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Abstract In their 2010 paper, Dizadji-Bahmani, Frigg, and Hartmann
(henceforth ‘DFH’) argue that the generalized version of the Nagel-Schaffner
model that they have developed (henceforth ‘the GNS’) is the right one for
intertheoretic reduction, i.e. the kind of reduction that involves theories with
largely overlapping domains of application. Drawing on the GNS, DFH (2011)
presented a Bayesian analysis of the confirmatory relation between the reduc-
ing theory and the reduced theory and argued that, post-reduction, evidence
confirming the reducing theory also confirms the reduced theory and evidence
confirming the reduced theory also confirms the reducing theory, which meets
the expectations one has about theories with largely overlapping domains. In
this paper, I argue that the Bayesian analysis presented by DFH (2011) faces
difficulties. In particular, I argue that the conditional probabilities that DFH
introduce to model the bridge law entail consequences that run against the
GNS. However, I also argue that, given slight modifications of the analysis
that are in agreement with the GNS, one is able to account for these difficul-
ties and, moreover, one is able to more rigorously analyse the confirmatory
relation between the reducing and the reduced theory.

Keywords Confirmation · Nagelian reduction · Thermodynamics and
statistical mechanics · Bayesian network models

1 Introduction

Synchronic intertheoretic reduction, that is, “the reductive relation between
pairs of theories which have the same (or largely overlapping) domains of
application and which are simultaneously valid to various extents,” has been
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an important issue in philosophy of science (DFH, 2010, p. 393). A canonical
example of purportedly successful reduction of this kind is the reduction of
thermodynamics to statistical mechanics (cf. DFH, 2010, p. 393; 2011, p. 322;
Batterman, 2002, pp. 17, 62–63; Sklar, 1993, pp. 333ff.). Nagel (1961), and later
Schaffner (1967), famously addressed the issue of intertheoretic reduction and
offered what is usually called the Nagelian model of reduction. The core idea
of this model is that a theory TA reduces a theory TB if and only if TB can be
logically derived from TA (or at least that a close cousin of TB can be logically
derived from TA) with the help of bridge laws. While usually considered as a
philosophical background for the purported reduction of statistical mechanics
to thermodynamics, this model has been burdened with criticisms that led to
a widely shared opinion that the Nagelian model of reduction is untenable and
obsolete (e.g. Darden & Maull, 1977; Primas, 1998; Winther, 2009).

However, several defenses of Nagelian reduction have been put forward
in recent times. The GNS account is tailored as one. DFH (2010) built on
and developed a more sophisticated Nagelian model of reduction (the GNS)
that, so the argument goes, successfully accounts for criticisms attached to the
Nagelian model of reduction.

One important facet of the GNS is that, given the intertheoretic link that
the GNS provides, the two theories are confirmatory of each other: evidence
confirming one theory also confirms the other theory. In their 2011 paper DFH
analyse this confirmatory relation in terms of Bayesian confirmation theory.
In the present paper I argue that this analysis suffers from several difficulties
and I propose an alternative Bayesian analysis of the confirmatory relation.

In what follows, I introduce the GNS (Section 2.1) and provide an example
of reduction to illustrate the workings of the GNS (Section 2.2). After that,
I discuss philosophical motivations for the GNS (Section 2.3), and present a
Bayesian analysis of the confirmatory relation between the reducing and the
reduced theory given by DFH (2011) (Section 2.4). Next, I indicate several
difficulties this analysis faces (Section 3). I then present an (obvious) revi-
sion that accounts for some of the difficulties in the original analysis, but,
unfortunately, not all of them (Section 4.1). Further, I propose a slightly more
modified Bayesian analysis of the confirmatory relation between the theories
and argue that, while being more rigorous, it also successfully deals with the
problems that DFH’s Bayesian analysis faces and it is a better fit to the GNS
(Section 4.2). Lastly, I present conclusions (Section 5).

2 The GNS model and DFH’s Bayesian analysis of it

2.1 The Generalized Nagel-Schaffner model of reduction

The two theories in the reductive relation are often referred to as the reducing
or fundamental theory (T

F
) and the reduced or phenomenological theory (T

P
).

On the GNS, both T
F

and T
P

have a set of empirical propositions associated

with them, namely T
F

:= {T(1)
F , . . . ,T

(n
F
)

F } and T
P

:= {T(1)
P , . . . ,T

(n
P
)

P }, where
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(1) . . . (nF) and (1) . . . (nP) are indices (DFH, 2010, pp. 397–399; 2011, p. 323).
Now, according to this account, the reduction of T

P
to T

F
is captured by the

following three steps (DFH, 2011, p. 323):

1. Introduce boundary conditions and auxiliary assumption. Using these and

T
F

derive a special version of each element T
(i)
F in T

F
. Dub these T

∗(i)
F with

T ∗
F

:= {T∗(1)
F , . . . ,T

∗(n
F
)

F }.
2. As T

F
and T

P
are formulated in different vocabularies, in order to connect

the terms of the two theories one needs bridge laws. Adopt these laws and
substitute terms in T ∗

F
according to these laws. This yields a set T ∗

P
:=

{T∗(1)
P , . . . ,T

∗(n
P
)

P }.
3. Show that each element of T ∗

P
is strongly analogous to the corresponding

element in T
P

.1

A few remarks on the three steps. First, the boundary conditions and aux-
iliary assumptions stated in the first step describe the particular setup related
to the reducing theory. For instance, in the case of statistical mechanics these
are assumptions about mechanical properties of the gas molecules. In order to
preclude spurious cases of reduction, DFH (2011, p. 408) impose two caveats
on these assumptions: T

P
must not follow from the auxiliary assumptions alone

(otherwise the reduction would be trivialized) and auxiliary assumptions can-
not be foreign to the conceptual apparatus of T

F
(otherwise the reduction

would be cheap as there would be no restrictions on what assumptions are al-
lowable). Second, the status of bridge laws is still highly debated in philosophy
of science. On the GNS account they are factual claims posited by scientists
working in a particular field (DFH, 2010, p. 404; 2011, pp. 328–329).2 For the
purposes of this paper we need concern ourselves with the status of bridge laws.
However, it is important to note that as bridge laws, according to the GNS,
are posited by different scientists, it could happen that different scientists as-
sign different credences to a particular bridge law (DFH, 2011, pp. 328–329).
Third, the relationship between T ∗

P
, on the one side, and T ∗

F
and bridge laws,

on the other, is of a logical kind: T ∗
P

is a deductive consequence of T ∗
F

and
bridge laws (DFH, 2010, pp. 398, 406). Fourth, the notion of strong analogy
mentioned in step 3 seems to be a fairly vague one. In order to make it more
precise, DFH (2011, p. 409) put the following constrains on T ∗

P
: it has to share

all the essential terms with T
P

and it has to be at least equally empirically
adequate as T

P
. Lastly, the GNS allows for partial reductions (DFH, 2010,

p. 399). Namely, if only some terms in T ∗
P

are connected to terms in T ∗
F

and

1 Note that on the GNS one theory reduces to the other in virtue of empirical propositions
(i.e. laws that a theory has). However, proponents of the GNS do not commit themselves to
the view that “a theory just is [DFH’s italics] a set of laws, i.e. TA is not identified with
TA” (DFH, 2011, p. 323).

2 An example of the bridge law can be found in Section 2.2. Another example of the
bridge law is V = E, where V is the light vector from the physical optical theory of light
and E is the electric force vector from the theory of electromagnetic radiation. This bridge
law is used to derive a number of laws of the physical optical theory of light from Maxwell’s
equations (see Schaffner, 2012, pp. 551–559).
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only some statements of T ∗
P

can be deduced from T ∗
F

and bridge laws, then
the reduction of T

P
still obtains, though a partial one: only those statements

that are deduced are reduced.

2.2 An example of reduction à la GNS

The derivation of the Boyle-Charles Law from the kinetic theory of gases is
often mentioned as a clear example of Nagelian-style reduction. In this section
I briefly present the derivation and the way it relates to the GNS account of
reduction as outlined above.3

According to the kinetic theory of gases, a gas is a collection of particles
obeying Newton’s laws of mechanics. Consider a gas with a large number (n)
of sphere-like particles moving in all directions with a fixed mass (m) that
interact perfectly elastically with each other and with the walls of a container
of volume (V ) where the gas is kept. Say we are interested in the force these
particles exert on a wall of the container. A way of expressing this force is by
talking about the force per unit area; that is to say, we can use the definition of
pressure (p) from Newtonian physics: p = F/A, where F is the force and A is
the area of the wall. Employing the assumption that all particles are perfectly
elastic, one is able to show that pressure on the wall is:

p =
mn

V
〈v2x〉, (1)

where vx is a particle’s velocity in x-direction and 〈v2x〉 is the square of vx
averaged over all particles (i.e. 〈v2x〉 is the mean v2x in the gas). Assuming that
there is nothing special about x-direction, the average motion of particles in
one direction is going to be equal to the average motion of particles in the
other two directions:

〈v2x〉 = 〈v2y〉 = 〈v2z〉. (2)

Since by definition v2 = v2x + v2y + v2z , then one can show that:

〈v2x〉 =
1

3
〈v2x + v2y + v2z〉 =

1

3
〈v2〉. (3)

Eq. (1) then becomes:

p =
mn

3V
〈v2〉. (4)

3 In presenting the derivation, I closely follow Feynman et al. (1964, chapter 39). In parts, I
also rely on DFH (2010, pp. 395–396), Dizadji-Bahmani (2011, pp. 31–33, 130–138), Greiner
et al. (1997, pp. 6–11), and Pauli (1973, pp. 94–103).
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From Newtonian mechanics we also have that the kinetic energy of a par-
ticle, Ekin, is equal to half the square of its velocity times its mass: Ekin =
mv2/2. Therefore, the mean kinetic energy of a gas is: 〈Ekin〉 = m 〈v2〉/2.
Substituting in Eq. (4) we finally have:

p V =
2n

3
〈Ekin〉. (5)

Venturing now into thermodynamics, we find concepts like temperature and
(thermal) equilibrium. We know from experience that if we let two systems
with different temperatures interact long enough, they will end up having the
same temperature: immersing a hot rod of iron into an ice-cold bucket of water
will result in the rod becoming cooler and the water becoming hotter, until
eventually both the rod and the water have the same temperature. Equal
temperature of two systems (e.g. two gases) then is just the final condition
(equilibrium) when they have been interacting with each other long enough.

