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1.- Introduction 

The concept of information has proved to be one of the most difficult scientific concepts to interpret 

(Adriaans 2013, Floridi 2015). On the one hand, the word ‘information’ is used with many differing 

meanings; on the other hand, there are several different formalisms to treat the concept 

quantitatively. But even when a single formalism is considered, disagreements arise when the task 

at issue is the interpretation of the concept (Lombardi, Fortin and Vanni 2015). 

During the last decades, new interpretive problems have arisen with the advent of quantum 

information; those problems combine the difficulties in the understanding of the concept of 

information with the well-known foundational puzzles derived from quantum mechanics itself. This 

situation contrasts with the huge development of the research field named ‘quantum information 

theory’, where new formal results multiply rapidly. In this context, the question ‘What is quantum 

information?’ is still far from having an answer on which the whole quantum information 

community agrees. In fact, the positions about the matter range from those who seem to deny the 

existence of quantum information (Duwell 2003), those who consider that it refers to information 

when it is encoded in quantum systems (Caves and Fuchs 1996, Dieks 2016), and those who 

conceive it as a new kind of information absolutely different from classical information (Jozsa 

1998, Brukner and Zeilinger 2001). 

In the present article we will address the question ‘What is quantum information?’ from a 

conceptual viewpoint. In particular, we will argue that there seems to be no sufficiently good 

reasons to accept that quantum information is qualitatively different from classical information. The 

view that, in the communicational context, there is only one kind of information, physically neutral, 

which can be encoded by means of classical or quantum states has, in turn, interesting conceptual 

advantages. First, it dissolves the widely discussed puzzles of teleportation without the need to 

assume a particular interpretation of information. Second, and from a more general viewpoint, it 

frees the attempts to reconstruct quantum mechanics on the basis of informational constraints from 

any risk of circularity; furthermore, it endows them with a strong conceptual appealing and, 
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derivatively, opens the way to the possibility of a non-reductive unification of physics. Finally, in 

the light of the idea of the physical neutrality of information, the wide field of research about 

classical models for quantum information acquires a particular conceptual and philosophical interest. 

For these purposes, the article is organized as follows. In Section 2 we begin by disentangling 

the different senses of the general notion of information in order to clarify the specific concept at 

issue in our discussion. In Section 3 Schumacher’s formalism is introduced by contrast with 

Shannon’s theory. Section 4 is devoted to critically asses the most common arguments for 

conceiving quantum information as qualitatively different from classical information. In Section 5 

the relation between quantum information theory and quantum mechanics is considered, in order to 

make sense to the question about what peculiarities of quantum mechanics are really necessary to 

implement quantum protocols. Finally, in Section 6 we summarize our arguments and stress that 

calling into question the concept of quantum information does not imply, in any sense, downplaying 

the relevance of the widely developed field of quantum information theory. 

2.- Which notion of information? 

Since information is a polysemantic concept that can be associated with different phenomena, the 

first distinction to be introduced is that between a semantic and a non-semantic view of information. 

According to the first view, information is something that carries semantic content (Bar-Hillel and 

Carnap 1953; Bar-Hillel 1964; Floridi 2011); it is therefore strongly related with semantic notions 

such as reference, meaning and representation. In general, semantic information is carried by 

propositions that intend to represent states of affairs; so, it has intentionality, “aboutness”, that is, it 

is directed to other things. Non-semantic information, also called ‘mathematical’, is concerned with 

the compressibility properties of sequences of states of a system and/or the correlations between the 

states of two systems, independently of the meanings of those states.  

However, this distinction is not yet sufficiently specific, since in the domain of mathematical 

information there are at least two different contexts in which the concept of information is essential. 

In the computational context, information is something that has to be computed and stored in an 

efficient way; in this context, the algorithmic complexity measures the minimum resources needed 

to effectively reconstruct an individual message (Solomonoff 1964, Kolmogorov 1965, 1968, 

Chaitin 1966). By contrast, in the traditional communicational context, whose classical locus is 

Claude Shannon’s formalism (Shannon 1948, Shannon and Weaver 1949), information is primarily 

something that has to be transmitted between two points for communication purposes. Shannon’s 

theory is purely quantitative, it ignores any issue related to informational content: “[the] semantic 



3 
 

aspects of communication are irrelevant to the engineering problem. The significant aspect is that 

the actual message is one selected from a set of possible messages.” (Shannon 1948, p. 379). In this 

paper we will focus on the concept of information in the communicational context. 

In spite of the formal precision supplied by mathematics, the interpretation of the concept of 

information in a communicational context is still a matter of debate (see Lombardi, Holik and Vanni 

2016). Nevertheless, there are certain minimum elements that can be abstracted to characterize a 

communicational context. In fact, from a very abstract perspective, communication requires a 

source and a destination, both systems with a range of possible states: the sequences of the states of 

the source are the messages to be transmitted. As stressed above, Shannon (1948, p. 379) explicitly 

states that the only significant aspect of information is that a certain message is selected from a set 

of possible messages. Therefore, the goal of communication is to identify what message was 

produced at the source by means of the states occurred at the destination.  

A view about information that has become very popular in the philosophical community is 

based on the traditional distinction between types and tokens. According to this view, given the 

sequence of states produced by the source, what it is intended to transmit is not the sequence of 

states itself, but another token of the same type. Therefore, the goal of communication is to 

reproduce at the destination another token of the same type as that produced at the source (Timpson 

2004, 2013, Duwell 2008): this is the type-information (Duwell 2008, p. 201) or pieces of 

information (Timpson 2013, p. 24) to be transmitted, contrasted with the quantity-information or 

bits of information, that is, the measure of how much information the source produced (Timpson 

2008).  

