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Abstract

I examine explanations’ realist commitments in relation to dynamical
systems theory. First I rebut an ‘explanatory indispensability argument’ for
mathematical realism from the explanatory power of phase spaces (Lyon and
Colyvan 2007). Then I critically consider a possible way of strengthening
the indispensability argument by reference to attractors in dynamical systems
theory. The take-home message is that understanding of the modal charac-
ter of explanations (in dynamical systems theory) can undermine platonist
arguments from explanatory indispensability.

1 Introduction

Many scientific explanations utilize theoretical resources of highly contested on-
tological status. There are countless explanations that make essential use of ideal-
isations, abstractions, and mathematics, for example. On the one hand, scientists
typically adopt a broadly instrumentalist attitude towards these aspects of explan-
ations. Even scientists of ambitiously realist bent do not commit themselves uni-
formly to everything employed in scientific explanations. Many philosophers also
regard the abstract and idealised features of explanations as playing a broadly in-
strumental role, even when they take explanations to latch onto unobservable real-
ity in deeply explanatory ways.

On the other hand, others follow a broadly Quinean lead to issues of realism

and ontological commitment, and argue for realist commitment to mathematics or
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other contestable features of explanations on the grounds of their indispensable
explanatory utility. So-called explanatory indispensability arguments have been
advanced in this spirit with respect to mathematics, idealisations, abstractions, and
emergence, for example. (See e.g. Baker 2009; Lyon 2012; Psillos 2010, 2011) It
has been argued that realists’ selective instrumentalism about such indispensable
features of explanations is only a matter of an unjustifiable bias for features of
reality that are causally explanatory, serve a metaphysical reductionist ideology, or
have clearly identifiable locations in space and time.

Various specific debates around explanatory indispensability exemplify this
juxtaposition on a deep central issue: what are explanations’ realist commitments?
I believe that one of the key reasons these debates continue unabated is that they are
often conducted (too) independently of a sufficiently clear sense of what scientific
explanations amount to. The main message of this paper is that the way forward
is to conduct these debates in relation to sufficiently well articulated philosophical
accounts of explanation. This is a very broad thesis that I cannot hope to defend in
general terms in a short paper. Instead, I will support it by criticising in this spirit
a specific explanatory indispensability argument for mathematical realism in order
to demonstrate the broader lesson.

Realist reasoning from explanatory indispensability varies in its details from
case to case, but we can abstract away from these details and present the central
line of thought in general terms. In the context of explanatorily indispensable math-

ematics this yields a schematic Explanatory Indispensability Argument (EIA):!

(P1) We ought rationally to believe in the existence of any entity that plays an
indispensable explanatory role in our best scientific theories.

(P2) Mathematical objects play an indispensable explanatory role in science.

(C) Hence, we ought rationally to believe in the existence of mathematical ob-

jects.

The main objective of this article is to bring out some unwarranted presuppos-
itions of this line of thought. Thus presented, the gist of the problem is that P1
has very little going for it from the perspective of a well-motivated philosophical
account of explanation. That is, given what we know about the nature of explana-
tions, there are very good reasons not to adopt a blank commitment to any feature

of reality that plays an indispensable explanatory role. Alternatively, we can take
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issue with P2: from said perspective, there is little point to speak bluntly of ‘in-
dispensable explanatory role’ without further clarification as to the specific nature
of that role. Given what we know about explanations, ‘indispensable explanatory
role’ can mean different things, only some of which support realist commitment.

I will bring out these issues with EIA by focusing on a particular explanat-
ory indispensability argument for mathematical Platonism that capitalises on the
explanatory power of phase-spaces. (Lyon and Colyvan 2007) Although this ar-
gument is often mentioned in the literature, it has hitherto escaped the right kind
of critical attention. I will first present the argument and discuss its shortcom-
ings from the perspective of a modal-dependence view of explanation, according to
which explanations provide information about how the explanandum depends on
the explanans (§2).> T will then consider a way of substantially strengthening the
argument by reference to the explanatory role of attractors in dynamical systems
theory (§3). From the modal-dependence view of explanation—which, I will go
on to suggest, is a live option with respect to the kinds of explanation at stake—
this strengthening fails to shore up the Platonist conclusion (§4). I will conclude
with broader reflections regarding explanatory indispensability in connection with
a modal perspective on explanation to motivate the broader thesis expounded above

(85).

