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Abstract

The Lorentz transformations in the theory of special relativity (SR)
lead to a little-investigated phenomenon called relativistic determinism.
When two relatively moving inertial observers A and B coincide in space at
a given instant, it is possible that a particular distant event is in the future
of one of the observers (B), but is in the present or even in the past of the
other (A); this is a well-known consequence of the relativity of simultane-
ity. Hence B’s future at the instant of coincidence with A is determined
by the fact that A had already seen it at that instant. In this paper, it is
argued that Platonism is inherent in relativistic determinism and from the
point of view of formalism, a logical inconsistency can be deduced in SR,
as formalized in classical first-order predicate logic (FOPL). Similarly, it is
argued that Platonism is inherent in non-Euclidean geometries (NEG) and
that formalism demands that Euclid’s fifth postulate (EP) be provable in
plane neutral geometry (NG) consisting of Tarski’s axioms (as formalized
in FOPL). The essential argument here is that models of NEG can only be
constructed by assuming that the postulates of Euclidean geometry (EG)
are metamathematically or Platonically ‘true’. Formalism demands how-
ever that such Platonic truths do not exist and so one concludes that
formally, the provability of EP follows from its truth in every model of
NG. The classical argument for ‘interpreting’ NEG within EG must be for-
mally rejected as amounting to assuming the Platonic/metamathematical
truth of the Euclidean postulates. So from the point of view of formalism,
this argument does not really prove the relative consistency of NEG with
respect to EG. An argument for provability of EP in NG is presented in
the non-Aristotelian finitary logic (NAFL) proposed by the author.

1 Relativistic determinism — the clash with logic

Consider the theory of special relativity (SR) as formalized in classical first-
order predicate logic (FOPL). For details of such a formalization, see the work
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of Andréka et al. [1]; on page 1245, Part VI of [1] an explanation is given for why
first-order logic is to be preferred to higher-order logics. A particularly simple
set of postulates for SR is given in [2] and we will adopt these for the elementary
treatment in this paper. The little-studied phenomenon of relativistic determin-
ism, which is a consequence of the Lorentz transformations and the relativity of
simultaneity, is clearly explained in [3]. An example of relativistic determinism
which we wish to consider in this paper may be formulated as follows.

Let A and B be relatively moving inertial observers who happen to coincide
in space at a given instant defined by ¢t = 0 in A’s frame and ¢’ = 0 in B’s frame.
Let C be an instantaneous event that is localized in space and distant to both
A and B. Let U(IBC) define a non-trivial universe of material objects with
certain well-posed initial-boundary conditions IBC'. Define the proposition P
as “From A’s point of view, C occurs in U(IBC) when A’s local clock reads
t = 0” and the proposition @) as “From B’s point of view, C occurs in U(IBC')
when B’s local clock reads t' = T”. Here T > 0 is a constant obtained from
the Lorentz transformations as applied to the event C' in A’s and B’s inertial
frames. Relativistic determinism asserts that if P is true then () must be true
(or P = Q); in other words, B’s future at time t' = 0 is determined by the fact
that A has observed C at precisely that instant (when A and B coincided) and
so B must necessarily observe C at t' = T.

In order to obtain a logical contradiction from the above scenario, let us fur-
ther stipulate that the proposition “Event C' occurs in U(IBC)” is undecidable
in SR, i.e., in particular, neither A nor B can either prove or refute this proposi-
tion. Such undecidability could occur in many ways, for example, as a result of
Godel’s incompleteness theorems; alternatively, C' could be a probabilistic event,
such as, the outcome of a coin toss experiment or some quantum phenomenon;
or else, C' could be completely unpredictable as a result of being decided by the
instantaneous free will of a human being. It immediately follows that P and
@ are undecidable in SR; see the ensuing paragraph for the definition of such
undecidability. Note however, that SR requires P < (@ to be a theorem despite
the undecidability of P and @); this fact immediately makes SR inconsistent in
the non-Aristotelian finitary logic (NAFL) proposed by the author in [4] and
[5] (in particular, see Remark 5 of [4] and Section 2.2 of [5]). This argument for
inconsistency of SR in NAFL is simpler than the one given using inertial frames
in [6]. It follows that the philosophy of formalism as embodied by NAFL [5]
immediately rejects relativistic determinism. The goal of this paper is to show
that an inconsistency can be deduced in SR even within FOPL, if one insists on
formalism.

Henceforth, whenever we refer to A (B), it is to be understood that our
argument may apply equally well to any observer in A’s (B’s) set of inertial
frames. Note that we require the following restrictions regarding propositions
involving P and Q. The truth of P (Q) can be asserted (via an observation,
for example) or deduced in SR only by A (B). However, B (A) can consider
and either accept or refute in SR any assertion/deduction of the truth of P (Q)
made by A (B); but B (A) cannot assert or deduce the truth of P (Q). The
undecidability of P (@) in SR means that A (B) can neither prove nor refute



P (Q) in SR. P = @ is a theorem in B’s (and not A’s) frame; in other words,
only B has the right to deduce @ in SR from an assertion of P made by A (if
B happens to agree with A’s assertion). Similarly, @ = P is a theorem in A’s
(and not B’s) frame. In fact P = @Q and Q = P are illegitimate propositions
in A’s and B’s frames respectively. The idea behind these restrictions is to
allow A (B) to consider the truth of @ (P) without undermining the Lorentz
transformations.

