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1. The History of Chance: Physics and Metaphysics 

 

 Probability as we know and use it nowadays was born in the 17th 

century, in the context of disputes within the Catholic Church regarding the 

nature of evidence. It was born as a dual, or Janus-faced concept (Hacking, 

1975), endowed with both ontological and epistemic significance. Arnauld, 

Pascal and Leibniz emphasised its epistemological salience, while Huygens, 

Bernoulli and, later, Laplace and Poincaré focused on the ontological 

implications. The hybrid nature continues to this day. 

 

 In this chapter I am concerned with the application of the ontological 

dimension of probability to physical chance. It is therefore to Huygens that I 

turn in this section for some historical background. Yet, in addressing 

contemporary debates, it often helps to be reminded that probability remains 

stubbornly hybrid. Thus, the foundations of decision theory (e.g. in Pascal’s 

wager) require some antecedent objective chances; and more generally the 

cogency of subjective probability requires objective probabilistic 

independence (Gillies, 2000). Similarly, single case chances in the sciences 

have often been supposed to be essentially subjective or to require some 
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subjective or otherwise pragmatic rules of application or analyses (Howson 

and Urbach, 1989 (1993), p. 346; Lewis, 1986). Yet, such analyses often 

arguably presuppose the reality of objective chance. Not surprisingly, the 

essential duality of probability, as we shall see, becomes characteristic of 

debates on the nature of physical and quantum chance. 

 

 It is worth recalling that historically a certain sense of metaphysical 

chance predates – and in fact contributes to – the genesis of probability. And 

although our full contemporary notion of lawful chance does not arise until 

the end of the 19th century, the practice of employing statistical measures to 

represent objective or ontological chance is already well established in the 

17th century. The connection between ratios in populations and a primitive 

sense of “probability” is already present in Fracastoro and other renaissance 

scholars (Hacking, 1975, Ch. 3). But objective chance first fully emerges in 

the work of Christian Huygens (1657), who is perhaps the first to distinguish 

different statistics in a population. Huygens’ defence of the distinction 

between the average mean age of a population and its life expectancy 

implicitly deploys estimates for objective chance of any individual to live up 

to a certain age. The difference between the mean and the expectation is of 

course critically important for very skewed distributions, or those with a large 

standard deviation, but remains largely invisible in well behaved (i.e. 

symmetrical and smooth) distributions over homogenous populations.  

 

 For a discrete random variable X, its expected value is calculated as a 

weighted average, with the weights representing probabilities, as follows: 

𝐸 𝑋 = 𝑝 𝑥& 𝐴(𝑥&)*
&+, , where xi is the ith value of the discrete random 

variable X, and pi is its probability. In the case of a continuous random 

variable, we compute its value as: 𝐸 𝑥 = 𝑥𝑓 𝑥 𝑑𝑥/0
10 , where 𝑓(𝑥) is the 

probability density function for the random variable x. 

  

 The relevant philosophical question concerns the interpretation of 

𝑝(𝑥), and 𝑓(𝑥). Huygens assumes that these functions describe objective 
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chance since he models them after a lottery, i.e. the typical game of chance 

at the time (Hald, 2003, p. 108). The chances of a lottery game are 

arithmetic (assuming the equi-probability of drawing any one ticket rather 

than another). Hence the only thing that matters is the relative proportion of 

tickets with the same “value” in the overall pack. In the case of life 

expectancy, which we may also take to be the result of some underlying 

probability distribution over some discrete variable (age of death) defined 

over a population, it is the proportion of people in each subdivision of age. 

And this is thus implicitly taken to be just as objective as the arithmetic 

proportion of tickets of each kind in a pack. The question, however, is what 

precise objective property of people (the elements of the population) this 

probability picks out. From this point onwards, it becomes possible to 

distinguish “objective probability”, as the formal concept, from “chance”, as 

whatever objective property in the world the formal concept picks out. 

