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From tiny acorns mighty oaks do grow. Every professional mathematician was once an 
infant yet to grasp even small cardinal numbers. How is that initial step even possible, 
given that cardinal numbers are abstract? That, in a nutshell, is the main philosophical 
problem about numbers to be dealt with here, the problem of cognitive access. 

In this paper, “numbers” refers exclusively to finite cardinal numbers. These are 
typically answers to questions starting “How many”, followed by a description 
applicable to individuals, rather than to units of a non-discrete quantity. So the 
number of letters in the modern Greek alphabet is a cardinal number, whereas the 
number of miles between the central stations of Liverpool and Manchester is not a 
cardinal number but a ratio (of the inter-city distance to the unit distance of a mile).  

The paper is organised as follows. The first part is a rough and rapid tour of major 
rival views of number proposed by mathematicians and philosophers. None of these 
views escapes objection, and we seem to reach an impasse. To unblock the way, a 
philosophical error needs to be exposed. That is the second part. The third part 
presents a case for the claim that, by paying attention to findings of cognitive science 
about basic number abilities, we can solve the problem of cognitive access to numbers 
and justifiably settle on one of the views of number as correct.  

1. FIVE MAJOR VIEWS 

The Classical view 

At the start of Book VII of Euclid's Elements, a number (arithmos) is defined thus:  

A number is a multitude of units,  

where a unit is a single individual thing (Book VII, definitions 1 and 2)1. On this view, 
any pair of items is a 2 and so there are many 2s; any trio is a 3 and so there are 
many 3s. In general, any plurality of k things is a k and there are many ks. We retain 
a corresponding use of the word “number”, as when we say that a number of authors 
were late with their submissions. While a unit is not a plurality, the number theory of 
books VII to IX of the Elements includes theorems about units (e.g. VII.15 is the 
special case for units of VII.9). So in effect Euclid had 1s as well as plural numbers, 
but there was no notion of zero. 

The classical view of cardinal numbers has staying power. Its best modern variant, put 
forward by the mathematical logician John Mayberry, takes arithmetic and number 
theory to be general truths about sets (including one-membered sets and the empty 
set), interpreting numerical equations in terms of 1-1 correlations as is done in 
standard set theory2. For example, “3 + 2 = 5” is taken to mean that there is a 1-1 
correlation between the union of any triple with any pair not overlapping the triple and 
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any quintet. In fact the whole of cardinal number theory, including theorems about 0, 
can be interpreted along these lines in set theory. An attractive feature of the classical 
view is that the problem of cognitive access seems to melt away: we can have access 
to some numbers by perception (those three eggs) or by description (Jupiter’s 
moons).  

But there is one major disadvantage. The classical approach allows that there are 
many 1s, many 2s, and in general many ks, whereas number theory assumes that 
there is just one number for each numeral. For example, it is a fact that there are 
exactly three squares between 0 and 10. This would be wrong on the classical view, 
as any 4 is a square and there are five of them in any quintet. Of course this was 
known to ancient mathematicians, who without being explicit about it often in practice 
identified sets of the same size. In later times number-counting functions were 
defined assuming one number per numeral. A prominent example is Euler’s φ-
function: φ(1) = 1; φ(n) = the number of positive integers less than and co-prime to 
n, for n>1. Number theory can be applied to many systems and one of those is the 
system of finite cardinals. So here is a serious problem for the classical view. 

Numeralism 

“Numeralism” here denotes the view that cardinal numbers are the numerals of 
numeral system. Numeralism was held by the philosopher George Berkeley; closely 
related views about the natural numbers were proposed by the mathematician David 
Hilbert and the logician Saul Kripke. Why think that numbers are numerals? Berkeley 
noted that large numbers within the range of performable calculations defy precise 
sensory representation3,4; so when we think of 201, what introspective awareness 
reveals is not an image of 201 items but an image of the numeral. To conclude 
without further argument that the number itself is the numeral “201” is to confuse the 
representation with what is represented — a quite common mistake. Berkeley did 
have further arguments, but they are unsound. 