What can we say about two gases when they are in equilibrium from the
point of view of the kinetic theory of gases? To answer this question let us
imagine a situation where two gases are in containers separated by a movable
frictionless piston. In one container the gas has n1 particles with mass m1 and
velocity v1 and in the other container the gas has n2 particles with mass m2

and velocity v2. The bombardment of the piston from one side will result in
the piston moving and compressing gas in the other container, which leads to
pressure build up in that container, which then leads to more pressure exerted
on the piston from that side, which leads to the piston moving and compressing
gas in the first container, which leads to pressure build up in that container,
and so forth. Eventually, the pressure on the piston from both sides will be
equal. Thus, using Eq. (5), the situation in the equilibrium looks as follows:

m1 n1
V1
〈v21〉 =

m2 n2
V2
〈v22〉 ⇔ n1

V1
〈Ekin1〉 =

n2
V2
〈Ekin2〉 (6)

Can we say something more about the gases in equilibrium than just that
the pressures they exert on the piston are equal? The answer is yes. Imagine
that the particles in the container on the left developed pressure by having low
velocity but high density (i.e. high n/V ) and the particles in the container on
the right counter that pressure by having high velocity but low density. Though
the pressure is the same on both sides, the piston does not stay still: it wiggles
since it does not receive a steady pressure. From time to time, the piston will
get a big impulse from the right giving more speed to the slower particles
on the left. The slower particles will then move faster until they balance the
wiggling of the piston (the faster particles on the right will overall lose energy,
and consequently speed, to the collisions with the piston). At the equilibrium,
the piston is moving at such a mean square speed that it picks up roughly as
much energy from the particles as it puts back into them. At that point, the
velocities of the two gases will roughly be the same. Hence, at the equilibrium
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when two gases are at the same temperature, not only are their pressures equal,
but their mean kinetic energies are equal as well.4 This allows us then to define
temperature as a function of the mean kinetic energy. However, the scale of
temperature has been chosen so that one cannot define temperature simply
as the mean kinetic energy without introducing a constant of proportionality.
Availing ourselves of one such constant k (Boltzmann’s constant), one is able
to express temperature in terms of the mean kinetic energy:

T =
2

3k
〈Ekin〉. (7)

Substituting T for 〈Ekin〉 in Eq. (5) as per Eq. (7), one gets the famous Boyle-
Charles Law of thermodynamics:

p V = nk T. (8)

To summarise the derivation, we started from the kinetic theory of gases and
with the help of certain assumptions (e.g. the particles are perfectly elastic and
the velocity distribution is isotropic) we showed that Eq. (5) holds. Further,
employing the concept of (thermal) equilibrium, we argued that temperature
relates to the mean kinetic energy of a gas as in Eq. (7). Ultimately, from
Eq. (5) and Eq. (7) we derived the Boyle-Charles Law, given in Eq. (8).

The sketched derivation of the Boyle-Charles Law from the kinetic theory
of gases exemplifies the steps that capture the reduction according to the GNS.
The reducing theory (T

F
) is the kinetic theory of gases and the reduced theory

(T
P

) is the Boyle-Charles Law. Using T
F

and auxiliary assumptions (e.g. the
particles are perfectly elastic and the velocity distribution is isotropic) we
derived Eq. (5) (T ∗

F
), i.e. a special version of T

F
(note that T ∗

F
cannot be

derived from the auxiliary assumptions alone and that these assumptions are
quite natural in the context of T

F
). We have, further, argued that one can

connect the mean kinetic energy (a term in T
F

) and temperature (a term in
T

P
) via Eq. (7). Eq. (7) is then the bridge law. From T ∗

F
and the bridge law

we derived T
P

. In this (simple) case of reduction, T
P

and T ∗
P

are one and the
same, so we need not show that T

P
and T ∗

P
are strongly analogous.

2.3 Why reduce?

In the previous two sections I have outlined one account of reduction and
how it applies to a particular case of reduction. But why should scientists be
interested in reductions? In the literature one comes across four recurrent rea-
sons for why reduction is desirable: explanation, parsimony, consistency, and

4 Feynman et al. (1964, chapter 39) additionally provide a more comprehensive argument
for why the mean kinetic energies of the two gases ought to be equal using only the concepts
from the kinetic theory of gases and the definition of equilibrium. For the purposes of this
paper, however, we need not go into such detail.
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confirmation. It is claimed that reductions are a certain kind of explanation
(Nagel, 1961, p. 338) or, more specifically, that (partial) reductions are causal
mechanical explanations (Schaffner, 2006, p. 385), where the reducing theory
explains the reduced theory; or where the reducing theory explains why the
reduced theory seemed correct (Sklar, 1967, p. 112); or where the reducing
theory explains the phenomena of the reduced theory (van Riel, 2014, p. 161);
or even where the reducing theory explains the empirical results that the re-
duced theory fails to explain (Rohrlich, 1989, p. 1168). On the GNS, however,
explanations, though nice to have, are not the primary aim of reduction; re-
ductions are desirable even if they do not provide explanations (DFH, 2010,
p. 407).

Parsimony is mentioned in the literature as another desirable product of
reduction. Sometimes, reduction can consist in the identification of entities
or properties of the reduced theory with entities or properties of the reduc-
ing theory, thus simplifying the ontology we adhered to before the reduction
(Sklar, 1967, pp. 120–121; 1993, pp. 361–362). For instance, a result of the
reduction of the physical optical theory of light to the theory of electromag-
netic radiation is the identification of light waves with electromagnetic waves:
light waves are electromagnetic waves (entity identification); or, a result of
the reduction of thermodynamics to statistical mechanics is the identification
of the temperature of a system with the mean kinetic energy of a system:
the temperature is the mean kinetic energy (property identification).5 Now,
to establish these identity claims one needs bridge laws that express identity
statements. However, on the GNS, bridge laws need not express identity state-
ments: they can express de facto correlations and that would be sufficient for
reduction (although not for establishing entity and property identifications).
So, on the GNS, parsimony (understood as simplification via entity and prop-
erty identifications), though perhaps nice to have, is also not the main goal of
reduction.

The two main aims of reduction according to the GNS are consistency and
confirmation (DFH, 2010, pp. 405–406). In the case where two self-consistent
and well-confirmed theories with overlapping domains of application provide
us with descriptions of the world that contradict each other, one is interested
in reconciling these theories so that we end up with a consistent worldview
(Nagel, 1961, p. 341). Reduction, so the argument goes, can help us to bring
together these two theories. To illustrate the point, consider thermodynam-
ics and statistical mechanics. The two theories mostly share the domain of
application and are both self-consistent and well-confirmed, but they give de-
scriptions of the world whose mutual consistency we are not sure of. However,

5 It is worth pointing out that in both entity identification and property identification we
simplify our previously held ontology not by eliminating unnecessary entities or properties
of the reduced theory (for instance, eliminating light waves and temperature), but rather by
assimilating these entities and properties via identification to the corresponding entities and
properties of the reducing theory. So, there are still light waves in the world, but instead of
two classes of entities—light waves and electromagnetic waves—there is only one (see Sklar,
1967, p. 121; 1993, pp. 361–362).
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reduction makes sure that the two theories become consistent with each other:
if T ∗

P
(a near enough cousin of T

P
, i.e. of thermodynamics in the example) can

be deduced from T ∗
F

(which is just T
F

, i.e. statistical mechanics, plus auxil-
iary assumptions) and bridge laws, then the two theories are consistent, for
deduction is sufficient to establish consistency.

In addition to establishing consistency, reduction also makes sure that,
given two theories with largely overlapping domains (like thermodynamics and
statistical mechanics), evidence confirming one theory also confirms the other,
which is what one would expect to be the case (DFH, 2010, p. 406; see also
Nagel, 1961, p. 361, Sarkar, 2015, p. 47, and van Riel, 2014, pp. 199–200). The
rationale is the following. As on the GNS T

P
and T ∗

P
are strongly analogous,

supporting evidence for T
P

would also be supporting evidence for T ∗
P

, and since
T ∗

P
is a deductive consequence of bridge laws and T ∗

F
(i.e. T

F
plus plausible

auxiliary assumptions), one would expect that same evidence to confirm T
F

.
On the other hand, since a deductive consequence of a hypothesis inherits that
hypothesis’s confirmatory support, evidence supporting T

F
would also support

T ∗
P

, which would in turn support T
P

. It is these confirmatory relations between
theories that most interest us in the present paper.

2.4 DFH’s Bayesian analysis

In their 2011 paper, DFH argue that the confirmatory relation between the
two theories holds if one adopts a Bayesian framework. According to this
framework, evidence (E) confirms a hypothesis (H) if P (H | E) > P (H); E
disconfirms H if P (H | E) < P (H); and E is irrelevant for H if P (H | E) = P (H).
From the probability calculus we further have that if E confirms H, then
l := P (E | ¬H)/P (E | H) (known as the likelihood ratio) is within the open
interval (0, 1); if E disconfirms H, then l is strictly greater than 1; and if E is
irrelevant for H, then l is equal to 1. Another common feature of a Bayesian
framework is that probabilities do not take extreme values 0 and 1, but lie
within the open interval (0, 1). An exception is made, however, in the case of
a conditional probability P (A | B) where A is a logical consequence of B; here
P (A | B) = 1.6

To neatly represent the probabilistic knowledge in a graphical manner, one
can employ Bayesian networks.7 A Bayesian network is a directed acyclic graph
(DAG) with nodes representing random variables8 and arrows representing the
relationship between the variables; arrows point only in one direction (hence
directed graph) and there is no path that starts at a certain node and, following
the arrows, ends at the same one (hence acyclic graph). For instance, the

6 For surveys on Bayesianism see Háyek & Hartmann (2010) and Hartmann & Sprenger
(2011). For a critical discussion of Bayesianism see Earman (1992).

7 For an introduction to Bayesian networks see Pearl (1988), Neapolitan (2003), Bovens
& Hartmann (2003, pp. 67ff.), DFH (2011, p. 325).

8 Throughout the article, random variables in the network are binary; that is, some ran-
dom variable A (denoted by italicized letters) can take two values A or ¬A (denoted by
non-italicized letters).
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network in Figure 1 is a Bayesian network: it has two nodes representing two
random variables H and E each taking two values: H and ¬H and E and
¬E, respectively. The one arrow going from H to E encodes the probabilistic
relationship between the two variables: E is probabilistically dependent on H
(the reason could be that, for instance, E is more likely to obtain if H is the
case then if ¬H is the case). To specify the network, one needs to set the prior
probabilities to all root nodes, i.e. nodes that do not have incoming arrows,
and one needs to set the conditional probabilities of all other nodes, given their
respective nodes at the other end of the incoming arrows. In the network in
Figure 1 we need to set the prior probability of the root node H, i.e. we need
to fix P (H), and the conditional probabilities of the node E given the node
H, i.e. we need to fix P (E | H) and P (E | ¬H).

