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Abstract:	I	defend	a	three-fold	form	of	pluralism	about	chance,	involving	a	

tripartite	distinction	between	propensities,	probabilities,	and	frequencies.	The	

argument	has	a	negative	and	a	positive	part.		Negatively,	I	argue	against	the	

identity	thesis	that	informs	current	propensity	theories,	which	already	suggests	

the	need	for	a	tripartite	distinction.	Positively,	I	argue	that	that	a	tripartite	

distinction	is	implicit	in	much	statistical	practice.	Finally,	I	apply	a	well-known	
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PEOPLE-2012-IEF:	Project	number	329430),	and	research	project	FFI2014-57064-
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framework	in	the	modelling	literature	in	order	to	characterize	these	three	separate	

concepts	functionally	in	terms	of	their	roles	in	modelling	practice.		

	

Keywords:	chance,	propensities,	probability,	statistics,	modelling	

	

1.		Pluralism	about	Objective	Probability	

	

	 Rudolf	Carnap	(1945,	1950)	was	one	of	the	first	analytical	philosophers	of	

science	to	openly	defend	and	promote	the	view	that	there	is	not	just	one	kind	of	

probability	but	a	variety	of	kinds;	and	correspondingly	not	just	one	“probability”	

concept,	but	a	plurality	of	concepts.		Carnap’s	pluralism	was	modest:	having	

rejected	one	concept,	he	settled	for	the	next	number	up,	namely	two	concepts,	so	

minimizing	the	variety	as	much	as	possible.	He	characteristically	referred	to	these	

two	concepts	by	means	of	indexes,	as	probability1	and	probability2.	Probability1	is	

applicable	to	the	confirmation	of	theories	by	empirical	evidence,	and	more	

particularly	to	the	confirmation	of	theoretical	sentences	by	so-called	protocol	

sentences.	Thus	we	say	that	a	particular	theory	is	more	or	less	probable	in	the	light	

of	evidence;	and	that	it	is	more	or	less	probable	than	some	competitor	in	the	light	

of	such	evidence;	and	we	may	even	have	reason	to	assert	that	its	degree	of	

confirmation,	or	probability,	is	0.9	or	some	other	such	value	in	the	real	unit	

interval.	The	first	type	of	probability	is	thus	not	a	mind	or	language	independent	

feature	of	the	world.	It	is	rather	a	feature	or	our	theories	or	linguistic	descriptions	

of	the	world.	In	other	words	the	term	“probability1”	belongs	in	what	Carnap	called	

the	formal	mode	of	speech	(Carnap,	1935/37).		

	

	 The	second	kind	of	probability,	or	“Probability2”,	is	by	contrast	a	mind	or	

language	independent	objective	feature	of	the	world.	It	depends	on	the	way	the	

world	is	constituted	and	what	the	facts	are,	regardless	of	our	language,	cognitive	or	

mental	states,	beliefs,	attitudes	or	abilities.	In	other	words,	“probability2”	is	a	term	

that	belongs	in	the	material	mode	of	speech,	and	appears	in	ordinary	descriptions	

of	the	objective	probabilities	or	chances	of	particular	events.	Science	merely	

extends	this	ordinary	use	of	language	in	order	to	describe	particular	phenomena	

as	stochastic	by	means	of	statistical	or	probabilistic	models.	The	statements	
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regarding	“probabilities”	that	appear	in	scientific	models	–	in	physics	and	

elsewhere	–	are	therefore	all	prima	facie	“probability2”	statements.	

	

	 Carnap	went	on	to	associate	these	statements	to	statistical	frequencies	in	

the	empiricist	tradition	of	Von	Mises	(1928)	or	Reichenbach	(1935).	We	nowadays	

think	that	no	mere	statistical	interpretation	of,	say,	the	quantum	state	vector,	or	

the	probabilities	that	it	entails,	can	be	made	to	work.	However,	for	Carnap	the	

fortune	of	a	frequency	interpretation	of	objective	probability	is	a	matter	of	

secondary	importance	–	and	he	was	in	fact	acutely	critical	of	some	key	aspects	in	

Reichenbach’s	empiricist	account.	Carnap’s	main	concern	was	not	to	defend	

frequencies,	but	genuine	objective	probabilities.	And	while	his	particular	contrast	

between	logical	and	frequency	concepts	of	probability	did	not	perhaps	succeed	

well,	the	overall	two-fold	pluralism	did.	Thus	twenty	years	on,	we	find	Ian	Hacking	

(1975)	drawing	a	similar	two-fold	distinction	between	subjective	and	objective	

aspects	of	probability.		More	recent	work	in	the	philosophy	of	probability	(e.g.	

