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ABSTRACT: An argument recently proposed by Chirimuuta (2014) seems to motivate the rejection of the claims that 
every neurocognitive phenomenon can have a mechanistic explanation and that every neurocognitive expla-
nation is mechanistic. In this paper, I focus on efficient coding models involving the so-called “canonical neu-
ral computations” and argue that although they imply some form of pluralism, they are compatible with two 
mechanistic generalizations: all neurocognitive explanations are (at least in part) mechanistic; and all neurocog-
nitive phenomena that have an explanation have (at least) a purely mechanistic explanation.
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RESUMEN: Un argumento recientemente propuesto por Chirimuuta (2014) parece motivar el rechazo de la tesis de que 
todo fenómeno neurocognitivo puede tener una explicación mecanicista y de la tesis de que toda explicación 
neurocognitiva es mecanicista. En este trabajo me centro en los modelos de codificación eficiente que involu-
cran las llamadas “computaciones neuronales canónicas” y argumento que, aunque implican una forma de plu-
ralismo, son compatibles con dos generalizaciones mecanicistas: todas las explicaciones neurocognitivas son (al 
menos en parte) mecanicistas; y todos los fenómenos neurocognitivos que tienen una explicación tienen (al me-
nos) una explicación puramente mecanicista.

Palabras clave: mecanicismo, pluralismo, codificación eficiente, computación neuronal, codificación neuronal.

1. Introduction

Mechanism has evolved into a dominant perspective in the philosophy of neuroscience as 
it has proven to be a useful framework to account for the explanatory power of many mod-
els, ranging from molecular to behavioral neuroscience (e.g., Machamer et al., 2000; Craver 
2007; Bechtel 2008; Kaplan and Craver 2011; Piccinini and Craver 2011; and Boone and 
Piccinini 2015). David Kaplan (2011) argues that even explanatory models in “higher-
level” branches of cognitive neuroscience, such as computational neuroscience, are mecha-
nistic.

Chirimuuta (2014) claims, on the contrary, that the mechanistic approach cannot be 
universally applied to all neurocognitive phenomena. She affirms that relevant phenomena 

* I thank Gualtiero Piccinini for a careful and very helpful review of earlier versions of this paper. I am 
grateful to the referees from Theoria for their insightful comments. My thanks also go to my advi-
sor, Liza Skidelsky as well as to Sergio Barbieris, Sabrina Haimovici, Mariela Destéfano, Fernanda 
Velazquez, Nicolás Serrano, Magali La Rocca, Rodrigo Gonzáles Wilkens and Cristian Stábile for ex-
haustive discussions on many versions of this paper.
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can only be explained by interpretative-minimal models, which provide efficient coding ex-
planations. These are a form of the optimality explanations frequently employed in biol-
ogy. They explain why a particular brain area or neural population has a given (e.g. compu-
tational) property, making reference to efficient coding principles.

In this paper, I focus on the minimal interpretative models that describe the so-called 
“canonical neural computations” (CNCs), and claim that although they imply a form of 
pluralism, they are compatible with some mechanistic generalizations about neurocognitive 
explanation. In section 2, I present mechanism, the characterization of normalization as a 
CNC, and interpretative minimal models. In section 3, I argue that the CNC-related phe-
nomenon that a mechanistic model fails to explain (that is, widespread implementation of 
normalization) does not have an efficient coding explanation either. In turn, the phenome-
non that can be explained by an efficient coding model (normalization in a particular brain 
area) can also be explained mechanistically. This implies a kind of pluralism that is compat-
ible with a mechanistic claim: any neurocognitive phenomenon that has an explanation has 
(at least) a mechanistic explanation.

In section 4, I argue that many relevant optimality explanations in cognitive neuro-
science presuppose mechanistic explanations. Efficient computation and efficient cod-
ing models of neural processing (two different kinds of optimality models) require de-
termining not only that a given coding regime or computational process constitutes the 
optimal strategy to perform a given task, but also that the relevant neural population ac-
tually implements that strategy, i.e., it requires explaining how the population performs 
the relevant task. I argue that the answer to this “how” question constitutes a mechanis-
tic explanation. This implies that efficient coding and efficient computation models are 
compatible with the claim that neurocognitive explanation is (at least in part) mechanis-
tic.

2. Mechanism and efficient coding

To consider the implications of efficient coding explanation for a mechanistic proposal 
it is important to first clarify the notions of mechanism and mechanistic explanation. A 
mechanism can be defined as “[a] structure performing a function in virtue of its com-
ponent parts, component operations, and their organization” (Bechtel and Abrahamsen 
2005, 423). Mechanisms are active structures that perform functions, produce regularities, 
underlie capacities, or exhibit phenomena, doing so in virtue of the organized interaction 
among the mechanism’s component parts and the processes or activities these parts carry 
out (Kaplan 2011).

