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1 Introduction

In philosophy of statistics, Deborah Mayo and Aris Spanos have championed the

following epistemic principle, which applies to frequentist tests:

Severity Principle (full). Data x0 (produced by process G) provides

good evidence for hypothesis H (just) to the extent that test T severely

passes H with x0. (Mayo and Spanos 2011, pp.162).

They have also devised a severity score that is meant to measure the strength of

the evidence by quantifying the degree of severity with which H passes the test T

(Mayo and Spanos 2006, 2011; Spanos 2013). That score is a real number defined

on the interval [0,1].

In this paper, I put forward a paradoxical feature of the severity score as a

measure of evidence. To do this, I create a scenario where a frequentist statistician

S is interested in finding out if there is a difference between the means of two

normally distributed random variables. The null hypothesis (H0) states that there

is no difference between the two means.

A Student’s t-Test test yields a significant result and S uses the severity score

to show her peers just how much a difference strictly greater than 0.1 is warranted

by the data. The severity score for such a difference is quite high. Hence S believes

that she has obtained good and strong evidence for such a difference.

However, I also show that when S repeats her experiment 100,000 times and

performs a Kolmogorov-Smirnof test for the uniformity of the p-values, she does

not find a significant result against H0. This is paradoxical. According to the

severity score, the first test provides excellent evidence for a difference between

the two means. Yet, the second test provides no evidence whatsoever. I argue

that this paradox must lead to the rejection of the severity score as a measure of
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evidence.

The paradox illustrates the fact that the severity score will inevitably fail to ad-

equately measure the evidence provided by a significant test with low power. Tests

with very low power will be significant only if the observations are deviant under

both H0 and the alternative hypothesis H1. Therefore, the results of those signif-

icant tests will generate misleadingly high severity scores for differences between

H0 and H1 that are excessively overestimated.

Of course, significant tests with low power are relatively rare. They happen

slightly more often than the significant level. If the severity measure of evidence

gets things right most of the time, what is the problem? The problem is that we can

do better.

A significant result will provide better evidence against the null if the test is

more powerful or if we have succeeded in rejecting H0 after several repetitions of

the test. This is partially incompatible with Spanos and Mayo’s claims to the effect

that there is a common fallacies ”wherein an a level rejection is taken as more

evidence against the null, the higher the power of the test” Mayo and Spanos 2006,

pp.334.

2 The Scenario

Here is the scenario. S has obtained two different samples of 10 independent and

identically distributed observations: (X1, X2, ..., X10) and (Y1, Y2, ..., Y10). Their

respective distributions are defined as follows:

(i) Xi ∼ N (µ1 = 1.01, σ2
1 = 36)

(ii) Yj ∼ N (µ2 = 1, σ2
2 = 36)

where µ represents the mean of a normal distribution and σ2 its variance.
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S only knows two things about the parameters of the two normal distributions:

(1) µ1 > µ2 or µ1 = µ2

(2) σ1 = σ2

She does not know their exact value. Consequently, in order to make an inference

about the difference between µ1 and µ2, S uses a one-tailed Student’s t-Test where

H1: µ1 > µ2 and H0: µ1 = µ2. The variances are estimated with the samples.

The statistic used for such a test is defined as follows:

t =
(X̄− Ȳ)− (µ1 − µ2)

Sp ×
√

1
10 +

1
10

where

Sp =

√
9S2

1 + 9S2
2

18
,

S2
1 =

10

∑
i=1

((xi)− X̄)2

9
,

X̄ =
10

∑
i=1

xi

10
,

S2
2 =

10

∑
i=1

((yi)− Ȳ)2

9
,

and

Ȳ =
10

∑
i=1

yi

10
.

It is called a Student’s t-Test because the statistic t follows a Student distribution

(with 18 degrees of freedom in this case).

For a significance level α of 0.05, S will reject H0 (accept H1) if she finds a

test statistic tobs such that the probability of obtaining a result at least as distant (on

the positive axis) from 0 as tobs is smaller than or equal to 0.05 under H0. If not,

then she will fail to reject H0.
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The probability that will determine the rejection (or non-rejection) of H0 is

called ”the p-value”. In this particular case, α is the probability of rejecting H0

when H0 is true. It is also called ”the probability of making a Type-I error”. The

probability of rejecting H0 when H1 is true is called ”the power of the test” (π) and

the probability of not rejecting H0 when H1 is true is ”the probability of making a

Type-II error” (β = 1− π).

In short, S expects the statistic t to be close to 0 under H0 because there should

not be any difference between the two distributions. If the test statistics is much

bigger than 0, then she will reject H0 and accept H1 because that would be too

improbable under H0. If it is relatively close to 0, then she will not reject H0

because that is not too improbable under H0.