EH

Fig. 1: An example of a Bayesian network

As an illustration let us consider the following example. Say H is the
proposition ‘S has cancer’ and E is the proposition ‘The test is positive’. The
Bayesian network in Figure 1 would then represent the probabilistic relation
between S having/not having cancer and the test being positive/negative.
P (H) would be the physician’s prior degree of belief—i.e. her degree of be-
lief before seeing the test results—that the patient S has cancer (it could be,
for instance, just a proportion of people in the population that have cancer).
P (E | H) would be the true positive rate (the rate of people with cancer that
the test correctly identified as such) and P (E | ¬H) would be the false pos-
itive rate (the rate of healthy people that the test incorrectly identified as
having cancer). Using Bayes’ Theorem9, one could then calculate P (H | E). If
we learn that the test is positive and if P (H | E) > P (H), then, by Bayesian
confirmation theory, the hypothesis that the patient has cancer is confirmed
by the test being positive.

Using the formal machinery of Bayesian networks, DFH model situations
before and after the reduction. For simplicity, the authors assume that both
T

F
and T

P
contain only one element, namely TF and TP respectively. Also, in

addition to evidence (EF) that confirms TF and evidence (EP) that confirms
TP, the authors include in the Bayesian network evidence (E) that confirms
both TF and TP. This is justified by the existence of real world examples of
such evidence (DFH, 2011, p. 324). Putting all this together, the situation
before the reduction is depicted in Figure 2.

The relevant probabilities that specify this network are:

9 Bayes’ Theorem: P (H | E) =
P (E|H)P (H)

P (E)
=

P (E|H)P (H)
P (E|H)P (H)+P (E|¬H)P (¬H)

.



10 Marko Tešić

E

TP TF

EFEP

Fig. 2: The Bayesian network representing the situation before the reduction

P1(TF) = tF , P1(TP) = tP

P1(EF | TF) = pF , P1(EF | ¬TF) = qF

P1(EP | TP) = pP , P1(EP | ¬TP) = qP (9)

P1(E | TF,TP) = α , P1(E | TF,¬TP) = β

P1(E | ¬TF,TP) = γ , P1(E | ¬TF,¬TP) = δ

After the reduction, the situation is different: two more nodes (T ∗
F and T ∗

P )
are added to the network. This is represented in Figure 3.

E

TP TF

EFEP

T ∗P T ∗F

Fig. 3: The Bayesian network representing the situation after the reduction

The relevant probabilities for this network include all from Eq. (9), with
the exception of P1(TP) = tP . As TP is no longer a root node, instead of
P1(TP) = tP we now have:

P2(TP | T∗
P) = p∗P , P2(TP | ¬T∗

P) = q∗P (10)

In addition to these probabilities, to complete the network DFH (2011, p. 328)
also specify the following probabilities:

P2(T∗
F | TF) = p∗F , P2(T∗

F | ¬TF) = q∗F (11)
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P2(T∗
P | T∗

F) = 1 , P2(T∗
P | ¬T∗

F) = 0 (12)

The conditional probabilities in Eq. (12) assume extreme values since they
represent the bridge law: T∗

P is a logical consequence of T∗
F, supposing the

bridge law in the background.
Given the Bayesian network in Figure 3 and the probability assignments

related to that network, one can prove that after the reduction the following
two theorems hold (DFH, 2011, p. 329):

Theorem 1 EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Theorem 2 EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

The two theorems entail that EF confirms TP and EP confirms TF if EF

confirms TF (in which case the likelihood ratio qF /pF is within the interval
(0, 1) and, therefore, pF > qF ), EP confirms TP (pP > qP ), TF confirms T∗

F

(p∗F > q∗F ), and T∗
P confirms TP (p∗P > q∗P ). That EF confirms TF and EP

confirms TP has been assumed from the beginning. That TF confirms T∗
F and

T∗
P confirms TP seems to be plausible according to DFH (2011, p. 329) as the

confirmation flow from TF to TP is thereby ensured. So, given the Bayesian
network in Figure 3, the related probabilities, and the assumptions about
confirmatory relations among TF, TP, T∗

F, T∗
P, EF, and EP, one can show that

post-reduction EF confirms TP and EP confirms TF.

3 Critical discussion

In this section I point to some difficulties faced by the Bayesian analysis pre-
sented in the previous section.

DFH (2011, p. 327) correctly point out that the following conditional inde-
pendencies hold in the network representing the situation before the reduction
(Figure 2):

EF ⊥⊥ TP | TF , EP ⊥⊥ TF | TP 10 (13)

Now, DFH (2011, p. 328) also claim that the conditional independencies
in Eq. (13) do not hold in the Bayesian network representing the situation
after the reduction (Figure 3). However, the conditional independencies in
Eq. (13) do hold after the reduction. Looking at the Bayesian network in
Figure 3 we observe that there are two possible paths between EF and TP :
EF−TF−T ∗

F−T ∗
P−TP and EF−TF−E−TP . As both paths are blocked at TF

10 ‘A ⊥⊥ B | C’ encodes the information that A and B are conditionally independent given
C. By definition, A and B are conditionally independent given C, i.e. A ⊥⊥ B | C, if and
only if P (A | B,C) = P (A | C).
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by {TF }, then EF and TP are d-separated11 by {TF }; hence, EF ⊥⊥ TP | TF
holds. By similar reasoning we get that EP ⊥⊥ TF | TP also holds.

Further, the authors (2011, p. 327) also claim that the following equalities
are a direct consequence of the conditional independencies in Eq. (13):

P1(TP | EF) = P1(TP) , P1(TF | EP) = P1(TF) (14)

However, the equations in (14) do not follow directly from the independencies
in Eq. (13). A counter-example is actually the Bayesian network that repre-
sents the situation after the reduction (Figure 3). Here, as shown in the previ-
ous paragraph, the independencies from Eq. (13) also hold, but the equations
from (14) (which can also be translated into independencies, namely uncon-
ditional independencies TP ⊥⊥ EF and TF ⊥⊥ EP) do not, since now neither
TP and EF nor TF and EP are unconditionally independent. In spite of that,
the equations in (14) do hold before the reduction: they follow from the inde-
pendencies in Eq. (13) coupled with TF ⊥⊥ TP that also holds in the Bayesian
network in Figure 2; alternatively, the equations in (14) can be derived more
directly using d-separation (see Appendix for more details).

The difficulties that I have pointed at so far do not undercut the main
project laid out by DFH, as one can still show that after the reduction EF

confirms TP and EP confirms TF. However, the authors also claim that random
variables T ∗

F and T ∗
P are “qua the bridge law, intersubstitutable with each

other” and that the arrow “could have also been drawn from T ∗
P to T ∗

F , ” in
which case “we had to require P (T∗

F | T∗
P) = 1 and P (T∗

F | ¬T∗
P) = 0” (DFH,

2011, pp. 329–330). Let us, then, modify the Bayesian network in Figure 3 by
now drawing an arrow from T ∗

P to T ∗
F instead of an arrow that goes from T ∗

F

to T ∗
P (Figure 4).

Analyzing the network in Figure 4, we first note that T ∗
P is now a root

node and as such it has a prior probability that one needs to specify. However,
it seems at best odd that we now have to assign a prior probability P (T∗

P),
since T∗

P it is tightly related to T∗
F and the bridge law, of which it is a logical

consequence, and to TP via strong analogy. Second, it is incorrect that we only
need to specify P (T∗

F | T∗
P) and P (T∗

F | ¬T∗
P) in the case of an arrow flip be-

tween T ∗
F and T ∗

P : T ∗
F is now probabilistically dependent on both T ∗

P and TF , so
we would need to specify P (T∗

F | TF,T
∗
P), P (T∗

F | TF,¬T∗
P), P (T∗

F | ¬TF,T
∗
P),

and P (T∗
F | ¬TF,¬T∗

P). However, it is not clear what values these probabilities
should assume. Should any have as a value 1 or 0? How do we model the bride
law in this case? Third and most importantly, paths EF −TF −T ∗

F −T ∗
P −TP

and EF − TF −E − TP are now both blocked by ∅ at T ∗
F and E respectively,

since there are converging arrows both at T ∗
F and E. Hence, EF and TP are

d-separated by ∅ and EF ⊥⊥ TP holds. Similarly, we get that EP ⊥⊥ TF holds.

11 d-separation is a property of Bayesian networks by which one can track down all the
independences (conditional and unconditional ones) in the Bayesian network: A ⊥⊥ B | C if
and only if A and B are d-separated by {C}. Two nodes A and B are d-separated by {C}
if all the paths in the network between A and B are blocked by {C}. For more details on
d-separation see Neapolitan (2003, pp. 70ff.).
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E

TP TF

EFEP

T ∗P T ∗F

Fig. 4: The Bayesian network representing the situation
after the reduction with an arrow from T ∗P to T ∗F

This implies that P (TP | EF) = P (TP) and P (TF | EP) = P (TF). So, after
the reduction we have the same pair of equations from (14) that describe the
situation before the reduction and say that EF does not confirm (or disconfirm)
TP and that EP does not confirm (or disconfirm) TF. But this runs against
the GNS account which aims at establishing these confirmatory relations after
the reduction.

One could say to this that, surely, if one flips the arrow, undesirable results
emerge. But the GNS talks of T∗

P being a logical consequence of T∗
F (supposing

the bridge law) and not the other way around. This, then, gives a reason to fix
the direction of the arrow. Another reason to fix the arrow direction is that on
the GNS, to deduce T∗

P from TF plus auxiliary assumptions (and thus establish
the consistency of T∗

P and TF) all we need is that whenever TF applies, then T∗
P

applies as well (the other direction, i.e. whenever T∗
P applies, then TF applies

as well, is not necessary for deduction). So, DFH could then simply add a note
to their Bayesian analysis saying that, given the two aforementioned reasons,
the network in Figure 3 (i.e. the network from their actual analysis), but not
the network in Figure 4 (i.e. the network that they suggest would also do the
job), is the way to model the situation after the reduction. Granting this point,
the analysis suffers from at least three further problems.