According to mechanism, the explanatory force of the model for a given phenomenon 
depends on how accurately it describes the underlying mechanism. This commitment is ex-
pressed by Kaplan’s “model-to-mechanism-mapping” (3M) condition (Kaplan 2011, 347):

(3M) A model of a target phenomenon explains that phenomenon to the extent that (a) the 
variables in the model correspond to identifiable components, activities, and organizational fea-
tures of the target mechanism that produces, maintains, or underlies the phenomenon, and 
(b) the (perhaps mathematical) dependencies posited among these (perhaps mathematical) varia-
bles in the model correspond to causal relations among the components of the target mechanism.
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It is relevant to point out that Kaplan (2011) proposes 3M as a requirement for constitu-
tive mechanistic explanation. Mechanists (e.g., Craver 2007) often distinguish between eti-
ological models, which explain why a phenomenon occurs and constitutive models, which 
explain how it occurs. Etiological explanations cite the antecedent cause of a phenomenon, 
whereas constitutive explanations identify properties underlying the phenomenon within 
the relevant system. Both are kinds of mechanistic explanation. However, Kaplan`s pro-
posal concerns constitutive explanation. He claims that explanatory models in computa-
tional neuroscience provide constitutive mechanistic explanations.

According to Chirimuuta, the explanation of the so-called “canonical neural computa-
tions” (CNCs) constitutes a counter-example to this thesis. She claims that the implemen-
tation of CNCs can only be explained by non-mechanistic computational models. I will 
focus here on one of the most studied CNCs: normalization. Heeger (1992) proposed the 
normalization model, a quantitative model of the response properties of simple cells in the 
primary visual cortex that respond to specific stimuli (bars) in specific orientations. Among 
other things, this model can explain the fact, implied by the phenomenon of cross-orienta-
tion suppression (COS) (Bonds 1989), that the response of simple cells is non-linear. COS 
occurs when a non-preferred stimulus (e.g., a horizontal bar) of a simple cell in V1 is pre-
sented at the same time as the preferred stimulus (vertical bar), and the response of the cell 
is smaller than its response to the preferred stimulus alone. This fact cannot be accounted 
for by the original model proposed by Hubel and Wiesel (1962). Heeger’s idea is that each 
simple cell has a linear excitatory input from LGN but also an inhibitory input from adja-
cent neurons in the visual cortex. The relation between these inputs and their output is de-
fined by the equation:

Ei(t)=
Ei(t)

! 2+ Ei(t)i!

Where Ēi is the normalized response of a simple cell, t is the time, σ2 is a parameter that 
governs the contrast at which the neuron is saturated, and ΣE is the sum of inhibitory re-
sponses of all simple cells in the local population.

Carandini and Heeger (2012) argue that normalization is a CNC. CNCs are defined 
as standard computational modules that are implemented in many different systems and 
organisms. Other examples of CNC are linear filtering, recurrent amplification, associative 
learning, and exponentiation. They are presented as a toolbox of computational operations 
that the brain applies in different sensory modalities and anatomic regions and that can be 
described at a level of abstraction above their bio-physic implementation. Carandini and 
Heeger show that the normalization model has been successfully applied to the olfactory 
system in invertebrates, the retina (photoreceptors, bipolar cells, and retinal ganglion cells), 
V1 and superior visual areas (MT, V4, IT), the auditory cortex (A1), multisensory integra-
tion (MST), visual-motor control (LIP), and attention.

Chirimuuta (2014) maintains that the fact that normalization is a CNC can only have 
a non-mechanistic explanation. The widespread implementation of normalization can-
not be explained mechanistically as the result of a similar underlying neural circuit, i.e., a 
canonical neural circuit. This is because normalization is known to be implemented by 
a variety of neural mechanisms. For example, shunting inhibition and synaptic suppres-
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sion are different mechanisms that implement normalization in different brain regions. 
C hirimuuta considers that a more plausible alternative to explain canonical computation 
is the presence of equivalent demands in different systems. The convergence of computa-
tional processes can be accounted for by their efficacy in addressing common tasks, specifi-
cally, information-processing tasks. For example, Heeger (1992) proposed that contrast 
normalization in the primary visual cortex has an important role in maintaining the spe-
cific calibration of simple cells regarding a small range of stimulus orientations, independ-
ently of stimulus contrast. Given that maximizing stimulus selectivity is a requisite for reli-
able sensorial coding in different modalities, it can be expected that normalization will be 
implemented in non-visual areas and in invertebrates, although the bio-physical implemen-
tation is different.12Taking this idea, Chirimuuta characterizes an interpretative minimal 
model in the following way:

I-minimal Model: Models which ignore biophysical specifics in order to describe the infor-
mation-processing capacity of a neuron or neuronal population. They figure in computational or 
information-theoretic explanations of why the neurons should behave in ways described by the 
model.