Although very convincing at first sight, that position is contradicted by the engineering 

practice in communication. Since the goal of communication consists in identifying at the 

destination the message produced at the source, the success criterion is given by a one-to-one or 

one-to-many (noisy channel, see next section) mapping from the set of states of the source to the set 

of states of the destination. Since this mapping is completely arbitrary, the states of the source and 

the states of the destination may be of a completely different nature: for instance, the source may be 

a dice and the destination a dash of lights; or the source may be a device that produces words in 

English and the destination a device that operates a machine. A face of a dice and a light in a dash 

are not tokens of a same type in any philosophically meaningful sense of the type-token distinction 

(see Wetzel 2014). In other words, “a type needs to have some content to be able to identify its 

tokens: the distinction between types and tokens is not merely formal or syntactic; being tokens or a 

same type is not an arbitrary relation.” (Lombardi, Fortin and López 2016, p. 222). 
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A possible move is the attempt to generalize the traditional Peircean difference between 

sentence-type and sentence-token in terms of sameness of pattern or structure (Timpson 2013, p. 

18): “the success criterion is given by an arbitrary one-to-one mapping from the set of the letters of 

the source to the set of the letters of the destination” (Duwell 2008, p. 200). But this view faces two 

difficulties, one philosophical and the other technical (for a full development of these criticisms, see 

Lombardi, Fortin and López 2016). On the philosophical side, admitting arbitrary one-to-one 

mappings as defining the relation “x is a token of the same type as the token y” leads to admit that 

any two things arbitrarily chosen can always be conceived as tokens of the same type. But this 

trivializes the distinction type-token and deprives it of conceptual usefulness. From a technical 

viewpoint, the appeal to the generalization of the type-token difference in terms of sameness of 

structure or one-to-one mappings forgets the possibility of noisy situations, in which one-to-many 

mappings link the states of the source and the states of the destination (see next section). 

Furthermore, these noisy situations are the cases of real interest in the practice of communication 

engineering. Summing up, despite of the wide dissemination of the ideas that link the transmission 

of information with the philosophical distinction between types and tokens, it is not necessary to 

reproduce at the destination what happened at the source for successful communication. 

In general, the messages produced at the source are encoded before entering the channel that 

will transmit them, and decoded after leaving the channel and before being received at the 

destination. Claude Shannon (1948) and Benjamin Schumacher (1995) demonstrated theorems that 

supply the optimal coding in the so-called classical and quantum cases, respectively. The original 

articles of Shannon and Schumacher were followed by an immense amount of work, both 

theoretical and technological. Nevertheless, those foundational articles are always consulted to track 

the origin of the concepts and to discuss their content. For this reason, we will begin by recalling 

and comparing those formalisms. 

3.- Shannon and Schumacher 

Shannon’s theory is presented in the already classical paper “The Mathematical Theory of 

Communication” (1948, see also Shannon and Weaver 1949), where a general communication 

system consists of five parts:  

• A message source A, which produces the message to be received at the destination. 

• A transmitter T, which turns the message produced at the source into a signal to be 

transmitted. In the cases in which the information is coded, coding is also implemented by 

this system. 
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• A channel C, that is, the medium used to transmit the signal from the transmitter to the 

receiver. 

• A receiver R, which reconstructs the message from the signal. 

• A message destination B, which receives the message. 

 

 

 

The message source A is a system of n states ia , which can be thought as the letters of an alphabet 

{ }1,...,A nA a a= , each with its own probability ( )ip a ; the sequences of N states-letters are called 

messages. Analogously, the message destination B is a system of m states jb , letters of an alphabet 

{ }1,...,B mA b b= , each with its own probability. On the basis of these elements, the entropies of the 

source ( )H A  and of the destination ( )H B  can be computed as: 

1

( ) ( ) log ( )
n

i i
i

H A p a p a
=

= −∑   
1

( ) ( ) log ( )
m

j j
j

H B p b p b
=

= −∑     (1) 

and are measured in bits when the logarithm to base 2 is used. When log ( )ip a−  is interpreted as a 

measure of the information generated at the source A by the occurrence of ia , ( )H A  turns out to be 

the average amount of information generated at the source A. The aim of communication is to 

identify the message produced at the source A by means of the message received at the destination 

B. 

The entropies ( )H A  and ( )H B  are related through the mutual information ( ; )H A B , that is, 

the information generated at A and received at B, which can be computed as: 

1 1

( ) ( )
( ; ) ( , ) log ( ) ( )

( , )

n m
i j

i j
i j i j

p a p b
H A B p a b H A E H B N

p a b= =
= − = − = −∑∑     (2) 

where the equivocity E is the information generated at A but not received at B, and the noise N is the 

information received at B but not generated at A. In turn, the correlations between source and 

destination are represented by the matrix ( )j ip b a   , where ( )j ip b a  is the conditional probability 

of the occurrence of jb  at B given that ia  occurred at A, and the elements in any row add up to 1. 

The largest amount of information that can be transmitted over the channel C is measured by the 

channel capacity CC, defined as: 

( )max ( ; )
ip aCC H A B=          (3) 

where the maximum is taken over all the possible distributions ( )ip a  at A. 

A T R B      C message signal message signal 
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The transmitter T encodes the messages produced by the message source: coding is a mapping 

from the source alphabet { }1,...,A nA a a=  to the set of finite length strings of symbols from the code 

alphabet { }1,...,C qA c c= , also called code-words. Whereas the number n of the letters of AA  is 

usually any number, the code alphabet CA  is more often binary: 2q = . In this case, the symbols are 

binary digits (binary alphabet symbols). On the other hand, the code alphabet CA  can be physically 

implemented by means of systems of q states.  

The code-words do not have the same length: each code word iw , corresponding to the letter 

ia , has a length il . Therefore, coding is a fixed- to variable-length mapping. The average code-

word length can be defined as: 

1

( )
n

i i
i

l p a l
=

=∑            (4) 

l  indicates the compactness of the code: the lower the value of l , the greater the efficiency of 

the coding, that is, fewer resources L N l=  are needed to encode the messages of length N. The 

Noiseless-Channel Coding Theorem (First Shannon Theorem) proves that, for sufficiently long 

messages (N →∞ ), there is an optimal coding process such that the average length L of the 

encoded message is as close as desired to a lower bound minL  computed as  

min
( )

log

NH A
L

q
=            (5) 

When the code alphabet has two symbols, then min ( )L NH A= . The proof of the theorem is based on 

the fact that the messages of N letters produced by the message source A fall into two classes: one 

of them consisting of ( )2NH A  typical messages, and the other composed of the atypical messages. 