After S proceeds with the t-test, she finds a difference of 4.249611; a test statis-

tic tobs = 1.914; and a p-value = 0.03583 (See Appendix to reproduce the results).

Therefore, S rejects H0 (p-value< 0.05). The test is significant.

Now, S would like to use the severity score for µ1 − µ2 > 0.1 in order to

quantify the strength of the evidence attached to that claim. She computes that

score as follows:

ts =
(2.688654 + 1.560957)− (0.1)

Sp ×
√

1
10 +

1
10

SEV(µ1 − µ2 > 0.1) = F(ts) = 0.9610043

where F(ts) is the cumulative distribution function of a Student’s distribution with

18 degrees of freedom evaluated at point ts.

In English, this means that we have computed the probability of obtaining a

less extreme result under the assumption that µ1 − µ2 = 0.1. This is the meaning

of the severity score in this context. See (Mayo and Spanos 2011, pp.169) for more

details on how to compute such a severity score. If that probability is high, then

we can infer that the data provides good evidence for µ1 − µ2 > 0.1 (see the first
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quote in the introduction). This is the case here.

In a nutshell, the important result to remember here is that S has found a signif-

icant result (p-value=0.03583). She thus rejects H0 and finds a high severity score

for the claim µ1 − µ2 > 0.1 (severity score=0.9610043). Hence, S believes that

she has good evidence for such a difference.

However, when she repeats her experiment 100,000 times, she is not be able to

obtain enough evidence to reject H0. To see this, 100,000 p-values associated with

100,000 replications of the experiment are represented in Figure 1 (See Appendix

to reproduce the results).

Figure 1: Histogram estimation of the density of the p-values, under the assumption that

H1 is true, made with 100,000 simulations

Given that a p-value follows a uniform distribution under H0 but not under H1,

S has done a Kolmogorov-Smirnov test for the uniformity of the p-values. Doing

so, she obtained a test statistic of 0.0016108 and a p-value of 0.9576 (See Appendix

to reproduce the results). This means that S cannot reject the hypothesis stating that
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those p-values follow a uniform distribution. This also means that she cannot reject

the hypothesis stating that the two means are equal.

3 The Paradox and its Solution

So, here lies the paradox: S has good and strong evidence that there is a difference

strictly greater than 0.1 between the two means according to the severity score

associated with a Student’s t-Test. However, 100,000 repetitions of that very same

experiment cannot provide enough evidence against H0 according Kolmogorov-

Smirnof test for the uniformity of the p-values. This does not make sense.

On one hand, the severity measure tells us that the first test is enough to reject

H0 and also sufficient to justify that there is a difference strictly greater than 0.1

between the two means. On the other hand, by claiming that S has good quality

evidence for her claims, it looks like we are purposefully ignoring all the other

possible p-values and severity scores that this experiment has produced (see Figure

1). This feels like cheating.

Fortunately, this kind of paradox is easy to solve. In light of the Kolmogorov-

Smirnof test, we see that the result of the Student’s t-Test is a misleading anomaly

such that we know that it does not provide good evidence. However, it is not so easy

to understand why this is a problem for the severity measure of evidence. Given

that deviant results are inherent to statistical inferences, it is normal to expect the

severity measure to fail every now and then. As long as it gets things right most of

the time, there is no real problem with that measure of support.

But there is more here than meets the eye. The paradox that I have exposed

here shows the results of two tests. Both provide different conclusions with respect

to H0. However, the Kolmogorov-Smirnof is so much more powerful that the

Student’s t-Test (It is based on 100,000 observation!). If we have not been able to
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detect a difference with such a powerful test, then we must conclude that the result

of the Student’s t-Test is deviant and that is why S has been mislead into thinking

that there might have been a difference as big as 0.1 when the true difference is

0.01.

Now, here is the crux of this paper. Tests with very low power will be signif-

icant only if the observations are deviant under both H0 and H1. Therefore, the

results of those significant tests will generate misleadingly high severity scores for

differences between H0 and H1 that are excessively overestimated. In other words,

that measure of evidence is bound to fail in those cases. It will inevitably fail to

adequately measure the strength of the evidence provided by tests with low power.

This is what happened with the Student’s t-Test and this is why we can generate

the paradox.

The problem for the severity score is that we can do better. We can avoid its

pitfalls by including the power of the test into the measure of evidence (the more

the better) and/or to include the results of repetitions into the measure of evidence

(the more the better). Repetitions can indicate (not prove) if we are dealing with

deviant results or not.