Problem 1. From the discussion in Section 2.2 of the reduction of the Boyle-
Charles Law to the kinetic theory of gases we learned that in this (simple)
case of reduction T∗

P and TP are one and the same and encode Eq. (8),
namely p V = nk T . From the equations in Eq. (12), i.e. ones that model
the bridge law, we have that P2(TP | T∗

F) = 1, where, in this particular case,
T∗

F represents Eq. (5), namely p V = 2n
3 〈Ekin〉. Since, P2(TP | T∗

F) = 1, then
p V = 2n

3 〈Ekin〉 � p V = nk T ; but this is clearly false. A better way of
writing the entailment would be: p V = 2n

3 〈Ekin〉 �B
p V = nk T , where B

is Eq. (7), namely T = 2
3k 〈Ekin〉. In other words, supposing B, T∗

F entails
TP. But this seems to suggest that the probability distribution P2 needs to
be modified so as to incorporate B in the background, i.e. B needs to be
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a part of the probability function P2, in order for the entailment to hold.
So, instead of P2(TP | T∗

F) = 1 we should write PB(TP | T∗
F) = 1 to de-

note that B is part of the probability function. This means that besides
PB(TP | T∗

F) = 1 and PB(TP | ¬T∗
F) = 0, we also have to specify PB(TF),

PB(EF | TF), PB(EP | TP), PB(E | TF,TP), etc. Intuitively, the unconditional
probability of TF and the conditional probabilities EF given TF, EP given TP,
and E given TF and TP should be the same before and after the reduction:
the fact that we have reduced TP to TF should not affect the unconditional
probability of the reducing theory or the conditional probabilities of the three
kinds of evidence. DFH also seem to share this intuition since on their account
P1(TF) = P2(TF), P1(EF | TF) = P2(EF | TF), P1(EP | TP) = P2(EP | TP),
and P1(E | TF,TP) = P2(E | TF,TP) hold. However, if, as I argued, after the
reduction we should have the probability function PB instead of P2, then
P1(EP | TP) = PB(EP | TP) and P1(E | TF,TP) = PB(E | TF,TP) are no
longer guaranteed to hold. For, as on the GNS we derived TP from T∗

F and
B, then after the reduction TP is dependent on B. This implies that, con-
trary to our intuitions, PB(EP | TP) and PB(E | TF,TP) may change after the
reduction.

Problem 2. The reduction relation should be asymmetric: though the Boyle-
Charles Law reduces to the kinetic theory of gases, the kinetic theory of gases
does not reduce to the Boyle-Charles Law.12 From Eq. (12) it follows that
P2(T∗

P | T∗
F) = P2(T∗

F | T∗
P) = 1 and P2(T∗

P | ¬T∗
F) = P2(T∗

F | ¬T∗
P) = 0 (see

Appendix). Hence, not only does T∗
F entail T∗

P, but also T∗
P entails T∗

F (suppos-
ing the bridge law). So, (i) the proposed Bayesian analysis requires symmetry
in reduction: in our example, not only do we have a reduction of the Boyle-
Charles Law, but Eq. (5) also reduces to the Boyle-Charles Law (i.e. Eq. (8)).
This seems to run against the intuition that the reduction should go only in
one direction. Further, (ii) the mutual entailment of T∗

P and T∗
F would prevent

partial reductions—cases of reduction where not all the laws of a theory are
reduced, but only some laws of a theory, namely those that are deduced, are
reduced—which the GNS allows for: in the general case, the mutual entailment
implies that all laws of the T ∗

P
can be deduced from T ∗

F
, given the bridge laws.

The Bayesian analysis that DFH put forward accounts, thus, only for the the
cases of complete reduction; yet, not only does the GNS allow for the partial
reductions, but some authors have argued that it is partial reductions that we
can best hope for in sciences like biology (Schaffner, 2006, p. 384). This means
that the proposed Bayesian analysis is not the best fit for the GNS and that
it may disregard certain sciences when it comes to the subject of reduction.

Problem 3. From Eq. (12) it also follows that P2(T∗
F) = P2(T∗

P) (see Ap-
pendix). As on the GNS T∗

P is a deductive consequence of T∗
F and the bridge

laws, it seems rather unlikely, though possible, that P2(T∗
F) = P2(T∗

P). To
illustrate the point, let us one again return to our example of reduction. Since
T∗

P and TP are the same, the equality then translates as P2(T∗
F) = P2(TP).

12 A number of authors support the claim that the reduction relation should be asymmetric:
Kuipers (1982), Sarkar (2015, p. 47), Riel (2013), Riel and Gulick (2016, p. 18).
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In other words, after the reduction the probability of p V = 2n
3 〈Ekin〉 has to

be equal to the probability of p V = nk T . It seems somewhat implausible
that the values of the two probabilities always be the same, since, for one, the
two equations hold under different assumptions: p V = 2n

3 〈Ekin〉 is a deductive
consequence of the kinetic theory of gases coupled with the auxiliary assump-
tions and p V = nk T is a deductive consequence of p V = 2n

3 〈Ekin〉 and the
bridge laws. This then suggests that the relation between P2(T∗

F) and P2(T∗
P)

should best be left open: P2(T∗
F) could be greater than, less than, or equal to

P2(T∗
P).

These three problems should not be perceived as knockdown arguments
against DFH’s Bayesian analysis: after all, we are in the model-building busi-
ness where knockdown arguments arguably do not have as much bite. The
problems’ main purpose is rather to invite and motivate an alternative model
of the situation after the reduction. My main goal is thus to present another
way of modeling the situation after the reduction that helps us address the
three problems, that better fits the GNS, and that allows us to rigorously
show some new results regarding the confirmatory relations that we could
only presume to hold with the original analysis, or so I argue.

4 A revised Bayesian analysis

In this section I try to account for the difficulties presented in the previous
section by introducing modifications to DFH’s Bayesian analysis. I start by
discussing a natural revision to the original analysis and, after recognizing that
it does not account for all the problems of the original analysis, I present an
alternative Bayesian analysis.

4.1 An (unsuccessful) easy remedy

Carefully examining the difficulties, one notes that most of them are due to the
probability assignments in Eq. (12). So, as an amendment one could consider
changing these assignments. P3(T∗

P | T∗
F) has to be equal to 1 as T∗

P is a logical
consequence of T∗

F (supposing the bridge law in the background). But what
about P3(T∗

P | ¬T∗
F)? Saying that T∗

F entails T∗
P probabilistically demands only

that P3(T∗
P | T∗

F) = 1. It does not put constrains on the value of P3(T∗
P | ¬T∗

F).
However, letting P3(T∗

P | ¬T∗
F) take the value of 1 would run against the

motivation of the GNS, since on this account T∗
P is a logical consequence of

T∗
F and the bridge law, and allowing P3(T∗

P | ¬T∗
F) to assume the value of

1 would mean that T∗
P is also a logical consequence of ¬T∗

F and the bridge
law. On the other hand, allowing P3(T∗

P | ¬T∗
F) to take the value 0 would

bring us back to the problems from the previous section. So, one can specify
P3(T∗

P | ¬T∗
F) = a, where a ∈ (0, 1).

With P3(T∗
P | ¬T∗

F) = a instead of P2(T∗
P | ¬T∗

F) = 0 and everything else
as in the original analysis, one can prove the following theorems:
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Theorem 3 EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Theorem 4 EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Notice that these theorems are of exactly the same form as Theorem 1 and
Theorem 2 from the original analysis. Moreover, one can show that 0 < P3(T∗

F |
T∗

P) < 1, i.e. T∗
P does not entail T∗

F. This successfully answers Problem 2 of
the original analysis. However, Problem 1 is still present since P3(T∗

P | T∗
F) = 1

holds and, therefore, one can run the same argument as in the previous section.
In addition, one can also show that P3(T∗

P) > P3(T∗
F), which is an unfortunate

result in light of Problem 3, as the relation between P3(T∗
P) and P3(T∗

F) is again
held fixed (see the Appendix for more details on this subsection).

4.2 An alternative Bayesian analysis

The previous attempt to account for the problems, however, seems to be on
the right track. So, we need to look for additional modifications. Naturally,
we can further investigate bridge laws. In the original analysis, the bridge
law is supposed in the background without explicitly being included in the
network. On the other hand, DFH (2011, pp. 328–329) also mention that (a)
different scientists can have different credences about a particular bridge law.
This claim seems to be vindicated by the following two observations. First, in
the derivation of the Boyle-Charles Law from Section 2.2 following Feynman
et al. (1964) I presented an argument for the claim that temperature can be
expressed in terms of mean kinetic energy. Some scientists may be more and
some may be less convinced by this argument and so their credences may vary
with respect to the bridge law in Eq. (7). Second, bridge laws can be empir-
ically tested. For instance, Ager et al. (1974) cite Joule’s experiments which
can be used to vindicate the relation between temperature and mean kinetic
energy. Schaffner (2012) cites Hertz’s and Wiener’s experiments that helped
establish the bridge law V = E used in the derivation of many laws of the
physical optical theory of light from the theory of electromagnetic radiation.
Since one scientist’s confidence in the empirical support of the bridge law may
be different from another scientist’s confidence, the credences scientists have
about a particular bridge law may differ from one scientist to another and
may change through time. Furthermore, DFH (2011, p. 329) conjecture that
(b) the flow of confirmation in the network is dependent on the probability
value one assigns to the bridge law: with lower probability value the degree of
confirmation of TF by EP or TP by EF is lower. Together, (a) and (b) then
give reason to explicitly model, i.e. to endogenously define, the bridge law (B)
in the network (cf. Bovens & Hartmann, 2003, pp. 56ff.). What is more, given
(a) it seems plausible that scientists can give prior probabilities to a particular
bridge law; this in turn allows us to model B as a root node in the network.
The question, now, is how to connect B with other nodes. Well, since T∗

P is
a logical consequence of T∗

F and B, it is natural to draw arrows from T ∗
F and
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from B to T ∗
P . Putting it all together, the new Bayesian network representing

the state of affairs after the reduction is depicted in Figure 5.