In particular, @ is undecidable in SR, which means, as noted above, that B
can neither prove nor refute ) in SR. The question we wish to consider is as
follows. Given that A has asserted the truth of P, and given that P = (@ is
a theorem of SR in B’s frame, can B accept A’s assertion and conclude Q7 In
the metatheorem that follows, we argue that B in fact has a formal refutation
of A’s assertion; i.e., B has a proof of =P in SR and hence B has no way to
conclude ) despite A’s assertion of P. However, B does not have the right to
use (Q = P along with the said proof of =P to deduce —(@), because, as noted
above, @ = P is a theorem of A’s (and not B’s) frame. Hence @ continues to
remain undecided in SR (in B’s frame) despite A’s assertion of P. See Remark 6
below for further clarifications.

Before proceeding to the main result in the metatheorem below, we observe
that an additional restriction is necessary, as follows. A and B accept each
other’s observations/theorems as true/valid if and only if there is no disagree-
ment with (or a refutation of) the observations or any step used in the proof of
the said theorems, including the theorems themselves. As an example, suppose
A asserts =P and concludes =@ from the theorem () = P of A’s frame. Then
B accepts A’s assertion =P as true and A’s inference =P = —() as valid despite
that fact that such an inference is illegal in B’s frame. Thus B accepts A’s
conclusion (@) as true; i.e., B does not insist that because of the illegality of the
inference =P = —() in B’s frame, there must exist a model for SR in which A
asserts =P and B asserts Q).

Metatheorem. Suppose A claims the truth of P. B has a proof of =P in SR.
Formally, B must accept this proof rather than A’s claim. Hence the theorem-
hood of P = @ does not decide @ in SR from B’s point of view. From the
completeness theorem of FOPL, it follows that from B’s point of view, there
must exist a model for SR in which Q is false despite A’s claim of the truth of
P. The existence of such a model would make SR, inconsistent from A’s point of
view, because the Lorentz transformations would be violated, and indeed, there
could even be a disagreement between A and B over whether C' occurred at all.
If such a model does not exist, then SR is inconsistent from B’s point of view.

Proof. Define the proposition R as “From B’s point of view, C occurs in U(I BC)
when B’s local clock reads ¢ = 0”. Clearly, B has a proof of P = @) and hence
a proof of P = —R, from the Lorentz transformations; B can only expect to
observe C' at t' = T if P is indeed true as claimed by A. It follows that if B
accepts A’s claim of the truth of P, then B does indeed have a proof of —R.
Now Q& —R expresses the fact that C is in B’s future when B’s local clock reads
t' = 0, which means that from B’s point of view, C' has not yet occurred when



A and B coincide with their local clocks reading ¢ = 0 and ¢’ = 0 respectively.
To say that C has not yet occurred at this well-defined instant (according to B’s
definition of simultaneity) is also the same as making the global assertion that
no one, including any observer in A’s frame, has observed C at that instant
from B’s point of view. It follows that B can conclude —P. In other words,
B is entitled to draw the inference Q&—-R = —P. See Remark 3 below for
further justification of this inference. Since B has concluded —P starting from
the assumption P, it follows that B has a proof by contradiction of =P in SR.
Consequently, B concludes that () remains undecided in SR despite A’s claim
of the truth of P and the metatheorem follows. O

Remark 1. At the well-defined instant when A and B coincided, defined by
(t =0, t' = 0), the truth value of P in A’s frame is classically determined; in
other words, in A’s frame, P is either true or false in FOPL at t = 0 irrespective
of whether A happens to know the truth value at that instant. If eventually A
determines that P is true, it was already true at the instant ¢ = 0. So from B’s
point of view, A’s claim of P already ‘exists’ at the instant ' = 0 and by the
metatheorem there must exist a model for SR in which subsequent events in B’s
frame (including actions of B or anyone else in B’s frame) falsify A’s claim.

Remark 2. Note that one could deny that P is a legitimate proposition in B’s
frame of reference. But then B still has the problem of proving @, given A’s
claim of P. If B is not allowed to consider A’s claim at all, then it follows that
B still has no proof of Q. In particular, for times ¢’ satisfying 0 < ¢' < T', B still
has no proof of () and concludes that there must exist a model for SR in which
Q is false, given the data up to (and including) the time ¢'; B cannot consider
that such data may include A’s claim of P, by assumption. So formally, the
conclusions of the metatheorem would still follow. But if B were to abandon
formalism and accept the Platonic truth of P (without formally admitting P as
a proposition), then the Platonic truth of @ would also follow. In other words,
one could argue that SR is about the real world and P and @ are real-world
truths. But even here there is a problem — if B were to accept the Platonic
(real-world) truth of P, B would have no option but to conclude that the event
C “really” occurred when A and B coincided, and that the truth of ) is nothing
but an illusion. One must remember that it is only through formalism that such
a conclusion was avoided in the first place.

Remark 3. A second option might be to deny B’s inference Q&R = —P made
in the above proof. But such a denial is not tenable, as explained below. Note
that there is a clear definition of global simultaneity in SR (unlike general rel-
ativity) within an inertial frame of reference, such as, that of B. So there is a
clear past, present and future for B and to say that an event C' can only occur
in the future of B at a given instant defined by ¢ = 0 is the same as saying
(from B’s point of view) that C' can also only occur in the future of A at this
instant, when A and B coincided. This immediately implies an assertion of
—P by B, for at the instant of coincidence, B concludes that A still does not
have any proof on whether C' will occur at all in the future; this is especially



clear if C' is a probabilistic event, such as, the outcome ‘heads’ in a coin toss
experiment, as considered in the following remark. It is very important to note
that the converse does not apply from A’s point of view. That is, given that
B has observed () to be true, A concludes P from the Lorentz transformations.
But A cannot infer =@ from P (in a manner similar to B deducing —P from
@), despite the temptation to do so. A can only conclude that P is true and
that the local observer in B’s frame has observed that event C' has occurred at
the instant ¢ = 0 in A’s frame, but B has the illusion of observing C at a later
time; hence, from A’s point of view, B accepts the truth of @ due to a wrong
definition of simultaneity. But there is no scope for B to argue in this manner
in order to deny the inference Q&R = —P; there is no way for A to get the
illusion of an event C' that has not yet happened, and indeed, need not happen
at all, from B’s point of view. This asymmetry clearly highlights the problem
with relativistic determinism.

