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Abstract

The article discusses the role of observers in perception of flow of time. It compares two

established logics, Branching Space-times and Branching Continuations to a new logic

based on Barbour’s timeless approach to physics. The article shows that the

introduction of observer based valuation allows for the same evaluation of statements in

both temporal and atemporal logics. We show this on the evaluation of statements

about the future. Therefore we reach the conclusion that ontological time is not

necessary for the evaluation of temporal statements.
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A Copernican turn in temporal logics

Introduction

There is no time like the present. But what if every time is like the present? A

scientific hypothesis or even a theory that goes against our daily experiences has it

always difficult to convince people about its correctness. As a prominent example we

can look at Copernicus and his challenge to the geocentric system. While the geocentric

system accommodates our impression of the Sun’s movement, it can correctly predict

the positions of planets only if it uses a very complicated system of planetary paths. On

the other hand, the heliocentric system presents a simpler tool for the prediction of

planetary movements, nevertheless it forces us to challenge our daily perspective.

In a similar way we challenge our temporal perspective and the notion of flow of

time. As in the case of Copernicus, we take into account the position of the observer in

the universe. The view we partake to defend is that it is the specificity of observers and

their position in time that leads to the perception of flow and the uniqueness of the

present. The role of observers was often neglected and time was treated as a whole

instead of being judged from the perspective of different observers. Following the recent

contribution to the study of time by Dieks (2016), we attempt to present a formal

models for observer based temporal logics. We introduce a new logic based on

Barbour’s timeless physics and compare this with two established temporal logics,

namely Branching space-times and Branching continuations. We discuss the role of

observers in all of these systems and we investigate the truth and falsity of different

temporal statements. Comparing a temporal and atemporal model allows us to

demonstrate the weak Copernican principle in time - formally showing that the present,

and its observers, do not need to be in any specially favoured position in the universe.

Firstly we discuss the philosophical and terminological foundations of the work,

especially McTaggart’s time series, Belnap’s Branching space-time, and Barbour’s

timeless Platonia. Thereafter we introduce the formal tools and logics based on these

motivations and show how a timeless universe can seem to observers as containing time.
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Philosophical background

A philosophical origin of this work can be found in (McTaggart, 1908). McTaggart

distinguishes three different time series called A, B, and C-series respectively. The

A-series speaks about time as the ‘future’,‘present’ and ‘past’ and hence also

encompasses a privileged now and a dynamic flow of time. On the other hand, the

B-series uses only the terms ‘earlier than’ and ‘later than’, thus speaks only about

temporal relationship but not about any change. The last, C-series, is completely

atemporal view and describes only the non-oriented relationship between events.

McTaggart argues that if we want to explain time and our experience of it, we

need to look at the A-series. The C-series obviously does not describe our temporal

experience, neither does the B-series. He concludes, however, that because the A-series

is contradictory there cannot be any time itself. His argument against the A-series is

not the aim of our paper, so let us just mention that it is far from definitive and was

opposed by other authors. Nevertheless, the difference of the time series is a basic step

in identifying basic perspectives on time.

An older discussion on this topic was already present in Greek philosophy, where

we could say Parmenides defended that time is an illusion and Heraclitus argued for the

opposite. A contemporary wording of their argument might be that according to

Heraclitus “the world is made up of 3D objects, which endure and change in time, while

retaining their identity from one moment to the next. Parmenideans, on the other

hand, believe that the world is a changeless 4D spacetime continuum, containing

material objects that are 4D worm-like volumes extended along the time dimension.”

(McCall, 2006).

A recent philosophical revisit of this problem can be found in (Dieks, 2016). Dieks

argues for the B-series and concludes that "accounts of our experience of passage that

rely on a postulated objective flow of time have not shown that they are more than

abstract metaphysical exercises without a link to what science tells us about the world".

He also points to the similarity with colours as their perception is not merely an illusion

although there is no actual colour present. As Dieks sums it up: "In this sense our
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feeling of flow is veridical, in the same way as the perception of a colour can be faithful

to an actual state of affairs."