When N →∞ , the probability of an atypical message becomes negligible; so, the source can be 

conceived as producing only ( )2NH A  possible messages. This suggests a natural strategy for coding: 

each typical message is encoded by a binary sequence of length ( )NH A , in general shorter than the 

length N  of the original message. 

This formalism has received and still receives different interpretations. Some authors 

conceive Shannon information as a physical magnitude, whereas others consider that the primary 

meaning of the concept of information is always linked with the notion of knowledge (see 

discussion in Lombardi, Fortin and Vani 2015). In this section we do not dwell on this issue, but 

will only focus on the similarities and the differences between Shannon’s formalism and 

Schumacher’s formalism. 

Although there were many works on the matter before the article of Benjamin Schumacher 

(1995) “Quantum Coding” (see, for instance, Ingarden 1976), this work is usually considered the 
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first precise formalization of the quantum information theory. The main aim of the article is to 

prove a theorem for quantum coding analogous to the noiseless coding theorem of Shannon’s 

theory. With this purpose, Schumacher conceives the message source A as a system of n states-

letters ia , each with its own probability ( )ip a ; then, A has a Shannon entropy ( )H A  computed as 

in eq. (1). In turn, the transmitter T maps the set of the states-letters ia  of the source A onto a set of 

n states ia  of a quantum system M. The states ia  belong to a Hilbert space MH  of dimension 

( )dim M d=H  and may be non-orthogonal. The mixture of states of the signal source M can be 

represented by a density operator: 

1

( )
n

i i i
i

p a a a
=

ρ =∑           (6) 

whose von Neumann entropy is: 

( ) ( log )S Trρ = ρ ρ           (7) 

In the case that the ia  are mutually orthogonal, the von Neumann entropy is equal to the Shannon 

entropy: ( ) ( )S H Aρ = . In the general case, ( ) ( )S H Aρ ≤ . 

Given the above mapping, the messages ( )1 2, ,...,i i iNa a a  of N letters produced by the message 

source A are encoded by means of sequences of N quantum states ( )1 2, ,...,i i iNa a a , with 

{ }1,2,...,i n∈ . This sequence can be represented by the state 1 2, ,...,i i iNa a aα =  of a system NM , 

belonging to a Hilbert space ...   (  times)N M M MM
N= ⊗ ⊗ ⊗H H H H , of dimension Nd . This state is 

transmitted through a channel C composed of L two-state systems Q called qubits, each represented 

in a Hilbert space QH  of dimension 2. Therefore, the Hilbert space of the channel will be 

...   (  times)C Q Q Q L= ⊗ ⊗ ⊗H H H H , of dimension 2L . Analogously to the Shannon case, L indicates 

the compactness of the code: the lower the value of L, the greater the efficiency of the coding, that 

is, fewer qubits are needed to encode the messages. The Quantum Noiseless-Channel Coding 

Theorem proves that, for sufficiently long messages, the optimal number minL  of qubits necessary 

to transmit the messages generated by the source with vanishing error is given by ( )NS ρ .  

Schumacher designs the proof of the theorem by close analogy with the corresponding 

Shannon’s theorem. Again, the idea is that all the possible states α  (representing the messages of 

N letters produced by the message source A), belonging to NM
H  of dimension log2N N dd = , fall into 

two classes: one of typical states belonging to a subspace of NM
H  of dimension ( )2NS ρ , and the 

other of atypical messages. When N →∞ , the probability of an atypical state becomes negligible; 

so, the source can be conceived as producing only messages encoded by states belonging to a 

subspace of ( )2NS ρ dimensions. Therefore, the channel can be designed to be represented in a Hilbert 
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space CH  such that ( ) ( )dim 2 2L NS
C

ρ= =� H , and this means that the minimum number minL  of 

qubits necessary to transmit the messages of the source is min ( )L NS= ρ . 

From the above presentation it is clear that, both in Shannon’s and in Schumacher’s works, 

the stage of generating information and the stage of coding information are distinguished. It is also 

clear that in the generation stage there was no appeal to a particular physical theory: the physical 

system that plays the role of message source may be classical-mechanical, electromagnetic, 

thermodynamical, and even quantum-mechanical. In other words, the task of the message source 

may be performed for any kind of physical system producing distinguishable states that will be 

identified at the destination end in a successful communication. In turn, nothing is said about how 

the probabilities of the message source are determined or about their interpretation: they may be 

conceived as propensities theoretically computed, or as frequencies previously measured. It is in 

this sense that it can be said that the generation stage is independent of its physical substratum: the 

states-letters of the message source are not physical states but are implemented by physical states. 

Physical matters become relevant only when the coding stage is considered: when the transmitter 

encodes the output of the message source, the code symbols can be implemented by means of 

classical states or of quantum states. In turn, the kind of systems used for coding determines how to 

compute the efficiency of information transmission (nevertheless for a discussion about the 

quantum resources necessary to implement the protocols of quantum information theory, see 

Section 5). 

Schumacher’s formalism had a great impact on the physicist community: it is very elegant, 

and its analogy with Shannon’s classical work is clear. Nevertheless, these facts do not supply yet 

an answer about the concept of quantum information. 

4.- Two kinds of information? 

In the literature on the matter one can find a number of implicit or explicit arguments for which 

quantum information is something qualitatively different from classical information. In this section 

we will critically analyze the most widely used arguments. 

4.1.- Two kinds of source, two kinds of information? 

A usual claim is that quantum information is what is produced by a quantum information source, 

that is, a device that generates different quantum states with their corresponding probabilities (see, 

e.g., Timpson 2004, 2008, 2013, Duwell 2008). Those who adopt this characterization of quantum 
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information in general stress the elegant parallelism between Shannon’s and Schumacher’s 

proposals. 

