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Abstract

It is shown that and why smaller fluctuations result from the super-
position of quantized normal modes than those claimed by Einstein:
Equation (II) and (III) compared to (IV).

§1. In a discussion about the Einsteinian light quanta held about a year
ago, Frau T. Ehrenfest-Afanassjewa made a remark that can be formulated
as follows:

Einstein had derived his equation for energy fluctuations of a volume
element in the black radiation field from Planck’s radiation formula and got
this result: the magnitude of these fluctuations is incompatible with the
conception of the radiation field as a superposition of light waves.1

∗‘Energieschwankungen im Strahlungsfeld oder Kristallgitter bei Superposition quan-
tisierter Eigenschwingungen’, Zeitschrift für Physik 34 (1925), 362–373. I have numbered
footnotes in this translation continuously, whereas in the original Ehrenfest resets footnote
numbering with each new section.
†Department of Philosophy, The City College of New York (CUNY). Email:

ecrull@ccny.cuny.edu . Thanks to Owen Maroney for spotting several errors in Ehren-
fest’s original notation, and also in mine!

1A. Einstein, Phys. ZS. 10, 185, 817, 1909, Solvay Congress 1911, Rapp. p. 419. —
In addition to the papers referred to in footnotes, see the following papers about light
fluctuations: M. v. Laue, Verh. d. D. Phys. Ges. 17, 198, 1915; H. A. Lorentz, Théories
statist., Note IX, Teubner 1916. — W. Bothe, Räuml. Energieverteilung in der Hohlraum-
strahlung [Spatial energy dispersion in blackbody radiation], ZS. f. Phys. 20, 145, 1923;
M. Planck, Ann. d. Phys. 73, 272, 1924.
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But on the other hand, it is well known that one can derive the Planck
radiation formula for blackbody radiation from wave concepts if one quan-
tizes only the Rayleigh–Jeans normal modes of the blackbody governed by
Planck’s energy ensemble statistics.

Thus the following internal contradiction arises — not so different from
the question of the ‘true’ nature of radiation fields: starting from wave
concepts one attains, via Planck’s equation, light fluctuations that are in-
compatible with wave concepts. — How do we resolve this contradiction?

The answer to this question was discovered and proved by Ornstein and
Zernike already in 1919, and in essence is contained in their note.2 In his
fluctuation calculations, Einstein makes the traditional assumption that the
entropies of different volume elements are purely additive, so the fluctuations
in them are independent of one another from the standpoint of probabilistic
calculations. But this is not a good assumption in the case of the radiation
field comprised of a superposition of normal modes of the blackbody.3

§2. Though the root of this contradiction is entirely clear and you have
probably already decided to forsake the representation of blackbody radia-
tion through quantized normal modes, allow me to show you two fluctuation
equations that result from holding on to this hypothesis. — To some degree
this is justified by the following remarks:

1. Energy fluctuations must also appear in volume elements of a crystal
lattice, e.g. a cold diamond, and according to Einstein’s equation4 one
can be sure that the specific heat of a solid body – excluding the gap
where the velocity of light is � the velocity of elastic waves – must
obey entirely analogous laws as the Einsteinian light fluctuations. For
energy fluctuations in crystal lattices, however, one is for the time
being still entirely reliant on the method of normal modes.5

2Ornstein and Zernike, Energiewisselingen der zwarte straling er licht-atomen, Akad.
v. Wetensch. Amsterdam 28, 280, 1919/20.

3Ornstein and Zernike use this opportunity to cite Laue’s investigation of the non-
additivity of entropy that persists through coherence. M. v. Laue, Ann. d. Phys. 20, 365,
1906; 23, 1, 795, 1907.

4Einstein Solvay Congress Report, p. 419 (1911). — The translational motion of
dilute He molecules also seem to posses temperatures of fluid Helium, in essence the kT–
value, thus also in principle through thermal contact with e.g. a diamond whose thermal
motion is already completely degenerate here. Without high concentrations of fluctuation
in the energy of the diamond lattice, such a thermal equilibrium would surely arguably
be entirely inconceivable.

5Except where the application of Bose–Einstein statistics to the atoms of a crystal
opens up a new path. — See A. Einstein, Quantentheorie einatomiger idealer Gase; Berl.
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2. Also if, following Einstein, one bypasses interpreting light fluctuations
with the help of light corpuscles, then one of the terms of the fluctu-
ation formula – derived from the Planck radiation law – indeed works
splendidly: the “Wien term”; but the other term, the “Rayleigh–
Jeans”, seems to indicate, as is known, a peculiar affinity with light
corpuscles – and in fact if one doesn’t at all wish to ignore interference
phenomena, of light corpuscles with a wave-like affinity.6 But this also
makes it possible that in the future theory of light fluctuations, some
features of wave superpositions may likely linger.