Yet, also physics seem to support a world without a flow. Firstly, as mentioned by

Dieks (2016), general relativity and physics in general show that "our intuition of being

in causal contact with a global Now is non-veridical". Secondly, we do not need time in

physics at all. Barbour (2000) presents physics that are completely timeless. Barbour

builds up the world from so called ‘configurations’ and connects them with a specific

measure. Although these configurations can be realized in multiple ways (for example

as relative configurations of particles in Euclidean space), they form the ‘primary

ontological elements’ for his theory. The measure then connects these configurations and

gives the world a C-series-like form. This approach, based on physics, therefore replaces

the classical linear idea of time with a multidimensional structure of possibilities.

These all, although well defended positions, represent non-formal approaches.

However, we have at our disposal formal temporal logics that would allow us to

formulate these positions in a formal way. Namely the branching temporal logic based

on Belnap’s work (Belnap, 1992) attempts to capture relativistic space-time. This

temporal logic uses a structure composed of causally ordered point-events. The higher

order building blocks of these structures can vary among approaches from so called

‘histories’ in the original Branching Space-times (Belnap, 1992) to the looser

‘continuations’ in Branching Continuations (Placek, 2011). These logics are viewed by

some as a possibility how to reconcile becoming with relativity (Pooley, 2013). We will

only mention that there exists a specific type of models that bring BST even closer to

physics, the so called Minkowski branching structures which are isomorphic with

Minkowski space-time (Müller, 2002)(Wroński & Placek, 2009). Therefore even a

demonstration closer to physics could be made.

The last notion that needs to be introduced is an observer. Notice that the

previous philosophical relied on the phenomenology of time and therefore the epistemic

state of the observer. Thus in order to formalize the arguments we also need to use a

similar observer. An observer is understood as a local collection of measuring devices.
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For simplicity we will assume that the observer is not fallible and has all the available

information at his disposal. This allows us to equate the observer’s knowledge with the

actual state that is physically accessible to the observer. The physical accessibility of

the state of the world is limited by the fact that the observer is a local collection of

measuring devices. An observer is therefore only a local collection of measuring devices

with a history of measurements or in other words with a history of states. In the

context of space-time our definition confines the observer to a time-like finite worldline

with all the events that can access this worldline via an at most light-like curve.

Branching Space-times with Observers

Let us sum up the basic ideas and definitions of Branching Space-times and

present the role of observers. Although Branching space-times (BST) were introduced

by Belnap (1992), we present the concise version from (Wroński & Placek, 2009).

Definition 1 (Wroński & Placek, 2009)

• The set OW called Our World , is composed of point-events e ordered by the

causal relation ≤.

• A set h ⊆ OW is upward-directed iff ∀e1, e2 ∈ h ∃e ∈ h such that e1 ≤ e and

e2 ≤ e.

• A set h is maximal with respect to the property of upward-directedness iff

∀g ∈ OW such that h ⊂ g, g is not upward-directed.

• A subset h of OW is a history iff it is a maximal upward-directed set.

• For histories h1 and h2, any maximal element in h1 ∩ h2 is called a choice point

for h1 and h2.

Hence a history is close to the idea of a possible course of events. What might

seem a little counter-intuitive is the scope of a history as it encompasses all the events

of a possible course of the world. Histories are made up from Each history hence

represents a different course of events in the universe. However, they are not separate
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ontological entities as histories are composed of point-events and those are the building

blocks of Our World.

Definition 2 (BST model, Wroński & Placek, 2009) 〈OW,≤〉 where OW is a

nonempty set and ≤ is a partial ordering on OW is a structure of BST iff it meets the

following requirements:

1. The ordering ≤ is dense.

2. ≤ has no maximal elements.

3. Every lower bounded chain1 in OW has an infimum in OW .

4. Every upper bounded chain in OW has a supremum in every history that contains

it.

5. (Prior choice principle) For any lower bounded chain O ⊂ h1 − h2 there exists a

point e ∈ OW such that e is maximal in h1 ∩ h2 and ∀e′ ∈ O(e < e′).

In order to investigate the truth of statements in a BST structures we should

introduce also a language. This language contains classical logical operators and the

usual Priorean operators F, P (‘it will be true’, ‘it was true’.) The ‘Sett :’ operator

denotes a settled option, i.e. true for all the branches. With these we can introduce the

valuation of formulae.

