confirmation of M would
indeed obtain, there would be no ‘analogue simulation’. As discussed above,
the role of the isomorphism is to guarantee that there will be a term within the
modelling language ofM that is counterpart to the term within A that refers
to E . Without such a term within M there would be no sense in which S is
acting as a simulator for the behaviour of T . For analogue simulation with
confirmation to obtain we require both meega and a syntactic isomorphism.

To recapitulate, in this section we have demonstrated that confirmation via
analogue simulation obtains within a Bayesian analysis provided there exists
an inferential connection between the conditions of applicability of the target
and system models. That is, if there exists a binary variable that is assumed
to be positively correlated with the empirical adequacy of both the source and
target models, then evidence in favour of the model of the source system can
be used to make inferences about the target system. This, in-and-of-itself, is
not a particularly surprising result, and certainly the demonstration of such
in principle inferential relations is not an external validation of the framework
for analogue simulation that is being proposed. Rather, we take the results of
this section to: i) demonstrate the internal consistency of the informal argu-
ments towards confirmation via analogue simulation given in (Dardashti et al.
2015); and ii) provide a powerful evaluative and heuristic tool for the analy-
sis of analogue simulation as it exists within contemporary scientific practice.
Two natural directions of further development are: i) the identification and
evaluation of potential cases of meega in other scientific examples (in addition
to that considered in (Dardashti et al. 2015)); and ii) the refinement of the
Bayesian model to include cases within more than one analogue system. The
second of these will be pursued in the following section.
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E′

· · ·

· · ·

A(n)

E(n)

Figure 4: n-source system.

4 Multiple Sources

One important application of analogue simulation is in the context of uni-
versality arguments. In such cases the source system is ‘multiply realisable’ in
that there are various different physical systems that can be used to implement
the analogue simulation. Such a notion of ‘multiply realisability’ is intended
to be something more than the variation of the material constitution of the
source system. Such variation would involve keeping fixed the ‘nomological
behaviour’ of the source system but changing the material constitution. Rather,
the situation we are considering is when one varies the modelling frameworks
used to construct the analogy, and in doing so considers equations that are
syntactically isomorphic but extensionally distinct.

For example, consider again the dumb hole case. Rather than making use of
the syntactic isomorphism between fluid mechanical and gravitational models
we can draw inferences based upon analogue black holes constructed out of
Bose-Einstein condensates, traveling refractive index interfaces in nonlinear
optical media or ‘slow light’ in moving media (Carusotto et al. 2008). This is
to vary both the material constitution and the nomological behaviour of the
analogue system.

With such examples in mind, we can extend the analysis of the previous
section to consider the case when we have multiple sources each providing
independent evidence for the target system modelling framework. The expec-
tation would be that adding more source systems should increase the degree
of confirmation, but that this increase will eventually reach some ‘saturation
point’. This matches the intuition that, given some non-zero (or one) prior
probability for the truth of the universality arguments, a small set of differ-
ent successful realisations of the source system would be enough to provide
strong evidence in favour of a hypotheses of regarding analogue behaviour in
the target system.

Consider a Bayesian network for an n-source system (Figure 4). The ques-
tion we would like to answer is how does the confirmation measure change
as one increases the number of different analogue systems providing us with
evidence. Following the same line of reasoning as the last section we assume:
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a′x > a′x̄ e′a′ > e′ā′ . (5)
a′′x > a′′x̄ e′′a′′ > e′′ā′′ . (6)

...
a(n)x > a(n)x̄ e(n)

a(n)
> e(n)

ā(n)
. (7)

We can now calculate the difference measure of confirmation, which is defined
as

∆(n) := P(M|E, E′, ..., E(n))− P(M) (8)

and obtain ∆(n) > 0 (see Appendix B).
It can further be shown that:

Theorem 2: ∆(n) is a strictly increasing function of the number of
source systems.