2 The explanatory power of phase spaces

Lyon and Colyvan (2007) argue that models in dynamical systems theory, in Hamilto-
nian classical mechanics in particular, provide an example of explanatory mathem-
atics that can support mathematical realism via EIA. In dynamical systems theory,
mathematics can play an indispensable role in the presentation of phase spaces and
their explanatory features. Points of a phase space represent a continuously in-
finite range of possible instantaneous dynamical states of a physical system, and
trajectories through these points represent the system’s possible time evolutions.
In dynamical systems theory mathematics provides an indispensable means for
presenting such modal information and theorising about it in various ways.

Lyon and Colyvan (2007) emphasise the explanatory import of phase spaces
in order to amplify Malament’s (1982) objection to Hartry Field’s (1980) nomin-

alism. Malament challenged Field’s program, arguing that Field is not entitled to

2See Woodward (2003) for a modal-dependence view of causal explanations, and Reutlinger
(forthcoming) for a modal-dependence view of non-causal explanations.



quantify over possible dynamical states in theories that trade in phase spaces. A
nominalist might respond to Malament by shifting focus to an empirically equi-
valent Lagrangian formulation, which does not rely on phase-space structures, and
hence is more amenable to nominalisation a la Field. Against this move, Lyon and
Colyvan argue that Hamiltonian mechanics still raises serious issues for the nom-
inalist due to its indispensable explanatory virtues: pointing to an alternative, po-
tentially nominalisable presentation of dynamical systems arguably does not help
the nominalist, if there are some features of the world that we can explain only with
an account relying on phase-spaces.

As an example of such phase-space explanation, Lyon and Colyvan point to
the Hénon-Heiles model. This is a well-known, very simple and widely applied
model of non-linear systems that can be used to study and explain chaotic features
of various kinds of systems with two degrees of freedom. (Hénon and Heiles used
it to model the motion of a star, confined to a plane, around a galactic centre.) The
Hénon-Heiles Hamiltonian can be written as

H = %(PE +py) + %(:f +y') +aty - y;

In dynamical systems theory solutions of the equations of motion (derivable
from the Hamiltonian) are typically studied via a Poincaré map.? This allows one
to study, for example, the relative prominence of chaotic versus regular solutions
of the Hénon-Heiles Hamiltonian as a function of the total energy of the system as
a control parameter that a modeller can vary. (See Hilborn 2000) (For Hamiltonian
systems energy is constant.) Lyon and Colyvan argue that this kind of information
about chaotic versus regular solutions can be explanatory, and that it would be
impossible to extract this information from an alternative Lagrangian description of
the same system. Thus the Hamiltonian formulation, with its use of phase spaces,
gains an explanatory edge.

What empirical phenomenon can only be explained in these terms? Lyon and
Colyvan point to the fact that for systems well modelled by Hénon-Heiles equations
“high-energy Hénon-Heiles systems tend to exhibit chaotic and unpredictable mo-
tion, and low-energy Hénon-Heiles systems tend to exhibit regular and predictable

motion.” (2007, 237) This fact can arguably be explained by the Hénon-Heiles

3A Poincaré section is a lower-dimensional subspace of a phase space, transversal to the dy-
namical flow of the system. A Poincaré map is the intersection of a periodic orbit with a Poincaré
section. It is a useful tool in analysing a dynamical system since it preserves many properties of the
trajectories of the original system.



model (studied via the Poincare map), which shows “how the regions of possible
dynamical states that give rise to chaotic motion change as the total energy of the
system changes.” (ibid.) Thus, the Hamiltonian analysis of such a system can ex-
plain and give us understanding not available otherwise: ‘“The explanatory power
is in the structure of the phase space and the Poincaré map. So it seems that this is
a case where using the phase space is essential to our understanding and ability to
explain certain features of the world.” (2007, 238)

In particular, without the Hamiltonian analysis we do not understand how the
structure of the phase-space changes—how stable large-scale features of the phase-
space emerge and grow—as the total energy decreases. It is important to note that
the explanandum at stake does not concern any particular trajectory through phase-
space; it does not concern any particular event or regularity that could be associated
with an actual system. Rather, it concerns structural features of phase-space: sys-
tem’s ‘fendency’ to exhibit regular or chaotic behaviour is a matter of how it relates
to a relevant class of other possible trajectories. The Poincaré map analysis of the
Hénon-Heiles Hamiltonian explains this tendency in terms of changes in the relat-
ive proportion of chaotic versus regular trajectories, as a function of the system’s

energy. (Cf. Figure 1.)
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Figure 1: Computer generated Poincaré sections (x = 0, yp, plot) for two relat-
ively high energies, already showing the emergence of ‘islands’ of regular traject-
ories. (Adapted from Lyon and Colyvan 2007.)