Gillies,	2000)	if	anything	entrenches	this	kind	of	pluralism,	as	a	positive	state	of	

things	to	be	celebrated.		

	

	

2.		Reductive	Analyses	of	Chance	

	

	 The	philosophy	of	objective	chance	has	throughout	much	of	its	history	

pursued	a	reductionist	agenda.	Some	philosophers	have	attempted	to	reduce	

objective	probabilities	or	chances	to	frequencies	or	ratios	in	(virtual	or	real)	

sequences	of	experimental	outcomes;	others	have	attempted	to	reduce	them	to	

propensities,	understood	as	the	probabilistic	dispositions	of	chancy	set	ups	or	

arrangements.	2	Such	reductive	exercises	are	at	least	prima	facie	contrary	to	

appearances.	Consider	a	few	statements	of	paradigmatic	objective	chances	as	

expressed	in	the	material	mode	of	speech:	

	

																																																								
2	Lewisian	analyses	of	chance	in	the	spirit	of	Hume	may	be	regarded	as	a	variety	of	
frequency	accounts	for	the	purposes	of	this	paper.	
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1) A	coin’s	propensity	to	land	heads	with	a	certain	probability	when	tossed	

as	displayed	in	a	long	sequence	of	tosses.	

	

2) Smoking’s	propensity	to	cause	lung	cancer	with	a	certain	probability,	as	

demonstrated	by	control	population	statistics.	

	

3) The	propensity	of	a	radioactive	atom	to	decay	with	a	certain	probability	

exhibited	in	experiments	run	on	the	material.	

	

	 There	are	obvious	differences	between	the	cases.	The	first	statement	

describes	an	ordinary	or	everyday	chance;	the	second	one	involves	a	chance	to	

cause	a	particular	effect;	and	the	final	statement	refers	to	a	putatively	fundamental	

and	therefore	irreducible	chance	in	atomic	physics.	3	Nevertheless	all	these	

statements	appears	to	involve	three	distinct	properties:	the	“propensities”	of	the	

chancy	object;	the	“certain	probabilities”	that	such	propensities	give	rise	to;	and	

the	(finite,	actual)	frequencies	of	the	corresponding	outcomes	observed	in	an	

experimental	trial	which	display	such	probabilities.	

	

	 In	other	words,	the	“appearances”,	as	I	shall	call	them,	involve	three	distinct	

properties.	Yet,	reductive	analyses	of	chance	(frequency	and	propensity	

interpretations	of	probability)	aim	to	reduce	them	all	to	just	one,	or	at	best	two.	On	

the	frequency	interpretation	propensities	are	redundant	and	can	be	discarded	

altogether;	and	probabilities	can	be	fully	analysed	in	terms	of	either	long	run	

actual	frequencies,	or	hypothetical	limiting	frequencies.	Carnap	refers	to	such	an	

identification	of	probabilities	with	frequencies	as	the	“identity	conception”	

(Carnap,	1945,	p.	527).	And	while	there	is	debate	amongst	different	frequency	

schools,	in	particular	regarding	the	status	and	nature	of	the	limiting	hypothetical	

frequencies,	they	are	all	agreed	on	the	essential	facts	about	reduction.	On	any	of	

																																																								
3	One	may	in	turn	wonder	whether	all	bona	fide	chances	ultimately	reduce	to	
physical	chances.	The	answer	turns	on	the	thorny	question	of	whether	the	
“special”	sciences,	and	indeed	ordinary	cognition	of	macroscopic	objects	and	
phenomena,	ultimately	reduce	to	physics.	I	very	much	doubt	such	reduction	is	
possible	or	desirable,	but	my	claims	in	this	paper	are	independent	and	require	
neither	reductionism	to	physical	chances,	nor	its	denial.		
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these	schools	there	are	only	really	frequencies;	every	reference	to	any	other	

apparent	concept	in	the	statements	above	is	in	fact	redundant.		

	

	 On	the	other	hand	the	propensity	interpretation	of	probability	defended	by	

Karl	Popper	(Popper,	1959)	notoriously	embraced	a	similar	(but	incompatible)	

identification	of	probabilities	with	propensities,	which	I	have	elsewhere	referred	

to	as	the	“identity	thesis”	(Suárez,	2013).	On	this	view,	there	are	of	course	finite	

frequencies	in	actual	experimental	runs	of	any	experiment,	but	they	need	have	no	

limiting	properties.	Probabilities	are	at	any	rate	not	to	be	identified	with	either	the	

actual	or	the	hypothetical	limiting	frequencies.	They	are	instead	propensities.	So,	

on	this	account	there	are	only	really	frequencies	and	propensities;	any	apparent	

reference	in	the	statements	above	to	“probability”	as	a	distinct	kind	or	property	is	

ultimately	redundant.	