Chirimuuta (2014) offers a brief characterization of the general explanatory strategy that 
these models involve. First, we use information theory to determine how information 
transmission of the sort required by a relevant brain area can be optimized. For example, a 
given neural system could require the reduction of redundancies, the maximization of its 
sensitivity to variations in the stimulus or the maximization of signal invariance with re-
spect to some stimulus dimensions. Then, we build a model of a hypothetical computa-
tional operation which would optimize information transmission in the required way. Fi-
nally, we compare the optimal and real neural computation. If there are similarities, we 
have an explanation of why the brain area implements the relevant computation.

Chirimuuta points out that this explanatory pattern is similar to the one we find in 
optimality explanations in biology. The idea that optimality explanations imply a form of 
pluralism regarding explanation has been defended outside computational neuroscience. 
For example, Rice (2015) maintains that optimality models can provide non-causal (and, 
hence, non-mechanistic) explanations in biology. Rice (2015) offers a succinct characteri-
zation of optimality models that can be useful to understand efficient coding explanations.

1 Chirimuuta (2014) characterizes the relation between normalization and its different underlying 
mechanisms as one of multiple realization. The notion of multiple realization has been questioned by 
some mechanists (e.g. Bechtel and Mundale 1999 and Milkowski 2013). If one rejects the notion, then 
it seems that there could not be canonical computation (the same computation implemented in differ-
ent neural systems) if there is no canonical circuit or underlying mechanism (that is, if each instance 
of that computation is not realized by the same mechanism). Different mechanisms should be taken 
to realize a different computation. If this is the case, then there is no phenomenon (such as the wide-
spread implementation of normalization) that mechanistic models fail to explain. However, I will not 
criticize Chirimuuta on these grounds. The main reason is that not all mechanists reject multiple reali-
zation (for instance, Piccinini and Maley 2014 propose a mechanistic approach to this notion). I thank 
an anonymous referee for pointing out the relevance of addressing the issue of multiple realization 
within mechanism. 
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These models result from the application of a mathematical technique called “op-
timization theory.” This is a technique that can determine what values of some control 
variable(s) will optimize the value of some design variable(s) given a set of tradeoffs and 
constraints. An optimality model specifies what is called a “strategy set,” the set of possi-
ble strategies defined (at least in part) by different sets of values of the control variables; a 
“currency” (the designs variables to be optimized); and an optimization criterion (what it 
means to optimize the design variables). With these elements, it specifies what is known as 
an “objective function,” which connects each member of the strategy set to values of the de-
sign variable(s) to be optimized. The function determines an optimal strategy, which is the 
one that optimizes the criterion in light of the relevant constraints and tradeoffs. An opti-
mality model explains the current state of a system by showing that it implements a strategy 
that optimizes the relevant criterion.

This framework can now be employed to offer a more detailed characterization of the 
efficient coding explanation of a CNC. In the first place, a currency (i.e., a design variable 
i to be optimized) is defined. In our example, the relevant neural systems require the maxi-
mization of stimulus selectivity (maximization of invariance regarding stimulus contrast). 
In the second place, a strategy set is defined by different computational operations (such 
as linear filtering, normalization, exponentiation, etc.) which can contribute to i optimiza-
tion. With these elements, we specify an objective function that assigns a value of i to each 
computational strategy. The optimal strategy will be the computational process c that is 
correlated with the optimal value of i. The model explains the presence of c in a given brain 
area by showing that it is the optimal strategy in this sense.

One could object that if these models explain why a brain area implements a given com-
putation, then they provide etiological explanations. This is, as mentioned above, a kind of 
mechanistic explanation. Chirimuuta points out that although efficient coding explana-
tions need a background assumption that there is some set of processes at work which have 
a tendency to optimize solutions to coding problems (e.g. Laughlin 2001), they are not re-
quired to provide a characterization of these processes. They are not committed to specific 
processes of this kind. This idea raises a further concern. If this general etiological assump-
tion plays no significant role (that is, a role relevant enough to consider that the models are 
etiological), one could wonder why efficient coding models are explanatory. Chirimuuta 
has an interesting answer to this question.

She points out that these models are explanatory according to a criterion accepted by 
mechanists themselves. Some mechanists (e.g. Kaplan 2011; Kaplan and Craver 2011) en-
dorse Woodward’s idea (e.g. Woodward 2003) that the explanatory power of a model is 
given by its ability to address what-if-things-had-been-different questions or “w-questions.” 
Woodward considers that in order to address these questions, “a model must describe the 
conditions that ‘make a difference’ to the explanandum in the sense that changes in these 
factors lead to changes in the explanandum” (Woodward, forthcoming, p. 5). Chirimu-
uta considers that efficient coding models can address questions of this kind without mak-
ing reference to etiology. For instance, the normalization model implies that if the task that 
the relevant neural system needs to perform and/or its sensory input were different, then 
the underlying computations would also be different. She offers the example of a study pre-
sented by Wainwright et al. (2001) which shows that the normalization parameters are ad-
justed by variations in the statistics of recent visual input.
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I consider that this also tells us why the general etiological assumption does not make 
the explanation etiological. It is clear that this assumption contributes very little to address-
ing the relevant w-questions. It is the application of optimization theory what carries the 
more significant explanatory weight. The assumption only implies that the actual strategy 
will be close to the optimal, but it says nothing about how it would change if other relevant 
features of the system where modified, or how the system would change if the strategy was 
different. We use optimization theory to determine what (non-optimal) values the design 
variables would have if the strategy was different, how the optimal values for design varia-
bles would change if the constraints where different or what would be the optimal strategy 
if the design variables where different.