 

 Similar conceptions of objective chance underpin Laplace’s later work 

(Laplace, 1814). Laplace is sometimes celebrated as the champion and 

pioneer of a purely epistemic conception of probability, according to which 

the underlying dynamical laws of the universe are deterministic and 

probability represents only a certain degree of ignorance or lack of 

knowledge regarding initial conditions. But this is arguably a 

misrepresentation of Laplace’s philosophy of probability, which combines 

both ontological and epistemic aspects. Laplace explicitly defines probability 

as the ratio of actual to total equi-possible cases (the so-called classical 

definition of mathematical probability as a ratio: #	456&7&89	:;696
#9<=&4566&>?9	:;696

). The 

definition is fulfilled by any proportion of an attribute in an actual class, and 

Laplace was given to generalizing it to situations where the cases 

considered are not equi-possible because they are not equi-probable. But 

even to state this requires an antecedent notion of objective equi-probability 

or chance – which Laplace is content to deploy at leisure. 
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2. Chance and the Interpretation of Probability 

 

 The most important philosophical question then concerns the 

interpretation of objective probability – and, most particularly, the question 

regarding the property of statistical populations that any statement of 

objective probability effectively picks out. Philosophers have grappled with 

this issue in different ways. Two main interpretations of objective probability 

that have emerged are the frequency and the propensity interpretations. The 

frequency interpretation was most explicitly championed by Von Mises 

(1928) and Reichenbach (1949). It is driven largely by empiricist concerns to 

keep the concept of chance firmly grounded in experience, and equates 

chance with stable frequencies in repeatable sequences of experimental 

outcomes. The propensity interpretation, on the other hand, is often 

associated with Popper (1959) although it has marked antecedents in late 

19th century thought (Peirce, 1910). It is rather driven by an abductive 

understanding of chance attribution as an explanatory practice, and equates 

chance with the tendencies in chancy objects to generate certain outcomes. 

(More precisely, in Popper’s (1959) and Gillies’ (2000) theories, with the 

dispositions of chance set-ups to yield stable frequencies of such outcomes 

in the long run). Of course, both ratios or proportions in populations, and 

dispositions and tendencies have a much longer philosophical history; their 

explicit association to probability and chance is, however, more of a fin de 

siècle development.  

 

 Hence the frequency interpretation assumes that a probability 

statement is meaningful if and only if it refers – implicitly if not explicitly – to a 

sequence or class of outcome events of an experimental set up of a certain 

kind. The statement of probability is then to be understood as the statement 

of the proportion of the outcome events in that sequence that possess a 

certain attribute. Hence, consider the attribute A in an appropriate finite 

sequence of observed outcome events 𝑆 = {𝑠,, 𝑠D, … , 𝑠*}, where we assume 

without loss of generality that n is even. A certain subset forming an 
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appropriate subsequence is 𝑆G = 𝑠,H, … , 𝑠IH , with 𝑚 ≤ 𝑛, containing all and 

only those elements in S that possess the attribute A. The probability of A in 

S, according to the frequency interpretation, is simply the ratio of positive 

cases in S’ to all cases in S. Thus, if the rule that picks out the elements in 

the subsequence is, for example, one that selects each odd placed element 

in the original sequence, this is in effect ½, since it is guaranteed to pick out 

half of the original members.  

 

 The above notion is simple, in line with Laplace’s classical definition, 

and seems straightforward to apply. However, it gives rise to a very large 

number of decisive difficulties regarding: i) the rule that picks out the 

subsequence, ii) the ‘appropriateness’ of the sequences, iii) the fact that the 

sequences are finite, and iv) the role that frequencies, vis-a-vis probabilities, 

play in scientific practice. (For a summary of these and other objections see 

Hajek, 1997 and 2008). They all come to the fore when we consider a real-

life ordinary case of physical chance – such as the chance of heads up in 

tossing a regular coin. If the tossing device is genuinely random, and the 

coin is fair, we expect this to be ½. Yet, there is no rule that picks out the 

subsequence S’ of tosses with the relevant attribute (‘heads up’); this is 

precisely part of what makes the generating device a random one. Hence 

there is no simple prescription for any rule that will do the required job. (In 

Von Mises’ terms,1928, p. 24, there is no place-selection rule).  