	

	 Each	of	these	reductions	has	had	formidable	champions	throughout	the	

history	of	the	subject;	in	fact	barely	any	philosopher	of	probability	has	failed	to	

attempt	one	or	another	version	of	this	reduction	of	chance.	Yet,	there	are	by	now	

very	strong	arguments	against	both	kinds	of	reduction,	which	suggest	that	the	

prospects	of	a	reduction	of	probability	are	dim.		I	shall	here	only	review	arguments	

to	the	effect	that	probability	cannot	be	reduced	to	propensity.	But	the	arguments	

by	Alan	Hajek	and	others	against	frequency	interpretations	of	probability	are	at	

least	as	convincing.	4	All	three	concepts	(propensity,	probability,	frequency)	seem	

to	be	required	for	a	satisfactory	understanding	of	objective	chance.		

	

	 My	main	claim	in	this	essay	is	that	what	Carnap	called	probability2	is	not	in	

fact	a	monolithic	notion.	It	too	is	plural,	and	composed	of	an	array	of	three	

different	concepts	holding	interestingly	complex	relations	to	each	other.	In	

addition	I	do	of	course	accept	subjective	probabilities	or	credences,	and	perhaps	

also	distinct	logical	or	epistemological	probabilities	(confirmatory	probabilities).	

In	other	words,	I	very	much	share	Carnap’s	pragmatic	pluralism,	but	whereas	
																																																								
4	Some	of	Hájek’s	arguments	(1997)	rely	on	the	well-known	reference	class	
problems.	I	am	not	so	interested	in	them	here	because	they	leave	open	any	claim	
regarding	a	reduction	to	propensities,	and	I	am	arguing	for	a	full	tripartite	
distinction.	
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Carnap	tried	to	minimize	the	pluralism	by	restricting	it	to	two	kinds	of	probability,	

I	find	good	reasons	nowadays	to	want	to	maximize	the	pluralism	in	order	to	

achieve	a	full	understanding	of	objective	chance.	There	are	both	negative	and	

positive	reasons	for	maximal	pluralism.	The	negative	reasons	have	all	to	do	with	

the	failures	of	reductive	programmes	(section	3).	The	positive	reasons	are	

connected	with	the	presuppositions	of	scientific	practice	(section	4)	

	

	

3.	Against	the	Identity	Thesis	

	

	 Let	me	briefly	review	the	argument	from	the	philosophy	of	probability	

against	the	identity	thesis	between	propensities	and	probabilities.5	The	identity	

thesis	has	two	parts,	or	halves,	which	we	may	refer	to	as	the	propensity-to-

probability	half	and	the	probability-to-propensity	half.	The	former	asserts	that	all	

propensities	are,	or	can	be	represented	as,	probabilities.	The	latter	states	that	all	

probabilities	are	propensities,	or	can	be	interpreted	as	such.	Together	they	make	

the	full	claim	that	probabilities	and	propensities	are	extensionally	identical.		

	

	 Both	parts	of	the	identity	thesis	are	in	fact	false,	as	is	shown	by	different	

forms	of	what	is	known	as	Humphreys’	paradox.	The	falsity	of	the	probability-to-

propensity	half	is	a	trivial	consequence	of	the	asymmetries	of	propensities.	This	is	

best	understood	by	considering	a	causal	propensity	such	as	smoking’s	propensity	

to	cause	lung	cancer	(my	example	2	above).	Suppose	we	estimate	for	a	particular	

population	the	incidence	of	lung	cancer	amongst	smokers	at	1%,	which	we	may	

write	as	P	(C	/S)=	0.01.	And	suppose	that	we	also	have	estimates	for	the	prior	

probabilities	of	smoking	and	lung	cancer	across	the	population	at,	say,	20%	and	

0,5%	respectively	(P	(S)=	0.2	and	P	(C)	=	0.005).	We	may	then	easily	estimate	the	

inverse	probability	by	means	of	Bayes’	theorem:	

	

	 	

€ 

P S C( ) =
P C S( )P S( )

P C( )
=
0.01× 0.2
0.005

= 0.4 .	