Remark 4. Let C be the probabilistic outcome ‘heads’ in a coin toss experiment.
Suppose A claims P. From B’s point of view, the event C' had not yet occurred
at t' = 0 on B’s local clock and so B concludes that A’s frame still did not
have any evidence of the outcome ‘heads’ at the instant when they coincided.
Hence from B’s point of view, at the instant of coincidence with A, A’s frame
has no information available on whether C' will occur at all. B deduces that
it certainly cannot be A’s point of view that C' occurred at ¢t = 0 on A’s local
clock; it follows that B has a refutation of A’s claim of P and concludes that
either outcome (‘heads’ or ‘tails’) is still possible for all times in the interval
0 <t' < T. In particular, since B allows for the outcome ‘tails’, there is no way
(from B’s point of view) that A got the illusion of ‘heads’ via a wrong definition
of simultaneity. Conversely, from B’s claim of @), A concludes P and that the
local observer in B’s frame had already seen the outcome ‘heads’ at t = 0, when
A and B coincided. So from A’s point of view, B’s frame already has evidence of
‘heads’ at this instant, although B may not yet be aware of it. Hence A cannot
refute B’s claim of (), as noted earlier.

Remark 5. Consider the following example. Let A be at the front end of a
long platform at rest and let B be at the front end of a long train. The train
is adjacent to the platform and is travelling at a very high, constant velocity
(close to the speed of light) relative to the platform. Define the event C' as the
(instantaneous, localized) coincidence of the rear end of the train with the rear
end of the platform. Let A and B coincide in space at an instant defined by
t = 0 and ' = 0 respectively on their local clocks. Define P and () as before.
Suppose that there is a localized fault in the track just prior to the rear end of
the platform, so that it is completely unpredictable as to whether the wheels of
the train will instantaneously derail or pass smoothly over this fault. It follows
that P and () are undecidable in SR. Suppose A claims that P is true; i.e., A
determines that no derailment has occurred. From the metatheorem, B has no
proof of ) in SR and concludes that there must exist a model for SR in which @
is false despite A’s claim. In particular, B allows for the possibility of derailment
of the train at the fault at any time 0 < ¢' < T despite A’s claim to the contrary



and this would cause @ to be false. As noted in Remark 1, at (¢ = 0, ¢’ = 0),
neither B nor A need actually be aware of A’s (eventual) claim in order for this
argument to apply. Suppose one insists that SR works in the real world and
that B would always find @ to be true if A claims the truth of P. Let there be
a non-zero probability p < 1 such that derailment occurs in the time interval
0 <t' < T, from B’s point of view. In a series of experiments in which A claims
P, B would, by hypothesis, find @ to be true. Since B has a formal refutation of
P in SR (by the metatheorem), it follows that B will conclude that the laws of
probability have been violated in the real world. Perhaps this argument would
throw some insight into why SR may be incompatible with quantum mechanics.

Remark 6. The restriction that P = @ (Q = P) can only be a theorem in
B’s (A’s) frame may seem somewhat artificial to the reader. Observe that
if @ = P were to be a theorem in B’s frame, then B’s proof of =P would
immediately yield a proof of =@, which implies a complete rejection of the
Lorentz transformations and SR. Indeed, B’s proof of =P simply expresses that
B disagrees with A’s claim of P, which is within the spirit of SR; this proof
should not be allowed to enable B to conclude —@), thus contradicting SR. On
the other hand, since SR requires B to refute A’s claim of P, such a claim cannot
be used by B to prove @) either. This is the main point of this section, namely,
that @ continues to remain undecided in SR from B’s point of view despite
A’s claim of P. Note that since Q = P is a theorem in A’s frame, A is free
to conclude =@ from an assertion of =P in A’s frame. Here B would have no
problem in accepting A’s conclusion of =@ as true because B does agree with
any claim of =P by A, and B accepts the validity of A’s inference - P = —(Q)
despite its illegality in B’s frame.

Remark 7. Note that the existence (non-existence) of the model stated in the
metatheorem makes SR inconsistent from A’s (B’s) point of view. Similarly,
B’s proof of =P will not be accepted by A as correct. This raises serious philo-
sophical issues of who decides the consistency of a theory and the validity of
a proof within that theory. The author’s opinion is that these issues can be
settled only by agreement amongst the entire human race, irrespective of the
frame of reference any particular individual happens to be in. In this respect,
SR seems to be an illegitimately formulated theory. To assert that there is
a reality for the consistency of SR independent of (and possibly contrary to)
the deductions of human beings made from the inertial reference frames they
happen to be in, seems to be highly questionable. It is clear that SR does not
tolerate undecidable propositions of the type required in this paper. This seems
to clash with Godel’s incompleteness theorems and rules out consideration of
any probabilistic, spatially localized events in SR.

2 Non-Euclidean geometries

It was noted in [5] that Platonism is inherent in classical logic and that the
author’s proposed non-Aristotelian finitary logic (NAFL) is the only logic that



correctly embodies formalism. Here we will first argue the inconsistency of non-
Euclidean geometries from the point of view of NAFL. We will then critically
examine non-Euclidean geometries in classical first-order predicate logic (FOPL)
and explain precisely why Platonism is inherent in these geometries, which must
therefore be rejected from the point of view of formalism.