E

TP TF

EFEP

T ∗P T ∗F

B

Fig. 5: The Bayesian Network representing the situation
after the reduction with the bridge law defined endogenously

Since there is now an additional node in the network, besides probabilities
specified for the Bayesian network in Figure 3, we also need to specify P4(B).
So,

P4(B) = b (15)

Further, instead of the probabilities in Eq. (12), we now have to
assign values to P4(T∗

P | T∗
F,B), P4(T∗

P | ¬T∗
F,B), P4(T∗

P | T∗
F,¬B), and

P4(T∗
P | ¬T∗

F,¬B). As T∗
P is a logical consequence of T∗

F and B, then
P4(T∗

P | T∗
F,B) = 1. But what about P4(T∗

P | ¬T∗
F,B), P4(T∗

P | T∗
F,¬B), and

P4(T∗
P | ¬T∗

F,¬B)? Drawing on the rationale from Section 4.1, we do not as-
sign them value 1 as we do not want to say that T∗

P is also entailed by ¬T∗
F or

¬B. We do not assign them value 0 either, since Problem 2 of the original anal-
ysis reemerges (see Appendix). So, we assign them value a, where a ∈ (0, 1).13

Therefore, instead of Eq. (12) we now have:

P4(T∗
P | T∗

F,B) = 1

P4(T∗
P | ¬T∗

F,B) = P4(T∗
P | T∗

F,¬B) = P4(T∗
P | ¬T∗

F,¬B) = a
(16)

Given the new probability assignments, one is able to show that 0 <
P4(T∗

F | T∗
P,B) < 1, i.e. T∗

F is not entailed by T∗
P and B, which successfully

addresses Problem 2 of the original analysis where T∗
P entails T∗

F (supposing
the bridge law). But we had that result in Section 4.1 as well. What about
the relation between P4(T∗

F) and P4(T∗
P), that is, Problem 3 ? One finds that

on the new probability assignments it is left open, i.e. P4(T∗
P) can be greater

13 Although a, in principle, can take any value in the open interval (0, 1), it seems more
plausible that it assumes a rather low value since we do not expect to often find that T∗P
holds and that ¬T∗F or ¬B hold.
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than, less than, or equal to P4(T∗
F), depending on the particular values one

assigns to the relevant probabilities (see Appendix). So, Problem 3 is success-
fully addressed as well. Further, Problem 1 does not emerge since we have
that P4(T∗

P | T∗
F,B) = 1 and T∗

F,B � T∗
P is true without us having to sup-

pose something additionally in order for the entailment to hold. Hence, the
values of the conditional probabilities EP given TP and E given TP and TF

remain the same before and after the reduction. Therefore, all three problems
that one can ascribe to DFH’s Bayesian analysis do not emerge in the revised
Bayesian analysis. What is more, as I have made use of the real-world example
of reduction (i.e. the reduction of the Boyle-Charles Law to the kinetic theory
of gases from Section 2.2) to motivate and inform the three problems, this al-
ternative Bayesian analysis is arguably a better fit for the real-world examples
of reduction than DFH’s analysis.

Furthermore, given the Bayesian network in Figure 5 and probability as-
signments associated with it, one can prove the following theorems:

Theorem 5 EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Theorem 6 EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

As in Section 4.1, these theorems are in exactly the same form as Theorem 1
and Theorem 2, the main results from the original analysis, which say that EF

confirms TP and EP confirms TF. Recently, Sarkar (2015, p. 47) pointed out
that though this result is a good start, one may also be interested in whether
there is any added confirmation: after the reduction, does EF add anything to
EP’s confirmation of TP and does EP add anything to EF’s confirmation of
TF? In relation to this question one can prove the following theorems:

Theorem 7 EF adds to EP’s confirmation of TP iff (pF −qF ) (p∗F −q∗F ) (p∗P −
q∗P ) > 0.

Theorem 8 EP adds to EF’s confirmation of TF iff (pP −qP ) (p∗F −q∗F ) (p∗P −
q∗P ) > 0.

The two theorems entail that, after the reduction, EF enhances the confirma-
tion of TP and EP enhances the confirmation of TF under the same conditions
under which EF confirms TP and EP confirms TF.14 Thus, not only does EF

confirm TP and EP confirm TF, but also EF provides additional confirmational
boost to TP (that is, EF provides the confirmational boost to TP that is in
addition to that of EP) and, similarly, EP provides additional confirmational
boost to TF (that is, EP provides the confirmational boost to TF that is in
addition to that of EF).

The analysis so far implies that whether EF confirms TP or EP confirms
TF and whether EF enhances the confirmation of TP or EP enhances the

14 Interestingly, but perhaps unsurprisingly, one can show that in DFH’s original analy-
sis the two theorems hold in exactly the same form (see Theorem 7’ and Theorem 8’ in
Appendix).
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confirmation of TF does not depend on the value that one assigns to P4(B).
However, if we are interested in the degree of confirmation15 of TP by EF or
in the degree of confirmation of TF by EP, then one can prove the following
two theorems:

Theorem 9 Given a, pF , qF , p∗F , q∗F , p∗P , q∗P , and tF are constant and pF >
qF , p∗F > q∗F , and p∗P > q∗P , if b increases (decreases), then d(TP, EF) increases
(decreases).

Theorem 10 Given a, pP , qP , p∗F , q∗F , p∗P , q∗P , and tF are constant and
pP > qP , p∗F > q∗F , and p∗P > q∗P , if b increases (decreases), then d(TF, EP)
increases (decreases).

The two theorems say that, other values remaining the same, by increasing
(decreasing) the value of P4(B), the degree of confirmation of TP and the
degree of confirmation of TF increases (decreases). Or in other words, the
degree of confirmation of TP and the degree of confirmation of TF are directly
proportional to the value of P4(B), given that other values are constant. This is
an additional improvement to both the original analysis and the easy remedy
from Section 4.1 where one could only speculate on the relation between the
confidence we have in the bridge law and the degree of confirmation of TP and
TF (see DFH, 2011, p. 329). Thus, the new alternative Bayesian analysis is
richer in content than both the easy remedy and DFH’s analysis.

Next, although the present Bayesian analysis allows P4(T∗
P) to be greater

than, less than, or equal to P4(T∗
F), given the following plausible value assign-

ments:
a = 0.1, b = 0.7, tF = 0.8, and p∗F > q∗F ,

as a further result one finds that P4(T∗
P) < P4(T∗

F) is more likely than
P4(T∗

P) ≥ P4(T∗
F). Specifically, P4(T∗

F) is always greater than P4(T∗
P) if the

difference between p∗F and q∗F is sufficiently high (around 0.3) or if both p∗F
and q∗F assume values greater than approx. 0.35, as shown in Figure 6.16

This result is very much in agreement with the GNS. Since T∗
F is a deductive

consequence of TF and plausible auxiliary assumptions which are not foreign
to TF, one would expect P4(T∗

F) to be close to P4(TF); that is, one would
expect P4(T∗

F) to assume a relatively high value (otherwise, if P4(TF) would
not be sufficiently high, we would not be in the business of reducing TP to
TF). Further, as T∗

P is a deductive consequence of T∗
F and plausible bridge

laws (B), one would expect P4(T∗
P) to be relatively close to P4(T∗

F) but not
higher than P4(T∗

F) since (1) P4(T∗
F) takes a high value and (2) T∗

P is not a
direct consequence of only T∗

F but of T∗
F and B. This, however, is not to say

that we would expect in all cases to find out that P4(T∗
P) is less than P4(T∗

F),

15 Here I use the difference measure d as the measure of degree of confirmation of a
hypothesis (H) by evidence (E): d(H,E) := P (H | E) − P (H) (cf. Fitelson, 1999, p. 363;
Hartmann & Sprenger, 2011, p. 613).
16 The situation does not differ much given somewhat different value assignments for a, b,

and tF .



20 Marko Tešić14
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Fig. 5: Dependence of P4(T∗
P)−P4(T∗

F) on p∗F and q∗F , with a = 0.1, b = 0.7,
tF = 0.8, and p∗F > q∗F . As p∗F > q∗F , a point (p∗F , q∗F ) can only be inside the
area below the blue diagonal (marked with • and N). When a point (p∗F , q∗F )
lies on the red line, then P4(T∗

P)− P4(T∗
F) = 0, i.e. P4(T∗

P) = P4(T∗
F). The

area left of the red line (marked with N) corresponds to P4(T∗
P) > P4(T∗

F).
The area right of the red line (marked with •) corresponds to P4(T∗

P) <
P4(T∗

F)

higher than P4(T∗
F) since (1) P4(T∗

F) takes a high value and (2) T∗
P is not a

direct consequence of only T∗
F but of T∗

F and B. This, however, is not to say
that we would expect in all cases to find out that P4(T∗

P) is less than P4(T∗
F),

but rather that, given different parameters (e.g. different value assignments
for P4(TF), P4(T∗

F | TF), and so on), what we expect to find is that in the
majority of cases P4(T∗

P) turns out to be less than P4(T∗
F).

In addition to the theorems so far mentioned, one can also prove the follow-
ing theorem that is in exactly the same form as the Theorem 3 from Dizadji-
Bahmani et al.’s analysis (Dizadji-Bahmani et at., 2011, p. 331):

Theorem 9 ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if (p∗F > q∗F )
and if (p∗P > q∗P ).

In this theorem, where ∆0 := P4(TF,TP) − P1(TF,TP), the conjunction of
TF and TP is compared before and after the reduction and it is said that if
either TF and T∗

F or T∗
P and TP are independent, then TF and TP remain

independent after the reduction; and if TF confirms T∗
F and if T∗

P confirms
TP, then the conjunction of TF and TP is more likely after the reduction.

Now, Dizadji-Bahmani et at. (2011) prove other important theorems that
describe the relationship of the posterior probabilities of the conjunction of
TF and TP and the relationship of the prior and posterior probabilities of the

Fig. 6: Dependence of P4(T∗P)−P4(T∗F) on p∗F and q∗F , with a = 0.1, b = 0.7,
tF = 0.8, and p∗F > q∗F . As p∗F > q∗F , a point (p∗F , q∗F ) can only be inside the
area below the blue diagonal (dotted • and N). When a point (p∗F , q∗F ) lies
on the red line, then P4(T∗P)−P4(T∗F) = 0, i.e. P4(T∗P) = P4(T∗F). The area
left of the red line (dotted N) corresponds to P4(T∗P) > P4(T∗F). The area
right of the red line (dotted •) corresponds to P4(T∗P) < P4(T∗F)

but rather that, given different parameters (e.g. different value assignments
for P4(TF), P4(T∗

F | TF), and so on), what we expect to find is that in the
majority of cases P4(T∗

P) turns out to be less than P4(T∗
F).

In addition to the theorems so far mentioned, one can also prove the fol-
lowing theorem that is in exactly the same form as the Theorem 3 from DFH’s
analysis (DFH, 2011, p. 331):

Theorem 11 ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if (p∗F > q∗F )
and if (p∗P > q∗P ).

In this theorem, where ∆0 := P4(TF,TP) − P1(TF,TP), the conjunction of
TF and TP is compared before and after the reduction and it is said that if
either TF and T∗

F or T∗
P and TP are independent, then TF and TP remain

independent after the reduction; and if TF confirms T∗
F and if T∗

P confirms
TP, then the conjunction of TF and TP is more likely after the reduction.