Granting the explanatory utility of phase spaces, one may nevertheless ques-
tion whether mathematics is in any substantial sense involved in the explanation.

Admittedly it seems to provide an indispensable means to represent all the pos-



sible dynamical states and possible trajectories and, more importantly, how the
properties of the trajectories—being chaotic versus regular—depend on systems’
energy. But what seems to matter for the explanation itself, really, is a wealth of
information regarding possible trajectories.

Lyon and Colyvan anticipate this move, but they regard it as illegitimate for
the nominalist: “points in phase spaces are abstract objects that represent other
abstract objects (possible dynamical states).” (2007, 233, my emphasis) A nomin-
alist who wishes to place the explanatory burden on possible dynamical states and
trajectories achieves a pyrrhic victory at best: trading quantification over mathem-
atical abstracta for quantification over possibilia cannot save the nominalist day.*

How convincing is this rebuttal of the nominalist move? This depends on one’s
view of the explanation at stake. The rebuttal does not elucidate mathematics’
function in the explanation, neither does it show that mathematics is doing any real
explanatory work. Prima facie, the explanatory work is done by purported facts
about possible systems. Furthermore, the involvement of such modal facts is far
from surprising, given that the explanandum itself makes reference to modal fea-
tures. Recall Lyon and Colyvan’s question: why is it that systems well modelled
by the Hénon-Heiles Hamiltonian fend to increasingly exhibit chaotic and unpre-
dictable motion at higher energies? This question is not about any actual solution
of the Hamiltonian equations of motion. It is about a whole large class of possible
solutions. It is not fully clear how a trajectory’s ‘tendency’ to be chaotic/regular
should be interpreted exactly, but however it is precisified, it will surely involve
reference to non-actual trajectories. Given that the explanandum is thus modally
laden, one readily expects the explanans to involve similar modal content as well;
hence, the appeal to non-actual trajectories in the explanation. A nominalist should
not find this ‘explanatory power of possibilia’ extraordinary or surprising at all.
The nominalist can argue, furthermore, that the Hamiltonian formulation provides
an economical way—the only way that is even nearly economical enough for lim-
ited beings such as ourselves—to represent the relevant modal features.

What about realist commitment to abstract possibilia, then? Can the nominalist

get off the hook here? This issue is too large to be fully dealt with here, but let

4Similarly, Baker and Colyvan (2011, 328) lament: “Mathematical nominalists eschew math-
ematical objects because of epistemic and other problems associated with admitting them into one’s
ontology. Avoiding commitment to mathematical objects at the expense of admitting possible worlds
is simply not a good deal.” It is a contestable issue how quantification over possibilia amounts to anti-
nominalism, however. Indeed, there are well-developed modal nominalist accounts of mathematics
itself, aiming to eschew commitment to mathematical objects in modal terms. (e.g. Chihara 1990;
Hellman 1989).



me indicate why the upshot is far from clear. The issue turns on how we should
understand the nature of the explanation at stake. Lyon and Colyvan say nothing
about this, apart from noting that the explanation is not causal. While they are
surely right about this, it is still natural to try to account for the explanation in the
spirit of a counterfactual, modal-dependence view of explanation. (Cf. Reutlinger,
forthcoming; Saatsi 2016b) After all, the explanation clearly provides information
of the requisite sort: a trajectory’s tendency to be chaotic (or otherwise) depends
on the system’s energy and its initial conditions (in relation to the area of phase
space to which the trajectory belongs—viz. whether or not a trajectory is within
one of the ‘islands’ of regular trajectories).