																																																								
5	The	full	argument	may	be	found	in	Suárez	(2013,	2014)	of	which	this	section	is	
an	elaboration	and	summary.	
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	 Now,	the	first	half	of	the	identity	thesis	(the	probability-to-propensity	half)	

holds	that	probabilities	may	be	interpreted	as	propensities.	If	so,	P	(C/S)	may	be	

understood	as	the	propensity	of	smoking	to	cause	cancer.	But	it	follows	from	our	

derivation	that	P	(S/C)	is	then	also	well-defined	at	40%,	so	it	must	also	receive	a	

propensity	interpretation,	which	seems	just	impossible:	There	is	simply	no	

propensity	of	lung	cancer	to	cause	smoking.		

	

	 While	this	simple	type	of	argument	is	well	known	the	consequences	for	the	

identity	thesis	are	not	always	fully	appreciated.	Propensities	are	asymmetric	in	a	

way	that	probabilities	are	not.	The	asymmetry	is	revealed	most	strikingly	in	the	

case	of	causal	propensities,	but	is	more	generally	a	feature	of	all	propensities	

whether	or	not	causal.	Thus	a	coin’s	propensity	to	land	heads,	and	a	radioactive	

atom’s	propensity	to	decay	are	also	asymmetric	in	a	way	that	generates	a	similar	

problem	for	their	Bayes	inverse	probabilities.	We	may	hope	that	the	other	half	of	

the	identity	thesis	(the	propensity-to-probability	half)	holds	nonetheless,	and	that	

it	is	still	the	case	that	all	propensities	are	probabilities.	While	this	half	on	its	own	

fails	short	of	a	full	reductive	analysis	for	probabilities,	it	is	still	an	account	of	

propensities	as	probabilities.		

	

	 However,	Paul	Humphreys’	original	argument	defeats	this	half	of	the	

identity	thesis	as	well.	Humphreys	(1985)	considered	a	thought	experiment	where,	

regardless	of	the	outcome,	the	propensities	of	the	system	described	are	not	and	

cannot	be	represented	as	probabilities.	He	considered	a	source	emitting	one	

photon	at	a	time	t1,	reaching	a	half	silver	mirror	at	time	t2,	and	being	transmitted	at	

time	t3.	He	then	plausibly	stipulated	that	the	following	three	claims	hold	regarding	

the	propensities	of	the	photon	in	the	thought	experiment:	

	

i) Any	photon	that	reaches	the	half	silver	mirror	has	some	finite	(non-

zero)	propensity	to	be	transmitted.	

ii) Any	photon	that	is	emitted	has	some	propensity	greater	than	zero	but	

not	one	to	reach	the	mirror.	
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iii) Any	photon	that	is	emitted	and	fails	to	reach	the	mirror	has	propensity	

zero	(i.e.	it	has	no	propensity)	to	be	transmitted.		

	

	 These	claims	may	all	be	regarded	as	uncontroversial	regarding	the	thought	

experiment	at	hand.	They	all	certainly	seem	very	plausible.	Humphreys	rendered	

these	claims	in	a	conditional	probability	formulation	that	is	however	far	from	

innocuous	or	obvious,	as	follows:	

	

i)	

€ 

Pt3 Tt 3 It 2 & Bt1( ) = p > 0 .	

ii)	

€ 

1 > Pt1 It 2 Bt1( ) = q > 0 .	

iii)	

€ 

Pt1 Tt 3 ¬It2 & Bt1( ) = 0 .	

	

	 Each	of	these	formal	conditions	is	meant	to	capture	fully	each	of	the	

corresponding	physical	claims	regarding	the	propensities	at	work	in	the	thought	

experiment.	This	assumes	that	there	is	always	a	unique	representation	for	

propensities	in	terms	of	conditional	probabilities.	Yet,	these	three	formal	

conditions	are	inconsistent	with	the	Kolmogorov	axioms,	and	in	particular	with	the	

fourth	axiom	for	conditional	probability	(also	known	as	the	ratio	analysis	of	

conditional	probability).	

	

	 Now,	there	are	a	number	of	caveats	to	Humphreys’	proof,	which	I	cannot	

discuss	here	in	full,	but	deserve	a	brief	mention.		Firstly,	the	proof	assumes	a	

principle	of	conditional	independence	whereby	propensities	do	not	act	backwards	

in	time:	