 

 Secondly, nothing can prevent an accidentally biased series of 

outcomes with the relevant attribute in any finite sequence. This is evident if 

we consider a short experimental run of 10 coin tosses: the likelihood of 

obtaining precisely 5 heads is in practice less than one, however fair the 

coin. Yet, any other frequency may not be representative but accidental. The 

difficulty does not go away however long we let the experiment run for, for 

the sequence is finite – as it inevitably must be given the limited time span of 

any real experiment. This has severe implications for the probability of single 

events, which on this theory are strictly meaningless. Thus there is on this 
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view no “probability of the battle of Waterloo”, or “probability that an atom will 

decay this minute”, etc. 

 

 As a possible solution, if the sequence is well-behaved, the frequency 

of the attribute may possess a limit, and we can take the limit to be the 

probability. So only certain sequences will do, namely those that have a 

stable limiting frequency of the attribute in question (“collectives” in Von 

Mises’s terminology, 1928, p. 11). But, and here comes the third set of 

issues, probability is now identified with a frequency in an infinite sequence; 

or with a mathematical limiting property of the sequence. Both solutions are 

problematic for an empiricist conception of chance, since they do not identify 

probability with any actual frequency in a sequence. The former identifies it 

with a hypothetical entity (an infinite sequence of experimental outcomes); 

the latter identifies it with an abstract mathematical property (a limit). 

 

 Finally, there are issues related to explanation (see e.g. Emery, 2015).  

Probabilities in physics and ordinary life are routinely employed to explain 

sequences of observable data. The probability for a coin to land heads 

explains the long run or limiting frequency; the probability of a given 

chemical element to decay (its half-life) explains the long run frequency of 

decay in any sample of the given chemical material; and so on. Yet, on the 

frequency interpretation, probabilities are frequencies; and it is very hard to 

see how frequencies can explain other frequencies (except perhaps in the 

trivial and unenlightening sense of subsuming them as sub-sequences). 

 

 This last problem points towards the alternative objective 

interpretation of chance as propensity – a dispositional property of the 

experimental or chance set up that gives rise to well-behaved sequences or 

collectives. The view expresses an abandonment of any strict or reductive 

empiricism. On this view probabilities are linked to the dispositional 

properties of chancy systems, or entire experimental setups, and these are 

not themselves necessarily observable or empirically accessible. (N.B. The 
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view is not however incompatible with a mild form of empiricism that 

recommends chances to be estimated from empirical data; and for evidence 

to be brought to bear for or against any given chance attribution). While the 

propensity interpretation of probability overcomes the previously described 

difficulties for frequencies (in some cases trivially since it does not identify 

probability with any frequency in any sequence), it nonetheless has 

problems of its own. The most notable one is ‘Humphreys’ paradox’, which 

concerns the interpretation of inverse probabilities. For any well-defined 

conditional probability 𝑃 𝐴 𝐵  its inverse 𝑃 (𝐵 𝐴) is also well defined; yet a 

propensity is asymmetrical precisely because it is explanatory, and most 

explanations are asymmetric. Several scholars have argued, following 

Humphreys (1985), that probabilities cannot thereby be identified with 

propensities, but must be conceptually distinguished from them (see Suárez, 

2014 for a review).  

 

 While these disputes about chance in the first instance concern its 

conceptual analysis – what Carnap (1950) refers to as ‘external questions’ – 

they can also become rather substantial, requiring an assessment of both 

the coherence of each account, and its fit with both experimental data and, 

more generally, scientific practice. Not only have such philosophical disputes 

played an enormously important role in the history of probability, but they 

continue to play an enormously important role in contemporary debates 

regarding the nature of physical chance. Philosophers of physics often 

appeal to probability and its interpretation as part of their intended solution to 

many present day conceptual puzzles. And, as it happens, it matters greatly 

what kind of underlying interpretation they hold. I here make a preliminary 

case for a type of propensity interpretation, but I mainly aim to show that 

chance may be fruitfully applied in different areas of physics regardless of 

underlying assumptions about determinism.  