A second objection could be that if efficient coding models explain why a given event 
occurs and not how it occurs, then it seems that a constitutive mechanistic model fails to 
explain this “why-phenomenon” simply because this is not the kind of phenomenon that 
it is supposed to explain. As mentioned, etiological explanations are the ones that are sup-
posed to address these why-questions. The fact that a why-phenomenon is explained by 
something that is not a constitutive mechanistic model does not seem problematic for 
mechanism regarding constitutive explanation (which is the kind of mechanism that Ka-
plan and Chirimuuta discuss). I will address this issue in the following section. However, I 
will not deny that efficient coding models imply some form of pluralism. My aim is to eval-
uate whether and in which way this pluralism limits the application of the mechanistic ap-
proach.

3. Different perspectives on a single phenomenon

As we saw, Chirimuuta affirms that there is a question to which only an efficient coding 
model provides an answer. This does not mean that this is not the type of question for 
which a mechanistic constitutive model could be proposed. This is a relevant point. Kaiser 
and Krickel (2016) suggest that etiological and constitutive mechanistic models explain 
different kinds of phenomena. Even when both aim to explain, in some sense, the same 
behavior (for instance, protein synthesis) the constitutive and etiological explanation will 
have different explananda. At first glance, it would seem that both models have the same 
explanandum: one can etiologically explain protein synthesis by describing how a certain 
sequence of causes leads to the synthesis of a protein, or one can constitutively explain 
protein synthesis by referring to the components of a cell and describing how they act and 
interact such that the cell synthesizes proteins. The authors point out that “on a closer in-
spection, however, it turns out that what we are explaining is not the same phenomenon, 
but two different phenomena: the etiological MEx [mechanistic explanation] explains the 
end-result (there being a protein) and the constitutive MEx explains the process of pro-
tein synthesis (we want to know what happens at every step of protein synthesis)” (Kaiser 
and Krickel 2016, 8).

If we accept this point, it follows that constitutive mechanistic explanation does not 
apply to every neurocognitive phenomenon. This is not the right kind of explanation for 
the phenomena that, for instance, etiological models explain. If efficient coding explana-
tions explain phenomena which (in this sense) mechanistic constitutive models are not 
supposed to explain, then they would not be problematic for mechanism. This would not 



Theoria 32/2 (2017): 161-175

 Pluralistic Mechanism 167

imply a form of pluralism that was not already implied by etiological explanations. Fur-
thermore, this is supported by the fact that efficient coding models address the same “why” 
questions addressed by etiological models. However, I will not discuss this point. In what 
follows I will concede, for the sake of Chirimuuta’s argument, that there is a CNC-related 
phenomenon that could have both an efficient coding and a constitutive mechanistic ex-
planation and determine the consequences of this assumption.

Chirimuuta (2014) considers that the widespread implementation of normalization, 
i.e., that many systems exhibit the behavior described by the normalization equation could 
have a mechanistic explanation if there were a canonical neural circuit, that is, if normaliza-
tion was implemented by the same mechanism type in each of the relevant systems. How-
ever, we have seen that there is no canonical circuit and therefore the mechanistic expla-
nation of this phenomenon is actually not available. In contrast, the phenomenon has an 
efficient coding explanation because, according to Chirimuuta, the demand for maximiza-
tion of stimulus selectivity is as widespread as normalization. Nevertheless, there are rea-
sons to doubt that there is such a canonical informational requirement. Carandini and 
Heeger (2012) mention a wide variety of informational demands in different systems and 
organisms whose optimization requires normalization. Informational demands associated 
with normalization seem to be at least as diverse as its underlying circuits.