Numeralism has the advantage that it appears to escape the problem of cognitive 
access: people are satisfied with the fact that we can see written numerals. But a 
serious disadvantage is that a common core of basic arithmetical information can be 
expressed using different numeral systems or natural language number words: 

12 + 9 = 21   (base 10).   

1100 + 1001 = 10101   (base 2). 

Twelve plus nine equals twenty one. 

Another disadvantage in the same vein is that many truths about finite cardinals are 
independent of numeral systems. An example is the truth that every finite cardinal 
number greater than one is a prime or a product of primes. This is entirely due to the 
fact that there is no infinite decreasing sequence of finite cardinal numbers. 

Mentalism 
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“Mentalism” here denotes the view that a cardinal number is a mental representation 
or a mental (or intellectual) construction. The mathematician and founder of 
mathematical intuitionism Luitzen Brouwer was the chief proponent of a mentalist 
view in recent times5. The mathematician Dedekind also gave voice to mentalism 
when he wrote of numbers as free creations of the mind6 as did Cantor when he wrote 
that the cardinal number of a set has existence in our mind as an intellectual image of 
the set7. Mental and intellectual entities are more puzzling to us than physical entities 
but but less so than abstract entities. At least we might have cognitive access to 
mental or intellectual entities by inner awareness and reflection.  

The big problem for any version of mentalism is that only finitely many brain states 
have actually been (or could be) realised; hence there are only finitely many mental 
representations or intellectual constructions. So the idea that numbers are mental 
entities conflicts with the fact that for any finite number there is a yet greater number. 
Here is one way in which we can know this fact: any cardinal number n is the number 
of preceding numbers, as we start with 0; so the number of numbers up to and 
including n is greater than n by one.  

The set-size view 

This is the view that cardinal numbers are sizes of sets. Set-size is a discrete 
magnitude; in other respects it is much like length, duration, and weight (which we 
tend to think of as dense and continuous magnitudes). The set-size view takes our 
pre-theoretical thought and talk literally: “class size” in normal parlance refers to the 
number of pupils in a class, and “family size” refers to the number of family members. 

This view has advantages over each of the previous views. It coheres with 
mathematical practice in taking each numeral to denote a single cardinal number 
(unlike the classical view); it is consistent with the fact that there are infinitely many 
finite cardinal numbers (unike mentalism); and it allows for facts about numbers 
which are independent of any and all numeral systems.  

However, the set-size view of cardinal numbers runs into the cognitive access 
problem. I will put this in the form of an argument. 

If numbers were set-sizes they would lack space-time location; they could not 
undergo any change; they could neither emit nor reflect signals; they could 
leave no traces; they could not affect the behaviour of other things. 

So they could have no causal effect on us, even remotely. 

So we could have no cognitive access to them. 

This turns out to be a persuasive argument. This or some very similar argument has 
contributed to the emergence over the last four decades of a deeply sceptical view 
about arithmetical truth. This is the next and final view in this ultra brief survey.  

Fictionalism 

There are no numbers; arithmetic is not literally true, but it is useful to think and act 
as though it is. This is fictionalism, a view that has been adopted or taken very 
seriously by some recent philosophers8. It is mainly a response to the difficulties faced 
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by the other views, in particular the cognitive access problem. That problem obviously 
disappears if there are no numbers.  

But fictionalism has a serious credibility problem. Opting for one philosophical view 
over others may be fine if one is denying nothing but a bunch of other philosophical 
views; but it is not fine if one is denying not only rival philosophical views but also 
non-philosophical propositions that are generally regarded by rational thinkers as 
among the most certain things that we know. No philosophical doctrine has greater 
rational credibility than basic arithmetic.  

2.  A PHILOSOPHICAL ERROR 

All five major views of cardinal numbers face serious objections. But the set-size view 
can be defended. The only objection to it is the argument that if numbers were set-
sizes we could have no cognitive access to them, and that argument is unsound. The 
problem lies with the final inference: set-sizes can have no causal effect on us; 
therefore we cannot have cognitive access to them. The aim of this short section is to 
show that this step is invalid.  