 

 

3. Chance in Deterministic Physics 
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 Pierre-Simon Laplace first introduced the thesis of universal 

determinism, which he regarded a consequence of the dynamical laws of 

Newtonian mechanics. Newton’s second law in particular, defines a 

configuration of positions and forces at any given moment in time, and its 

formulation in a differential equation with respect to time allows us to 

calculate the dynamical evolution of a system for any arbitrary future time: 

𝐹 = 𝑚 PQR

P7R
. Laplace also came up with what is nowadays known as 

“Laplace’s demon”: the thought that if universal determinism is true then for 

a fully omniscient intelligence, who could know the present and past state of 

the universe in its entire detail, “nothing would be uncertain, and the future 

just like the past would be laid out before her eyes” (1814, p. 4). If universal 

determinism is true, the past state of the universe is the total cause of its 

present state, and its present state is the total cause of any of its future 

states. Therefore, full knowledge of the state of the universe at any stage in 

its evolution guarantees full knowledge of its state at any other stage. In 

such a universe, endowed with universal deterministic dynamics, nothing 

would be left to chance. There would be no role for ontological probability 

because there would be no objective physical chance. Call this Laplace’s 

thesis (though it is unclear that it is in fact due to Laplace): the only reason 

there are probabilities in classical physics is that our cognitive limits as 

human beings require them. Probability becomes a necessary tool for 

prediction for those less than omniscient intelligences like ours: It measures 

our lack of knowledge or ignorance of the actual conditions of the universe, 

thus allowing us to compute future states within the bounds of our ignorance. 

 

 Laplace’s thesis has exerted profound influence on the philosophy of 

probability, as well as scientific theorising about chance. Many contemporary 

metaphysical accounts of chance (such as e.g. Lewis, 1986) are heavily in 

its debt. Yet, the thesis can be and has been contested. There are three 

main objections. Firstly, it is unclear that Newtonian dynamics in fact entails 

universal determinism. Secondly, even if it does, it is unclear that the rest of 
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physics, never mind the rest of science, has dynamical laws akin to 

Newton’s second law. Thirdly, it is unclear that universal determinism rules 

out ontological probability anyway. The third argument is obviously most 

relevant to our discussion, but the first two also have some interest.  

 

 Earman (1986) notoriously introduced the view that Newtonian 

mechanics is far from trivially deterministic (the view has antecedents in 

Born, 1969). His main examples were related to time-reversed unboundedly 

accelerated objects, also known as “space invaders” (see Hoefer, 2003, for 

a review). These objects are theoretically possible in classical mechanics, 

yet it is completely undetermined at what stage, if any, in the evolution of the 

world they come into being. 

 

 Norton (2003) introduced what is nowadays the best-known example 

of a Newtonian system with an indeterministic dynamics – the so-called 

“Norton’s dome”. This is an imaginary concrete object that obeys the laws of 

Newtonian mechanics – by definition. Yet, as can be purportedly 

demonstrated by performing a thought experiment on it, it is an openly 

indeterministic system, since it admits more than one possible state 

evolution (in fact an infinite number of possible future state evolutions) 

consistent with its present state. The dome is (Norton, 2008, p. 787) a 

radially symmetric surface with a shape defined by: ℎ = (2 3𝑔) 𝑟X D, where r 

is the radial distance coordinate in the surface of the dome, h is the vertical 

distance below the apex at 𝑟 = 0, and g is the constant acceleration of a free 

mass of unit value in the vertical – i.e. downwards -- gravitational field 

surrounding the surface (Figure 1):  
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Fig 1: Norton’s Dome © John Norton  

 

 The thought experiment involves placing a point-like body of unit mass 

on the apex, and letting it evolve freely in time. Newtonian mechanics entails 

that the acceleration of this point-like unit mass is given by: Z
I
= PR[

P7R
= 𝑟, D. 

This dynamical law has not one but two solutions, namely:  

 

i) 𝑟 𝑡 = 0, which entails that the point-like mass remains at rest at 

the apex for any future time; and 

 

ii) 𝑟 𝑡 = 1 144 𝑡 − 𝑇 D, 𝑓𝑜𝑟	𝑡 ≥ 𝑇
0, 𝑓𝑜𝑟	𝑡 ≤ 𝑇 , which curiously entails that, 

after some arbitrary time T, the point-like mass starts to descend 

along any arbitrary radial direction down the dome’s surface. 