There are at least six different applications of normalization. First, normalization is 
thought to be employed in some systems to maximize sensitivity. It can adjust the gain of 
neural responses to efficiently use the available dynamic range, thereby maximizing sensi-
tivity to changes in input. Its implementation in light adaptation in the retina enables high 
sensitivity to subtle changes in visual features over a huge range of intensities. Second, nor-
malization also contributes to achieving invariance with respect to some stimulus dimen-
sions. For example, the antennal lobe of the fly is thought to achieve odorant recognition 
and discrimination regardless of concentration through normalization. Third, it also can 
contribute to decoding a distributed neural representation. For example, it is known that 
normalization contributes to decoding the distributed representation of visual motion in 
area MT. Fourth, normalization can also make the neural representations of different stim-
uli more readily discriminable by a linear classifier, that is, it can optimize stimuli discrimi-
nation. Fifth, normalization can cause a neuronal population to operate in two regimes, 
averaging the inputs when these are approximately equal and computing a winner-take-all 
competition (max-pooling, selecting the maximum of inputs). Normalization is thought to 
perform max-pooling, for example, in neural areas responsible for attentional modulation 
by selecting the neural sub-population with the largest response. Finally, it is known that 
normalization contributes to redundancy reduction. For example, it helps V1 to reduce re-
dundancy by incrementing the statistical independence of its responses to natural images.

The fact that many different informational demands in different systems and species 
are satisfied by appealing to the same computational strategy implies that the efficient cod-
ing explanation is not better than the mechanistic one to account for the widespread or ca-
nonical character of the strategy. In the same way that there is not a one-to-one relation 
between neural circuits and computations, there is neither a one-to-one relation between 
computations and informational demands. This, of course, does not mean that the model 
is not explanatory at all. It only implies that the model cannot be used to explain why nor-
malization is so widespread. Therefore, the efficient coding model for this phenomenon 
cannot be used to argue for pluralism regarding neurocognitive explanation.
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We can employ this approach to explain normalization in a particular system. Differ-
ent efficient coding models (models that have different design variables, i.e., that describe 
different informational demands) can be provided to explain the presence of normaliza-
tion in different systems. However, we can also offer different mechanistic explanations for 
these phenomena. If the relevant phenomenon is no longer widespread implementation 
but merely implementation in a given system, there is no reason to prefer an efficient cod-
ing approach to CNCs over a mechanistic one. The efficient coding and mechanistic expla-
nations of this phenomenon are equally good.23

This implies a form of pluralism regarding neurocognitive explanation that does 
not limit the range of applications of the mechanistic approach. As we saw earlier, 
C hirimuuta’s argument implies that there are phenomena which are only explained by 
non-mechanistic models. This implies a form of pluralism according to which different 
neurocognitive phenomena require different kinds of explanations. I have argued that, 
at least regarding CNCs, this is not the case. Both efficient coding and mechanistic ap-
proaches are adequate for the same CNC-related phenomenon. This implies a more radi-
cal form of pluralism because it allows different perspectives on a single phenomenon. 
However, it is also compatible with a general mechanistic claim about neurocognitive ex-
planation. Although we cannot affirm that only mechanistic models are explanatory, we 
can affirm that every neurocognitive phenomenon that has an explanation has (at least) a 
mechanistic explanation.

4. Explaining how before why

In what follows, I argue that there is a general conceptual relation between mechanistic and 
optimality explanations in cognitive neuroscience, and that this relation implies that plu-
ralism is compatible with a different mechanistic generalization. We saw that I-minimal 
models exploit informational and computational properties of neural processing to explain 
why a given neuron or neural population perform a given task in a given manner. They ex-
plain this fact by mathematically determining that the actual strategy constitutes the opti-
mal strategy to perform the task. This means that the mathematical model that determines 
which is the optimal strategy is only part of the explanation. The explanation only works 
when we can also show that the optimal strategy is the one actually employed by the stud-
ied system to perform the relevant task, i.e., we need to determine how the system performs 

2 I mentioned that Kaiser and Krickel (2016) distinguish between the phenomena that etiological and 
constitutive mechanistic models explain. They also argue mechanistic models explain a specific kind 
of phenomenon. What we can call a “mechanistic phenomenon” is a behavior, activity, or process 
(what they call an “ocurrent”) performed by an object that is different from the relevant mechanism 
underling this behavior. It is important to point out that the phenomenon we are considering can be 
described as a mechanistic phenomenon in this sense. Regarding normalization, we can indeed dis-
tinguish between an activity (normalization, i.e., divisive inhibition), an object (a neural circuit com-
prising at least two input neurons —the driving and the modulatory inputs— and an output neuron), 
and a mechanism (e.g., shunting inhibition, defined by the location of the axon terminals of the mod-
ulatory input [Blomfield 1974] and their shunting effect). I thank an anonymous referee for pointing 
out the relevance of relating normalization with this account of mechanistic phenomena. 
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the task. In the case we have been considering, we must determine not only that normaliza-
tion is the optimal strategy to maximize stimulus selectivity, but also that the relevant neu-
ral population actually implements this strategy to optimize selectivity.