€ 

Pt1 It 2 Tt 3 & Bt1( ) = Pt1 It 2 ¬Tt3 & Bt1( ) = Pt1 It2 Bt1( ).	The	principle	is	indeed	

questionable	in	general,	since	there	is	no	reason	why	propensities	should	be	any	

more	forward-looking	than	causes.	In	other	words,	the	asymmetry	of	propensities	

is	not	the	asymmetry	of	time,	but	is	rather	a	sui	generis	asymmetry,	which	may	or	

not	coincide	with	temporal	asymmetry.	Yet,	in	the	thought	experiment	at	hand,	the	

application	of	conditional	independence	is	legitimate	–	in	other	words	the	

propensities	that	obtain	in	the	thought	experiment	are	all	as	a	matter	of	fact	

forward	looking.	So	the	proof	does	not	hang	on	this	assumption	being	generally	

valid.	
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	 The	second	caveat	is	that	relinquishing	the	ratio	analysis	of	conditional	

probability	(i.e.	giving	up	on	the	Kolmogorov	calculus,	or	at	least	on	the	implicated	

fourth	axiom:	

€ 

P A B( ) =
P B A( )
P B( )

),	does	not	actually	deliver	us	from	contradiction,	

and	cannot	in	fact	get	us	out	of	trouble.	The	ratio	analysis	is	indeed	a	

presupposition	of	the	Kolmogorov	calculus,	but	no	other	calculi	that	we	have	so	far	

developed	is	in	a	better	position	to	overcome	Humphreys’	paradox.	6		

	

	 To	sum	up,	Humphreys‘	proof	is	rightly	widely	understood	to	show	that	the	

representation	of	propensities	in	terms	of	conditional	Kolmogorov	probabilities	is	

flawed:	Propensities	are	not	in	general	probabilities.	

	

	

4.	Chance	Assumptions	in	Statistical	Modelling	

	

	 The	second	and	main	argument	for	pluralism	does	not	rely	on	formal	issues	

in	the	axiomatization	of	probability.	It	is	rather	related	to	the	practice	of	statistical	

modelling.	I	shall	argue	that	the	“appearances”	(i.e.	the	tripartite	distinction	

between	propensities,	probabilities,	and	frequencies)	are	tacitly	presupposed	in	

much	of	this	modelling	practice.	And	philosophers	of	science	as	it	happens	are	well	

equipped	to	understand	the	tripartite	distinction	as	part	of	any	modelling	practice	

–	since	it	follows	from	an	influential	account	of	modelling	in	general.		

	

	 A	statistical	model	is	often	presented	as	a	pair	structure,	consisting	of	a	

sample	or	outcome	space	S	and	a	set	of	probability	distributions,	or	distribution	

functions	Pi,	defined	over	this	sample:	

€ 

〈S,Pi〉 .	The	domain	of	each	of	the	probability	

functions	is	a	subset	or	power	set	of	the	elements	in	the	sample	and	the	range	of	

each	probability	function	is	of	course	the	unit	real	number	interval.	7	However,	the	

																																																								
6	For	a	very	nice	treatment	of	this	issue	in	connection	with	Renyi’s	axiom	system,	
see	Lyon	(2013).	
7	The	literature	on	statistical	modelling	is	large.	My	understanding	is	informed	
mainly	by	Cox	(2006),	Freedman	(2009),	and	Krzanowski	(1998),	in	addition	to	
the	McCullagh	paper	discussed	in	the	text.	
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simple	definition	has	buried	within	it	a	fair	amount	of	tacit	structure	that	is	rarely	

made	explicit.	In	particular	the	selection	of	the	sample	or	domain	of	a	statistical	

model	is	not	a	trivial	matter	and	involves	considerable	judgement.	In	his	influential	

(2002)	paper,	Peter	McCullagh	shows	how	any	statistical	model	of	a	stochastic	

phenomenon	involves	two	strictly	distinct	domains:	the	domain	of	the	

phenomenon	in	question,	and	the	domain	of	the	probability	functions	contained	in	

the	model.	The	idea	is	that	the	phenomenon	is	first	described	as	a	set	of	

parameters	Θ,	in	what	may	be	called	a	prepared	description.	A	statistical	model	is	

then	a	function	that	maps	each	parameter	point	in	Θ	onto	one	of	the	probability	

functions	

€ 

℘ S( ) 	defined	over	the	sample	space.	In	other	words	a	statistical	model	is	

functionally	a	map:	

€ 

P :Θ→℘ S( ) 	which	assigns	to	every	point	

€ 

θ t ∈Θ	in	the	

parameter	set	that	represents	the	phenomenon	a	corresponding	probability	

function	

€ 

℘θ i
S( ) 	defined	over	the	sample	space.	As	McCullagh	(2002,	p.	1225)	

notes:	“it	is	important	to	distinguish	between	the	model	as	a	function	

€ 

P :Θ→℘ S( ),	

and	the	associated	set	of	distributions	

€ 

℘θ i
S( )⊂℘ S( )”.		