What underlies this step is a model of cognitive access to something as the outcome 
of a causal chain which starts with an event involving that thing and ends with an 
event of sensory perception. This model may be appropriate for cognitive access to 
physical objects; but it is not appropriate for more abstract kinds of things. Some 
properties, for example, are cognitively accessible via perception of their instances. 
Examples are sensory forms. A melody is an aural form; its instances are 
performances of it. An alphabetic letter type (upper case) is a visual form; its 
instances are its actual inscriptions. For cognitive access to a melody it is enough that 
one can recognise performances of it and distinguish them from performances of 
other melodies. For cognitive access to a letter type it is enough that one can 
recognise inscriptions of it and tell them apart from inscriptions of other letters.  

Such a recognise-and-distinguish ability requires one to have an enduring 
representation of the sensory form. Recognising something as an instance of the form 
requires an interaction between (i) a representation produced by current perceptual 
input and (ii) an enduring representation of the form. We may think of the interaction 
loosely as a comparison process which, in the case of recognition, has a positive 
outcome. Distinguishing between instances and non-instances involves the ability, 
when presented with a non-instance of the form, to perceive that it is not an instance. 
For this a necessary condition will be that the ’comparison’ process between the 
representation produced by current perceptual input and the enduring representation 
of the form has a negative outcome.  

How does one get an enduring representation of a sensory form? One can get an 
enduring representation of a melody by attentively hearing performances of it many 
times; one can get an enduring representation of a letter type by attentively seeing 
inscriptions of it many times. The subject’s attention need not be self-directed. Infants 
acquire enduring representations of some sensory forms this way, for example, 
enduring representations of phonemes from hearing verbal output of parents9. In this 
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case the infant can recognise an instance of a phoneme and distinguish it from sounds 
which are not instances of the phoneme, without being aware of doing so.  

These considerations allow us to answer the following question. A sensory form itself 
can have no causal effect on us; yet we can acquire cognitive access to it. How is this 
possible? The answer: we have cognitive access to a sensory form if we can recognise 
instances of the form and distinguish them from non-instances; that ability may be 
acquired by getting an enduring mental representation of the form, and that can 
result from repeated attentive perception of instances of the form. So  the argument 
against the set-size view is unsound, as it depends on an inference which rests on the 
false assumption that we can have cognitive access to only those things which can 
have a causal effect on us. 

3. COGNITIVE ACCESS TO NUMBERS 

An unsound argument may have a true conclusion; so it remains to be shown that if 
cardinal numbers are set sizes, cognitive access to some of them is possible. My aim 
is to show that empirical findings about basic cognitive abilities provide good evidence 
that some children and some non-humans actually have cognitive access to small set 
sizes. Only a few illustrative empirical studies are mentioned, due to the space limit.  

Although set sizes are not sensory forms, we can use a recognise-and-distinguish 
ability as a sufficient (but not necessary) condition for cognitive access to small set 
sizes. A small set is perceptible when it is non-empty and all its members are 
individually perceptible and together perceptible as a single collection. The chimes of a 
clock striking three or a pair of dolls are examples. Restricted to perceptible sets, the 
following is a sufficient condition for cognitive access to a set size n : 

One can recognise non-empty sets as n-membered (when they are) and 
distinguish them from non-empty sets with fewer or more than n members. 

A natural first suggestion is that this kind of access is achievable by means of our well 
documented capacity for set size discrimination, sometimes called “the number 
sense”. This has features of other magnitude senses: it is rough and fails when, in 
comparing sets of different sizes (S the smaller, L the larger) the ratio S/(L−S) 
increases beyond some threshold (which depends on age and training). In number 
comparison tasks performance takes longer and is more error-prone with (a) increase 
in S (the “magnitude effect”) and (b) decrease in L−S (the “distance effect”). 
Empirical studies of infant capacity for set size discrimination when S>3 illustrate 
this10,11. 

AGE S/(L−S) PASS \ FAIL EXAMPLE

6 months 1 Pass 8 v 16

2 Fail 8 v 12

9 months 2 Pass 8 v 12

4 Fail 8 v 10
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Table 1. Infant discrimination capacity 

We cannot rely on this capacity for number discrimination, precisely because it is 
approximate. Typically it will not enable us to distinguish n-membered sets from sets 
which are close in size to n. This is the distance effect.  