According to Chirimuuta, the answer to this “how” question is not a mechanistic ex-
planation. She points out that, from a mechanistic perspective, the normalization equa-
tion cannot be considered a fully explanatory model but rather a mechanism sketch. A 
mechanism sketch is a model that omits details about the underlying mechanism of a phe-
nomenon that are not yet known (Machamer et al., 2000). The normalization model gives 
a quantitatively accurate prediction of COS and numerous other phenomena (Heeger 
1992) describing the suppressive effect (ΣE) of the relevant inhibitory mechanism in a very 
schematic way. However, I consider that the model cannot be considered a sketch. Un-
like sketches, the omission of information in this model is not due to an imprecise knowl-
edge of the relevant mechanism. We have seen that mechanisms implementing normaliza-
tion, such as shunting inhibition or synaptic depression, are well known. Furthermore, the 
model has the features associated with abstract mechanistic models (what Chirimuuta calls 
“A-minimal models”). The core idea behind these models is that they must only describe 
the aspects of a mechanism that are difference makers for a relevant phenomenon. These 
difference makers are features that cannot be changed or replaced without modifying the 
behavior of the system (Levy and Bechtel 2013).

The normalization model can be considered an A-minimal model, for instance, for the 
phenomenon of cross-orientation suppression (COS). The information omitted from the 
model is not about difference makers for COS. Normalization can produce the non-linear 
response of a neural population required by COS even if it is implemented by the different 
mechanisms mentioned earlier. On the other hand, if divisive normalization did not affect 
the response of simple cells in V1, then these would not have the relevant non-linear prop-
erties. As I mentioned, these properties are not predicted by the model proposed by Hubel 
and Wiesel, which did not include divisive normalization. This means that the normaliza-
tion equation omits non-difference makers and includes difference makers regarding COS. 
It can be considered a minimal mechanistic model.

This implies that the answer to the “how” question required by the efficient coding ex-
planation of normalization constitutes a mechanistic explanation. It is not only the case 
that, as I argued above, normalization can have both optimality and mechanistic explana-
tions. The optimality explanation of normalization has a mechanistic explanation as a con-
stitutive part. This makes the former compatible with a mechanistic thesis that is stronger 
than the one defended in the previous section. It is not only compatible with the claim that 
all mechanistic phenomena that can be explained have a mechanistic explanation, but also 
with the thesis that all neurocognitive explanations are, at least in part, mechanistic.

It is important to emphasize that although CNCs are described by a limited set of neu-
rocognitive models these have a widespread relevance for cognition. As we saw, canoni-
cal neural computations are defined as standard computational modules that perform the 
same operations in a wide variety of contexts. This means that providing an argument that 
mechanistic and optimality explanations are interrelated in the explanation of CNCs pro-
vides strong support for the mentioned mechanistic generalization.

To strengthen this point, I will show that the generalization is also supported by an-
other group of optimality explanations that have at least the same broad relevance in cog-
nitive neuroscience. As I mentioned above, Chirimuuta considers that the explanations 
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that involve CNCs are efficient coding explanations. However, it is important to distin-
guish between neural computations and neural coding, and their different contributions 
to efficient information transmission. The models previously considered are concerned 
with how computations contribute to the optimization of information transmission. 
The normalization model describes a neural computation without specifying a coding re-
gime (without specifying, for example, whether the neural signal is rate- or time-coded). 
There is a good reason for this. Neural computations are “coding regime independent,” 
i.e., they can be performed by circuits that operate under different coding regimes. Spe-
cifically, divisive normalization can be performed by sustained rate-coded signals or 
sparse temporally correlated signals (Silver 2010). On the contrary, code specification is 
relevant for some of the underlying non-computational mechanisms since they can only 
operate under one specific coding regime. For example, changes in shunting inhibition, 
in concert with high levels of synaptic-input-dependent noise, synaptic short-term de-
pression, and dendritic Na+ channels (which can produce a depolarizing after potential), 
can only control neural gain under sustained rate-coded signaling regimes since con-
ductance changes produce additive shifts during temporally correlated signaling (Shu, 
Hasenstaub, Badoual, Bal, and McCormick 2003). Therefore, coding regime is not con-
stitutive of neural computation but rather of its underlying (non-computational) mecha-
nisms. The optimality explanation of efficient computation is not an explanation of effi-
cient neural coding.

Detailed optimality models have been developed to show how neural coding contrib-
utes to efficient information transmission. Classical theoretical work hypothesized that 
optimizing information transmission is a driving force in the evolution of neural codes 
(Barlow 1959). Barlow (1969) introduced the idea that neural codes should minimize re-
dundant information and maximize representational capacity (an idea then developed 
by, for example, Adelsberger, Mangan and Levy 1992; Foldiak 1990 and Redlich 1993). 
Later, considering that the brain is one of the metabolically most active organs of the body 
(Sokoloff 1989), Levy and Baxter (1996) claimed that neural coding must result from an 
optimal compromise between energy and informational efficiency. They determined that 
there is an optimum in the number of cells that should be active to encode a condition in 
order to reduce energy expenditure and that distributed coding gives a large reduction in 
the energy needed.