Now, DFH (2011) prove other important theorems that describe the rela-
tionship of the posterior probabilities of the conjunction of TF and TP and
the relationship of the prior and posterior probabilities of the conjunction of
TF and TP, which are not proven in this paper. However, it seems plausible
to conjecture that these theorems can be derived given the Bayesian network
in Figure 5 and probability assignments associated to it as well. For instance,
Theorems 4 and 6 of DFH’s analysis say, loosely put, that if either TF and
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T∗
F or T∗

P and TP are independent, then there is no flow of confirmation be-
tween TF and TP and the situation after the reduction is the same as the one
before the reduction (DFH, 2011, pp. 331–332). Since the difference between
the network in Figure 5 and the network in Figure 3 is in the introduction of
B in the network in Figure 5 and, as mentioned above, B by itself does not
stop the flow of confirmation between TF and TP, then one would expect the
other theorems to also hold in this revised analysis.

5 Conclusion

In this paper, I have argued that a Bayesian analysis of the confirmatory
relation between TP and EF and between TF and EP presented by DFH (2011)
is not without difficulties. I have shown that the arrow flip between T ∗

P and T ∗
F

would render the situation after the reduction exactly like the one before the
reduction. Moreover, I have argued that the probability function that DFH
use to model the situation after the reduction should be modified so that it
incorporates the bridge law. However, this leads to the undesirable consequence
that the conditional probabilities EP given TP and E given EF and EP may not
remain the same after the reduction (Problem 1 ). Furthermore, it follows from
DFH’s analysis that T∗

P and T∗
F entail each other. This mutual entailment (i)

requires symmetry in reduction (contrary to one’s expectation that reduction
should be asymmetric) and (ii) it prevents partial reductions (which the GNS
explicitly allows for and which may be the only kind of reduction that we
find in sciences like biology) (Problem 2 ). From DFH’s analysis it also follows
that P2(T∗

P) = P2(T∗
F) holds. This is, however, unlikely to always be the case

and the relation between P2(T∗
P) and P2(T∗

F) should then best be left open
(Problem 3 ).

As a remedy, one could specify P3(T∗
P | ¬T∗

F) = a, where a ∈ (0, 1). Al-
though with this revised version, dubbed an easy remedy, one can prove The-
orems 3 and 4 that are in exactly the same form as the Theorems 1 and 2 form
the original analysis and one can account for Problem 2, alas, Problems 1 and
3 remain unanswered.

I then introduced an alternative Bayesian analysis where further modifi-
cation is made: a node modeling the bridge laws is added to the Bayesian
network. I have argued that given this new Bayesian network and related
probability assignments, one is able to successfully address the drawbacks of
the original analysis that I have pointed out (i.e. Problems 1, 2, and 3 ), thus
making the new Bayesian analysis more realistic than DFH’s analysis since
the three problems were motivated and informed by the real-world example of
reduction. Also, one can prove theorems 5, 6, and 11 that share the form with
the first three theorems of the original analysis. Furthermore, in contrast to
both the original analysis and the easy remedy, one can now explicitly show
(Theorems 9 and 10) the relation between the flow of confirmation and the
value one assigns to the probability of the bridge law, making this analysis
richer in content. Also, I have shown that though the new Bayesian analy-
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sis allows P2(T∗
P) to be greater than, less than, or equal to P2(T∗

F), it is not
completely silent about the relation between P2(T∗

P) and P2(T∗
F): one finds

that, given plausible value assignments, P4(T∗
P) < P4(T∗

F) is more likely than
P4(T∗

P) ≥ P4(T∗
F), which, as I have argued, is in agreement with the GNS.

In addition, I have shown not only that EF confirms TP and EP confirms
TF after the reduction, but also that EF enhances the confirmation of TP

(Theorem 7) and EP enhances the confirmation of TF (Theorem 8). Lastly, I
have conjectured that one should expect to prove the other theorems from the
original analysis that describe the important confirmatory relations after the
reduction.

Appendix

To show: EF ⊥⊥ TP | TF and TP ⊥⊥ TF entail P1(TP | EF) = P1(TP)

EF ⊥⊥ TP | TF (1)

TP ⊥⊥ EF | TF (by the s-g axiom Symmetry17)(2)

P1(TP | EF,TF) = P1(TP | TF) (by the def. of cond. independence)(3)

TP ⊥⊥ TF (4)

P1(TP | TF) = P1(TP) (by the def. of independence)(5)

P1(TP | EF,TF) = P1(TP) (from (3) and (5))(6)

TP ⊥⊥ EF , TF (by the def. of cond. independence)(7)

TP ⊥⊥ EF (by the s-g axiom Decomposition)(8)

P1(TP | EF) = P1(TP) (by the def. of independence)(9)

ut

Similarly, we get that EP ⊥⊥ TF | TP and TP ⊥⊥ TF entail P1(TF | EP) =
P1(TF).

To show: P1(TP | EF) = P1(TP)—by d-separation

There is only one possible path between EF and TP , namely EF−TF−E−TP ,
which is blocked at E by ∅. Therefore, TP ⊥⊥ EF . By the definition of inde-
pendence this translates into P1(TP | EF) = P1(TP). ut

Similarly, we get that P1(TF | EP) = P1(TF) holds by d-separation before the
reduction.

17 The expression ‘s-g axiom’ stands for semi-graphoid axiom. For more details on semi-
graphoid axioms see Pearl (1988, pp. 84ff).
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To show: P2(T∗
F | T∗

P) = 1

P2(T∗
P | ¬T∗

F) = 0

P2(T∗
P | ¬T∗

F) =
P2(T∗

P,¬T∗
F)

P2(¬T∗
F)

= 0

P2(T∗
P,¬T∗

F) = 0

P2(¬T∗
F | T∗

P) =
P2(T∗

P,¬T∗
F)

P2(T∗
P)

= 0

P2(T∗
F | T∗

P) = 1

ut

To show: P2(T∗
F | ¬T∗

P) = 0

P2(T∗
P | T∗

F) = 1

P2(¬T∗
P | T∗

F) =
P2(¬T∗

P,T
∗
F)

P2(T∗
F)

= 0

P2(¬T∗
P,T

∗
F) = 0

P2(T∗
F | ¬T∗

P) =
P2(¬T∗

P,T
∗
F)

P2(¬T∗
P)

= 0

ut

To show: P2(T∗
F) = P2(T∗

P)

P2(T∗
P | T∗

F) =
P2(T∗

P,T
∗
F)

P2(T∗
F)

= 1

P2(T∗
P,T

∗
F) = P2(T∗

F)

P2(T∗
F | T∗

P) =
P2(T∗

P,T
∗
F)

P2(T∗
P)

=
P2(T∗

F)

P2(T∗
P)

= 1

P2(T∗
F) = P2(T∗

P)

ut

I adopt the following convention: z := 1− z.

Theorem 3 EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Proof

P3(TP|EF) =
P3(TP,EF)

P3(EF)

P3(TP,EF) =
∑

T∗
P ,T∗

F ,TF

P3(TP | T ∗
P )P3(T ∗

P | T ∗
F )P3(T ∗

F | TF )P3(TF )

· P3(EF | TF )
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= pF tF (p∗P p
∗
F + a p∗P p

∗
F + a q∗P p

∗
F )

+ qF tF (p∗P q
∗
F + a p∗P q

∗
F + a q∗P q

∗
F )

P3(EF) =
∑
TF

P3(EF | TF )P3(TF )

= pF tF + qF tF

P3(TP) =
∑

T∗
P ,T∗

F ,TF

P3(TP | T ∗
P )P3(T ∗

P | T ∗
F )P3(T ∗

F | TF )P3(TF )

= tF (p∗P p
∗
F + a p∗P p

∗
F + a q∗P p

∗
F )

+ tF (p∗P q
∗
F + a p∗P q

∗
F + a q∗P q

∗
F )

P3(TP | EF)− P3(TP) =
a tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

pF tF + qF tF

ut

Theorem 4 EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Proof

P3(TF | EP) =
P3(TF,EP)

P3(EP)

P3(TF,EP) = P3(TF)
∑

T∗
P ,T∗

F ,TP

P3(EP | TP )P3(TP | T ∗
P )P3(T ∗

P | T ∗
F )

· P3(T ∗
F | TF)

= tF
[
(p∗F + a p∗F ) (pP p

∗
P + qP p∗P ) + a p∗F (pP q

∗
P + qP q∗P )

]
P3(EP) =

∑
T∗
P ,T∗

F ,TP ,TF

P3(EP | TP )P3(TP | T ∗
P )P3(T ∗

P | T ∗
F )P3(T ∗

F | TF )

· P3(TF )

=
(
tF (p∗F + a p∗F ) + tF (q∗F + a q∗F )

)
(pP p

∗
P + qP p∗P )

+ a (p∗F tF + q∗F tF ) (pP q
∗
P + qP q∗P )

P3(TF) = tF

P3(TF | EP)− P3(TF) =
a tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P3(EP)

ut

To show: 0 < P3(T∗
F | T∗

P) < 1

P3(T∗
P | T∗

F) =
P3(T∗

P,T
∗
F)

P3(T∗
F)

= 1

P3(T∗
P,T

∗
F) = P3(T∗

F)

P3(T∗
F | T∗

P) =
P3(T∗

P,T
∗
F)

P3(T∗
P)

=
P3(T∗

F)

P3(T∗
P)
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P3(T∗
P) =

∑
T∗
F

P3(T∗
P | T ∗

F )P3(T ∗
F )

= P3(T∗
F) + aP3(¬T∗

F) = P3(T∗
F) a+ a

P3(T∗
F | T∗

P) =
P3(T∗

F)

P3(T∗
F) a+ a

Suppose P3(T∗
F | T∗

P) = 0, then

P3(T∗
F)

P3(T∗
F) a+ a

= 0

P3(T∗
F) = 0

But P3(T∗
F) cannot be equal to 0, since by assumption all probabilities are

within the open interval (0, 1) (except for the conditional ones that encode
logical consequence).
Suppose P3(T∗

F | T∗
P) = 1, then

P3(T∗
F)

P3(T∗
F) a+ a

= 1

P3(T∗
F) = P3(T∗

F) a+ a

P3(T∗
F)− P3(T∗

F) a = a

P3(T∗
F) a = a

P3(T∗
F) = 1

But P3(T∗
F) cannot be equal to 1, for the reason mentioned above.