The explanatory analysis of the Hénon-Heiles Hamiltonian in terms of the
Poincaré map allows us to grasp explanatorily relevant modal features of the sys-
tem being represented. Arguably this is how we explain and gain explanatory un-
derstanding. As Lyon and Colyvan note, the phase-space approach puts us in a
position to relate the actual state of affairs, which is represented, in an idealised
way, by a particular solution, to a whole network of non-actual possibilities. In
the Hénon-Heiles model this amounts to seeing certain course-grained features
of the phase-space—e.g. areas of phase-space dominated by regular or chaotic
solutions—and how these features are altered under changes in the control para-
meter F (= energy). This kind of modal information is naturally construed as the
kind of ‘what-if-things-had-been-different’ information that Woodward and oth-
ers have emphasised being at the heart of explanatory understanding. Admittedly
the changes in the parameter £ are not causally connected to the explanandum.
But given the nature of the explanandum (‘tendency to be chaotic’) this is far
from surprising. The non-causal nature of the explanatory dependence need not
be problematic from the perspective of the counterfactual view of explanation: it
has been argued in various other contexts that there are good reasons to liberalise
the notion of ‘explanatory counterfactual’ from its causal connotations and apply
the modal-dependence framework beyond causal explanation. (See e.g. Reutlinger,
forthcoming; Saatsi and Pexton 2013; Saatsi 2016a.)

Thinking about the explanatory capacity of the Hénon-Heiles model in modal
terms begins to throw new light on the explanatory virtues of phase-space formu-
lation of dynamical systems and the role that quantification over possibilia plays
in such explanations. Such quantification may be ontologically committing from
the perspective of the DN-model, perhaps, if we assume that explanatory success

requires that all the explanans are simply true. From the perspective of modal ac-



counts of explanation, however, there is scope for the nominalist to fully endorse
the explanatory importance of modal information. This leads to a natural extension
of a popular ‘indexing’ strategy against indispensability arguments. The gist of the
indexing strategy is to maintain that mathematics only plays a straightforwardly
representational role of indexing physical properties, thereby radically enhancing
theories’ expressive powers. (E.g. Melia 2000; Daly and Langford 2009) Consider,
for instance, the representational power of mathematical Euclidean space R? as in-
dexing numerous physical facts about spatial distances, angles, and so on. The
indexing strategy needs to be extended here, however, since the modal informa-
tion involved in the Hénon-Heiles model concerns non-actual states and structures
thereof: the mathematical points and structures of phase-space must be viewed as
indexing representations of (non-actual) possibilities regarding physical variables.
The modal information gained through such representations can be explanatory
vis-a-vis an actual trajectory by virtue of providing appropriate kind of modal in-
formation about explanatory dependencies.

As said, Lyon and Colyvan anticipate and object to this move as involving an il-
legitimate appeal to possibilia. They dismiss the ‘modalised’ indexing manoeuvre
too quickly, however. For even if this move does not win the war, it might still
win the battle, so to speak. First of all, from the standpoint of modal accounts of
explanation one expects modal information concerning non-actual states of affair
to feature centrally in scientific explanations. This explains the explanatory vir-
tue of mathematical representations of dynamical systems that are geared towards
displaying the relevant kind of modal information. Secondly, the nominalist ad-
mittedly needs to offer an account of the relevant explanatory counterfactuals that
these representations inform us about. But this is a different battle, and one that
the nominalist faces in any case, independently of phase space theories. Science is
full of representations of non-actual states of affairs that are absolutely indispens-
able for explaining, and examples of mathematical explanations add little to the
pressure the nominalist should already feel to account for these representations, if
we can regard these mathematical explanations merely as indexing such non-actual
states of physical affairs.

Lyon and Colyvan’s phase-space argument for Platonism thus seems incon-
clusive at best: it is not enough for (mathematical) EIA to point to explanatorily in-
dispensable modal facts. However, dynamical systems theory provides interesting
opportunities to push further the dialectic between the Platonist and the nominalist,

as I will next discuss.



3 The explanatory power of attractors

The Hénon-Heiles model is but an isolated example of dynamical systems theory in
explanatory action, and a broader look at a variety of explanations offered by ana-
lytical models of dynamical systems suggests an alternative focus for the Platonist
argument. In particular, it allows the Platonist to zoom in on explanations that es-
sentially involve mathematics that seemingly cannot be interpreted as representing
(or ‘indexing’) anything physical at all, actual or otherwise.