In this vein, Attwell and Laughlin (2001) explain neural coding by constraining some 
ideas from of Levy and Baxter (1996) through a detailed energy budget for brain signaling. 
Unlike Barlow (1969), Attwell and Laughlin do not take the representational capacity of 
a system (the number of encoded conditions) to be a design variable to be maximized but 
rather a constant that constrains the impact of different coding strategies of the system on 
energy consumption. The authors consider a system that must represent 100 different sen-
sory or motor conditions. A purely local coding strategy is to represent each of the 100 con-
ditions by 1 active cell to denote an occurring condition. Attwell and Laughlin estimate the 
energy expenditure of this coding regime by taking R to be the ATP (Adenosine Triphos-
phate, the molecule that carries the energy needed for neural signaling) usage per cell on the 
resting potential, and A the extra ATP usage per cell on active signaling (action potentials 
plus glutamatergic signaling). This implies that the total ATP used by the system to signal 
1 of 100 conditions under this local coding regime would be 100R + A. When we begin to 
depart from this local coding regime towards a sparse one, an increase in energy efficiency is 
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patent. If a condition is represented by the simultaneous firing of 2 cells (at the same rate, 
with the others not firing), only 15 neurons are needed to represent 100 conditions. This is 
given by the equation (which we can call the “capacity/components/code equation” or “3C 
equation”) that relates representational capacity or number of conditions represented (R) 
with the number of cells or components of the system (n) and number of cells active to rep-
resent a condition (np):

R: n!/[(n – np)! (np)!]

In our case, 3C implies that 15!/(13! 2!) = 105. When we use this code, the energy expend-
iture is 15R + 2A. If R and A are equal (Attwell and Laughlin estimate that this is the case 
for neurons firing at 0.62 Hz), then this distributed representation gives a 6-fold reduction 
in energy usage for transmitting the same information. Similarly, if a condition is repre-
sented by 3 cells firing, 3C implies that only 10 cells are needed to represent 100 conditions 
(given that 10!/(7! 3!) = 120), and the energy expenditure is 10R + 3A, which (for R = A) 
is a further improvement of energy efficiency. Atwell and Laughlin point out that optimal 
neural coding is restricted not only by representational capacity but also by the temporal 
resolution required by the relevant informational task. This restriction is expressed by vari-
ations in firing rate. If the system needs a higher temporal resolution, the active cells must 
fire at a higher rate, so that when a new condition occurs, the switch in identity of the cells 
firing will become detectable earlier.

They claim that the sparseness of the optimal coding increases as the required firing 
rate increases. For signaling by active cells at 0.62 Hz, this optimum is broad, with 3 (of 
10) or 4 (of 9) cells simultaneously active to optimally encode a condition. If active cells 
signal at 4 Hz, for which Attwell and Laughlin’s calculations give A = 6.4R, then the op-
timum becomes sharper and has just 2 cells (of 15) simultaneously active to optimally en-
code a condition. Finally, if active cells signal with action potentials at 40 Hz, for which the 
budget implies A = 64R, then the optimum becomes sharper still.

It is clear that these progressively more precise characterizations of optimal coding can ex-
plain actual neural coding only if a given population actually implements the optimal strategy 
to represent a number of conditions. As we saw, the last step of an optimality explanation is 
determining whether the optimal hypothetical strategy lines up with the actual one. The ex-
planation requires determining how the population actually represents the relevant condi-
tion. As with efficient computation, the answer to this “how” question requires a mechanistic 
model. A common approach to neural coding involves population analysis (Quian Quiroga 
and Panzeri 2013). It is usually assumed that to understand neural code we have to look for 
patterns in the combined activity of different neurons. There are two main strategies to an-
alyze the activity of neural populations (Quian Quiroga and Panzeri 2009). Decoding algo-
rithms can be used to reconstruct a given stimulus from the pattern of responses of a given 
neural population (Abbott 1994; Rieke et al., 1997; Oram et al., 1998; Pouget et al., 2000; 
Dayan and Abbott 2001). Also, the concept mutual information can be employed to deter-
mine how much information (in bits) neurons carry about the stimuli (Deco and Obradovic 
1997; Rieke et al., 1997; Borst and Theunissen 1999; Dayan and Abbott 2001).

There can be distinguished three main steps for the analysis of multiple single-cell re-
cordings (Quian Quiroga and Panzeri, 2009). The first is the extracellular recording of the 
activity of neurons with intracranial electrodes. The second is the discrimination of activ-
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ity of single neurons from the continuously recorded data by means of spike detection and 
sorting algorithms. These algorithms make possible to identify a pattern of multiple spike 
trains. Lastly, this pattern is interpreted using decoding or information theory. The basic 
idea of these approaches is to quantify the amount of information in the spike trains about 
the stimulus (information theory) or to predict what stimulus produces the observed spike 
trains (decoding). Once we are able to make these predictions, we can then explore system-
atically which features of the spike trains carry the relevant information, i.e., which code the 
population implements. For example, with a population analysis we can establish whether 
the information about the observed stimulus is given by an increase in the firing of one of 
the neurons, or by a particular time firing pattern, or by a correlated firing of two neurons.