A first difficulty of this characterization is that this is not what Schumacher says. On the 

contrary, following closely the terminology introduced by Shannon (which distinguishes between 

message and signal, and between source and transmitter, see previous section), Schumacher begins 

by defining the message source A that produces each ia  with probability ( )ip a , and only in the 

stage of coding he introduces the quantum signal source, which “is a device that codes each 

message Ma  from the source A into a "signal state" Ma  of a quantum system M.” (Schumacher 

1995, p. 2738). This means that the quantum states involved in the process described by 

Schumacher do not come from a message source, but from a quantum system M that is part of the 

device that encodes the messages produced by the message source and turns them into signals to be 

transmitted through the channel. In other words, the quantum system M is part of the device called 

‘ transmitter’. Schumacher calls the process developed between transmitter and receiver 

‘ transposition’, and describes it in the following terms: “We can therefore imagine a 

communication scheme based upon transposition. At the coding end, the signal of a source system 

M is transposed via the unitary evolution U into the coding system X. The system X is conveyed 

from the transmitter to the receiver. At the decoding end, the unitary evolution U' is employed to 

recover the signal state from X into M', an identical copy of system M ” (Schumacher 1995, p. 

2741). Here it is clear that the system X  “is conveyed from the transmitter to the receiver”, not from 

the message source A to the message destination B. Moreover, the system M is placed at the coding 

end and the system M’  is placed at the decoding end; so, M is not the message source A.  

The terminology used by Schumacher along the entire paper is very coherent. In fact, even in 

the last section before the closing remarks, where he considers the situation in which the quantum 

states arise as part of a larger system that is in an entangled state (the quantum states are improper 

mixtures), he clearly talks about the stage of coding-transmitting-decoding: the quantum states is 

still characterized as “the signal states of M” (p. 2745), and he is still interested in the “approximate 

transposition from M to M' ” (p. 2746). In other words, the focus of the paper is on the stage of 

coding in the transmitter, transmitting through the channel, and decoding at the receiver: there is no 

quantum source of quantum information that produces quantum states as messages; the quantum 

states involved in the processes, whether pure, proper mixtures or improper mixtures, are not the 

messages to be communicated but the signals to be transposed. This remark is in agreement with 

what is suggested by the title itself of Schumacher’s article: “Quantum Coding” and not “Quantum 

Information”. 
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Nevertheless, somebody might retort that, although Schumacher is clear in his paper, not even 

the position of a founding father of a discipline should replace a good argumentation. What prevents 

us from considering M a quantum source and from defining quantum information as what is 

generated by a quantum source? From this perspective, M and M’  would be the source and the 

destination of the messages, and the goal of communication would be to reproduce at the 

destination M’  the same (type) state as that produced at the source M. Besides the fact that this is 

not the goal of communication in the practice of science and engineering (recall Section 2), further 

arguments can be given against this position. 

First, this view implies to confuse the effectiveness of communication, measured by the 

mutual information ( ; )H A B , with the effectiveness of transposition, measured by the fidelity F of 

the process, defined as (Schumacher 1995, p. 2742): 

1

( )
n

i i i i
i

F p a Tr a a
=

= ω∑          (8) 

where the i ia a  correspond to the signal states produced at M, and the iω  represent the signal 

states obtained at M’  as the result of the transposition, which do not need to be pure (here we 

consider pure signal states produced at M, but the definition can be generalized to mixed signal 

states). Since fidelity measures the effectiveness of the stage of transmission through the channel, it 

is a property of the channel: the fidelity of a transmission is less than unity when the channel is 

limited in the sense that ( ) ( )dim dim NC M
<H H  (although it is indefinitely close to unity when 

( ) ( )dim 2NS
C

ρ=� H , as proved by the quantum coding theorem). By contrast, communication is 

maximally effective when ( ; )H A B  is maximum, that is, when the equivocity E is zero (see eq. (2)), 

and this, in turn, means that there is no loss of information between the message source A and the 

message destination B. In other words, all the information generated at A is recovered at B and, 

therefore, the states produced at the source A can be identified by means of the states occurred at the 

destination B. Of course, the success of a certain situation of communication based on quantum 

transposition will be a function of the fidelity of the transposition, but also of the reliability of the 

operations of coding and decoding, which correlate the states ia  of the message source A with the 

quantum states ia  of M, and the quantum states iω  of M’  with the states ib  of the message 

destination B, respectively. In other words, the closeness to success in a particular situation of 

communication depends on the whole communication arrangement, and not only on the 

transmission stage. 

In the second place, when working with non-orthogonal states, the state at the supposed 

destination M’  cannot be distinguished from other states by measurement, so it cannot be used to 

identify the state occurred at the supposed source M. So, if M were the quantum source that 
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generates quantum information, quantum information would be something that, in principle, that is, 

on the basis of the theory itself, cannot be communicated. However, the protocols of quantum 

information do not abandon the goal of communication: they only intend to make communication 

secure or to improve its efficiency. Then, strategies to recover the information of the source even in 

these cases can be designed. As Dennis Dieks clearly explains: “This [the generic non-orthogonality 

of quantum states] does not mean that messages sent via quantum coding will always remain partly 

illegible: one can devise strategies that make the probability of error as small as one wishes in the 

long run. A basic strategy here is to introduce redundancy by sending the same information 

multiple times: comparison of the measurement outcomes on repeated encoded words will make it 

possible to reconstruct the original message with an increasing level of reliability.” (Dieks 2016, p. 

1). But, at the end of the day, the goal is always communication in the traditional sense, which, as 

noticed in Section 2, requires the identification of the state occurred at the source by means of the 

state occurred at the destination. 

Thirdly, the very idea of a quantum source of information leads to conceptual perplexity. If 

the quantum states to be transmitted were the elements of the message produced by the quantum 

source of messages, where would the coding process be located? In fact, what is produced by the 

message source would be the same as what is transmitted, and the term ‘coding’ would turn out to 

be vacuous. 