However, for very small numbers infants have exact discrimination. They can 
distinguish between sets of size n and sets of size n+1 for n = 1, 2. Starkey and 
Cooper found this capacity in infants with a mean age of 22 weeks12; Antell and 
Keating found it in infants with mean age of 53 hours13. Strauss and Curtis found that 
some infants approaching 1 year could also distinguish between 3-membered and 4-
membered sets14; so for each of 1, 2 and 3 they could distinguish between those set-
sizes and neighbouring set sizes. As discrimination generally becomes easier when the 
difference increases, one might well expect that for n = 1, 2 infants can also 
discriminate between n-membered sets and sets with more than n+1 members. But 
there is evidence against this. Feigenson and Carey found that while infants 
discriminate between 1 object versus 2 objects and between 1 versus 3, they failed to 
discriminate between 1 versus 4.15 If this is typical, infants do not fully satisfy the 
proposed condition for cognitive access to cardinal numbers, even for 1.  

Do infants respond to number? 

Did the infants in these experiments respond to the number of members of displayed 
sets, rather than to some other visually detectable property not controlled for? The 
infants could have been responding to the total area of the individual items, a not 
implausible hypothesis if the displays present what look like chocolate buttons. 
Another suggestion is that they respond to the convex hull (roughly: the area within a 
rubber band when stretched to go round all the individual items without moving 
them). There are corresponding aurally detectable features if presented sets are 
sequences of sounds: the sum of the durations of the sounds, or the duration of the 
interval from the start of the first sound to the end of the last sound. Why should we 
conclude that the infants are responding to anything as abstract as number? 

While it may be impossible to control for every conceivable alternative hypothesis to 
explain the infant data, the range of alternatives may be narrowed down so much that 
the hypothesis that the infants are responding to number stands out as the most 
plausible. Certain violation-of-expectation experiments involving auditory-visual 
matching go a long way towards achieving this. In two studies Koyabashi and 
colleagues16,17 adapted the landmark experiments of Wynn18. In the second study 
infants saw one or more toy animals like Mickey Mouse dropped from above falling 
onto a surface, hearing a computer-generated sound at the moment of impact, in the 
familiarisation stage. In each test trial infants heard either two or three of those 
sounds while the falling toy animals were hidden behind an opaque screen. The screen 
was then removed to reveal either two or three toy animals. The infants looked 
significantly longer at the toy animals when the number of toy animals and the 
number of sound bursts were unequal than when they were equal. This study 
controlled for potential confounds with rate of sound bursts and total duration of the 
sound sequence. The earlier study, of a similar design, controlled for a combined 
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familiarity and complexity preference postulated by Cohen and Marks19. So there is 
good evidence that infants do at least sometimes respond to number. 

Do infants recognise numbers? 

Even if infants do respond to numbers, they may not satisfy the sufficient condition for 
access to a number n that we are focussing on now, namely, the ability to recognise 
sets as n-membered (when they are) and distinguish them from sets with fewer or 
more than n members. One problem has already been mentioned: for numbers n = 1, 
2, infants distinguish between n and its neighbours, but may fail to distinguish 
between n and numbers beyond its neighbours. Another problem relates to the ability 
to recognise numbers. The problem is that relevant infant studies demonstrate mere 
matching, not recognising. The difference can be illustrated as follows. Case 1: Shown 
some photos of unfamiliar faces in succession, you notice that the face in the current 
photo looks very like a face in an earlier photo. That is mere matching. Case 2: Shown 
a photo of a face of someone you know but have not seen (pictured or in life) for a 
long time, you quickly recall whose face it is. That is recognising. The relevant infant 
studies are habituation studies and violation-of-expectation studies. The subjects in 
the test trials compare something currently perceived with information retained in 
fairly short-term memory from recent perception. For recognition there has to be a 
comparison of input from current perception with an enduring representation. The 
relevant infant studies do not provide evidence for this. 