Definition 3 (Point satisfies formula - BST, Wroński & Placek, 2009) For the

model M = 〈OW,≤, v〉. Where v is the valuation v : Atoms→ P(OW ). For a given

1A chain is a totally ordered set.
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event e and history h, such that e ∈ h:

M, e, h 
 p iff e ∈ v(p)

M, e, h 
 ¬ϕ iff not M, e, h 
 ϕ

M, e, h 
 ϕ ∧ ψ iff M, e, h 
 ϕ and M, e, h 
 ψ

M, e, h 
 Fϕ iff there is e′ ∈ OW and e∗ ∈ h s.t.

e′ ≤ e∗ and M, e′, h 
 ϕ

M, e, h 
 Pϕ iff there is an e′ ∈ h s.t. e′ ≤ e and M, e′, h 
 ϕ

M, e, h 
 Sett : ϕ iff for all e′ ∈ h′, for all h′ such that e ∈ h′:

M, e′, h′ 
 ϕ

Notice that the future operator could be rephrased as ‘at a future event to e,

namely e∗, we will be able to say that ϕ is true’. We cannot, however, just pick event e′

as it does not have to be necessarily in h and it might be that ϕ does not hold at e∗

(i.e. it is not a settled future).

This satisfaction definition is the classical version without an observer. We can,

however, add an observer to BST based on a few simple definitions and modify the

evaluation of formulae.

Definition 4 (Worldline)

A set Wl ⊆ OW is a worldline iff Wl is a chain. We denote Wl(e) a worldline

containing the point-event e.

Definition 5 (Observer in BST)

An observer O is a finite worldline Wl limited by two point-events ei and ef ,

where ei is the initial observation and ef is the final observation.

An observer of a point-event e ∈ OW , Oe, is an observer such that there is

e′ ∈ Oe such that e ≤ e′.

An observer hence can only observe point-events that have causally influenced his

worldline. Because an observer is basically a set of consistent point-events, he does

specify a set of histories that are consistent with each other up to the point of the last

observer’s point-event.
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Definition 6 (Observer valuation)

For given M, e and observer Oe and histories hi, such that Oe ⊂ hi, a formula ϕ

is true for Oe iff for every hi it holds that M, e, hi 
 ϕ.

Lemma 1 (Observer and histories) An observer O is part of at least two histories.

Proof. Follows from the definition of observer and history. Q.E.D.

Because of our approach, we take the observers worldline as the whole state of the

observer based on which we can judge upon the truth or falsity of statements. We can

thus state how a formula would be evaluated with respect to an observer.

Theorem 1 (Observer time asymmetry) For an observer O, there exists at least

one well formed formula about the future that cannot be attributed any truth value.

Proof. An observer is part of at least two histories based on Lemma 4. Because these

histories must coincide on the observer, they must diverge at some e such that ef ≤ e

and hence we can construct a formula that relies on the valuation at e that will have a

different truth value in h1 and h2 and hence cannot be true or false for the observer.

Q.E.D.

Branching Continuations with Observers

One of the original motives for Branching Continuations (BCont) in Placek (2011)

were general relativistic space-times because BST is not capable to capture general

relativistic structure. Problematic is the scale of histories and their

upward-directedness. However, we can introduce BCont with observers as in Švarnỳ

(2013). A noticeable difference at first sight between the two structures, a BST and a

Bcont one, is the locality of ’histories’ in BCont. This brings them closer to the

observer than in the case of BST histories as we have seen.

BCont also starts out with the set of point-events of Our World OW . However,

these points are related by paths, called snake-links. However, if we follow the basic

definitions from the mentioned articles, we do not need to make any alterations and

BCont can accommodate the same type of observers as we have seen in BST.2
2For further discussion on the relation of BCont and BST, see (Placek, 2011).
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Definition 7 (Snake-link, Placek, 2011)

The properties and basic definitions of snake-links:

1. 〈e1, e2, . . . , en, 〉 ⊆ W (1 ≤ n) is a snake-link iff

∀i : 0 < i < n→ (ei ≤ ei+1 ∨ ei+1 ≤ ei)

2. A snake-link is above (below) e ∈ W if every element of it is strictly above (below)

e.