Finally, if quantum information were fully identified with the quantum states produced by a 

quantum message source, the transmission of information would be reduced to the transposition of 

quantum states. Indeed, if the fact that transposition is only a part of the communication process 

were forgotten and the roles played by the message source and the message destination were 

disregarded, nothing would change in the discourse about quantum information if the term 

‘quantum information’ were replaced by the term ‘quantum state.’ The argument can be posed in 

other terms: since quantum information is what is communicated and a quantum state is what is 

transposed, the identification between communication and transposition amounts to the 

identification between quantum information and quantum state. As Armond Duwell clearly states, 

although it can be argued that there are specific properties that motivate a new concept of 

information, different from Shannon’s, when those properties are revised, “[i]t is obvious that there 

is already a concept that covers all of these properties: the quantum state. The term ‘quantum 

information’ is then just a synonym for an old concept” (Duwell 2003, p. 498). In other words, 

‘quantum information’ turns out to mean quantum state, and the whole meaningful reference to 

communication gets lost. 
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4.2.- Two kinds of coding, two kinds of information? 

Another strategy to conceive quantum information as a different and peculiar kind of information is 

to link the very meaning of the concept of information with the coding theorems: if the theorems are 

different in the classical and the quantum case, the corresponding concepts of information are also 

different. For instance, Christopher Timpson defines the concepts of information in terms of the 

noiseless coding theorems: “the coding theorems that introduced the classical (Shannon, 1948) and 

quantum (Schumacher, 1995) concepts of informationt [the technical concept of information] do not 

merely define measures of these quantities. They also introduce the concept of what it is that is 

transmitted, what it is that is measured.” (Timpson 2008, p. 23, emphasis in the original). But this 

definitional strategy also has a number of conflicting consequences (see detailed discussion in 

Lombardi, Holik and Vanni 2016). 

The first point to notice here is that, as explained in Section 3, the coding theorems are proved 

for the case of very long messages, strictly speaking, for messages of length N →∞ . Therefore, if 

the noiseless coding theorems embodied the nature of classical and quantum information, one 

wonders whether short messages can be conceived as conveying information, to the extent that they 

are not covered by those theorems. Moreover, if the theorems defined the very concepts of 

information, they would allow us to conceive as information only the Shannon and the von 

Neumann entropies. As a consequence, it would make no sense to talk about the individual amount 

of information conveyed by a single state of the message source. Or it should be accepted that the 

information per letter associated with a message is derivatively defined in terms of the entropy 

( )H A  of the message source (see Timpson 2013, p. 22). In either case, against the usual 

understanding, the entropy ( )H A  of the message source can no longer be interpreted as an average 

amount, since only in terms of previously defined individual amounts an average can be defined as 

such. The distinction between conceiving the entropies of the source and the destination as 

measuring amounts of information or average amounts of information might seem an irrelevant 

detail; however, this is not the case when we are interested in elucidating the very notion of 

information. 

Secondly, let us recall that, when explaining the elements of the general communication 

system, Shannon (1948, p. 381) characterizes the transmitter as a system that operates on the 

message coming from the source in some way to produce a signal suitable for transmission over the 

channel. And he adds that, in many cases, such as in telegraphy, the transmitter is also responsible 

for encoding the source messages. However, as any communication engineer knows, in certain 

cases the message is not encoded; for instance, in traditional telephony the transmitter’s operation 

“consists merely of changing sound pressure into a proportional electrical current.” (Shannon 1948, 
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p. 381). If information is defined in terms of the noiseless coding theorem, how to talk about 

information in those situations that do not involve coding? If one insisted on this definitional 

strategy, the entropy of the source would turn out to be defined in terms of something that is not 

essential to the source itself −coding. 

In the third place, the strategy of defining the concept of information in terms of the coding 

theorems leads to some conceptual puzzles. In fact, the message source A would generate different 

kinds of information with no change in its own nature: the kind of information generated would 

depend not on itself, but on how the messages will be encoded later. Moreover, if the kind of coding 

to be used at the coding stage were not decided yet, the very nature −classical or quantum− of the 

information generated by the message source A would be indefinite, and would remain as such up to 

the moment at which the decision were made. 

All these difficulties immediately disappear when two concepts involved in communication 

are carefully distinguished: the information generated at the message source, which depends on the 

probability distribution over the source’s states and is independent of coding −even independent of 

the very fact that the messages are encoded or not−, and the resources necessary to encode those 

states, which depend not only on that probability distribution, but also on the particular coding 

selected, classical or quantum. 

4.3.- The peculiarity of teleportation 

Teleportation is one of the most discussed issues in the field of quantum information. Although a 

direct result of quantum mechanics, it appears as a weird phenomenon when described as a process 

of transmission of information. Broadly speaking, an unknown quantum state χ  is transferred 

from Alice to Bob with the assistance of a shared pair of particles prepared in an entangled state and 

of two classical bits sent from Alice to Bob (the description of the protocol can be found in any 

textbook on the matter; see, e.g., Nielsen and Chuang 2010). In his detailed analysis of teleportation, 

Timpson poses the two central questions of the debate: “First, how is so much information 

transported? And second, most pressingly, just how does the information get from Alice to Bob?” 

(Timpson 2006, p. 596). Each question leads to its own specific difficulty.  

Regarding to the first question, it is usually said that the amount of classical information 

generated at the source is, in principle, infinite, because two real numbers are necessary to specify 

the state χ  among the infinite states of the Hilbert space. It is also claimed that, even in the case 

that a coarse-graining is introduced in the Hilbert space, the amount of information is immensely 

greater than the two bits sent through the classical channel, and this great amount of information 
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cannot be transported by the two classical bits that Alice sends to Bob. However: how is classical 

information computed to support these claims? In order to compute the Shannon entropy ( )H A , it 

is necessary to know which the possible states of the source A are and to count with the distribution 

of probability over those states: a source might have immensely many states such that only one of 

them has a probability almost equal to one; in this case, ( )H A  would be close to zero. This means 

that describing a phenomenon as teleportation in informational terms makes no sense if the message 

source, with its possible states and their probabilities, is not precisely characterized. 