In this paper we confine ourselves (unless otherwise indicated) to plane ge-
ometry; the extension to the three-dimensional case is straightforward. We
assume that the reader is familiar with the axiom scheme for plane Euclidean
geometry given in FOPL by Tarski [7]. We use EG, HG and NG to denote
Euclidean, hyperbolic and neutral geometries respectively. Let ¢ be Euclid’s
fifth postulate; then EG = NG + ¢, and HG = NG + —¢. We also assume
that the reader is familiar with Euclid’s original formulation in terms of his five
postulates — an excellent elementary account is given by Greenberg [8] who also
presents Hilbert’s (second-order) axiomatization of Euclidean geometry. A good
web reference is due to Royster [9]. Our analysis applies equally well to Hilbert’s
formulation as well, except that in second-order logic there is no completeness
theorem (which we will later require to argue that ¢ must be provable in NG).

2.1 Inconsistency of non-Euclidean geometries in NAFL

In the logic NAFL proposed by the author [4, 5] the Main Postulate asserts
that an undecidable proposition ¢ in a consistent NAFL theory T (which has
the same rules of inference as in FOPL) can be true (false) with respect to T
if and only if ¢ is provable (refutable) in an interpretation T* of T. Here T* is
also an axiomatic NAFL theory which, like T, resides in the human mind. Prov-
ability /refutability of ¢ in T* is essentially equivalent in NAFL to an axiomatic
declaration of truth/falsity of ¢ with respect to T. There is no Platonic world in
which ¢ can be true or false independent of axiomatic theories and independent
of an axiomatic declaration of such truth/falsity made in the human mind via
T*. Metatheorems 1 and 2 of [4] explain why the laws of the excluded middle
and non-contradiction must fail in the absence of such an axiomatic declaration
(i.e., when ¢ is undecidable in T*); in particular, metatheorem 2 asserts that
¢ is neither true nor false with respect to T in this case, which corresponds to
a non-classical model for T in which ¢&—¢ is the case. Hence consistency of
T demands the existence of such a non-classical model. Here T* is the ‘truth-
maker’ for a model of T, wherein only the theorems of T* are assigned ‘true’;
every other proposition is in a superposed state of ‘neither true nor false’. Note
that ‘¢’ in this superposed state of ¢&—¢ in the non-classical model is to be
interpreted as ‘—¢ is not provable in T*” and ‘—¢’ is to be interpreted as ‘¢ is
not provable in T*’. This interpretation is obviously true and so there is no con-
tradiction in the superposition required by NAFL. An important consequence
of the above truth definition is that the superposition of any two models for an
NAFL theory T must also be a (possibly non-classical) model for T — here the
model is is to be understood as ‘non-classical’ with respect to propositions that
are in a superposed state, and ‘classical’ with respect to other propositions.

A second important consequence of the NAFL truth definition which we will



require here is as follows. Suppose an NAFL theory T requires a certain object
(such as, ‘line’ in Euclid’s postulates) to be uniquely defined in every model for
T. Then consistency of T demands that T must necessarily provide a unique
construction (or definition) for that object. In other words, ‘non-constructive
existence’ of such uniquely defined objects is not permitted; NAFL requires
uniqueness to be enforced with respect to the theory T, and not just in models for
T. For example, take T to be Euclid’s first four postulates. Classically, one can
get a Euclidean model E for T by interpreting ‘line’ to mean Euclidean straight
line, and a hyperbolic model H for T by interpreting ‘line’ in the hyperbolic
sense. In NAFL, the consistency of T demands that the superposition of these
two models H and E also be a non-classical model for T in which 1) is neither true
nor false, as noted in the previous paragraph. But such a superposed state of
&) will violate the requirement of the first postulate of T (i.e., Euclid’s first
postulate) that a ‘line’ be uniquely defined by any two of its distinct points;
it follows that the required non-classical model for T cannot exist. Thus we
conclude that the undecidability of ¢/ in T makes T inconsistent in NAFL.

To sum up, it is inconsistent in NAFL to assert that T permits both Eu-
clidean and hyperbolic definitions of a straight line, given that T requires
straight lines to be uniquely defined by any two of its points; such an asser-
tion clearly implies a lack of uniqueness with respect to T. It follows that NAFL
does not permit entities like ‘point’, ‘line’; ‘plane’; etc. to be left uninterpreted
(or non-constructively defined) in T because of the fact that these entities must
have a unique construction available in every model for T. For example, T re-
quires that any given object is either a point or not a point; in set-theoretical
terms, the class of all points (which is precisely the ‘plane’) unavoidably ex-
ists [5] in the NAFL version of T and the axiom of extensionality for classes will
require that a given object either belongs to or does not belong to that class.
Therefore consistency of T in NAFL demands that two classical models for T,
in which a given entity is a point in one of the models and not a point in the
other, cannot both exist; for the superposition of such classical models cannot
be a non-classical model for T as required. It follows that the NAFL version
of T does not tolerate any ambiguity in the meaning of ‘point’. Similarly, all
classically ‘uninterpreted’ entities must necessarily be constructively defined in
the NAFL version of T (in fact, to have their Euclidean meanings, as we will
argue shortly).

Another simple argument for the decidability of ¢ in the NAFL version of
NG is as follows. Suppose, to get a contradiction, that v is undecidable in NG.
The Saccheri-Legendre theorem of NG (see Chapter 4, pg. 101 of [8]) asserts
that the sum S of the degree measures of the three angles in any triangle is
less than or equal to 180°. Consider the proposition ¥ defined by ‘S = 180°’,
with the negation =¥ taken as ‘S < 180°’. It is easy to show that ¥ < ¢ and
hence by hypothesis, ¥ is undecidable in NG; ¥ corresponds to EG and V¥,
to HG. In NAFL, the consistency of NG and the assumed undecidability of ¥
demands that there exist a non-classical model for NG in which ¥&—¥ is the
case. But it is also a theorem of NG that S be uniquely defined, and so formally,
the superposed state of ¥&—T violates this uniqueness requirement. It follows



that the required non-classical model for NG cannot exist and so the NAFL
version of NG would be inconsistent if 1) were to be undecidable as assumed.
The conclusion is that in NAFL, the rules of inference of NG must necessarily
be such that 1 be either provable or refutable; under the ensuing heading, we
will argue the case for provability.