Pre-schoolers 

To summarise, there is good evidence that infants are responsive to the number of 
items in very small sets and have number-discrimination ability within a very limited 
range; but they do not appear to have the recognise-and-distinguish ability that we 
are looking for. For evidence of that, studies with pre-schoolers and chimpanzees are 
more promising, as training and experience make possible the formation of enduring 
number representations.  

The results of two studies of pre-schoolers given several numerical tasks suggest that 
number words are mapped onto long-term representations of set-sizes 1 to 3 and 
sometimes also 4. Benoit and colleagues found that pre-school children of 3 to 5 years 
old can name the number in a display of 1, 2 or 3 items20. Sets of dots were 
presented under two conditions: (a) simultaneous display for 800ms, and (b) 
sequentially, one dot at a time for 800ms each. Comparing performance under these 
conditions the authors concluded that the children would subitize rather than count to 
get the answers (where “counting” refers to the explicit assignment of number words 
to objects or events by the child). In a second more extensive study21 Le Corre and 
Carey confirmed that children of 3 to 5 years could quite accurately estimate the size 
of sets of 1, 2, 3, or 4 circles on a card  presented too briefly for counting; but 4 was 
found to be the limit for this task, even for those whose competence in the give-a-
number task went way beyond 4. In these tasks the children had to name the number 
of items displayed. This does not involve comparison of one currently or recently 
perceived set with another; rather, it requires a comparison of input from a current or 
recent perception with an enduring representation of a set size. So we may 
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reasonably conclude that the most accurate children could recognise the numbers 1, 
2, 3 and 4. Assuming that these children, unlike infants, can distinguish these 
numbers not only from each other but also from larger numbers — I know of no 
evidence to the contrary — they satisfy the recognise-and-distinguish test for 
cognitive access to the small numbers. 

A couple of warnings about the enduring representations of small set sizes involved in 
these tasks are needed. First, these representations probably do not belong to the 
system underlying our capacity for quick but rough number discrimination, known as 
the Approximate Number System21. Secondly, these small number representations 
should not be assumed to have set size representation as their prime function. Le 
Corre and Carey argue that these representations are provided by a resource they call 
the enriched parallel individuation system21. 

Number naming by a chimpanzee 

Among the non-humans who have been trained to associate visual or aural symbols 
with numbers of visible things, one of the best known is the female chimpanzee, Ai. At 
5 years Ai was trained to name the number of items in a display (for example three 
red pencils) by pressing one of six keys marked with an arabic numeral from 1 to 6.  
At the same time she was trained to associate particular visual symbols with types of 
object (e.g. pencil, bowl, spoon) and colours of objects (e.g. red, blue, yellow). At the 
start of training, only two objects were displayed and only two numeral keys were 
available; the number of objects and corresponding numeral keys were increased 
successively. Training was continued on each number set until accuracy reached over 
90% in two consecutive sessions, ending with displays of 5 objects (varying over 
object type and colour). Ai achieved over 98% accuracy during the final two sessions 
of naming numbers from 1 to 5 22. 

At 9 years Ai was trained to name the number of 1 to 7 dots rather than ordinary 
objects, by pressing keys with arabic numerals. Ai’s number naming was tested in four 
experiments23. In the first, semi-random patterns of 1 to 6 dots were displayed; then 
the range was increased to 7 dots and specific patterns were mixed in with the semi-
random patterns; then the size of dots was changed between and within sessions; 
finally red or green objects (blocks, pencils or padlocks) were used in place of dots. 
Ai’s accuracy in the final sessions was again very high. The processes underlying Ai’s 
performance were investigated by obtaining response times (RTs). The RT function 
was flat for displays of up to 3 items, then increased but fell for the final number (in 
each test range). The author of the study took the RT data to suggest that for 
numbers up to 3 Ai was probably subitizing and for numbers beyond 3 estimating 
rather using non-verbal counting; and the estimation probably involved a comparison 
of representations from an analogue magnitude system.23  