 

 Norton (2008) makes the point that while one could lay out a 

probability distribution over the alternative radial directions down the dome 

(where each direction has the same probability) it does not seem possible to 

similarly lay out a probability distribution over time intervals [0, 𝑇] such that 

the descent will begin within the given interval of time. Since 𝑇 → ∞, each 

such interval should receive probability zero, thus making it certain that no 

descent takes place, contrary to both common sense and the mathematical 

solution. Thus, it is not only indeterministic whether the point like mass rests 

r=0

h = 
(2/3g)r3/2

F = r1/2

r
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indefinitely, or descends; it also fails to be determinable at what time it will 

move if it does. Norton argues moreover this precise moment cannot be 

determined even up to a certain probability (because time is modelled on the 

real number continuum, so the only consistent ascription of probability to any 

given interval within Newtonian mechanics is exactly zero). Yet, while it is 

true that Newtonian mechanics provides no prescription of probabilities for 

either Earman’s “space invaders” or Norton’s “motion down the dome”, it is 

nonetheless always possible to impose a suitable measure. For example, a 

monotonically increasing measure that makes it increasingly more probable 

as time goes on, until a certain finite time greater than the start of motion 

time is reached, then apportions whatever probability remains to the infinite 

amount of time left. Norton himself (2003, p. 10, footnote 8) proposes a 

different measure in agreement with exponential decay. This is sufficient to 

show that Laplace’s thesis is false – objective chances are not incompatible 

with Newtonian dynamics. (Opponents of the compatibility of chance and 

determinism are likely to demur; in particular they are likely to impose 

additional external constraints on the measures so as to rule out non-trivial 

chances for any motions on Norton’s dome – yet, it remains relevant that 

those constraints are external, and that nothing in Newtonian mechanics per 

se seems to require them). 

 

 Secondly, there are of course “classical” theories other than 

Newtonian mechanics. Earman (1986, Ch. IV) argues that in fact the most 

hospitable environment for determinism is not Newtonian mechanics but the 

special theory of relativity. But, again, while the theory does not provide 

probabilities, e.g. for world-lines, nothing seems to preclude imposing them 

from outside the theory. As for classical statistical mechanics, the debate 

has centred upon whether it reduces thermodynamics and its arrow of time 

(see chapter 7c in the present volume). The issue of reduction is tangential 

to our purposes, but the presumption that statistical mechanics is 

deterministic is of course not. There are some arguments to the effect that 

statistical mechanics is compatible with objective chance, and some 
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classical phenomena – such as Brownian motion – seem to presuppose 

essential stochasticity in the motion of free particles. There is no space to 

pursue the matter further here, but many authors through the years have 

argued that statistical mechanics not only fails to be fully deterministic in 

Laplace’s sense but in fact requires some probabilistic or stochastic 

assumptions to get its predictions off the ground (see Clark, 1987; or the 

fascinating discussion initiated by Albert, 2000). 

 

 Even if we were to suppose that both relativity and statistical 

mechanics are fully deterministic, Laplace’s thesis does not follow unless 

Newtonian mechanics is so too. For all these theories assume that in the 

relevant limit (of small displacements in a flat Minkowski space-time, and of 

microscopic particle free motions), Newtonian mechanics does apply (to the 

slow motion of bodies in a flat spacetime relative to one another, and to the 

motion and interactions of free single particle systems). These theories are 

therefore required to accept the possibility of deterministic chance in the 

limit. So Earman’s and Norton’s arguments cut to the bone of Laplace’s 

thesis for all “classical” theories that accept Newtonian mechanics is the 

relevant limit. In such classical approximations, Laplace’s theory cannot be 

true unless Newtonian mechanics precludes objective chance. (I am 

assuming that none of these classical approximations fundamentally 

replaces classical physics in its proper domain). 