3. Let W ′ ⊆ W and x, y ∈ W ′. x and y are snake-linked in W ′ iff there is a

snake-link 〈e1, e2, . . . , en, 〉 such that such that x = e1 and y = en and ei ∈ W ′ for

every 0 < i ≤ n.

4. For x, y ∈ W , x and y are snake-linked above e, x ≈e y, iff there is a snake-link

〈e1, e2, . . . , en, 〉 above e such that x = e1 and y = en.

The relation ≈e is reflexive, symmetrical and transitive, hence an equivalence

relation on the set We = {e′ ∈ W |e < e′}.

Definition 8 (Set of possible continuations, Placek, 2011) Set of possible

continuations of e, Πe, is the partition of We induced by the relation ≈e.

∀e < x : Πe 〈x〉 is the unique continuation of e to which the given x belongs.

Definition 9 (Placek, 2011)

∀e′, e, e0 ∈ W : ((e ≤ e′ ∨ e′ ≤ e) ∧ e0 < e ∧ e0 < e′ → ∃H ∈ Πe0e, e
′ ∈ H)

Definition 10 (Set CE of choice events, Placek, 2011) For e ∈ W , e ∈ CE iff

card(Πe) > 1.

Definition 11 (Consistency, Placek, 2011) For e, e′ ∈ W , let there be

We := x ∈ W |∀c(c ∈ CE ∧ c < e→ c < x) and a similar for e′. Then e, e′ are

consistent iff they are snake-linked within We ∪We′. A set A ⊆ W is then consistent if

every two elements of A are and it is inconsistent iff it is not consistent.
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Definition 12 (L-events, Placek, 2011) A ⊆ W is an l-event iff A 6= ∅ and A is

consistent.

For the definition of a BCont model, the definition of a BST model is used, only

altered on places, where the snake-link has its influence. BCont is in many aspects a

generalised form of the BST models.

Definition 13 (Model of BCont, Placek, 2011) W = 〈W,≤〉 is a model of BCont

if it satisfies:

1. W is a non-empty partially ordered set;

2. the ordering ≤ is dense on W ;

3. W has no maximal elements;

4. every lower bounded chain C ⊆ W has an infimum;

5. if a chain C ⊆ W is upper bounded and C ≤ b, then there is a unique minimum in

{e ∈ W |C ≤ e ∧ e ≤ b};

6. for every x, y, e ∈ W , if e 6< x and e 6< y, then x and y are snake-linked in the

subset We 6≤ := {e′ ∈ W |e 6≤ e′} of W ;

7. if x, y ∈ W and W≤xy := {e ∈ W |e ≤ x ∧ e ≤ y} 6= ∅, then W≤xy has a maximal

element;

8. for every x1, x2 ∈ W , if ∀c : c ∈ CE → c 6< xi, then x1, x2 are snake-linked in the

subset W6>CE := {e ∈ W |∀c ∈ CEe 6> c} of W.

Further definitions enlighten, why are snake-links necessary. Because L-events are

not as large as histories, they need a way how to connect space-like related (SLR)

points. These are of interest in physics, as SLR events cannot directly influence each

other in a causal way.
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Definition 14 (Basic transitions in BCont, Placek, 2011) Let 〈W,≤〉 be a model

of BCont. A basic transition is a pair 〈e,H〉, where e ∈ W and H ∈ Πe is a

continuation of e.

Definition 15 (SLR, Placek, 2011) e, e′ ∈ W are SLR iff they are compatible but

incomparable.

Another physics related term is S-t locations, which stands for space-time

locations.

Definition 16 (S-t locations, Placek, 2011) We say that a model 〈W,≤〉 of BCont

has spatio-temporal locations iff there is a partition S of W such that

1. For each l-event A and each s ∈ S, the intersection A ∩ s contains at most one

element;

2. S respects the ordering ≤, that is, for all l-events A, B, and all s1, s2 ∈ S, if all

the intersections A ∩ s1, A ∩ s2, B ∩ s1 and B ∩ s2 are nonempty, and

A ∩ s1 = A ∩ s2, then B ∩ s1 = B ∩ s2;

3. similarly for the strict ordering;

4. if e1 ≤ e2 ≤ e3, then for every l-event A such that s (e1) ∩ A 6= ∅ and

s (e3) ∩ A 6= ∅, there is an l-event A′ such that A ⊆ A′ and s (e2) ∩ A 6= ∅, where

s (ei) stands for a (unique) s ∈ S such that ei ∈ s;

5. if L is a chain of choice events in 〈W,≤〉 upper bounded by e0 and such that

∃s ∈ S∀x ∈ L∃e ∈ W : (x < e ∧ s (e) = s), then ∃e ∗ (e∗ ∈ ⋂
x∈L Πx (e0) = s).