However, if the qualitative difference between classical and quantum information is accepted, 

what about quantum information? How much quantum information is transferred? The usual answer 

is: one qubit per successful run of the teleportation protocol. But at this point it is necessary to recall 

that the term ‘qubit’ is endowed with a dual meaning: a qubit is primarily conceived as a two-state 

quantum system used to encode the messages produced by a source; but it is also understood as a 

unit of measurement of quantum information, which is quantified by the von Neumann entropy 

( )S ρ . If ‘qubit’ refers to a two-state quantum system, we cannot say that a qubit was transferred in 

teleportation: there is no quantum system that Alice sends to Bob. But if ‘qubit’ is interpreted as the 

unit of measurement of the quantum information carried by χ , difficulties do no disappear: the 

von Neumann entropy ( )S ρ  corresponding to the state χ  is zero, because χ  is a pure state.  

The perplexities related with Timpson’s first question vanish when the role played by 

teleportation in communication is clearly understood. In fact, teleportation is not a process of 

communication, but of transposition: “"quantum teleportation" […]  is a rather exotic example of a 

transposition process” (Schumacher 1995, p. 2741). In other words, teleportation is a physical 

process that allows a quantum state to be transferred between two spatially separated quantum 

systems without leaving a copy behind, and this process does not need to be conceptualized in 

informational terms to be understood: it can be better explained with no reference to information. 

Let us now consider the second question: how does the information get from Alice to Bob? In 

traditional communication, the information is always transferred from the transmitter to the receiver 

by means of some physical signal. But in teleportation there is no physical carrier other than that 

represented by the two classical bits that Alice sends to Bob. Might it not be this feature what 

makes quantum information qualitative different from classical information? Whereas classical 

information always requires a physical carrier that travels through space in a finite amount of time, 

quantum information would not need a physical carrier but could be transferred by means of 

entanglement, which does not involve a physical signal traveling through space. This view, 

suggested as a possibility by Jeffrey Bub in a personal communication, would justify talking about 

quantum information in teleportation. Nevertheless, it has to be considered with care. 
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First, although teleportation is a way of taking advantage of entanglement to implement 

transposition, this does not mean that any transposition process needs to be implemented by 

entanglement. Transposition needs the signal to be conveyed from the transmitted to the receiver: 

“We can therefore imagine a communication scheme based upon transposition. At the coding end, 

the signal of a source system M is transposed via the unitary evolution U into the coding system X. 

The system X is conveyed from the transmitter to the receiver. At the decoding end, the unitary 

evolution U−1 is employed to recover the signal state from X into M', an identical copy of system M 

[…] The system X is the quantum channel in this communication scheme, and supports the 

transposition of the state of M into M'.” (Schumacher 1995, p. 2741). It is clear that this process can 

be carried out by means of entanglement, in particular, of the “rather exotic” case of teleportation. 

But transposition can also be met by sending a quantum physical system X from M to M’ through 

space and time, and the whole formalism of quantum information theory still applies. This means 

that quantum information cannot be defined by the fact that it is transmitted without a physical 

carrier traveling through space and time. Eventually, the essential feature of quantum information 

would be, as Bub suggests, that it is possible to transmit it without a physical carrier.  

However, the idea that the hallmark of quantum information is that it does not need a physical 

carrier to be transferred faces the same conceptual puzzle as that already pointed out in the previous 

subsection. Again, the message source A would generate different kinds of information, quantum or 

classical, with no change in its own nature, but depending on a feature of the stage of transmission, 

in this case, whether the information may be transmitted without a physical carrier or not. 

Timpson (2004, 2013) is right in finding the origin of the puzzles usually attached to 

teleportation in a particular physical interpretation of information, which assumes that the 

transmission of information between two points of the physical space necessarily requires an 

information-bearing signal, that is, a physical process propagating from one point to the other. He 

cuts the Gordian knot of teleportation by adopting a deflationary view of information, according to 

which “there is not a question of information being a substance or entity that is transported, nor of 

‘the information’ being a referring term.” (2006, p. 599). The moral of the present subsection is 

that, when teleportation is understood as a kind of transposition process and not as a whole process 

of communication, the difficulties vanish without the commitment to a particular interpretation of 

information. Therefore, if there is a puzzle in teleportation, it is the old quantum puzzle embodied in 

non-locality, and not a new mystery about a new kind of information 
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5.- Quantum information and quantum mechanics 

According to several authors (Timpson 2003; Duwell 2003; Lombardi 2004, 2005; Lombardi, 

Fortin and Vanni 2015), the information described by Shannon’s theory and measured by the 

Shannon entropy is not classical, but is neutral with respect to the physical theory that describes the 

systems used for its implementation. Armond Duwell expresses this idea very clearly: “The 

Shannon theory is a theory about the statistical properties of a communication system. Once the 

statistical properties of a communication system are specified, all information-theoretic properties 

of the communication system are fixed. […] Hence, the Shannon theory can be applied to any 

communication system regardless whether its parts are best described by classical mechanics, 

classical electrodynamics, quantum theory, or any other physical theory.” (Duwell 2003, p. 480). 

By contrast, quantum information is usually conceived as inextricably linked to quantum 

mechanics. The idea that quantum mechanics dictates the need of a new kind of information is very 

widespread in the physicist community (Jozsa 1998, Brukner and Zeilinger 2001). It is interesting to 

notice that this view breaks the usually stressed parallelism between the classical and the quantum 

case: whereas Shannon information is physically neutral, quantum information would be essentially 

tied to quantum mechanics. 