I consider that the result of population analysis with decoding or information theory 
are mechanistic models. They explain neural signaling by describing the relevant popula-
tion as a mechanism, i.e., as the organized activity of components. The two approaches 
consider the information as a result of the activity of the population of neurons as a whole, 
and can determine how each member of the population (the components) and their in-
teractions (their activities and causal organization) contribute to stimulus representation 
(Quian Quiroga and Panzeri 2013). For example, the model can determine how the am-
biguity in the signal of a given neuron can be resolved by the activity of other neurons of 
the population. They can resolve this ambiguity, for example, by coordinating their relative 
time of firing to tag particularly salient events (Singer and Gray, 1995; Engel and Singer, 
2001) or, alternatively, by having each neuron representing separately a particular stimulus 
or stimulus feature (Barlow et al., 1964; Reich et al., 2001; Quian Quiroga et al., 2005).

These considerations imply that the modeling of neural coding (which constitutes part 
of efficient coding explanations) can be considered a mechanistic explanation of neural sig-
naling. Given that neural codes (in the same way as neural canonical computations) consti-
tute a pervasive aspect of neurocognitive processes, this case provides strong support to the 
thesis that neurocognitive explanations are, at least in part, mechanistic.

5. Conclusion: Pluralism and Integration

Efficient coding models have proven to be very useful tools to understand different aspects 
of neural processing. In the face of this fact, it is not possible to claim that (purely) mecha-
nistic models are the only explanatory neurocognitive models. However, I tried to argue 
that the form of pluralism implied by efficient coding explanations is compatible with rel-
evant mechanistic generalizations.

This pluralism has a further implication. I consider that it can be useful to understand 
neurocognitive integration. It is an important challenge for any approach to explanation in 
cognitive neuroscience to determine how different explanations in the field are integrated. 
Traditional cognitive science suffered from a strict division of labor between different ex-
planatory strategies. Models at a functional or cognitive level (or, in Marr’s terminology, 
a computational or algorithmic level), on the one side, and models at a neural, mechanis-
tic or implementation level, on the other side, were considered distinct and autonomous 
from one another. In contrast, the recent development of cognitive neuroscience is gradu-
ally undermining this division. It is apparent that the computational and neural approaches 
to cognition are being increasingly connected (Boone and Piccinini 2015). Mechanism is 
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a promising tool to characterize this integration. The different models can be connected if 
they are descriptions of different levels of the same mechanism. However, if efficient cod-
ing models are not (purely) mechanistic, perhaps we need a different, richer view on inte-
gration.

Chirimuuta (2014) suggests that we should understand neurocognitive integration in 
terms of a “perspectivist” approach. She considers that different kinds of explanations are 
complementary when they constitute different perspectives on a given system. She affirms 
that “the same system in neuroscience can be represented and modelled in a variety of dif-
ferent ways, depending on the particular purposes of the investigation” (p. 148). I consider 
that the idea of different perspectives on the same system is not informative enough to ac-
count for integration. Specifically, it does not say anything about how an efficient coding 
and a mechanistic model of a system could be connected. The mechanistic approach pro-
vides a characterization of the connection between different models. Although the no-
tion of a mechanistic level is still controversial (e.g., Craver 2015), we know that different 
levels described by different mechanistic models of a system have some kind of composi-
tional relation. To offer some insight into integration, the perspectivist view should pro-
vide a characterization of these relations.

An alternative strategy is to understand integration as something relative to a given 
phenomenon. Different explanations are integrated insofar as they explain the same phe-
nomenon. According to this view, integration does not require any relation between the 
aspects described by different explanans. However, we have seen that Chirimuuta’s consid-
erations about the efficient coding explanation of CNCs do not support this kind of inte-
gration. She argues that for some phenomena (such as the widespread implementation of 
normalization) only the efficient coding perspective is adequate. On the contrary, my argu-
ment in section 3 supports this perspectivist view. Both mechanistic and efficient coding 
approaches are adequate perspectives on the implementation of normalization by a given 
brain area.

I consider that the argument provided in section 4 implies a different kind of inte-
gration. It suggests that at least some efficient coding and mechanistic explanations do 
not have the same explanandum. A mechanistic model can explain how a system com-
putes or codes information and an efficient coding model can explain why that system 
computes or codes information in that way. Given this difference, these two explana-
tions cannot be considered perspectives on the same phenomenon. However, they are 
connected by a conceptual relationship: explaining why (in the sense of providing an effi-
cient coding or an efficient computation explanation) presupposes explaining how. This 
relationship determines a different form of integration between neurocognitive explana-
tions. This implies that we should not be pluralists only about explanatory strategies, but 
also about their integration. Different kinds of explanations are connected in more than 
one way.
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