S is then called a set of s-t locations for 〈W,≤〉.

Definition 17 (Ordering of s-t locations, Placek, 2011) For s1, s2 ∈ S, let

s1 - s2 iff ∃e1, e2 (e1 ∈ s1 ∧ e2 ∈ s2 ∧ e1 ≤ e2).

Lemma 2 (Placek, 2011) If 〈W,≤, S〉, a BCont model with a set S of s-t locations, is

downward directed, then - is a partial dense ordering on S.
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Lemma 3 (Placek, 2011) Let 〈W,≤, S〉 that is downward directed and satisfies the

following conditions:

• ∀e1, e2, e3 ∈ W (e1 ≤ e3 ∧ e2 ≤ e3 → e1 ≤ e2 ∨ e2 ≤ e1) surnamed “no backward

forks”

• ∀e, e′ ∈ W : if e, e′ are incomparable by ≤, then there are H1, H2 ∈ Πm such that

H1 6= H2, e ∈ H1 and e′ ∈ H2, where m is a maximal element of

W≤ee′ = {y ≤ e ∧ y ≤ e′};

Then S is linearly ordered by - and every l-event of 〈W,≤, S〉 is a chain.

For semantics of BCont a point-event and l-event pair is used in a similar way as

in BST. However, we use the definition from (Placek, 2011) used the original Branching

Time models of Prior Prior (1968) as a basis for BCont semantics.

Definition 18 (BT+Instants inspired model, Placek, 2011) A model 〈W,≤, S〉

is said to be (BT+Instants)-like if it satisfies the following conditions:

• downward directedness,

• no backward forks,

• ∀e, e′ ∈ W : if e, e′ are incomparable by ≤, then there are H1, H2 ∈ Πm such that

H1 6= H2, e ∈ H1 and e′ ∈ H2, where m is a maximal element of

W≤ee′ = {y|y ≤ e ∧ y ≤ e′};

This allows us to state the truth-conditions of metric tenses saying that the two

events are t units apart. Sentences will be then judged based on evaluation points, built

out of l-events and thus will be event/l-event pairs mentioned already earlier.

Definition 19 (Structure and model) A structure for the language L, as defined

before, is a pair G = 〈W , X〉, where W = 〈W,≤, S〉 is a (BT+Instants)-like model of

BCont such that |S| = |R|, and X is a real coordinalization of S.
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A pair M = 〈G, I〉 is a model for language L, where G is a structure for L and

I : Atoms→ P(W ) is an interpretation function and Atoms is the set of atomic

formulas of L.

Definition 20 (Evaluation points) Let G = 〈W , X〉 be a structure for language L,

where W = 〈W,≤, S〉. Then 〈e, A〉, written as e/A, is an evaluation point in G for

formulas of L iff {e} ∪ A ⊆ W and A 6= ∅.

Noteworthy is the fact that we do not require for a e/A that e ∈ A, also to be

mentioned is the fact that Placek (2011) suggests a plain ontological reading of the

meaning of e/A. Although it is also true that the BCont approach carries with itself less

tension between ontology and epistemology as l-events are more accessible than BST

histories.

This construction of evaluation points and coordinalization of X allows us to use

metric tense operators F(x) and P(x) with x ∈ R. For the language L, we assume that

its atomic formulas are present-tensed and that it has the two metric tense operators,

usual connectives (¬,∧,∨,→) and modal operators Sett(as “it is settled”), Poss(“it is

possible”) and an operator Now.