Another idea that pervades the literature on the subject is that, since for a mixture of 

orthogonal states ( ) ( )S H Aρ = , Shannon information is a particular case of quantum information: it 

is the case in which the states are distinguishable. Jeffrey Bub explicitly expresses this view: 

“Classical information is that sort of information represented in a set of distinguishable states 

−states of classical systems, or orthogonal quantum states− and so can be regarded as a 

subcategory of quantum information, where the states may or may not be distinguishable.” (Bub 

2007, p. 576). Or, the other way around, von Neumann entropy is conceived “as a generalization of 

the notion of Shannon entropy.” (Bub 2007, p. 576). From this viewpoint, Shannon information is 

classical and, as a consequence, it loses its physical neutrality. Moreover, Shannon/classical 

information is a particular case of quantum information. In other words, the basic or more 

fundamental concept would be that of quantum information, because it does not introduce 

constraints regarding orthogonality, whereas classical information would be a secondary concept, 

since restricted to the case of orthogonality. Although for different reasons, this view also breaks 

the parallelism between the classical and the quantum case: the notions of classical and quantum 

information are not at the same level from a conceptual viewpoint. What underlies it is the 

assumption that classical mechanics is also a kind of particular case of quantum mechanics: 

classical systems are quantum systems in the classical limit. 
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These different ways of conceiving quantum information as strongly tied to quantum 

mechanics have consequences on the attempts to reconstruct quantum mechanics in informational 

terms (Fuchs 2002, Clifton, Bub and Halvorson 2003). If the reconstruction has no other purpose 

than showing that it is possible to express quantum mechanics in informational terms, the link 

between quantum mechanics and quantum information is a mere manifestation of that possibility. 

But if the reconstruction is conceived as a foundational program, designed to show that the 

foundations of quantum mechanics are informational, the program runs the risk of becoming 

circular. In fact, if the quantum-informational constraints used to reconstruct quantum mechanics 

are due to the existence of quantum information, whose nature and features, in turn, depend on the 

features of quantum mechanics, something sounds odd in the whole foundational proposal. The risk 

of circularity is averted from an alternative conceptual position: there is no quantum information as 

different from classical information; there is a single kind of information, which is not tied to a 

particular physical theory, and that can be encoded by means of classical or quantum resources. 

Therefore, any attempt to reconstruct a physical theory −not only quantum mechanics− in 

informational terms will rely on physically neutral bases.  

This neutral conception of information has an additional conceptual advantage. Either for 

simplicity reasons or due to the conviction that reality is a harmonious whole and not an incoherent 

plurality, during the history of science the unification of different theories has been widely 

considered a desirable goal. In turn, in most historical cases, such a goal was pursued by 

reductionist means. However, at present –and already since several decades ago− reductionism 

tends to be viewed with, at least, a grain of skepticism, both in the physical and in the philosophical 

communities. In the face of this situation, the physical neutrality of information allows to preserve 

the ideal of unification without commitment to reductionism, since it opens the way for a non-

reductive unification of physics: if different physical theories can be reconstructed on the same 

neutral informational basis, they could be meaningfully integrated into a single theoretical network 

and compared to each other, with no need to search for reductive links among them. 

Additionally, this physically neutral way of conceiving information paves the way to 

consider, from a conceptual viewpoint, a question that has attracted much theoretical attention 

during the last decades: how much of quantum mechanics is necessary to implement the protocols 

of quantum information theory? 

In the context of discussions about interpretation, the philosophy of physics has provided 

different classical models of quantum mechanics. Examples of them are those supplied by Diederik 

Aerts, in particular, that of an elastic band in a sphere, which produces a quantum structure 

isomorphic to the structure of a two dimensional complex Hilbert space (Aerts 1986, 1998). From a 
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more general viewpoint, Wayne Myrvold (2010) stresses that some features traditionally considered 

specifically quantum can be recovered in a formalism that deals with classical mixed states defined 

as probability measures over a classical phase space (or in the Hilbert space formalism of classical 

statistical mechanics, see Koopman 1931). In particular, two classical mixtures can be defined as 

orthogonal if and only if their supports are disjoint; therefore, non-orthogonal states can be also 

defined in a classical framework. 

During the last decades, much physical work has been directed in the same conceptual 

direction. Howard Barnum and collaborators (2007) proved a generalized version of the no-

broadcasting theorem (Barnum et al. 1996), according to which a set of states is broadcastable if 

and only if it is contained in a simplex generated by states that are jointly distinguishable by 

measurement. On this basis, this theorem is considered as a criterion to distinguish between 

classical and quantum: the theories whose sets of states are represented by a simplex are usually 

considered “classical”. However, this is a formal result: the question about whether and to what 

extent a non-simplex of states can be “simulated” by classical mechanics is still a matter of 

intensive research. 

As it is well known, according to Schrödinger (1936), the essential difference between the 

classical and the quantum is located in entanglement. However, there are “classical” simulations of 

quantum mechanics that recover some features of the theory even regarding entanglement (Spreeuw 

1998, Collins and Popescu 2002). Furthermore, some classical simulations of the violations of Bell 

inequalities have been proposed (e.g. Aerts et al. 2000, Frisch 2002, Mor 2006, Goldin et al. 2010). 

Perhaps the first attempts to simulate non-locality by classical means appear precisely in the 

field of information theory, regarding teleportation. For instance, Sandu Popescu (1994) shows that 

it is possible to implement the teleportation protocol with reasonable fidelity by means of states that 

do not violate Bell’s inequalities. This implies that teleportation can be obtained with states that can 

be modeled by local hidden variables. More recently, the possibility of classical implementation of 

teleportation has been argued for in the field of classical optics (Spreeuw 2001, Francisco and 

Ledesma 2008). 

Still in the context of information theory, even the no-cloning theorem, originally obtained in 

the quantum context (Dieks 1982, Wootters and Zurek 1982; see the extension to mixtures in 

Barnum et al. 1996), can be proved in the classical statistical domain by taking overlapping 

probability distributions with non-trivial supports as dynamical variables (Daffertshofer et al. 2002; 

see discussion in Teh 2012). 
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In the last times, the research on classical analogues of quantum features has experienced a 

strong development in classical wave-optics. Besides the already mentioned case of teleportation, 

certain effects usually associated with quantum entanglement have been obtained with classical 

fields (Lee and Thomas 2002, Qian and Eberly 2011), and different quantum-information processes 

and phenomena, such as Greenberger-Horne-Zeilinger entanglement and a quantum error correction 

network, have been reproduced by means of classical optical processes (Spreeuw 2001). The appeal 

to classical optics has permitted, during the last years, the empirical implementation of the 

theoretical results previously obtained: at present there is a growing field of experimental research 

in this field (see, e.g., Borges et al. 2010, Töppel et al. 2014, Qian et al. 2015). 