2.1.1 Proof of ¥ in the NAFL version of NG

Classically, consistency of NG demands undecidability of ¢ in NG; this is dia-
metrically opposite to consistency in NAFL, which demands decidability of ¢
in NG, as noted above. In the ensuing subsection we will demonstrate that the
classical argument is valid if and only if one accepts Platonism (which implies
a rejection of NAFL).

In order to argue for the provability of ¢ in NG, we first note that ‘point’,
‘line’, ‘plane’ and other classically uninterpreted entities of NG must necessarily
have unique, constructive definitions as demanded by NAFL. Our contention
is that it is precisely the addition of ¥ to NG which provides such unique,
constructive definitions; v, together with the axioms of NG, are essential in
order to have a meaningful NAFL theory. Hence the axioms of EG cannot be
denied in NAFL and must be declared as tautologously true. At this stage the
reader might wonder why 4 is essential; why not =17 Note that — still does not
provide unique meanings to the uninterpreted terms; there are many possible
classical interpretations of HG, such as, the Beltrami-Klein model, Poincaré’s
models, etc.; see Chapter 7 of [8]. This ambiguity is not acceptable in NAFL
because the superposition of these classical models of HG cannot be a (non-
classical) model for HG, as demanded by NAFL; it is only ¢ that removes all
ambiguities. In the ensuing subsection, we argue that Platonism is inherent
in =), which must be rejected by NAFL. The problem we are faced with is
how the definitions and rules of inference of classical NG must be modified so
that a proof of 9 results in the NAFL version (which, as noted earlier, uses the
classical rules of inference). If such a modification is deemed impossible, then
NG is inconsistent in NAFL. An attempt at a solution follows.

Playfair’s postulate, which is equivalent to Euclid’s fifth postulate 1, as-
serts ([8], Chapter 1, pg. 17) that for every line [ and every point P that does not
lie on [, there exists a unique line m through P that is parallel to [. Henceforth,
we will refer to Playfair’s postulate as ¢. Classically, two lines are parallel if and
only if they do not intersect. But this definition is not satisfactory in NAFL as
it leads to undecidability of ¥ in NG and the ambiguities in the uninterpreted
terms noted above. The NAFL definition of ‘parallel’ is stated as follows.

Definition 1. Two distinct coplanar lines are parallel if and only if they are
equidistant at all points, where distance between the lines at a point (on either
line) is defined as the length of the perpendicular to the other line dropped from
that point. Similarly, a line segment AB that does not lie on a line [ is parallel
to [ if and only if AB is equidistant from [ at every point of AB.

Definition 1 is in fact first due to Posidonius as the following quote from ([9],



“The Origins of Geometry”) shows:

“Many people have tried to prove the Fifth Postulate. The first
known attempt to prove Euclid V, as it became known, was by
Posidonius (1st century B.C.). He proposed to replace the definition
of parallel lines (those that do not intersect) by defining them as
coplanar lines that are everywhere equidistant from one another. It
turns out that without Euclid V you cannot prove that such lines
exist.”

A similar definition was also used later by Geminus (10 B.C.—~60 A.D.) in a
failed attempt to prove Euclid’s fifth postulate from the first four; see the quote
below from [10]:

“Geminus tried the following approach giving a definition of parallel
lines:-

Parallel straight lines are straight lines situated in the same plane
and such that the distance between them, if they are produced without
limit in both directions at the same time is everywhere the same.

The ‘proof’ which Geminus then gave of the parallel postulate is
ingenious but it is false. He made an error right at the start of his
argument for he assumed that the locus of points at a fixed distance
from a straight line is itself a straight line and this cannot be proved
without a further postulate. It is interesting, however, that Geminus
attempts to prove the parallel postulate and, although it is unlikely
to be the first such attempt, at least it is the earliest one for which
details have survived.”

Of course, we do not wish to repeat the mistakes of these attempts.

Proposition 1. Given a linel and a point P at an arbitrary non-zero distance
D from 1, there exists a unique line segment M through P parallel to I, such that
P is at the midpoint of M and M is of a given arbitrary non-zero length L. Here
D and L are (standard) finite lengths. The line segment M will remain parallel
to | when extended by an arbitrary (standard) finite length such that P continues
to remain at the midpoint of M. Here ‘parallel’ is defined in Definition 1.

Note that Euclid’s second postulate, which is provable in NG, permits the
extensions noted in Proposition 1. A proof of Proposition 1 is, of course, im-
possible in the classical version of NG. In the spirit of Euclid, we will permit
‘reasoning from diagrams’ as a rule of inference added to those of classical NG,
in order to overcome the above difficulty; call the resulting theory NG(NAFL),
in which the uninterpreted entities, such as, ‘point’, ‘line’ and ‘plane’, are re-
stricted to necessarily have their Euclidean meanings in any diagrammatic proof.
In this paper, we are only concerned with how NG(NAFL) handles ¢; the ques-
tion of how the axioms and rules of inference of NG must be modified in NAFL

10



to handle a continuum of real numbers (if at all it is possible) is reserved for
future work.