Definition 21 (Extensions of an evaluation point) Let G = 〈W , X〉 be a structure

for language L, W = 〈W,≤, S〉, and e/A be an evaluation point in G for L. Then:

• e/A goes at least x-units-above e (0 ≤ x) iff

∃e1 ∈ W∃e2 ∈ A(e1 ≤ e2 ∧ int(e, e1, x));

• e/A’ is an x-units-above-e extension of e/A (0 ≤ x) iff A ⊆ A′ ⊆ W and e/A’

goes at least x-units-above e.

Definition 22 (Fan of evaluation points) Let G = 〈W , X〉 be a structure for L,

W = 〈W,≤, S〉, and e/A be an evaluation point in G for L.

Two l-events A1 and A2 of W are isomorphic instant-wise iff

∀e1 ∈ A1∃e2 ∈ A2s(e1) = s(e2) and ∀e2 ∈ A2∃e1 ∈ A1s(e1) = s(e2)

e/A′ ∈ Fe/A, fan of evaluation points determined by evaluation point e/A iff e/A’

is an evaluation point in G and A and A’ are isomorphic instant-wise.
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In many cases this leads to a single possible A’, A itself. An important point is

that the evaluation of the formula depends on the moment of use, eC .

Definition 23 (Point fulfills formula) For given eC , e/A and the model

M = 〈G, I〉.Then:

1. if ψ ∈ Atoms:M, eC , e/A 
 ψ iff e ∈ I (φ);

2. if ψ is ¬ϕ : M, eC , e/A 
 ψ iff it is not the case that M, eC , e/A 
 ϕ;

3. for ∧,∨,→ also in the usual manner;

4. if ψ is Fxϕ for x > 0 : M, eC , e/A 
 ψ iff there are e′ ∈ W and e∗ ∈ A such that

e′ ≤ e∗ and int(e’, e, x), and M, eC , e
′/A 
 ϕ;

5. if ψ is Pxϕ, x > 0 : M, eC , e/A 
 ψ iff there is e′ ∈ W such that e′ ∪ A ∈ l-events

and int(e’,e,x) and M, eC , e
′/A 
 ϕ;

6. if ψ is Sett : ϕ : M, eC , e/A 
 ψ iff for every evaluation point e/A′ from fan Fe/A

and M, eC , e/A
′ 
 ϕ;

7. Poss : ψ := ¬Sett : ¬ψ;

8. if ψ is Now : ϕ : M, eC , e/A 
 ψ iff there is e′ ∈ s(eC) such that e′ ∪ A ∈ l-events

and M, eC , e/A
′ 
 ϕ.

Definition 24 (Definite truth) M, eC , e/A |= ψ, read as ψ is definitely true at

M, eC , e/A, iff there is an x ≥ 0 such that for every x-units-above e extension e/A′ of

e/A : M, eC , e/A
′f ′ 
 ψ;

M, eC , e/A |=Indef ψ, read as ψ is indefinitely true at M, eC , e/A, iff there is no

x ≥ 0 such that for every x-units-above e extension e/A′ of e/A: M, eC , e/A
′ 
 ψ or for

every x-units-above-e extension e/A′ of e/A: M, eC , e/A
′ 
 ¬ψ;

Theorem 2 For any formula ψ and any evaluation point e/A, exactly one of the

following three options must hold: e/A |= ψ or e/A |= ¬ψ or e/A?= ψ
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We don’t go into much more detail but let us list some of the properties from

bcont.

• if ψ is fulfilled at an evaluation point e, it can cease to be fulfilled at an extension

of this evaluation point;

• if ψ is definitely true at a evaluation point e, then it is definitely true in every

extension of e;

• if ψ is indefinite at a point, so is its negation;

• if ψ ∧ ϕ is indefinite at a point, ψ ∧ ϕ is either indefinite or definitely false at this

point;

• if ψ ∨ ϕ is indefinite at a point, ψ ∨ ϕ is either definitely true or indefinite at this

point;

• if ψ → ϕ is indefinite at a point, ψ → ϕ is either definitely true or indefinite at

this point;

• settled cannot be indefinite: Sett : ψ is definitely true or ¬Sett : ψ is definitely

true.

Also in our coordinalization, every sentence becomes definitely true or definitely

false at a sufficiently long extension of a initial evaluation point.

At this point we can use the same definitions of worldlines, observers and observer

related truth as in the case of BST. Although we speak of consistent l-events instead of

histories, the end result is the same and the Bcont variation of Theorem 3 holds.