A candidate for such non-representational explanatory mathematical constructs
are phase-space attractors: sets of points of the phase space of a dynamical system
(identified by its equations of motion) that are long-term stable, i.e. points towards
which the system’s dynamical behaviour is attracted after shorter-term behaviour
has died down. Attractors are abstract mathematical objects, but their geomet-
rical, topological, and other properties can reveal explanatory information about a
system’s dynamical behaviour. A simple damped harmonic oscillator has a fixed-
point as its attractor, while a dissipative anharmonic oscillator can have a periodic
limit cycle attractor, for example. Of special interest are strange attractors: aperi-
odic limiting solutions of a dissipative system towards which all solutions (within
a basin of attraction) asymptotically approach. (Lorenz attractor is a well-known
example from nonlinear systems theory.)

In dynamical systems theory attractors are used to explain various qualitative
and quantitative features of long-term dynamic behaviour. (See e.g. Hilborn 2000,
Strogatz 1994.) For example, features of attractors can explain how chaotic sys-
tems can from very different starting points tend towards behaviour that is similar
with respect to those features, despite the trajectories being at the same time highly
sensitive to initial conditions. A dissipative dynamical system can exhibit coarse-
grained features of ‘two-winged’ Lorenz attractor in the long-term, for example,
despite starting from very different places in the phase space (within the basin of at-
traction).” The onset of chaos in a deterministic system is also standardly explained
in terms that appeal to attractors and their sudden qualitative change (‘bifurcation’)
under a change in a control parameter. Also, the universality of a particular way in
which micro-physically very different systems start exhibiting chaotic behaviour
(e.g. via period-doubling) is explained in terms of attractors. Long story short:

strange attractors are indispensable for explaining various features of nonlinear dy-

SThe basin of attraction is defined as the set of phase-space points that are attracted towards an
attractor in the long term.



namical systems. (For detailed examples, see Hilborn 2000 and Strogatz 1994. For
philosophical discussion, see Smith 1998.)

Despite their explanatory power, there are very good reasons to not take strange
attractors to represent a specific set of possible initial conditions of a dynamical
system. The issue is that these attractors have an infinitely fine-grained, self-similar
fractal structure that cannot correspond to the structure of possible states of phys-
ical systems individuated with much more coarse-grained dynamical properties.
As Smith (1998) clearly explains, strange attractors play an indispensable explan-
atory role with respect to nonlinear systems with dynamical quantities such as fluid
circulation velocity, temperature, the proportional concentration of a chemical in
a mixture, and so on. These are macroscopic, ‘averaged’ quantities that clearly
cannot have indefinitely precise real number values required for the structure of a
strange attractor. Averaged properties such as temperature at a point P in a fluid
simply cannot have perfectly determinate values, even notwithstanding the fact that
‘zooming in’ the physical structure fluid at some point gives rise to the quantum
world. (Cf. Smith 1998, ch. 3) Yet it is the dynamics of these kinds of quantities
that strange attractors are utilised to explain.

In response to this puzzle he raises, Smith (1998) argues that strange attract-
ors are mere mathematical by-products of a theoretical description that latches onto
more robust, more coarse-grained dynamical features of physical systems.® Koper-
ski (2001) argues in a similar vein that strange attractors are indispensable idealisa-
tions, mathematical by-products of the fact that we must use differential equations
in the mathematical modelling of dynamical systems needed to explain their dy-
namical behaviours. I am sympathetic to this way of thinking about attractors, but
it is worth noting that neither of these authors provide any philosophical account of
the explanations in which attractors thus figure.” Furthermore, such an account is
needed in order to see what we should make of the explanatory indispensability of
attractors vis-a-vis EIA, in order to not simply beg the question against an advocate
of EIA. I will next suggest that a modal-dependence view provides a natural way
to account for the key features of these explanations. This matters in the context of
EIA, since the ontological commitments of strange attractors are not at all obvious

from this modal perspective, as we will see by reflecting more generally on realist

®In particular, for Smith strange attractors is a sign of a ‘stretching-and-folding’ process of tra-
jectories that result in fractals only if taken to the infinite limit. The stretching-and-folding processes
latch onto actual system in an explanatory way.

"Providing such an account is an open philosophical issue. Bishop (2015) very briefly toys with
some options.
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commitments of the modal-dependence view of explanation.