Even if S had not repeated her experiment 100,000 times, she would not have

been warranted into thinking that she had good evidence for her claims because

she failed to check whether or not her results are deviant. This is a costly mistake

especially when S is working with only 10 observations from each group. Only

two or three repetitions of her test would have been enough to realise that she is

probably making a mistake and that the severity score has mislead her. Thus, one

must reject the severity score as a good measure of evidence. We cannot rely on

that measure without first establishing that our test’s power is high enough. High

powered tests will not trigger significant results with deviant observations.

8



4 Conclusion

In sum, I have created a scenario where a statistician S finds a significant result

(p-value=0.03583) to a one-tailed Student’s t-Test and a high severity score for the

claim µ1 − µ2 > 0.1 (severity score=0.9610053). This is supposed to show that

S obtained good evidence for such a difference (see the first quote in the introduc-

tion). However, if we wish to maintain that S obtained good evidence for such a

difference, then we encounter a paradox where one test provides good evidence

against H0 but where 100,000 repetitions of that test do not.

Scenarios like this one are easy to construct because the severity score is com-

puted independently of the power of a test (see how it is computed in Section 2).

This is a major flaw. Here is the recipe that I have followed: take any statistical

test such that if their power is low enough, then the distributions of the test statistic

under H1 and H0 are almost identical. This will maximise the variance of the p-

value under H1. Then, choose any significant result with a high severity score for a

given hypothesis (with a significance level of 0.05, they happen a little more often

than 5% of the time). You will then find a severity score paradox because several

repetition of the test will not be sufficient to reject H0 with a Kolmogorov-Smirnov

test for the uniformity of the p-values.

The main lesson here is that tests with very low power will be significant only if

the observations are deviant under both H0 and H1. Therefore, the results of those

significant tests will generate misleadingly high severity scores for differences be-

tween H0 and H1 that are excessively overestimated. In other words, that measure

of evidence is bound to fail in those cases. It will inevitably fail to adequately

measure the strength of the evidence provided by significant tests with low power.

Of course, proponents of the Error-Statistical philosophy acknowledge the im-

portance of repeating experiments. But their measure of evidence is only defined
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in function of one test statistic, i.e., in function of the result of one test. That is why

a very deviant test statistic can generate a high severity score. Moreover, the power

of the test is irrelevant when we compute the severity score. A more appropriate

measure of evidence would need to be able to encompass the results of multiple

tests and take power as a safeguard against misleading deviant results.
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Appendix 

The test with 10 observations per group 
set.seed(31) 
x<-rnorm(10, 1.01, 6) 
y<-rnorm(10, 1, 6) 
grp<-c(rep(1, 10), rep(2, 10)) 
z<-c(x, y) 
dat<-as.data.frame(cbind(z, grp)) 
test<-t.test(z~grp, data=dat, var.equal=T, alternative = "greater")  
test 

##  
##  Two Sample t-test 
##  
## data:  z by grp 
## t = 1.914, df = 18, p-value = 0.03583 
## alternative hypothesis: true difference in means is greater than 0 
## 95 percent confidence interval: 
##  0.3994825       Inf 
## sample estimates: 
## mean in group 1 mean in group 2  
##        2.688654       -1.560957 

We find the severity score for a difference strictly larger than (0.1). 
set.seed(31) 
x<-rnorm(10, 1.01, 6) 
y<-rnorm(10, 1, 6) 
s1<-sum((x-mean(x))^2)/9 
s2<-sum((y-mean(y))^2)/9 
sp<-sqrt((9*s1+9*s2)/18) 
a<-sqrt((1/10)+(1/10)) 
t<-((2.688654 + 1.560957)-(0.1))/(sp*a) 
sev<-pt(t, df=18, lower.tail = T, log.p = FALSE) 
 
sev 

## [1] 0.9610043 

We find the distributions of the p-value under the assumption that H1 
is true for the test with 10 observations per group 
pvh1<-rep(NA, 100000) 
 



for (i in 1:100000){ 
  x<-rnorm(10, 1.01, 6) 
  y<-rnorm(10, 1, 6) 
  grp<-c(rep(1, 10), rep(2, 10)) 
  z<-c(x, y) 
  dat<-as.data.frame(cbind(z, grp)) 
  test<-t.test(z~grp, data=dat, var.equal=T, alternative = "greater")  
  pvh1[i]<-test$p.value 
#  print(i) 
} 
pvalue<-pvh1 
hist(pvalue, freq=F, 50, ylim=c(0, 2), col=2, main="Under H1") 

 

We perform a Kolmogorov-Smirnov test for the uniformity of the p-
values under H1. 
ks.test(pvh1, "punif") 

##  
##  One-sample Kolmogorov-Smirnov test 
##  
## data:  pvh1 
## D = 0.0016108, p-value = 0.9576 
## alternative hypothesis: two-sided 