 

 There is yet a third argument against Laplace’s thesis. It is somewhat 

related to the previous two, but works entirely within deterministic Newtonian 

physics. That is, suppose for the sake of argument that the universal 

dynamics of Newton’s laws is indeed fully deterministic. It is then true that 

the present state of the universe determines every future state. And it is 

indeed true that the full and complete initial state of the universe suffices to 

fix completely every later state of the universe. It does not yet follow that 

there is no room for chance. Poincaré (1896) was perhaps the first to 

observe that a distribution function over the initial values of the dynamical 
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variables of a deterministic system can give rise to probability distributions 

over the evolved values of related dynamical variables, provided some 

assumptions regarding the continuity and smoothness of both initial 

distribution and dynamics are met. 

 

  It stands to reason that if the initial distribution function characterises 

or represents our lack of knowledge, the final chance distribution represents 

an epistemic probability. But as Poincaré himself noted, the initial distribution 

function typically characterises not ignorance, but the actual frequencies of 

the initial variables. The dynamics then generate a final chance distribution 

that there is every reason to believe is objective (Poincaré, 1912). Not only 

that; Poincaré showed that – modulo the assumptions – the final chance 

distribution function is a characteristic of the system which is quite 

independent of the specific initial distribution over frequencies. Hence it is 

possible to assume any arbitrary initial function that fulfils the conditions in 

order to calculate the objective final probability distribution (what has come 

to be known as the ‘method of arbitrary functions’). Most games of chance 

satisfy Poincaré’s continuity and smoothness assumptions. In a game of 

roulette – Poincaré’s own example – the long run probability of a red or black 

outcome is the same, irrespective of the frequency distribution over the 

direction and strength of the initial throw of the ball on the roulette - as long 

as the forces impinged in the initial throws satisfy the smoothness and 

continuity assumptions.  

 

 Strevens (2013) builds on Poincaré’s theorem to argue that the causal 

mechanisms in the chance set up by themselves dynamically generate the 

resulting objective chance distribution. For instance, the dynamics of the 

shaking of a die in a cup is such that the resulting distribution of velocities 

and positions of the die as it leaves the cup satisfies all the dynamical 

conditions (microconstancy and microlinearity, in Strevens’ terminology) to 

generate the familiar 1/6th chance for each side landing up – and this is so 

regardless of the precise initial conditions as the die is thrown into the cup. 
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In other words: objective chance is a dynamical epi-phenomenon of 

complexity – quite independently of whether the underlying dynamics is 

deterministic or not. 

 

 

4. Chance in Indeterministic Physics 

 

 Quantum mechanics (QM) is widely assumed to provide the paradigm 

examples of physical chance. It is supposed to furnish a radically distinct 

description that replaces classical mechanics at the fundamental level. Its 

inception 90 years ago certainly ushered in a golden era for physical 

indeterminism, and the amazing empirical successes of QM have often been 

assumed to sound the death knell for Laplace’s thesis – by simply showing 

classical physics to be false. The uncertainty principle, as usually 

understood, prevents any quantum system from possessing values of 

conjugate observables simultaneously. Thus, no quantum particle may 

possess e.g. precise position and momentum simultaneously. More 

generally a system in a superposition state of eigenstates of a particular 

observable, may not be said to have any precise value of the observable in 

question – instead QM predicts very precisely the probabilities for the 

different values of the observable. What value it ultimately has on 

measurement can only be left to ‘chance’. 

 

 This kind of stochastic chance was introduced into QM by Max Born 

(1926) with his celebrated probability rule – according to which the 

normalized square modulus of the amplitude of the wave-function provides 

the precise probabilities for the different values of the relevant observable. 

Its introduction was notoriously resisted, e.g. by Schrödinger and Einstein. 