Proof of Proposition 1 in NG(NAFL). We depict the line ! on the diagram as
a (sufficiently long, Euclidean) line segment with arrowheads at the end-points
pointing outwards (i.e., away from the center of the line segment). Given the
point P, the unique (Euclidean) line segment M is then constructed as in Propo-
sition 1, using a protractor and ruler, after appropriately scaling down (or scaling
up) the length L of M and the distance D of P from I; the scale factors for these
two scalings in mutually perpendicular directions need not be the same. Note
that the line segments of [ are also scaled by an identical factor to that of M. We
claim that this would be a diagrammatic ‘proof’ of Proposition 1 in NG(NAFL).
Two diagrams suffice for this ‘proof’, with P on either side of [; any change in
L or D would merely imply a change in the scale factors of the diagrams. [

Remark 8. Scaling down (scaling up) the length of a line segment amounts to
translating a long (short) line segment into a shorter (longer) one; since there is
a one-to-one correspondence between the points of any two such line segments,
the said translation is a legitimate proof technique that must be ‘wired’ into
the rules of inference. Does such a ‘proof’ presume ¢ and Euclidean concepts?
Probably, but note that real-life diagrams cannot in any sense be equated with
the ideal continuum concepts embodied in the axioms of NG. One should simply
view this real-life construction as a mechanical procedure that establishes the
desired result. Secondly, we will only need a finite construction of the line
segment M on these diagrams which can be carried out with a ruler and a
protractor; but 1 requires an infinite construction of the line m. The fact is
that the truth of Proposition 1 can be indisputably depicted in these diagrams
and the only way to ‘prove’ it without explicitly invoking % is to incorporate this
fact into the classical rules of inference. This is perhaps not a very desirable
state of affairs, but in the absence of alternatives, we will have to accept it.
We might rationalize that this diagrammatic ‘proof’ is simply another way of
asserting Proposition 1 as a tautology in NAFL, i.e., it cannot be denied. The
diagrams express the Euclidean construction we must unavoidably have in mind,
but cannot express in the language of NG without ¢ (or its equivalents), when
we think of ‘line’ or ‘line segment’. See the ensuing subsection for why such a
Euclidean construction is unavoidable.

Proof of ¥ in NG(NAFL). Since L and D are arbitrary constants, we claim
that Proposition 1 provides a direct, constructive proof of ¢ in NG(NAFL).
The reader may balk at this assertion; after all, is not M a line segment of
finite length L, rather than the infinite line m demanded by ¥? The answer
is surprisingly simple. See Sec. 2.2, pg. 14 of [5], under the heading “Open
formulas and the meaning of ‘existence’ in NAFL”, where it is explained that
in NAFL, open formulas (with a free variable) or formulas with an ‘arbitrary’
constant (such as, L and D above) are in fact universally quantified formulas
with respect to the said variable or constant. This is so because the values
of L and D, being undecidable and unspecified in NG(NAFL), must be in a
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superposed state of assuming all possible values. In particular, Proposition 1
is automatically quantified over all possible standard values of L and D. Since
there are no nonstandard models of arithmetic (and hence, of NG) in NAFL [5],
it follows that such quantification is universal and immediately implies a proof
of ¢ in NG(NAFL) as explained below.

The uniqueness of the line m as required by v follows from the fact that
in NAFL, a ‘line’ must be considered as a ‘potential’ rather than an ‘actual’
infinity. The superposed state of M with all possible (standard) values of the
length L s the line m in NAFL. Note that this interpretation requires the
universal quantification to be of the form

VD VL Propositionl,

with the quantifier for D being outermost. Thus for each D, L is in a superposed
state of assuming all possible values. The line m is to be interpreted as an infinite
class consisting of the union of all possible line segments in the above formula,
with each line segment M in the union identified uniquely by its given standard
finite length L (as defined in Proposition 1). Note that m may be represented by
the union of any divergent, strictly increasing sequence of standard finite lengths
{L1, Ly, L3, . ..} of the segment M; every point of m is a point of some segment of
length L;, j > 1, in this sequence and the converse also holds. The uniqueness
of m immediately follows; if m and m; are two lines that are obtained from this
construction, every point of m is a point of m, and vice versa. An infinite class
is not a mathematical object in NAFL [4, 5]. The axiom of extensionality for
classes states that a class is identified uniquely by its elements; so the existence
and uniqueness of each element M (of given length L) of the infinite class m
ensures that m itself exists uniquely. O

Remark 9. Suppose one starts with L = Ly, i.e., a fixed segment M of length Lg
(a pure number) in the above proof. From Euclid’s Postulate II ([8], Chapter 1)
one concludes that this segment can be extended (such that P continues to
remain at the midpoint of M) to lengths L = nLg, where n = 2,3,4,..., i.e.,
for all standard positive values of the integer n. In NAFL, nonstandard models
of arithmetic do not exist [5], and so the formula asserting the existence of
the segment M of length L = nlLg is universally quantified over all positive
(standard) integers n. This amounts to a construction of the line m.

Remark 10. The classical objection to the above proof might be that the di-
agrammatic construction of the line segment M is only possible for standard
values of the lengths L and D. In FOPL, Proposition 1 is not to be treated as
universally quantified; each different (standard) value of L and D corresponds
to a different formula which requires a different proof. FOPL, unlike NAFL,
maintains a distinction between ‘arbitrary but fixed’ constants like L and D,
and a free variable. There is no way to express ‘standard finite’ in weak FOPL
theories in which Tarski’s axioms for NG may be formalized; note that Hilbert’s
axioms are not in FOPL, but in second-order logic (or many-sorted logic) and
do not admit nonstandard models. So Proposition 1 is really a proposition
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scheme in FOPL, consisting of infinitely many instances of the values of ‘fixed
constants’ like L and D, which are required to be standard finite. The classical
argument presumably is that the diagrammatic construction of M does not take
into account the existence of nonstandard models for NG, in which L and/or D
have nonstandard values and in which %) is possibly false. In NAFL, however,
‘standard’ is a superfluous predicate [5] and Proposition 1 is indeed a legitimate
proposition that is universally quantified as noted in the above proof.