3. The comparison of the equation of the fluctuation formula (II) derived
in §4 with that derived by Einstein (IV) in §6 illuminates in more
detail the contradiction between the following two statements:

a) The fluctuations arise from the superposition of quantized black-
body oscillations (based on II)

b) The entropy and fluctuations of various parts of the radiation
field are independent from one another (based on IV).

4. Moreover, the comparison of “Problem II” (§4) with “Problem III”
(§5) shows that one obtains entirely different values for fluctuations
in a volume element depending on whether one considers time-like
(beat) fluctuations or fluctuations caused by changing excitation of
the blackbody normal modes. This crucial distinction is not treated
in the literature.

§3. “Problem I.” Assume there is a “cavity” of volume V bounded
by a shell of mirrors. In the frequency range ν, ν + dν we have the normal
modes

Akademiebar. 1924.
6The text of the paper by S. N. Bose – Plancks Gesetz und Lichtquenten-hypothese,

ZS. f. Phys. 26, 178, 1924 – shows whether Planck’s radiation law can be derived from
the representation of independent light-corpuscles. But this is not the case. Independent
light corpuscles would correspond to the Wien radiation law. See A. Einstein, Ann. d.
Phys. 17, 132,1905; P. Ehrenfest, Ann. d. Phys. 36, 91, 1911; G. Krutkow, Phys. ZS. 15,
133, 363, 1914; P. Ehrenfest and H. Kamerlingh Onnes, Ann. d. Phys. 46, 1023, 1915. —
Along those lines, M. Wolfke, Phys. ZS. 22, 375, 1921, and W. Bothe, ZS. f. Phys. 20,
145, 1923, have worked with the hypothesis that complex-picture (spatially contiguous)
light corpuscles suffice to obtain the Planck law. This would not, however, account for
the appearance of interference phenomena.
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Z = V · 8πν2dν

c3
(1)

They are quantized, which means the energy bound of a single normal mode
can only take on the values 0, hν, 2hν, . . .. Once every day at 0 o’clock
let them be subject to a “Planck lottery,” by connecting them for a short
time to an infinitely large body of temperature T . Their phases then play
independently of one another, and the lottery mean JεK,7 taken over many
days, of the energy content ε of each single one of these Z normal modes is

JεK =
hν

e
hν
kT − 1

, (2)

thus the lottery mean E0 of their total energy content E is

E0 ≡ JEK = ZJεK . (3)

One further obtains for the lottery mean the quadratic fluctuation of E8:

J(E − E0)
2K

E2
0

=
1

Z
+

1

Q
(I)

where

Q =
E0

hν
(4)

(The number of energy bits hν contained in E0).

§4. “Problem II.” Consider an arbitrary subregion v9 of the blackbody
V , and indeed only imaginarily demarcated within V and not, for example,
bounded by partitions. — Let e(t) represent its energy content falling within
the frequency range ν, ν+dν at t o’clock . Thanks to interference beats, the
Z normal modes of V – in contrast to ε and E – fluctuate within the same
day about a mean value 〈e(t)〉 = η10 specific to that day, and which we will

7[Ehrenfest originally indicated lottery mean by bolding the square brackets. For clarity
I have used double brackets instead. –EC]

8See §4 equation II for the special case where v = V , thus z = Z, q = Q are constant.
9Consisting of one or more parts. But every part must be very large in wavelength

compared to the frequency range ν, ν + dν.
10[Ehrenfest originally used bolded parenthesis; for clarity I use angle brackets instead.

–EC]
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return to in §5. We consider for the moment the lottery average Je(t)K over
very many days. Before time t, its independent value e0 is given by11

Je(t)K = e0 = v
JEK
V

= zJεK , (5)

where12

z =
v

V
Z = v · 8πν2dν

c3
. (6)

For the lottery mean, the quadratic fluctuation of e(t) about e0 gives – again
the value is independent before hour t13:

J[e(t)− e0]2K
e20

=
1

z
+

1

Q
. (II)

§5. “Problem III.” Now let’s consider the time-like fluctuation that
e(t) in the course of a day, i.e. when the blackbody remains isolated, exhibits
about the daily mean

〈e(t)〉 = η . (7)

The mean quadratic fluctuation within such a day

〈[e(t)− η]2〉 (8)

for different days still possesses wholly different varying values according to
chance. Thus we ask about the ‘mathematical expectation’ of the quantity
(8), i.e. about its lottery mean after many days. For its relation to e20 we
obtain14:

J〈[e(t)− η]2〉K
e20

=
1

z
− 1

Z
. (III)

11See §10 (38) (39).
12Were ν to be bounded by mirror partitions, then z would be the number of its normal

modes falling within the frequency range ν, ν + dν.
13See the proof in §12 (52).
14See §11 (45) for proof. — It is worth noting that the fluctuation III maintains its value

instead of Planck’s in the case where one subjects the normal modes of the blackbody to
a mostly arbitrary lottery – (see remarks in the conclusion of §11) –, e.g. were the value
exactly the same also for classical statistics (h = 0).
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§6. The contrast of fluctuation formula II to the Einstein for-
mula. — For the quadratic fluctuation of the energy contents of v, Einstein
obtains the expression15:

(e− e0)2
e20

=
1

z
+

1

q
, (IV)

where

q =
e0
hν

(9)

(The number of energy bits hν contained in e0).
In cases where v � V , thus q � Q, the Einstein formula (IV) requires

many more fluctuations than (II).
If one lets V , thus also Z and Q, grow to infinity, then (IV) remains

unaffected; however, the right sides of (II) and (III) converge towards

1

z
, (10)

i.e. the value that follows directly also from the interference of non-quantized
waves.16

Only when v coincides with V , so z = Z and q = Q, do (IV) and (II)
agree with one another [and with (I)]. In this case (III) yields a null value,
as one would expect.

§7. Dependence or independence of fluctuations in different
volume elements of the radiation field (and crystal lattice)? — If
the subregion v is increased by a factor of n while V is kept constant, then z,
e0 and q likewise are multiplied by n while of course Z, E0 and Q remain un-
changed. From (IV) one sees that (e− e0)2 is exactly n-times larger, which
together with the entropy and so also the fluctuations of different volume
elements, Einstein considered to be independent in the derivation of (IV). —
The analogous quadractic fluctuations in (II) and (III) definitely do not in-
crease proportionally with n, which plainly shows that in the superposition
of blackbody oscillations [Holhraumschwingungen], the energy fluctuations
in individual parts of v are dependent upon one another. One should also

15Well, we would naturally obtain this value instead of (II) if v were not merely imagi-
narily but instead physically bounded by walls and one could directly subject its normal
modes – through contact with a blackbody – to a Planck lottery. (Cf. “Problem I” for
the entire V .)

16Lorentz, Théories statistiques, Note IX.
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expressly be reminded that the subregions v may be made up of spatially
separated pieces.

Which of the two hypotheses better suits reality – that of the indepen-
dents of the entropies or that of the construction of normal modes [Eigen-
schwingungen] through superpositions? — It seems that the second cannot
be maintained over and above the first. But if one abandons it [the second]
for the radiation field, then one must also let it drop for energy distributions
in a crystal lattice!

Mathematical Addenda

§8. Without sacrificing any of the essential features in our problem, for
simplicity we may consider the electromagnetic blackbody oscillations as
oscillations of a string.

%
∂2s

∂t2
= κ

∂2s

∂x2
, (1)

s (0, t) = s (L, t) = 0 (2)

s(t, x) =
∑
h

Ch sin(hωt+ τh) sinhγx , (3)

ω = π
e

L
, (4)

γ =
π

L
, (5)

%ω2

2
=

κ
2
γ2 . (6)

The energy of the segments l17(possibly consisting of multiple parts):

u(t) =

∫
(l)
dx

{
%

2

(
∂s

∂t

)2

+
κ
2

(
∂s

∂x

)2
}
. (7)

After inserting (3) into (7), for the part of u(t) falling within the fre-
quency range ν, ν + dν one obtains:

17Corresponding to the sub-volume v in “Problems II and III”.
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e(t) =
∑
h

∑
k

BhBk[cos(hωt+ τh) cos(kωt+ τk)Φhk

+ sin(hωt+ τh) sin(kωt+ τk)Ψhk] , (8)

where

ν 5 hω 5 ν + dν

ν 5 kω 5 ν + dν

}
(9)

h, k � 1 , (10)

h− k
h+ k

� 1 , (11)

Bh =

√
%ω2

2
hCh =

√
κγ2

2
hCh , (12)

Φhk =

∫
(l)
dx sin hγx sin kγx

=
1

2

∫
(l)
dx cos(h− k)γx− 1

2

∫
(l)
dx cos(h+ k)γx ,

(13)

Ψhk =

∫
(l)
dx cos hγx cos kγx

=
1

2

∫
(l)
dx cos(h− k)γx+

1

2

∫
(l)
dx cos(h+ k)γx .