The latter is famously supposed to have quipped something to the effect 

that: “God does not play dice” (Pais, 1982, Ch. 25). And not surprisingly, 

given the long shadow cast by Laplace’s thesis, all these authors ipso facto 

rebelled against the indeterministic character of QM – and attempted to 



	 15	

restore determinism instead. The most sophisticated such attempt has 

proven to be David Bohm’s theory, nowadays known as Bohmian mechanics 

(see chapter 4d in the present volume). It provides a Hamiltonian 

reformulation of QM in terms of ‘hidden’ variables. In Bohm’s theory, 

quantum systems possess values of all their dynamical properties all the 

time, although these values are not knowable with precision. The uncertainty 

principle is thus understood as a statement not of ontological indeterminacy 

or chance, but of epistemic limitation – it purports to show what limits there 

are on our knowledge of the evolution of a system at any time, given some 

initial uncertainty as to what the original values of its dynamical properties 

are. Laplace’s shadow looms large here too: for an omniscient being, there 

would no uncertainty at any stage, since the Bohmian equations of motion 

are entirely in keeping with the deterministic character of classical 

Newtonian dynamics.   

 

 In other words, much discussion of stochastic chance in QM is 

predicated upon an understanding of classical dynamics that very much 

aligns it to Laplace’s thesis. Both defenders and detractors of quantum 

chance share the view that a deterministic completion of QM in terms of 

hidden variables would compromise, if not simply eliminate, quantum 

chance. Yet, as noted in the previous section, classical determinism is not in 

fact incompatible with objective chance: Laplace’s thesis may be false even 

if determinism is true. Not surprisingly, I shall argue, some of the discussions 

on the nature of quantum chance have similarly gone awry. Stochastic 

quantum chance is an explicit axiom in some interpretations of QM (such as 

collapse interpretations). But even those interpretations that do not make it 

explicit or axiomatic (such as Bohmian mechanics and the many worlds 

interpretation), nonetheless allow quantum chance.  

 

 Collapse theories explicitly deny that the dynamical laws of quantum 

mechanics are deterministic. Physical laws fix the evolution of the states of 

systems (where the state of a system provides a catalogue of all its 
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properties and their values at a given time). Now, according to collapse 

interpretations quantum states are unlike classical states in that they are 

subject to two different kinds of evolution. The first kind of evolution is 

governed by the Schrödinger equation, which is a deterministic equation 

over the wave-function: given the wave-function at any time, Schrödinger 

evolution fixes uniquely the wave-function at any later time. Yet, this is not a 

classical deterministic evolution because the wave-function is not a literal or 

univocal description of the ontology of the quantum system (extant 

approaches include the “flash” and “mass density” ontologies – see e.g. 

Esfeld and Gisin, 2014 – and on neither of them does the wave function in 

fact represent a wave). Rather, as noted previously, Born’s probability rule 

only lets us calculate probabilities for outcomes of measurements out of the 

wavefunction.  

 

 The standard rule for the interpretation of the wave-function is the so-

called eigenstate-eigenvalue (“e/e”) link, according to which a quantum 

system may be said to possess a value of the property represented by a 

self-adjoint operator Ô if and only if the system is in an eigenstate of Ô. For 

most states, this means that the system lacks a value for most of the 

relevant dynamical properties (all those represented by operators that do not 

commute with Ô). Collapse interpretations then postulate a second kind of 

openly non-deterministic evolution in order to account for the fact that 

measurements of any dynamical property on a quantum system routinely 

obtain definite results. This is the “collapse” dynamical rule: a near 

instantaneous evolution of the system that takes its state to the eigenstate of 

the relevant operator with a certain probability. 

 

 Collapse interpretations differ on how, when and how often this type of 

indeterministic evolution takes place. The original collapse interpretation of 

Von Neumann (1932) invokes a principle of psycho-physical parallelism to 

suggest that collapse takes place whenever the measurement apparatus is 

apprehended (perceived) by a conscious observer. It is the interaction of 



	 17	

mind with matter that forces the indeterministic evolution. The Ghirardi-

Rimini-Weber (GRW) interpretation asserts that collapses of the 

wavefunction occur spontaneously. The relaxation and free time parameters 

are sufficiently regular and sudden that no measurement interaction in the 

real world can ever detect a system in a state other than a ‘collapsed’ one 

(Ghirardi et al. (1986). In the Quantum State Diffusion (QSD) approach 

collapses take place whenever a system interacts with its complex 

environment. Since, on this view, systems are typically open (Percival, 

1999), environmental interaction is also typical, the many degrees of 

freedom of the environment dominate, and regular stochastic evolutions on 

the states of quantum systems are induced. Regardless of these differences 

all collapse theories are committed to stochastic quantum chances. (Suárez, 

2007; Frigg and Hoefer, 2007). 