	

	 A	statistical	model	comprises	both	the	parameter	set	and	the	set	of	

probability	functions	over	the	sample	space.	So,	implicitly,	a	statistical	model	is	

defined	over	two	distinct	domains:	Θ	and	S.		The	former	domain	appears	merely	as	

a	subscript	to	the	probability	distribution	function.	It	is	the	latter	domain,	the	

sample	or	outcome	space,	that	is	the	proper	sigma	field	over	which	the	

probabilities	are	defined.	It	follows	then	that	the	probabilities	in	a	statistical	model	

are	not	defined	over	the	parameter	set	that	represents	the	phenomenon	in	

question.	The	relationship	between	the	sample	space	and	the	parameter	set	is	

rather	indirect;	and	the	most	important	question	for	any	modeller	is	precisely	how	

to	‘convert’	the	parameter	space	meaningfully	into	the	sample	or	outcome	space.	

There	is	no	trivial	algorithmic	procedure:	It	is	rather	a	highly	contextual	matter	of	

judgement,	relative	to	the	particular	problem	at	hand.	It	effectively	transforms	a	

question	regarding	the	phenomenon	and	its	causes	into	a	question	regarding	the	

probabilities	in	the	model.	The	model	must	of	course	be	consistent	with	known	

data	relative	to	the	phenomenon,	but	it	is	hard	to	see	how	it	would	not	involve	

idealization	of	one	sort	of	another.	This	is	after	all	one	more	instance	of	‘modelling’	



	 11	

the	phenomena	in	a	streamlined	description.	To	quote	from	the	distinguished	

statistician	David	Cox	(2006,	p.	197):	

	

	 “Formalization	of	the	research	question	as	being	concerned	with	

aspects	of	a	specified	kind	of	probability	model	is	clearly	of	critical	

importance.	It	translates	a	subject-matter	question	into	a	formal	statistical	

question	and	that	translation	must	be	reasonably	faithful	and,	as	far	as	

feasible,	the	consistency	of	the	model	with	the	data	must	be	checked.	How	

this	translation	from	subject-matter	problem	to	statistical	model	is	done	is	

often	the	most	critical	part	of	an	analysis.	Furthermore,	all	formal	

representations	of	the	process	of	analysis	and	its	justification	are	at	best	

idealized	models	of	an	often	complex	chain	of	argument.”	

	

	 The	most	important	constraint	in	statistical	modelling	is	this:	The	

derivation	of	the	sample	space	from	the	parameter	space	must	be	responsive	to	

the	features	of	the	phenomenon.	The	function	that	takes	from	the	parameter	set	Θ	

to	the	probability	distribution

€ 

℘θ i
S( ) 	is	not	arbitrary,	but	depends	sensitively	upon	

the	nature	of	the	phenomenon	in	question.	In	particular,	if	the	phenomenon	is	

dynamical	the	function	must	respond	to	its	dynamical	laws.	And	if	the	laws	are	

stochastic,	then	it	must	respond	to	the	objective	chances	that	appear	in	those	laws.	
8	So	the	function	that	yields	the	sample	or	outcome	space	of	any	statistical	model	of	

an	indeterministic	phenomenon	already	has	built	into	it	a	dependence	upon	some	

antecedent	chances,	which	appear	in	the	phenomenon	as	described.	The	model	is	

then	of	course	tested	against	experiments	run	upon	the	system	and	yielding	finite	

frequencies.	It	then	follows	that	a	tripartite	distinction	between	propensities,	

																																																								
8	Consider	as	a	rudimentary	example	two	fair	coins,	each	independently	obeying	a	
binomial	distribution.	Suppose	that	the	coins	are	then	physically	connected	in	
accordance	to	a	dynamical	law	that	implies	correlations	amongst	them	(you	can	
imagine	some	kind	of	invisible	thread	connecting	both	tail	sides).	They	are	
thereafter	always	tossed	simultaneously	and	more	likely	to	fall	on	the	same	side.	
The	sample	space	in	the	statistical	model	for	this	phenomenon	must	then	include	
both	outcome	events	(“head”	and	“tails”)	for	each	of	the	coins,	as	well	as	all	the	
joint	events	(“heads	&	heads”	“heads	&	tails”,	etc).	And	the	probability	distribution	
function	defined	in	this	formal	model	must	be	consistent	with	these	underlying	
dynamical	facts.		
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probabilities,	and	frequencies	is	already	implicitly	assumed	in	the	practice	of	

statistical	modelling.	9	

	