This theorem implies that as the number of different analogue systems pro-
viding evidence increases so does the degree of confirmation.5 Again, this
is not a particularly surprising result. Given that confirmation via analogue
simulation obtains for a single source system, one would expect that adding
in more and more (independent) source systems would allow one to increase
the degree of confirmation. The feature that is most interesting is not the fact
that ∆(n) is strictly increasing, but rather the functional form of this increase.
In particular, the natural intuition is that as the number of source systems
increases the increase the degree of confirmation would eventually saturate.
One of the chief virtues of the Bayesian model for analogue simulation with
multiple source systems is that it allows us to give an analytical expression for
such a saturation point.

First, let us consider how ∆(n) changes in the large n limit. A little analytical
work (again see Appendix B) allows us to show that:

lim
n→+∞

∆(n) → x̄(mx −mx̄) = Nsat.. (9)

This means that the maximum amount of confirmation one can obtain by
adding in more and more sources is bounded by some finite number, Nsat.,
determined by the prior probabilities x̄, mx and mx̄. Beyond this point, there is
vanishingly small added value (in terms of confirmation) achieved by adding
in more source systems. Two features of Nsat. are worth remarking on. First,
the higher the prior probability of X the lower the saturation point will be. This
makes sense because the more sure we are of X to start with, the lower the limit
on the extra information we can learn from E, E′, ..., E(n). Second, the higher
the relative likelihood of M given X to M given ¬X (i.e. mx −mx̄), the higher
the saturation point. This makes sense because the stronger the relationship
between X and M the more we can potentially learn from E, E′, ..., E(n).

5Theorem 2 does not depend on the choice of this particular confirmation measure and will
also hold if we move to another confirmation measure (?).
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Figure 5: Confirmation measure dependence and saturation point.

A further interesting feature that we can examine is the speed with which
the saturation point is approached. We can examine this ‘rate of saturation’ by
plotting ∆(n) for a set of prior probabilities of X.6 As can be seen from Figure
(5), the higher the prior probability of X, the quicker the saturation point is
reached. Strikingly, for the values of the parameters considered, we find that
given a prior of greater than 0.5 for X, saturation can be reached after only
three or four successful analogue experiments.

This result is in tune with scientific intuitions regarding analogue simu-
lation in the context of universality arguments. Consider, in particular the
dumb hole Hawking radiation case. There has been, thus far, only one im-
plementation of a source system that is reported to display the full Hawking
effect: the Bose-Einstein condensate experiments of (Steinhauer 2014). Given
initial confidence in the universality arguments, if another different implemen-
tation of a source system displaying the full Hawking effect was achieved, that
should surely radically increase the belief in the astrophysical Hawking effect.
However, once a few such examples were constructed, one would quickly stop
gaining new insight. Conversely, given initial skepticism regarding the univer-
sality arguments, a second implementation of the dumb hole source system
would not radically increase the belief in the astrophysical Hawking effect.
Furthermore, in such circumstances it would only be after a diverse and exten-
sive range of implementations of source systems that one would stop believing
that new examples gave new information.

6See Equation (22) of Appendix B. Here we have assumed for simplicity that γ(k) = c for
all k with c > 1. c measures both the likelihood of A(k) given X and the likelihood of E(k) given
A(k). The stronger the dependence of these the stronger the exponential increase of ∆(n) with
n. See
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5 Conclusion

History is replete with examples of ‘transformative’ technology having a pro-
found and lasting impact on the methodological foundations of science. Much
recent literature in the philosophy of science has focused on the sense in which
computer simulation should (or should not) be taken to have had such an im-
pact.7 Analogue simulation is a new inferential tool found at the cutting edge
of modern science that we see good reasons to take as potentially transforma-
tive. Building upon the initial analysis of (Dardashti et al. 2015), in this paper
we have applied a Bayesian analysis to explicate the structure of inferences
that analogue simulation can and cannot allow us to make. Our two principal
results are: i) that ‘single source’ confirmation via analogue simulation can
obtain under certain conditions; and ii) that ‘multiple source’ confirmation via
analogue simulation displays the generic feature of saturation in confirmatory
power.