Barbourian Temporal Logic

Although this is a quote of Mach, it represents the key idea for Barbour’s

approach:

It is utterly beyond our power to measure the changes of things by

time... time is an abstraction at which we arrive by means of the changes of
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things; made because we are not restricted to any one definite measure, all

being interconnected.

(Barbour, 2000)

As already mentioned, Barbour (2000) authors what he calls a "many instants

interpretation of quantum mechanics" a timeless model of the world where time is

merely an abstraction. For Barbour, the equivalent of Our World is called Platonia and

it is composed out of all the possible states of the world, sometimes referred to as the

‘heap of possibilities’. One such possible state is called a ‘configuration’3. For our

purpose we do not need to go into much detail about the quantum physical foundation

of Barbour’s theory. Let us just mention that the universe is represented by a

Wheeler-DeWitt equation, a universe wave function that captures all the possibilities.

Hence in Barbour’s view, each configuration is basically a three dimensional

snapshot of the universe that captures the relative configuration of matter and fields in

the universe. Platonia is then composed of all the possible configurations of such sort.

They have an intrinsic structure that contains all the physical evidence that leads us to

the impression that time passes. Barbour calls these objects ‘time capsules’. A time

capsule is therefore a part of the configuration that suggests in some way the direction

of time or works as evidence for the passage of time. Classical examples of time

capsules are geological sediments, camera films, or particle traces in a cloud chamber.

However, as we see, each configuration is static and timeless.

We notice right away the difference between a BST or BCont structure and

Platonia lies in the scale of their building blocks. While we had point-events at our

disposal in the previous cases, Barbour’s structure works with configurations. These

should have an intrinsic structure. However, for our purpose it is sufficient to take them

as basic members of Platonia.

Definition 25 (Platonia) We call P Platonia, the set of all configurations c.

3Sometimes configurations are refered to as instants. However, in order to purge any impression of

temporality we use the former term, their meaning in Barbour’s theory is the same.
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However, we assume a deeper structure in them, for example the already

mentioned time capsules. This depth can be in our current approach unified into one

operator ∆(c, c′), the difference in arrangements (i.e. relative distances, energies, etc.)

between two configurations4.

Definition 26 (Direct transition) Two configurations c, c′ ∈ P have a direct

transition c ≈d c
′ iff ∀c′′ ∈ P : ∆(c, c′) ≤ ∆(c, c′′). There is a transition c ≈ c′ iff there is

a chain of direct transitions c1 ≈d c2 ≈d ... ≈d cn such that c1 = c and cn = c′.

Therefore if we would look at configurations of two points and have three possible

configurations based on only the one dimensional distance of the points: c1 one meter,

c2 two meters, and c3 three meters, then there is a direct transition between c1 and c2,

c2 and c3. However, there is not a direct transition between c1 and c3, because there

exists a configuration whose arrangement is closer to the one of c1, namely c2. There

still would be a transition between c1 and c3.

Definition 27 Two configurations c, c′ ∈ P are directly successive c < c′ iff c ≈d c
′ and

c ∈ Ψ(c′). Where Ψ(c) denotes the set of possible preceding configurations based on time

capsules from c.

Definition 28 A Barbour history h is an direct succession of configurations c ∈ P.

Definition 29 A choice configuration cc is a configurations c ∈ P such that

∃c1, c2 ∈ P : c1 6= c2 and cc ∈ Ψ(c1) ∧ cc ∈ Ψ(c2).

Definition 30 Barbour Structure S

1. The ordering < is dense.

2. The relation < is transitive.

3. The relation < is antisymmetric.

4. The ordering < has no maximal elements.
4A possible interpretation of ∆ is the Kullback–Leibler divergence of configurations.
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5. Every lower bounded chain in P has an infimum in P.

6. Every upper bounded chain in P has a supremum in every history that contains it.

7. (PCP) For any lower bounded chain C ∈ h1 − h2 there exists a configuration

c ∈ P such that c is maximal in h1 ∩ h2 and ∀c′ ∈ C c < c′.