Remark 11. Consider a specific line [ and a specific point P at a fixed distance
D from . The direct, constructive proof of ¢ in NG(NAFL) given above fails in
FOPL, because such a ‘proof’ would be infinitely long, as noted in Remark 10.
Here we have kept P and D fixed, but nevertheless the ‘proof’ would have to
cover infinitely many instances of the length L in order to establish a construc-
tion for the line m, and would therefore be no proof at all in FOPL. This is the
same as saying that ¢ cannot be established in NG by directly extending a Eu-
clidean line segment M through arbitrarily large standard finite values, because
such a construction does not prove the existence of m, which is infinitely long.
For a very simple analogy, note that it would be wrong in FOPL to infer the
existence of an infinite set or class of natural numbers (real numbers) from the
existence of infinitely many natural numbers (real numbers); a separate axiom
would be needed to establish the set or class in question. In NAFL, however,
the existence of infinitely many natural numbers immediately establishes the
existence of the infinite (proper) class N [4, 5]; a line is similarly modeled as
the union of a proper class of infinitely many Euclidean line segments as noted
earlier.

Remark 12. By the completeness theorem of FOPL, one would expect that there
must exist a nonstandard model for NG in which Proposition 1 (with Euclidean
concepts) is true for the specific line | and point P of Remark 11, but % fails.
The failure of parallelism (as defined by Definition 1) in this model should only
appear at nonstandardly long distances from the point P, where Proposition 1
does not apply; these distances are formally classified as ‘nonstandard finite’
but are ‘really’ infinite. What is extremely surprising (to the author at least) is
that such a nonstandard model cannot exist. This is so because each instance of
Proposition 1 with Euclidean concepts provides an indirect proof of ¢ in NG ! To
see this, take one particular instance in which the (Euclidean) line segment M
parallel to [ has been constructed for specific, standard values of L and D.
Drop perpendiculars from the end-points of M to the line [ and consider the
rectangle bounded by M, [ and these perpendiculars. The very existence of such
a rectangle, whose angle sum is four right angles, is equivalent to and proves ¢ in
NG ([9], “The Origins of Geometry”). It is very odd indeed that on the one hand,
infinitely many instances of the truth of Proposition 1 (with Euclidean concepts)
do not prove ¥ in NG; on the other hand, each such instance of Proposition 1
does, after all, prove ¥ in NG ! One can only conclude that in FOPL, it would
be inconsistent to insist that only Euclidean meanings must be retained for the
‘uninterpreted’ terms of NG; consistency demands that non-Euclidean meanings
must necessarily be admitted, and so the indirect diagrammatic proof of ¢ would
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be invalid in NG (as would the diagrammatic proof of Proposition 1). This is
tantamount to insisting that ‘line’ must necessarily have a non-constructive
existence in NG; it would be impossible to prove in NG that parallel lines even
exist, with ‘parallel’ defined as in Definition 1. This is diametrically opposite to
consistency in NAFL, which demands that only constructive Euclidean concepts
must be admitted in NG(NAFL); that ‘parallel’ must necessarily be defined as
in Definition 1; and that ¢ must necessarily be provable in NG(NAFL). The
author believes that the NAFL position is not only the logically consistent one
from the point of view of formalism, but is also more natural; the diagrammatic
proof in NG(NAFL) directly confirms our intuition that Proposition 1 is true
in the real world.

2.2 Inherent Platonism in non-Euclidean models of NG

The main thesis of this subsection is that non-Euclidean models of NG can only
be constructed by assuming the Platonic/metamathematical truth of the pos-
tulates of Euclidean geometry (EG). This, of course, is objectionable from the
point of view of formalism even in FOPL. In NAFL, an outright contradiction
can be deduced as follows. Truth for the postulates of EG must necessarily be
aziomatic in NAFL; there is no Platonic world in which the Euclidean postu-
lates are ‘really’ true. So one has aziomatically declared EG to be true and then
‘re-interpreted’ terms like ‘point’, ‘line’, ‘plane’, etc. into their non-Euclidean
meanings in order to generate the non-Euclidean model. The axiomatic nature
of NAFL truth clearly does not permit such ‘re-interpretation’ of Euclidean ob-
jects into non-Euclidean ones, for once we have axiomatically declared EG to
be true, there is no scope for any change in the Euclidean meanings of terms
which are classically deemed ‘uninterpreted’. Yet classically, it is precisely such
an argument that is used to prove the relative consistency of non-Euclidean
geometries with respect to EG; see Chapter 7 of [8].

In particular, let us consider the example of the Beltrami-Klein (BK) model
of hyperbolic geometry (HG) discussed in Chapter 7 of [8]. First EG is assumed
to be Platonically ‘true’ and a circle y of Euclidean radius r is constructed in
the Euclidean plane. The hyperbolic plane is then defined as the interior of +.
A chord of v is a segment AB joining two points A and B on . The segment
without its end-points A and B is called an open chord. Hyperbolic lines are
defined as open chords of 7y, with hyperbolic points retaining the same meaning
as Euclidean ones. After similar re-interpretation of other ‘uninterpreted’ terms
of NG from their Euclidean meanings, the axioms of HG thus obtained are
‘translated’ back into their Euclidean counterparts and proved in EG in order
to establish the relative consistency of HG with respect to EG (and thereby the
undecidability of ¥ in NG, assuming EG to be consistent).