4 Explanatory dependencies in dynamical systems

As we have seen, the explanatory role played by attractors provides an interesting
opportunity to push further the platonist argument, since the ‘modalised’ indexing
move is no longer an option: attractors do not as such represent anything physical,
actual or otherwise. There is a different response the nominalist can make here,
however. The nominalist can maintain, building on Smith (1998) and Koperski
(2001), that explanatory heavy lifting in the study of chaotic systems is done by
features of the mathematical models that are much less fine-grained than attractors
themselves. The latter are to be regarded as mere mathematical by-products of
models that are explanatory by virtue of latching onto appropriate modal facts,
captured by explanatory regularities concerning changes in more coarse-grained
aspects of a target system as a function of a control parameter.

Consider the following Lorentz equations, for instance.

dz/dt = 10(y — x)
dy/dt =rex—y —xz
dz/dt = xy — 8z/3

Solutions of these equations can behave in radically different ways in their coarse-
grained features for different values of the adjustable parameter ». When these
equations are used to model the well-known phenomenon of Rayleigh-Benard
convection, for example, r can be identified as being directly proportional to the
constant temperature difference between two parallel surfaces containing the con-
vection. In an experimental setting this temperature difference (and hence r) is
a control parameter which can be manipulated to change the nature of the con-
vection. Lorentz equations, and their associated two-winged Lorentz attractor, can
thus be used in explaining (and predicting) features of Rayleigh-Bénard convection
by capturing the dependencies of various coarse-grained aspects of the physical
phenomenon on the temperature difference. (See Smith 1998, §4.5 for discussion.)

Lorenz attractor, which represents e.g. the long-term shape and general location
of phase-space trajectories of the relevant state variables, can itself be regarded as
an idealisation and mathematical surplus. But this does not take away the fact that

this mathematical construct is an indispensable component of best explanations of
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the chaotic behaviour of Rayleigh-Bénard convection. And it does not mean that
attractors’ explanatory indispensability should elicit realist commitment to either
the mathematics involved, or some feature of the world directly represented by
them (either with respect to actual or possible systems, as the ‘indexing’ move
would have it). This is because there are other ways to understand attractors’ role
in explanations.

The modal-dependence view on explanation, in particular, can help the nom-
inalist to gain the upper hand in the dialectic against the Platonist. From this per-
spective we can regard the power of explanations of chaotic behaviour as residing
in information about modal dependencies between more coarse-grained, physic-
ally well-defined variables. Explanations of real world systems in terms of models
featuring strange attractors do not relate any explanandum variable to the infinitely
fine-grained features of the attractor: as far as explanatory models of non-linear
systems are concerned, no feature of physical systems depends on the fine-grained
features of attractors. Rather, the explanatory dependences hold between more
coarse-grained features that are naturally represented by coarse-grained features
of the attractors. For example, explanations of chaotic behavior often capture the
way in which abrupt changes (bifurcations) in the more coarse-grained features
take place in response to a change in a control variable which can typically be
regarded as a (broadly speaking) manipulable variable in the spirit of Woodward
(2003). Since the modelling of these dynamical systems requires differential equa-
tions, the mathematics automatically leads to geometrical structures like strange
attractors that then naturally obtain a representational role with respect to the more
coarse-grained features of phase-space that are modally connected to other vari-

ables in an explanatory way.

5 Broader reflections

I have argued elsewhere in much more general terms that explanations’ realist com-
mitments are best understood and analyzed in relation to well-formed ideas about
what it is to explain. (Saatsi 2016b) This commonsensical point has been ignored
in debates about explanatory indispensability for too long. The reason why well-
formed ideas about explanation matter is that in modal accounts of explanation, for
example, explanatory indispensability turns out to be insufficient in and of itself for
justifying ontological commitment. I have tried to explicate this in general terms in

Saatsi (2016b), through a distinction between different kinds of explanatory roles:
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some ‘thick’ and ontologically committing, others ‘thin’ and ontologically peri-
pheral. This is a way to reconcile the idea that mathematics can on the one hand
indispensably contribute to an explanation, yet at the same time not be ontologic-
ally committing.

Here I have argued in this spirit that the modal-dependence perspective on the
explanations furnished by dynamical systems theory can also undermine the ar-
gument from Lyon and Colyvan (2007), even when this argument is strengthened
with reference to features of dynamical systems theory—strange attractors—that

cannot be dealt with by the standard nominalist strategy of ‘indexing’.
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