Hence,

0 < P3(T∗
F | T∗

P) < 1

ut

To show: P3(T∗
P) > P3(T∗

F)

P3(T∗
P) =

∑
T∗
F

P3(T∗
P | T ∗

F )P3(T ∗
F )

= P3(T∗
F) + aP3(¬T∗

F)

P3(T∗
P)− P3(T∗

F) = P3(T∗
F) + aP3(¬T∗

F)− P3(T∗
F)

= aP3(¬T∗
F) > 0

ut

Of P5(T∗
P | ¬T∗

F,B), P5(T∗
P | T∗

F,¬B), and P5(T∗
P | ¬T∗

F,¬B), as the most
plausible candidate for assigning the value 0 is P5(T∗

P | ¬T∗
F,B), since, one

could say, given true bridge laws and false T ∗
F (i.e. ¬T∗

F), theory T ∗
P should

not come out as true. As for P5(T∗
P | T∗

F,¬B) and P5(T∗
P | ¬T∗

F,¬B), regard
them as randomizers and assign them a ∈ (0, 1) (see Bovens & Hartmann,
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2003, pp. 57ff.). However, with these probability assignments, a drawback of
the original analysis recurs: T∗

P and B entail T∗
F. In order to show that this

entailment holds, observe that in the network in Figure 5 T ∗
F ⊥⊥ B holds (the

only two paths between T ∗
F and B, i.e. T ∗

F − T ∗
P − B and T ∗

F − TF − E −
TP − T ∗

P − B, are blocked by ∅ at T ∗
P and E respectively; so, T ∗

F and B are
d-separated by ∅).

To show: P5(T∗
F | T∗

P,B) = 1

P5(T∗
P | T∗

F,B) =
P5(T∗

P,T
∗
F,B)

P5(T∗
F,B)

= 1 (10)

P5(T∗
P,T

∗
F,B) = P5(T∗

F,B) (11)

T ∗
F ⊥⊥ B (12)

P5(T∗
F,B) = P5(T∗

F)P5(B) (13)

P5(T∗
P,T

∗
F,B) = P5(T∗

F)P5(B) (from (11) and (13))(14)

P5(T∗
F | T∗

P,B) =
P5(T∗

P,T
∗
F,B)

P5(T∗
P,B)

=
P5(T∗

F)P5(B)

P5(T∗
P,B)

(15)

P5(T∗
P,B) = P5(B)

∑
T∗
F ,TF

P5(T∗
P | T ∗

F ,B)P5(T ∗
F | TF )P5(TF ) (16)

= b (p∗F tF + q∗F tF ) (17)

P5(T∗
F) =

∑
TF

P5(T∗
F | TF )P5(TF ) (18)

= p∗F tF + q∗F tF (19)

P5(T∗
P,B) = b P5(T∗

F) (from (17) and (19))(20)

P5(T∗
F | T∗

P,B) =
b P5(T∗

F)

b P5(T∗
F)

= 1 (from (15) and (20))(21)

ut

To show: 0 < P4(T∗
F | T∗

P,B) < 1

P4(T∗
P | T∗

F,B) =
P4(T∗

P,T
∗
F,B)

P4(T∗
F,B)

= 1 (22)

P4(T∗
P,T

∗
F,B) = P4(T∗

F,B) (23)

T ∗
F ⊥⊥ B (24)

P4(T∗
F,B) = P4(T∗

F)P4(B) (25)

P4(T∗
P,T

∗
F,B) = P4(T∗

F)P4(B) (from (23) and (25))(26)

P4(T∗
F | T∗

P,B) =
P4(T∗

P,T
∗
F,B)

P4(T∗
P,B)

=
P4(T∗

F)P4(B)

P4(T∗
P,B)

(27)

P4(T∗
P,B) = P4(B)

∑
T∗
F ,TF

P4(T∗
P | T ∗

F ,B)P4(T ∗
F | TF )P4(TF ) (28)

= b
(
(p∗F tF + q∗F tF ) a+ a

)
(29)
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P4(T∗
F) =

∑
TF

P4(T∗
F | TF )P4(TF ) (30)

= p∗F tF + q∗F tF (31)

P4(T∗
P,B) = b (P4(T∗

F) a+ a) (from (29) and (31))(32)

P4(T∗
F | T∗

P,B) =
bP4(T∗

F)

b (P4(T∗
F) a+ a)

(from (27) and (32))(33)

=
P4(T∗

F)

P4(T∗
F) a+ a

(34)

0 <
P4(T∗

F)

P4(T∗
F) a+ a

< 1 (from the proof of 0 < P3(T∗
F | T∗

P) < 1)(35)

ut

To show: P4(T∗
P) > P4(T∗

F) or P4(T∗
P) < P4(T∗

F) or P4(T∗
P) = P4(T∗

F)

P4(T∗
P) =

∑
T∗
F ,B,TF

P4(T∗
P | T ∗

F , B)P4(B)P4(T ∗
F | TF )P4(TF )

= tF
(
b p∗F + a b p∗F + a p∗F

)
+ tF

(
b q∗F + a b q∗F + a q∗F

)
P4(T∗

F) =
∑
TF

P4(T∗
F | TF )P4(TF )

= p∗F tF + q∗F tF

P4(T∗
P)− P4(T∗

F) = a− (a b+ a) (p∗F tF + q∗F tF )

= a− (a b+ a)P4(T∗
F)

So, when P4(T∗
F) = a

a b+a
, then P4(T∗

P) = P4(T∗
F) (note that for 0 < a < 1

and 0 < b < 1, 0 < a
a b+a

< 1). When P4(T∗
F) < a

a b+a
, then P4(T∗

P) > P4(T∗
F).

When P4(T∗
F) > a

a b+a
, then P4(T∗

P) < P4(T∗
F).

ut

Theorem 5 EF confirms TP iff (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Proof

P4(TP | EF) =
P4(TP,EF)

P4(EF)

P4(TP,EF) =
∑

T∗
P ,T∗

F ,B,TF

P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)P4(T ∗

F | TF )P4(TF )

· P4(EF | TF )

= pF tF
(
p∗P (b p∗F + a b+ a b p∗F ) + q∗P (a b+ a b p∗F )

)
+ qF tF

(
p∗P (b q∗F + a b+ a b q∗F ) + q∗P (a b+ a b q∗F )

)
P4(EF) =

∑
TF

P4(EF | TF )P4(TF )
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= pF tF + qF tF

P4(TP) =
∑

T∗
P ,T∗

F ,B,TF

P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)P4(T ∗

F | TF )P (TF )

= p∗P
(
b p∗F tF + b q∗F tF + a b+ a b p∗F tF + a b q∗F tF

)
+ q∗P

(
a b+ a b p∗F tF + a b q∗F tF

)
P4(TP | EF)− P4(TP) =

a b tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

pF tF + qF tF

ut

Theorem 6 EP confirms TF iff (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P ) > 0.

Proof

P4(TF | EP) =
P4(TF,EP)

P4(EP)

P4(TF,EP) = P4(TF)
∑

T∗
P ,T∗

F ,B,TP

P4(EP | TP )P3(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)

· P4(T ∗
F | TF)

= tF
[
(b p∗F + a b+ a b p∗F ) (pP p

∗
P + qP p∗P )

+a (b+ b p∗F ) (pP q
∗
P + qP q∗P )

]
P4(EP) =

∑
T∗
P ,T∗

F ,B,TP ,TF

P4(EP | TP )P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)

· P4(T ∗
F | TF )P4(TF )

= (b p∗F tF + b q∗F tF + a b+ a b p∗F tF + a b q∗F tF ) (pP p
∗
P + qP p∗P )

+ a (b+ b p∗F tF + b q∗F tF ) (pP q
∗
P + qP q∗P )

P4(TF) = tF

P4(TF | EP)− P4(TF) =
a b tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EP)

ut

Theorem 7 EF adds to EP’s confirmation of TP iff (pF −qF ) (p∗F −q∗F ) (p∗P −
q∗P ) > 0.

Proof

P4(TP | EP,EF) =
P4(TP,EP,EF)

P4(EP,EF)

P4(TP,EP,EF) = P4(EP | TP)
∑

T∗
P ,T∗

F ,B,TF

P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)

· P4(T ∗
F | TF )P4(EF | TF )P4(TF )

= pP
[
a b (p∗F pF tF + q∗F qF tF ) (p∗P − q∗P )
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+(pF tF + qF tF ) (a p∗P + a q∗P )
]

P4(EP,EF) =
∑

T∗
P ,T∗

F ,B,TP ,TF

P4(EF | TF )P4(TF )P4(EP | TP )P4(TP | T ∗
P )

· P4(T ∗
P | T ∗

F , B)P4(B)P4(T ∗
F | TF )

= pP
[
a b (p∗F pF tF + q∗F qF tF ) (p∗P − q∗P )

+(pF tF + qF tF ) (a p∗P + a q∗P )
]

+ qP
[
a b (p∗F pF tF + q∗F qF tF ) (p∗P − q∗P )

+(pF tF + qF tF ) (a p∗P + a q∗P )
]

P4(TP | EP) =
P4(TP,EP)

P4(EP)

P4(TP,EP) = P4(EP | TP)
∑

T∗
P ,T∗

F ,B,TF

P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)

· P4(T ∗
F | TF )P4(TF )

= pP
[
a b (p∗F tF + q∗F tF ) (p∗P − q∗P ) + a p∗P + a q∗P

]
P4(EP) = pP

[
a b (p∗F tF + q∗F tF ) (p∗P − q∗P ) + a p∗P + a q∗P

]
+ qP

[
a b (p∗F tF + q∗F tF ) (p∗P − q∗P ) + a p∗P + a q∗P

]
(alternative form of P4(EP) from the proof of Theorem 5)

P4(TP | EP,EF)− P4(TP | EP) =
a b pP qP tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EP,EF)P4(EP)

ut

Theorem 8 EP adds to EF’s confirmation of TF iff (pP −qP ) (p∗F −q∗F ) (p∗P −
q∗P ) > 0.

Proof

P4(TF | EF,EP) =
P4(TF,EF,EF)

P4(EF,EP)

P4(TF,EF,EP) = P4(TF)P4(EF | TF)
∑

T∗
P ,T∗

F ,B,TP

P4(EP | TP )P4(TP | T ∗
P )

· P4(T ∗
P | T ∗

F , B)P4(B)P4(T ∗
F | TF)

= pF tF
[
p∗F
(
b (pP p

∗
P + qP p∗P )

+b (a pP p
∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

)
+p∗F (a pP p

∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

]
P4(EF,EP) = pF tF

[
p∗F
(
b (pP p

∗
P + qP p∗P )

+b (a pP p
∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

)
+p∗F (a pP p

∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

]
+ qF tF

[
q∗F
(
b (pP p

∗
P + qP p∗P )
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+b (a pP p
∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

)
+q∗F (a pP p

∗
P + a qP p∗P + a pP q

∗
P + a qP q∗P )

]
(alternative form of P4(EF,EP) from the proof of Theorem 7)

P4(TF | EF) =
P4(TF,EF)

P4(EF)

=
P4(EF | TF)P4(TF)∑

TF

P4(EF | TF )P4(TF )

=
pF tF

pF tF + qF tF

P4(TF | EF,EP)− P4(TF | EF) =
a b pF qF tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EF,EP)P4(EF)

ut

Theorem 7’ EF adds to EP’s confirmation of TP iff (pF−qF ) (p∗F−q∗F ) (p∗P−
q∗P ) > 0.