(14)

If only the parts comprising l are large compared to the frequency range
(9) with respect to their wavelengths, then one can easily see in light of
(10), (11) that in (13) and (14) the second integral is completely negligible
compared to the first integral:

1

2

∫
(l)
dx cos(h− k)γx = Ωhx , (15)

thus is
e(t) =

∑∑
BhBk cos{(h− k)ωt+ τh − τk} · Ωhk . (16)
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§9. The Bh and τh may now be subjected to any lottery18 of which
initially only is known that all Bh and all τh perform independently of each
other, so that for the lottery mean J K is valid:

Jcos(τh − τk)K = Jsin(τh − τk)K = 0 , (17)

JBhBkK = JBhK JBkK (18)

for h 6= k. Furthermore:

JB2
hK = JB2

kK = JB2
l K = . . . = II, (19)

JB4
hK = JB4

kK = JB4
l K = . . . = IV (20)

for all h, k, l . . ., are within the frequency range (9). Then is valid19:

Je(t)K =
∑
h

JB2
hK Ωhh

+
∑
h

∑
k

′
JBhK JBkK Jcos[(h− k)ωt+ τh − τk]K ,

(21)

so for (17) (18):

e0 ≡ Je(t)K = II
∑
h

Ωhh (22)

(independent of t). Furthermore:

J[e(t)]2K =
∑
h

∑
k

∑
l

∑
m

JBhBk BlBmK Jϕ(h, k)ϕ(l,m)K Ωhk Ωlm (23)

where

Jϕ(h, k) · ϕ(l,m)K
= Jcos[(h− k)ωt+ τh − τk] · cos[(l −m)ωt+ τl + τm]K ; (24)

18Limitation on the Planck Lottery not until §12. — Consider the comment at the end
of §11.

19∑
h

∑′
x connotes exclusion of the element k = h, which was kept separate because it

has unusual statistical properties.
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for fixed t the action/gamble of (τh − τk) and (τl − τm) is decisive/critical
here, and regarding (17) all quantities in (24) are null except for the follow-
ing:

Jϕ(h, k)ϕ(h, k)K =
1

2
, (25)

Jϕ(h, k)ϕ(k, h)K =
1

2
, (26)

Jϕ(h, h)ϕ(l, l)K = 1 , (27)

Jϕ(h, h)ϕ(h, h)K = 1 . (28)

Consequently,

J[e(t)]2K =
∑
h

∑
k

′
JB2

hKJB
2
kK ·

1

2
Ω2
hk (see 25)

+
∑
h

∑
k

′
JB2

hKJB
2
kK

1

2
Ω2
hk (see 26)

+
∑
h

∑
l

′
JB2

hKJB
2
l K · 1 · ΩhhΩll (see 27)

+
∑
h

JB4
hK · 1 · Ω2

hh (see 28)


(29)

or for (19), (20)

J[e(t)]2K = II2
∑
h

∑
k

′
Ω2
hk + II2

∑
h

∑
l

′
ΩhhΩll + IV

∑
h

Ω2
hh . (30)

For the time average 〈 〉 one obtains:

η ≡ 〈e(t)〉 =
∑
h

∑
k

BhBkΩhk〈ϕ(h, k)〉 =
∑
h

B2
hΩhh , (31)

J〈e(t)〉2K =
∑
h

∑
k

JB2
hB

2
kKΩhhΩkk

= II2
∑
h

∑
k

′
ΩhhΩkk + IV

∑
h

Ω2
hh .

(32)

§10. But now according to (15):

Ωhh = Ωkk =
l

2
, (33)
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so ∑
h

Ωhh = Z
l

2
, (34)

∑
h

Ω2
hh =

l2

4
Z , (35)

∑
h

∑
k

′
ΩhhΩkk =

l2

4
Z(Z − 1) , (36)

where Z is the number of normal modes that fall within the frequency region
(9). Furthermore20:

∑
h

∑
k

′
Ω2
hk =

l2

4
Z2

(
1

z
− 1

Z

)
, (37)

where21

z =
l

L
Z , (38)

so:

e0 ≡ Je(t)K =
l

2
IIZ , (39)

Je2K =
l2

4
II2

[
Z2

(
1

z
− 1

Z

)
+ Z2

(
1− 1

Z

)]
+
l2

4
IVZ , (40)

Jη2K ≡ J〈e(t)〉2K =
l2

4
II2Z2

(
1− 1

Z

)
+
l2

4
IVZ . (41)

§11.22 For the derivation of the quadratic mean fluctuation from these
formulae, one notes that:

J(e− e0)2K = Je2K− e20 , (42)

〈[e(t)− η]2〉 = 〈e2〉 − η2 , (43)

J〈[e(t)− η]2〉K = J〈e2〉K− Jη2K = J〈e2〉K− Jη2K = Je2K− Jη2K . (44)

Then by inserting (39, 40, 41) into (42, 44) one finds:

J〈(e− η)2〉K
e20

=
1

z
− 1

Z
, (45)

20Proved in §14.
21Cf. the z in Eq. (6) §4.
22From here onward e will be shorthand for writing e(t)
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J(e− e0)2K
e20

=

(
1

z
− 2

Z

)
+

IV

II2
1

Z
. (46)

One sees: that the fluctuation (45) corresponding to ‘Problem IIII’ (§5)
has the same value for all lotteries satisfying only the conditions (17 to 20) in
§9. — That the fluctuation corresponding to ‘Problem II’ (§4) still depends
on the value that the lottery yields for IV/II2.

§12. Now notice (19, 20) in §9, and recall that

IV

II2
=

JB4K
JB2K2

=
Jε2K
JεK2

, (47)

where ε represents the energy content of a normal mode located in the
frequency range (9), §8,23 then εh and ε2h are of course proportional to B2

h

and B4
h. However, for a Planck lottery (see following paragraphs):

Jε2K
JεK2

= ehν/kT + 1 , (48)

so according to (46), (47):

J(e− e0)2)K
e20

=
1

z
+
ehν/kT − 1

Z
. (49)

However, for the energy content E of the whole string, as long as it falls
within the frequency range (9) of $ 8, [one] obtains:

JEK = ZJεK = Z
hν

ehν/kT − 1
. (50)

Thus for the number of energy amounts [quanta?] hν contained therein:24

Q ≡ JEK
hν

=
Z

hν
ehν/kT − 1 , (51)

so according to (49)
J(e− e0)2K

e20
=

1

z
+

1

Q
. (52)

§13. Derivation of equation (48). — It is for a Planck lottery:

JεK = hν
Q

P
, (53)

23Cf. the ε of §3.
24Cf. the Q of §3.
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Jε2K = (hν)2
R

P
, (54)

where with the use of
hν

kT
= ω

P =

∞∑
0

e−sω =
1

1− e−ω
, (55)

Q =

∞∑
0

se−sω = −dP
dω

, (56)

R =

∞∑
0

s2e−sω =
d2P

dω2
, (57)

which after a quick intermediate calculation yields:

Jε2K
JεK2

= eω + 1 = ehν/kT + 1 . (58)

§14. Derivation of equation (37). — According to equation (15) in §8 it
was:

Ωhx =
1

2

∫
(l)
dx cos(h− k)γx . (59)

If for the purpose of approximation one makes use of the inequalities (10,
11) in §8, one sees25 that

∑
h

∑
k

′
Ω2
hk
∼=
∑
h

+∞∑
−∞

′

Ω2
h,h+s

=
∑
h

2
∞∑
1

(
1

2

∫
(l)
dx cos sγx

)2

=
Z

2

∞∑
1

A2
s ,

(60)

where

As =

∫
(l)
dx cos sγx . (61)

For evaluating the infinite sum in (60), the following trick: consider a func-
tion f(x) that in the subregion (l) is equal to 1, elsewhere in the interval
0 5 x 5 L equal to 0. By Fourier expansion of this f(x) one has:

f(x) =

∞∑
0

as cos sγx , (62)

25∑+∞
−∞
′

implies that s = 0 should be dropped. For justifying the approximation, one

in addition has to consider that Ω2
h,h+s falls off sharply as s increases.
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∫ L

0
dx[f(x)]2 = La20 +

L

2

∞∑
1

a2s (63)

and it is ∫ L

0
dx[f(x)]2 =

∫
(l)
dx1 = l , (64)

a0 =
1

L

∫ L

0
dxf(x) cos 0γx =

l

L
, (65)

as =
2

L

∫ L

0
dxf(x) cos sγx =

2

L

∫
(l)
dx cos sγx =

2

L
AS . (66)

Introducing (64), (65), (66) into (63) yields

∞∑
1

A2
s =

l2

2

(
L

l
− 1

)
, (67)

and as a consequence, by applying (38), (60) goes over into:

∑
h

∑
l

′
Ωhk
∼=
l2

4
Z2

(
1

z
− 1

Z

)
. (68)

Leiden, August 1925.
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