5.	Saving	the	Statistical	Phenomena	

	

	 The	statistical	modelling	of	a	phenomenon	thus	presupposes	a	three-fold	

distinction	between	the	propensities	responsible	for	the	phenomenon,	the	

probabilities	that	appear	in	the	statistical	model	of	the	phenomenon,	and	the	

(actual,	finite)	frequencies	in	the	experimental	sequences	that	test	the	model.	This	

tripartite	distinction	in	statistical	modelling	practice	is	a	natural	consequence	of	

the	application	to	stochastic	phenomena	of	a	corresponding	tripartite	distinction	

in	modelling	more	generally:	Bogen	and	Woodward’s	(1988)	distinction	between	

theory,	phenomena,	and	data.	10	On	their	account,	which	is	backed	up	by	a	number	

of	detailed	cases	studies,	the	main	role	of	a	theory	is	to	explain	a	phenomenon;	and	

while	theories	can	be	consistent	with	data,	they	are	not	in	the	business	of	

explaining	or	predicting	data.	Correlatively,	an	experiment	typically	yields	

observable	data	(that	is:	finite,	actual	records	of	particular	observations	or	

measurement	outcomes);	but	the	phenomenon	itself	cannot	be	so	observed.	

Rather	our	knowledge	of	a	phenomenon	is	the	result	of	a	number	of	low-level	

inferences	that	establish	a	particular	model	for	it.	The	inferred	phenomenon	is	

then	described	in	the	model	and	with	luck	explained	by	a	theory.	It	should	be	clear	

that	the	account	presupposes	that	there	are	independent	functional	roles	for	each	

of	the	three	components:	theories,	phenomena,	and	data.		

	

	 The	best-known	illustration	of	the	tripartite	model	that	Bogen	and	

Woodward	provide	us	with	is	the	old	example	of	the	melting	temperature	of	lead.	

																																																								
9	A	referee	helpfully	points	out	that	Spanos	(2006)	defends	a	similar	distinction	
between	structural	theory	models,	statistical	models,	and	observational	data,	with	
similar	consequences	regarding	the	role	of	“chance	set-ups”.			
10	I	do	not	thereby	endorse	here	any	of	their	epistemological	claims	beyond	the	
tripartite	distinction.	My	account	of	statistical	modelling,	for	instance,	is	also	
consistent	–	at	least	for	the	purposes	of	the	present	essay	–	with	the	widely	
accepted	claim	that	models	are	autonomous	relative	to	both	theory	and	data.	See	
the	essays	in	Morrison	and	Morgan	(1999)	for	an	articulation	and	defence.	
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11	I	do	not	need	to	review	their	discussion	in	great	detail	for	my	purposes	here.	It	is	

enough	to	emphasise	that	the	fact	that	lead	melts	at	327.5	degrees	Celsius	is	not	a	

piece	of	observable	data	on	their	account,	but	may	only	be	inferred	from	a	very	

complex	array	of	data	by	some	sophisticated	data	analysis.	The	data	points	that	are	

in	fact	observed	correspond	to	single	recordings	of	measurements	taken	on	

particular	samples	of	lead	under	very	particular	conditions	–	and	hence	subject	to	

huge	variation	in	experimental	and	/	or	systematic	error.	The	variation	is	so	large	

in	fact	that	there	may	exist	no	data	point	corresponding	to	the	precise	melting	

temperature	of	lead.	And,	contrary	to	what	the	logical	positivists	thought,	no	

theory	in	solid-state	physics	may	be	able	to	explain	a	single	data	point.		

	

	 The	theory	of	phase	transitions	for	metals	indeed	explains	the	different	

melting	temperatures	of	the	different	metals	in	terms	of	their	intermolecular	

forces,	and	it	predicts	the	critical	energy	required	to	overcome	the	molecular	

bonds	typical	of	a	crystalline	solid.	But	on	the	tripartite	account,	it	does	not	need	to	

predict	or	explain	each	or	any	particular	measurement	record.	But	then	the	theory	

is	not	intended	to	ever	do	that.	It	is	rather	meant	to	account	for,	and	explain,	the	

one	true	claim	about	the	phenomenon,	i.e.	the	inferred	fact	that	lead	melts	

precisely	at	327,5	degrees	Celsius.		