From the point of view of NG(NAFL), the construction of the BK model
explicitly and illegally assumes the Platonic truth of 4. To see this, note that
the radius of v is of arbitrary (Euclidean) length. Consider two parallel chords
of equal length [, in 7, where ‘parallel’ is in the sense of Definition 1. Clearly,
I, can be assigned an arbitrary (but constant) value, given that the radius of
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v is also arbitrary. In NG(NAFL) this amounts to an explicit, constructive
validation of %, as noted in Proposition 1 and its proof. It is also clear that the
definitions of various terms (such as, ‘length’) and proofs of propositions of HG
in the BK interpretation use constructions of points on v and even points and
line segments outside of v [8]; these constructions have only Euclidean meanings
and so must be assumed to ‘really’ exist. In other words, v and its exterior in the
Euclidean plane must necessarily exist Platonically in order to define terms and
execute proofs of HG in the BK interpretation. Such Platonic existence is illegal
in NG(NAFL) and hence the BK model does not exist from the point of view of
NAFL. In fact NAFL predicts that the same situation holds of every conceivable
candidate for a model of HG because 1 is provable in NG(NAFL), as noted in
the previous subsection. The axioms of EG must necessarily be ‘really’ true
in every model of NG even from the point of view of FOPL; the completeness
theorem demands that 1 be provable in NG and this makes NG inconsistent in
FOPL, if one insists on formalism. However, it has been demonstrated in [5]
that formalism is not a valid philosophy of FOPL.

Can the above situation be generalized to hold of any non-Euclidean geom-
etry, whether two- or three-dimensional? Again, NAFL predicts that this is the
case, i.e., NAFL supports the ‘axiom of closed ortho-curvature’ stated in [11] as
follows:

That, with the axiom of closed ortho-curvature, there are no true
non-Euclidean geometries (and no spatial dimensions beyond three),
but only pseudo-geometries consisting of curves in Euclidean space.

Ross[11] also states two other axioms conjecturing the existence of non-Euclidean
geometries and then concludes that these are questions in “physics or meta-
physics and are logically entirely separate from the status of geometry in logic
or mathematics or from our psychological powers of visual imagination”. In
NAFL, however, the truth of the axiom of closed ortho-curvature is upheld as
a matter of logic and the other axioms rejected; the axiomatic nature of NAFL
truth means that if we cannot in principle visualize non-Euclidean geometries,
then they do not exist. In this sense, NAFL vindicates Kant’s position that
Euclidean geometry must be unavoidably true, although Kant did not rule out
(as does NAFL) the logical existence of non-Euclidean geometries [11].

In conclusion, we state an argument for why it is impossible to visualize
non-Euclidean geometries in principle. Our contention is that ‘curvature’ of a
line at a point is a notion that can exist if and only if the associated center and
radius of curvature in the associated Euclidean space exist. It is tempting to
assume that one can ‘draw’ a curve and find it to be ‘really’ an arc of a circle
without ever making use of a compass. But the moment we assert that the drawn
curve is ‘really’ an arc of a circle, we are also unavoidably asserting the Platonic
existence of the center and radius of the circle and of the associated Euclidean
space. In the BK model of HG noted above, one can certainly draw arbitrary
curved lines inside «; this immediately entails the Platonic existence of the entire
Euclidean plane outside v and means that circles of arbitrarily large radius can
take the place of v in the BK model; as noted earlier, this amounts to an
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explicit validation of Euclid’s fifth postulate. Similarly, in elliptic (Riemannian)
geometry associated with a sphere, geodesics (great circles) are taken to be
‘intrinsically’ straght lines; however, the associated Platonic existence of the
center of the sphere and radii of curvature of the great circles makes the truth
of Euclidean geometry inevitable. In short, ‘true’ non-Euclidean geometries
cannot be visualized even in principle because of the unavoidable associated
Platonic truth of Euclidean geometry; the ‘models’ of non-Euclidean geometries
are unavoidably Euclidean objects in Euclidean space.

Dedication

The author dedicates this research to his son R. Anand and wife R. Jayanti.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Andréka, Hajnal, Judit X. Madardsz and Istvdn Németi (2002). On the
Logical Structure of Relativity Theories.
http://www.math-inst.hu/pub/algebraic-logic/olsort.html

Hamilton, Andrew (1998). The Postulates of Special Relativity.
http://casa.colorado.edu/~ajsh/sr/postulate.html

Kiekeben, Franz (2000). Relativistic Determinism.
http://members.aol.com /kiekeben /relativistic.html

Srinivasan, Radhakrishnan (2002). Quantum superposition justified in a
new non-Aristotelian finitary logic. Preprint ID Code 635, Philosophy of
Science Archive, http://philsci-archive.pitt.edu

Srinivasan, Radhakrishnan (2003). Platonism in classical logic versus
formalism in the proposed non-Aristotelian finitary logic. Preprint ID
Code 1166, Philosophy of Science Archive, http://philsci-archive.pitt.edu

Srinivasan, Radhakrishnan (2002). Inertial frames, special relativity and
consistency. Preprint ID Code 666, Philosophy of Science Archive,
http://philsci-archive.pitt.edu

Tarski, Alfred (1959). What is elementary geometry? In A. Tarski,
L. Henkin and P. Suppes (eds.), Proceedings of an International Sympo-
sium on The Axiomatic Method, with Special Reference to Geometry and
Physics. Studies in Logic and Foundations of Mathematics, pp. 16-29. Am-
sterdam: North-Holland. Also reprinted in The Philosophy of Mathematics,
Jaakko Hintikka (ed.), Oxford University Press, 1969.

Greenberg, Marvin Jay (1980). Euclidean and Non-Euclidean Geometries.
Development and History. Second Edition, W. H. Freeman and Company:
San Francisco.

16



[9] Royster, David C. (1996). Neutral and Non-Euclidean Geometries.
http://www.math.uncc.edu/~droyster /math3181 /notes/hyprgeom/

[10] O’Connor, J.J. and E. F. Robertson (1999). Geminus.
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Geminus.html

[11] Ross, Kelly L. (1999). The Ontology and Cosmology of Non-Euclidean Ge-
ometry. http://www.friesian.com/curved-1.htm

17