A Proof of Theorem 1

Let us start with the Bayesian network depicted in Figure 2. We have to show
that

P(M|E) = P(M, E)
P(E)

> P(M). (10)

The joint probability can be obtained in the following way8:

P(M, E) = ∑
X,A

P(X, M, A, E)

= ∑
X,A

P(X)P(M|X)P(A|X)P(E|A)

= xmx(axea + āxeā) + x̄mx̄(ax̄ea + āx̄eā)

= xmxα + x̄mx̄β (11)

where we have defined

α := axea + āxeā (12)
β := ax̄ea + āx̄eā. (13)

Similarly we obtain

P(E) = ∑
X,A,M

P(X, M, A, E)

= xα + x̄β (14)

7See for example (Frigg and Reiss 2009; Parker 2009; Winsberg 2010; Beisbart and Norton
2012).

8See (Bovens and Hartmann 2004, Sect. 3.5) on the general methodology of reading joint
probabilities from Bayesian networks.
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Figure 6: 2-source system.

and
P(M) = xmx + x̄mx̄. (15)

Defining the difference measure ∆ := P(M|E) − P(M), we need to show
that ∆ is larger than zero. After some algebraic manipulation one obtains

∆ =
xmxα + x̄mx̄β− (xmx + x̄mx̄)(xα + x̄β)

xα + x̄β

=
x̄x(mx −mx̄)(α− β)

xα + x̄β
. (16)

It is easy to show that

α− β = (ax − ax̄)(ea − eā) (17)

so it follows that

∆ =
x̄x(mx −mx̄)(ax − ax̄)(ea − eā)

xα + x̄β
. (18)

So if (2), (3) and (4) are satisfied it follows that ∆ > 0, which needed to be
shown.

B Proofs for n Source Systems

To see how the previous theorem can be generalized to the n source systems
represented in Figure 4 let us consider first the 2-source system represented in
Figure 6.

We need to show that P(M|E, E′) = P(M, E, E′)/P(E, E′) > P(M). Let us
start with the following joint probability

P(M, E, E′) = ∑
X,A,A′

P(X, M, A, E, A′, E′)

= ∑
X,A,A′

P(X)P(M|X)P(A|X)P(E|A)P(A′|X)P(E′|A′)

= xmxαα′ + x̄mx̄ββ′ (19)
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where α′ and β′ is defined identically to (12) and (13) with e and a replaced
with e′ and a′.
Similarly we obtain

P(E, E′) = ∑
X,A,A′

P(X)P(E|A)P(A|X)P(E′|A′)P(A′|X)

= xαα′ + x̄ββ′. (20)

Defining as before ∆′ := P(M|E, E′)− P(M) it follows that

∆′ =
xx̄(mx −mx̄)(αα′ − ββ′)

xαα′ + x̄ββ′
. (21)

Now αα′ − ββ′ is larger than zero iff (αβ)/(α′β′) > 1. This in turn is the case
when α− β > 0 and α′ − β′ > 0. Both of these conditions are satisfied due to
(3)-(5). So it follows that (21) is larger than zero.
It is now straightforward to generalize to the n-source system represented in
Figure 4. For the n-source system we need to show that ∆(n) = P(M|E, E′, ..., E(n))−
P(M) > 0. It follows from the above consideration that

∆(n) =
xx̄(mx −mx̄)(∏n

k=0 α(k) −∏n
k=0 β(k))

x ∏n
k=0 α(k) + x̄ ∏n

k=0 β(k)
(22)

with α(0) = α and β(0) = β. We have again ∆(n) > 0 once (3)-(7) is satisfied.

Let us define γ(n) := ∏n
k=0 α(k)/β(k). Since α(k) > β(k) for all k, γ(n) in-

creases as n increases. Furthermore, we have

∂∆(n)

∂γ(n)
=

xx̄(mx −mx̄)

(xγ(n) + x̄)2
> 0. (23)

So as n increases, i.e. as the number of analogue systems providing evidence
increases, so does the amount of confirmation. Setting κ := xx̄(mx − mx̄) we
obtain the large n behaviour:

lim
n→+∞

∆(n) = lim
x→+∞

κ
γ(n) − 1

xγ(n) + x̄
→ κ

x
. (24)
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