 

 Other interpretations of quantum mechanics reject any collapse 

postulate, or indeterministic evolution. They assert that the Schrödinger 

equation has no exceptions and Schrödinger evolution is the only kind. Most 

prominent amongst this is the Everett relative state formulation – sometimes 

known as the many worlds interpretation. It too provides its own 

interpretation of the wavefunction and its connections with property values. 

Many worlds views assert the reality of a universal wavefunction – a giant 

superposition of tensor product states of the different interacting parts of the 

microscopic and macroscopic world alike. The appearances of definiteness 

are recovered in each branch of the universal wavefunction. Hence there is 

no indeterminism or collapse, and the quantum probabilities merely 

represent the weights that different appearances carry in the universal 

wavefunction. Still, questions must be raised about the meaning of these 

“weights”. Putnam (2005) argues that many-worlds interpretations lack the 

resources to account for such weights as probabilities. Defenders of the 

many-worlds approach have tended to respond to such worries by appealing 

to decision theoretic arguments (Deutsch, 1999; Wallace, 2010). But it is not 

at all clear that such appeals ultimately do away with quantum chance. For a 
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start, it is implausible that such decision theoretic arguments correspond to 

the subjective probabilities of any particular situated agent. More importantly, 

it is symptomatic that appeals to decision theoretic reasoning often 

presuppose rather than eliminate objective chances. This is an objection that 

any attentive historian of probability will find familiar. Pascal founded modern 

decision theory with his wager (Hacking, 1972). But in order to show that 

theism was superior on decision theoretic grounds he needed to make 

substantial assumptions regarding both the natural chance of God’s 

existence and the objective utility derived from salvation. Contemporary 

defences of decision-theoretic grounds for wavefunction realism often mirror 

Pascal’s difficulties: objective quantum chances are presupposed rather than 

derived (Jansson, 2016). If so, far from avoiding stochastic quantum 

chances, many-worlds interpretations sneak them in through the back door. 

   

 The one version of QM that was constructed with the explicit aim of 

eliminating or rendering otiose any ontological quantum chance is Bohmian 

mechanics (Bohm and Hiley, 1993). Yet, as I already noted, the argument 

from Bohmian mechanics against chance runs perilously close to the non-

sequitur that assimilates the reality of chance to underlying indeterminism. 

Bohmian mechanics asserts that the only dynamical law is the Schrödinger 

equation – thus the wavefunction evolves deterministically. However, 

Bohmian mechanics also asserts that the quantum state is not the full state 

of a quantum object, which significantly include hidden variables. These 

have their own deterministic dynamics. Poincaré’s method of arbitrary 

functions then applies, so long as the initial values of the hidden variables 

are not uniquely distributed but met the usual continuity assumptions. The 

frequencies of those values then suffice to generate objective probability 

distributions over the system’s final values via the deterministic dynamics. In 

other words, it follows that any statistical distribution over the initial values of 

such hidden variables can generate objective chance distributions down the 

road (Suárez, 2015 argues further for an interpretation of these as 

manifesting underlying dispositions).  
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5 Conclusions 

 

 Objective chance appears to play a critical role in physics. Yet, 

Laplace’s thesis states that in classical physics chance is rendered otiose to 

an omniscient being. Probability may only represent the cognitive 

shortcomings of an epistemically limited agent – his or her lack of 

knowledge. Despite its profound influence, Laplace’s thesis does not hold in 

general. Classical physics does not require determinism; and determinism 

does not preclude chance. It follows that chance cannot be eliminated or 

done away by simply re-formulating or modelling stochastic phenomena 

within classical physics. On the contrary, physical chance can be objective 

regardless of the dynamical character of physical laws. No wonder that the 

debate regarding the nature of chance – its metaphysics – shows no sign of 

abating. It certainly matters what physical chance is, for it impacts greatly 

upon our understanding of the underlying physics. 
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