Optical simulation has been applied particularly to the computational context (see, e.g. 

Man’ko et al. 2001; for a simulation of a Hadamard gate, see Francisco et al. 2006a; a simulation of 

a quantum walk is presented in Francisco et al. 2006b). For instance, certain operations of a 

quantum computer can be performed by means of optical elements. A particular case is the optical 

implementation of Grover’s algorithm for efficient searching; according to certain authors, this is 

achieved by means of “a physical system that relies on superposition, interference, and non-

factorizable states to function. Since these may also be classical phenomena, we conclude that many 

ingredients of quantum algorithms are not necessarily non-classical.” (Kwiata et al. 2000, p. 265; 

for a physical implementation of the algorithm, see Bhattacharya et al. 2002). This and other 

quantum algorithms have been simulated by using programmable liquid-crystal displays (Puentes et 

al. 2004). It has also been shown that a nontrivial quantum computing optical device can easily be 

constructed if the number of component qubits is not too large (Cerf et al. 1998). A relevant 

theoretical result in the computational context is given by the Gottesman-Knill theorem (Gottesman 

1999), according to which quantum algorithms that only use certain specific operations (those 

belonging to the so-called Clifford group) can be efficiently simulated by classical operations (for 

an interesting analysis of the conceptual meaning of the theorem, see Cuffaro 2015). 

During the last decade a new classical model of quantum phenomena has been proposed and 

physically implemented. Droplets bouncing on a vibrating non-coalescent liquid generate waves as 

they bounce, and interact with their own waves: due to this phenomenon, they mimic non-local 

interactions reminiscent of the particle-wave associations in quantum mechanics. The droplets also 

interact with the environment (and other bouncing droplets), generating a complex dynamics which 

resembles that of particles guided by pilot waves (Couder et al. 2005a, Couder et al. 2005b, Couder 

and Fort 2006). Furthermore, it has been experimentally shown that bouncing droplets can be used 

to reproduce single-slit and double-slit diffraction, interference phenomena, tunneling, quantized 

energy levels, quantum random walks, and the creation/annihilation of droplet pairs (Protière et al. 
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2006, Eddi et al. 2011, Oza et al. 2013, Moláèek and Bush 2013). And, as it might be expected, 

these bouncing droplets have already led to interpretive reflections (Brady and Anderson 2014). 

Of course, this theoretical and experimental trend, although widespread and prolific, does not 

cancel the differences between classical and quantum physics. Nevertheless, on this basis we may 

wonder which quantum resources are needed for quantum information theory. The whole 

theoretical power of quantum mechanics is necessary in every case, or certain quantum information 

processes can be implemented by classical models? The peculiarities of quantum mechanics are 

required for the possibility of implementing the information protocols, or only for obtaining 

efficient implementations? These questions open a wide field of conceptual and philosophical 

research based on recent theoretical and experimental results. However, such a work would not find 

a comfortable place in the framework of a position that presupposes the qualitative difference 

between classical and quantum information from the very beginning. In fact, if classical and 

quantum information are two different kinds of information according to their own nature, what 

kind of information, classical or quantum, is transferred in the case of a quantum informational 

protocol implemented by physically classical means? On the contrary, the view of information as 

physically neutral is particularly adequate for undertaking that conceptual research: it has the 

sufficient flexibility to accommodate different ways of implementing informational processes, to 

the extent that they are not tied a priori to a particular physical theory. 

6.- Concluding remarks 

In the present article we have argued that there seems to be no sufficiently good reasons to accept 

that there is a kind of information, the quantum information, qualitatively different from classical 

information. In particular, we have presented several arguments directed to challenge the idea that 

there are two different kinds of information source, classical and quantum, and against defining 

information in terms of the classical and quantum coding theorems. On this basis, we have defended 

the view that, in the communicational context, interpreting information as physically neutral is more 

adequate. Many conceptual challenges simply vanish when it is assumed that the difference 

between the classical and the quantum case is confined to the coding stage and does not affect the 

very nature of information. 

We have also argued that this physically neutral view of information has, in turn, interesting 

conceptual advantages. First, teleportation loses its puzzling features with no need of commitment 

with a particular interpretation of information. Second, the reconstructions of quantum mechanics 

on the basis of informational constraints acquire better foundations. Third, the ideal of a non-
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reductive unification of physics also finds support in the physical neutrality of information. Finally, 

the active research about classical models for quantum information attains a particular conceptual 

and philosophical interest. 

The fact that many conceptual challenges vanish from our neutral view does not imply that all 

the interpretive problems about the concept of information disappear. In fact, there are several 

conceptual questions that can be posed in the context of information theory even before considering 

the different ways in which information is encoded. For instance: Is the concept of information a 

formal or an empirical concept? Is it a concrete or an abstract concept? Does information have any 

relationship with knowledge? Is there any sense in which information might be conceived as a 

physical magnitude? (see detailed discussion in Lombardi, Holik and Vanni 2016). Of course, the 

advent of quantum information has a relevant influence on the answers to these questions. 

Nevertheless, they remain as questions open to debate even when it is accepted that there are not 

two qualitatively different kinds of information, classical and quantum. 

These conclusions do not intend to underestimate the relevance of the so-called ‘quantum 

information theory.’ This is a field that has grown dramatically in recent decades, supplying many 

new and significant results with promising applications. Our aim here has been exclusively 

conceptual. As it has been claimed previously −although for different reasons− (Timpson 2013, p. 

237), the theory is not “(quantum information) theory”, that is, a theory of quantum information, but 

“quantum (information theory)”, that is, a theory about quantum resources applied to information 

theory. In this article, our purpose has been to support this claim from a philosophical perspective 

based on the physical neutrality of information. 
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