	

	 In	other	words,	on	this	account	of	modelling	practice,	there	is	a	clear-cut	

functional	distinction	between	theories,	models	of	phenomena,	and	observable	

data.	The	theories	are	in	the	business	of	explaining	and	predicting	phenomena,	not	

data.	The	phenomena	are	described	by	means	of	models	that	are	in	turn	inferred	

from	the	data	by	complex	statistical	analyses.	The	observable	data	are	used	to	

confirm	these	models	of	phenomena	but	they	cannot	directly	be	employed	in	the	

confirmation	(or	refutation)	of	theory.	No	finite	number	of	contradicting	data	

points	can	refute	a	theory,	especially	when	the	data	taken	together	vindicate	a	
																																																								
11	They	derive	the	example	from	Ernst	Nagel’s	(1961)	discussion.	One	of	Bogen	and	
Woodward’s	main	claims	is	that	the	logical	positivist	accounts	of	explanation	and	
confirmation	suffers	from	oversimplification	of	the	empirical	content	of	science.	
The	logical	positivist	emphasis	on	“observable	phenomena”	is,	according	to	Bogen	
and	Woodward,	an	oxymoron.	As	explained	in	the	text,	phenomena	are	on	their	
account	never	observable,	but	always	the	result	of	some	low	level	generalizing	
inferences.		
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phenomenon	that	is	compatible	with	the	theory.	In	this	tripartite	account	the	

connections	between	data	and	theory	are	always	mediated	by	(a	model	of)	

phenomena.	

	

	 Statistical	modelling	is	one	type	of	scientific	modelling	practice.	So	it	stands	

to	reason	that	it	should	exhibit	the	same	functional	distinctions	that	are	operative	

in	modelling	in	general.	And	indeed	it	does.		Statisticians	draw	the	relevant	

distinctions,	particularly	when	they	reflect	upon	their	practice.	In	particular,	as	

shown	in	the	previous	section,	they	distinguish	carefully	the	formal	“statistical	

model”	pair	

€ 

〈S,Pi〉 	from	the	phenomenon	itself,	however	parametrized	under	some	

theoretical	description.	With	some	ingenuity	a	theory	may	be	found	that	describes	

the	dynamical	properties	behind	the	phenomenon,	including	its	propensities.	If	so,	

an	explanation	is	thus	provided	for	the	phenomenon	as	described	in	a	formal	

statistical	model	–	by	means	of	a	set	of	probability	distribution	functions	defined	

upon	an	appropriate	sample	space.	These	models	are	in	turn	tested	against	the	

data	–	namely	the	frequency	ratios	revealed	in	long	but	finite	sequences	of	

experimental	outcomes.	12	

	

	 Radioactive	decay	rates	are	a	good	illustration.	An	atom’s	chance	or	

probability	of	decay	is	a	propensity	of	the	material,	as	described	by	atomic	theory.	

The	theory	invokes	such	powers	as	part	of	the	explanation	of	the	typical	rate	of	

decay	(half	life)	of	the	material.	It	does	not	thereby	explain	any	particular	atom’s	

event	of	decay	(or	otherwise).	This	is	an	indeterministic	single	event	that	cannot	

be	so	explained.	And	no	particular	event	of	decay	(or	non-decay)	can	on	its	own	

provide	any	confirmation	or	refutation	for	or	against	atomic	theory.	The	only	way	

data	can	possibly	impinge	on	theory	is	indirectly	via	the	probability	distribution	

																																																								
12	In	our	rudimentary	two-coin	system	example,	the	theory	that	describes	the	
dynamics	of	the	system	(including	the	hidden	mechanism,	such	as	the	connecting	
thread)	is	not	meant	to	account	for,	or	explain,	any	particular	two-coin	outcome.	It	
is	only	meant	to	explain	the	probability	distribution	that	appears	in	the	formal	
statistical	model	for	the	phenomenon.		Similarly	no	particular	outcome	may	refute	
this	theory	other	than	by	compromising	the	distribution	function	in	the	model	–	
for	which	much	more	than	just	one	observation	will	certainly	be	needed.	
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functions	in	the	statistical	model	that	accounts	for	the	phenomena	of	radioactive	

decay.	13	

	

	

7. Conclusion	

	

	 I	have	argued	for	maximal	pluralism	about	chance,	by	providing	negative	

and	positive	arguments	for	a	tripartite	distinction	between	propensities,	

probabilities,	and	frequencies.	Humphreys’	paradox	provides	grounds	for	the	

distinction,	since	it	makes	it	very	implausible	that	chances	may	be	reduced	or	

analysed	away	in	any	fewer	terms.	In	addition,	I	have	positively	displayed	

elements	in	the	practice	of	statistical	modelling	recommending	the	same	

distinction.	Finally,	I	have	argued	that	the	tripartite	distinction	makes	full	sense	

within	an	influential	current	account	of	modelling	practice.		
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