The two structures, Barbour’s and Belnap’s, stay the same at this point. However,

notice that in Barbour’s idea of configuration ordering there could be a maximal

element. A maximal element in this case can represent an ultimate arrangement of

matter that does not have any successor (some kind of black hole possibly). This would

be also the trivial example of a Barbour structure that is not BST.

We use the language L with atomic formulas (statements about configurations in

the present tense), tense operators F, P , modal operators Sett :, Poss : and connectives:

∧,∨,→,¬. The semantic model itself needs only the addition of an interpretation

I : Atom→ P (P). This interpretation is based on the time capsules of the

configurations and their arrangements.

Definition 31 For the model M =< S, I,
>, a c from P satisfies a formula ψ in

language L iff:

• ψ ∈ Atom: M, c, h 
 ψ iff c ∈ I(ψ)

• ψ is ¬φ: M, c, h 
 ψ iff it is not the case that M, h 
 φ

• ψ is φ ∧ π: M, c, h 
 ψ iff M, c, h 
 φ and M, c, h 
 π

• ψ is φ ∨ π: M, c, h 
 ψ iffM, c, h 
 φ orM, c, h 
 π

• ψ is φ→ π: M, c, h 
 ψ iff if M, c, h 
 φ then M, c, h 
 π

• ψ is Fφ: M, c, h 
 ψ iff

∃c′ ∈ P : c << c′ and ∃h′ ⊂ P : c, c′ ∈ h′ and M, c′, h′ 
 φ

• ψ is Pφ: M, c, h 
 ψ iff

∃c′ ∈ P : c′ << c and M, c′, h 
 φ
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• ψ is Sett : φ: M, c, h 
 ψ iff

∀h′ ⊂ P∀c′ ∈ P : if c ∈ h′ and (c′ < c or c < c′) then M, c′, h′ 
 φ

• ψ is Poss : φ: M, c, h 
 ψ iff

M, c, h 
 ¬Sett : ¬φ

Similarly as in the previous cases, we can introduce an observer. BTL cannot

properly use the notion of a worldline. However, we can define the observer based on

the configurations that have the closest to his current configuration. Notice that any

(reasonable) configuration that contains an observer has also his history in the form of a

time-capsule. Hence we can say that we tie together the the configurations based on the

time-capsules available to the observer.

Definition 32 (Evidence)

A set E ⊆ P is called evidence iff E is a chain of configurations. We denote E(c)

an evidence containing the configuration c.

Evidence is available at configuration c iff the set E contains c as the maximal

member.

Note that we have definitely transitioned now from ontology to epistemics because

the evidence present at a configuration c is some physical evidence in the configuration,

however the chain of configurations that was created is just an abstraction based on ∆.

Also do not forget that we assumed our observers are infallible and have all the

accessible data available. This simplification, put into Platonia, would actually mean we

single out some specific configurations (namely the ones containing such observers) of

the plethora of possibilities.

Definition 33 (Observer in BTL)

An observer at configuration c, Oc is an observer that can use only the evidence

available to him at c.

Definition 34 (Observer valuation in BTL)
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For given M, c and observer Oc and evidences hi, such that E ⊆ hi, a formula ϕ

is true for Oe iff for every hi it holds that M, e, hi 
 ϕ.

Lemma 4 (Evidence and histories) An evidence E is part of at least two BTL

histories.

Proof. Follows from the definition of evidence and history in BTL. Q.E.D.

Theorem 3 (Observer time asymmetry in BTL) For an observer Oc, there exists

at least one well formed formula about the future that cannot be attributed any truth

value.

Proof. Similar as previously. Q.E.D.

Therefore we see that also observers in BTL are subject to the same time

asymmetry as observers in BST or BCont and could not, based on statements about the

future, differentiate between a temporal and a atemporal model.

Conclusion

We hope to have shown that in three different temporal logics an observer can be

introduced and although two of the temporal logics contain time in the form of

space-time and the third one is based on an atemporal universe, the evaluation of

formulae for an observer can be the same. A further investigation on precise formulae

that would allow to differentiate the structures should be now conducted in order to

strengthen or refute the view that these models are equivalent from the point of view of

an observer. As the Sun did not stop to rise in the east after people realized Earth is

not the centre of the universe, so change does not vanish with the realization that the

world might be timeless.
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