Ai was later trained to name the number in computer displays of 1 to 9 items. At  20 
years she was trained with the aim of incorporating “0” into her stock of numerals as a 
symbol for absence of items24. She was then tested using two cardinality tasks and a 
number ordering task. The cardinality tasks were: (1) presented with two numerals 
and a square containing 0 to 9 dots, she had to choose the numeral naming the 
number of dots; (2) presented with two squares containing different numbers of dots 
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(form 0 to 9) and a single numeral, she had to choose the square containing the 
number of dots given by the numeral. Accuracy in the cardinality tasks for numbers 
from 0 to 9 in the final ten sessions of testing was over 90%. Accuracy in a numeral 
ordering task (comparing three numerals, sometimes non-consecutive) was also very 
high. Persisting confusions of 0 with 1 led the authors to conclude that Ai’s grasp of 
zero was incomplete. But Ai’s accuracy with positive numbers confirms the findings of 
the earlier study. In particular, her performance constitutes good evidence that she 
could recognise numbers at least within the subitizing range and distinguish them 
from larger or smaller positive numbers.  

Taking numbers to be set-sizes, studies with pre-schoolers and chimpanzees provide 
evidence that they can fulfil the recognise-and-distinguish condition for cognitive 
access to 1, 2 and 3. Moreover, their ability to recognise these numbers is explicit. An 
infant comes to recognise phonemes of its mother’s language, such as “ʊ” of U.K. 
English. This is tacit recognition, as the infant cannot think or express “that’s ʊ”. But 
pre-schoolers and trained chimpanzees can think and express “that’s 3.” 

Cognitive access to larger numbers 

The ability to recognise the number of a perceptible set of things and to distinguish it 
from the number of smaller or larger sets is a sufficient condition for cognitive access 
to a number, but not a necessary condition: we surely have cognitive access to the 
cardinal number 53, but most of us, when presented with a set of 53 items in 
favourable viewing conditions, cannot perceive it to have just that number of 
members rather than 52 or 54.  

A proper account of our cognitive access to larger numbers would exceed my space 
limit (and my remit, as the account could not be supported by findings about basic 
number abilities alone). But a brief indication is possible. We have cognitive access to 
some larger numbers by means of identifying descriptions in terms of smaller 
numbers. With enough counting experience we will know the order of the numbers 
well beyond the subitizing range; once we have acquired a concept for cardinal 
successor, we can grasp 4 as the successor of 3, and 5 as the successor of 4, and so 
on. With concepts for cardinal addition and multiplication, other identifying 
descriptions in terms of smaller numbers become available. For example, we know 28 
not only as the successor of 27 but also as 20+8 and as 4x7. The decimal place 
system of numerals provides identifying descriptions of much larger numbers, as 
polynomials in powers of ten: 9605, for example, is  9x103 + 6x102 + 5. The cardinal 
number 0, like the empty set, is more puzzling; but, with a grasp of subtraction, we 
can know it by an identifying description in terms of an already known number. 

Conclusion 

Taking cardinal numbers to be set-sizes, the cognitive access problem for cardinal 
numbers can be solved by paying attention to empirical findings about basic number 
abilities. Studies with pre-schoolers, trained chimpanzees and other non-humans 
provide evidence that they can fulfil a recognise-and-distinguish condition sufficient 
for cognitive access to numbers 1, 2 and 3. We have access to larger numbers by 
means of identifying descriptions in terms of smaller numbers. 
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SUMMARY 

How can we acquire a grasp of cardinal numbers, even the first very small positive 
cardinal numbers, given that they are abstract mathematical entities? That problem of 
cognitive access is the main focus of this paper. All the major rival views about the 
nature and existence of cardinal numbers face difficulties; and the view most 
consonant with our normal thought and talk about numbers, the view that cardinal 
numbers are sizes of sets, runs into the cognitive access problem. The source of the 
problem is the plausible assumption that cognitive access to something requires 
causal contact with it. It is argued that this assumption is in fact wrong, and that in 
this and similar cases we should accept that a certain recognise-and-distinguish 
capacity is sufficient for cognitive access. We can then go on to solve the cognitive 
access problem, and thereby support the set-size view of cardinal numbers, by paying 
attention to empirical findings about basic number abilities. To this end some selected 
studies of infants, pre-school children and a trained chimpanzee are briefly discussed.  

KEYWORDS 

Cardinal number, cognitive access, set-size, recognise-and-distinguish condition, 
subitizing, number naming.
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