Proof

P2(TP | EP,EF) =
P2(TP,EP,EF)

P2(EP,EF)

P2(TP,EP,EF) = P2(EP | TP)
∑

T∗
P ,T∗

F ,TF

P2(TP | T ∗
P )P2(T ∗

P | T ∗
F )

· P2(T ∗
F | TF )P2(EF | TF )P2(TF )

= pP
[
pF tF (p∗P p

∗
F + q∗P p

∗
F ) + qF tF (p∗P q

∗
F + q∗P q

∗
F )
]

P2(EP,EF) =
∑

T∗
P ,T∗

F ,TP ,TF

P2(EF | TF )P2(TF )P2(EP | TP )P2(TP | T ∗
P )

· P2(T ∗
P | T ∗

F )P2(T ∗
F | TF )

= pP
[
pF tF (p∗P p

∗
F + q∗P p

∗
F ) + qF tF (p∗P q

∗
F + q∗P q

∗
F )
]

+ qP
[
pF tF (p∗P p

∗
F + q∗P p

∗
F ) + qF tF (p∗P q

∗
F + q∗P q

∗
F )
]

P2(TP | EP) =
P2(TP,EP)

P2(EP)

P2(TP,EP) = P2(EP | TP)
∑

T∗
P ,T∗

F ,TF

P2(TP | T ∗
P )P2(T ∗

P | T ∗
F )

· P2(T ∗
F | TF )P2(TF )

= pP
[
tF (p∗P p

∗
F + q∗P p

∗
F ) + tF (p∗P q

∗
F + q∗P q

∗
F )
]

P2(EP) =
∑

T∗
P ,T∗

F ,TP ,TF

P2(EP | TP )P2(TP | T ∗
P )P2(T ∗

P | T ∗
F )

· P2(T ∗
F | TF )P2(TF )

= pP
[
tF (p∗P p

∗
F + q∗P p

∗
F ) + tF (p∗P q

∗
F + q∗P q

∗
F )
]
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· qP
[
tF (p∗P p

∗
F + q∗P p

∗
F ) + tF (p∗P q

∗
F + q∗P q

∗
F )
]

P2(TP | EP,EF)− P2(TP | EP) =
pP qP tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

P2(EP,EF)P2(EP)

ut

Theorem 8’ EP adds to EF’s confirmation of TF iff (pP−qP ) (p∗F−q∗F ) (p∗P−
q∗P ) > 0.

Proof

P2(TF | EF,EP) =
P2(TF,EF,EP)

P2(EF,EP)

P2(TF,EF,EP) = P2(TF)P2(EF | TF)
∑

T∗
P ,T∗

F ,TP

P2(TP | T ∗
P )P2(T ∗

P | T ∗
F )

· P2(T ∗
F | TF)P2(EP | TP )

= pF tF
[
p∗F (pP p

∗
P + qP p∗P ) + p∗F (pP q

∗
P + qP q∗P )

]
P2(EF,EP) = pF tF

[
p∗F (pP p

∗
P + qP p∗P ) + p∗F (pP q

∗
P + qP q∗P )

]
· qF tF

[
q∗F (pP p

∗
P + qP p∗P ) + q∗F (pP q

∗
P + qP q∗P )

]
(alternative form of P2(EF,EP) from the proof of Theorem 7’)

P2(TF | EF) =
P2(TF,EF)

P2(EF)

=
P2(EF | TF)P2(TF)∑

TF

P2(EF | TF )P2(TF )

=
pF tF

pF tF + qF tF

P2(TF | EF,EP)− P2(TF | EF) =
pF qF tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P2(EF,EP)P2(EF)

ut

Theorem 9 Given a, pF , qF , p∗F , q∗F , p∗P , q∗P , and tF are constant and pF >
qF , p∗F > q∗F , and p∗P > q∗P , if b increases (decreases), then d(TP, EF) increases
(decreases).

Proof From the proof of the Theorem 5 above, we have that:

P4(TP | EF)− P4(TP) =
a b tF tF (pF − qF ) (p∗F − q∗F ) (p∗P − q∗P )

pF tF + qF tF

Observe that, given tF , a, pF , qF , p∗F , q∗F , p∗P , and q∗P are constant and pF > qF ,
p∗F > q∗F , and p∗P > q∗P , if b increases, then a b tF tF (pF−qF ) (p∗F−q∗F ) (p∗P−q∗P )
increases. As the denominator, i.e. pF tF +qF tF , does not dependent on b, then

if b increases,
a b tF tF (pF−qF ) (p∗

F−q∗F ) (p∗
P−q∗P )

pF tF+qF tF
increases, i.e. d(TP,EF) increases.

ut
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Theorem 10 Given a, pP , qP , p∗F , q∗F , p∗P , q∗P , and tF are constant and
pP > qP , p∗F > q∗F , and p∗P > q∗P , if b increases (decreases), then d(TF, EP)
increases (decreases).

Proof From the proof of the Theorem 6 above, we have that:

P4(TF | EP)− P4(TF) =
a b tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EP)

Notice that, in contrast to the previous proof, the denominator, i.e. P4(EP),
is dependent on b; so, changing the value of b would also change the value of
P4(EP). Alternative way of writing P4(EP) so that it better serves the purpose
of this proof is:

P4(EP) = a b (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P ) + a (pP p
∗
P + qP p∗P )

+ a (pP q
∗
P + qP q∗P )

Further, let us introduce the following abbreviations:

C := a b tF tF (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

D := a b (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P )

Observe that both C and P4(EP) increase as b increases (other values remaining
constant). To see which of the two, C or P4(EP), increases faster with the
increase of b, we calculate C−D.

C−D = −a b (pP − qP ) (p∗P − q∗P ) (t2F p
∗
F + tF tF q

∗
F + tF q

∗
F )

So, given pP > qP and p∗P > q∗P , C < D (as a consequence C < P4(EP); so
C

P4(EP) < 1). Hence, with the increase of b, P4(EP) increases faster than C,

that is, the slope of P4(EP) is greater than the slope of C. Nevertheless, even
with a very large slope of P4(EP) and a very small slope of C, C

P4(EP) still

increases, as shown in Figure 7. So, if b increases, d(TF,EP) increases. ut

Theorem 11 ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if (p∗F > q∗F )
and if (p∗P > q∗P ).

Proof

P1(TF,TP) = tF tP

= tF
[
p∗P
(
b p∗F tF + b q∗F tF + a b+ a b p∗F tF + a b q∗F tF

)
+q∗P

(
a b+ a b p∗F tF + a b q∗F tF

)]
(P4(TP) instead of P1(TP))

P4(TF,TP) = P4(TF)
∑

T∗
P ,T∗

F ,B

P4(TP | T ∗
P )P4(T ∗

P | T ∗
F , B)P4(B)P4(T ∗

F | TF)

= tF
[
p∗P (b p∗F + a b+ a b p∗F ) + q∗P (a b+ a b p∗F )

]
∆0 := P4(TF,TP)− P1(TF,TP)

∆0 = a b tF tF (p∗F − q∗F ) (p∗P − q∗P )

ut
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Proof From the proof of the Theorem 6 above, we have that:

P4(TF | EP)− P4(TF) =
tF tF a b (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EP)

Notice that, in contrast to the previous proof, the denominator, i.e. P4(EP),
is dependent on b; so, changing the value of b would also change the value of
P4(EP). Alternative way of writing P4(EP) so that it better serves the purpose
of this proof is:

P4(EP) = b a (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P ) + a (pP p
∗
P + qP p∗P )

+ a (pP q
∗
P + qP q∗P )

Further, let us introduce the following abbreviations:

C := tF tF a b (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

D := b a (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P )

Observe that both C and P4(EP) increase as b increases (other values remaining
constant). To see which of the two, C or P4(EP), increases faster with the
increase of b, we calculate C−D.

C−D = −(pP − qP ) (p∗P − q∗P ) a b (t2F p
∗
F + tF tF q

∗
F + tF q

∗
F )

So, given pP > qP and p∗P > q∗P , C < D (as a consequence C < P4(EP); so
C

P4(EP) < 1). Hence, with the increase of b, P4(EP) increases faster than C,

that is, the slope of P4(EP) is greater than the slope of C. Nevertheless, even
with a very large slope of P4(EP) and a very small slope of C, C

P4(EP) still

increases, as shown in Figure 6. So, if b increases, d(TF,EP) increases. ut
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Fig. 6: Dependence of P4(EP)
(left figure) and C and d(TF,EP) (right figure) on b

Theorem 9 ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if (p∗F > q∗F )
and if (p∗P > q∗P ).
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Proof From the proof of the Theorem 6 above, we have that:

P4(TF | EP)− P4(TF) =
tF tF a b (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

P4(EP)

Notice that, in contrast to the previous proof, the denominator, i.e. P4(EP),
is dependent on b; so, changing the value of b would also change the value of
P4(EP). Alternative way of writing P4(EP) so that it better serves the purpose
of this proof is:

P4(EP) = b a (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P ) + a (pP p
∗
P + qP p∗P )

+ a (pP q
∗
P + qP q∗P )

Further, let us introduce the following abbreviations:

C := tF tF a b (pP − qP ) (p∗F − q∗F ) (p∗P − q∗P )

D := b a (p∗F tF + q∗F tF ) (pP − qP ) (p∗P − q∗P )

Observe that both C and P4(EP) increase as b increases (other values remaining
constant). To see which of the two, C or P4(EP), increases faster with the
increase of b, we calculate C−D.

C−D = −(pP − qP ) (p∗P − q∗P ) a b (t2F p
∗
F + tF tF q

∗
F + tF q

∗
F )

So, given pP > qP and p∗P > q∗P , C < D (as a consequence C < P4(EP); so
C

P4(EP) < 1). Hence, with the increase of b, P4(EP) increases faster than C,

that is, the slope of P4(EP) is greater than the slope of C. Nevertheless, even
with a very large slope of P4(EP) and a very small slope of C, C

P4(EP) still

increases, as shown in Figure 6. So, if b increases, d(TF,EP) increases. ut
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Theorem 9 ∆0 = 0 iff (p∗F = q∗F ) or (p∗P = q∗P ). And ∆0 > 0 if (p∗F > q∗F )
and if (p∗P > q∗P ).

Fig. 7: Dependence of P4(EP)
(left figure) and C and d(TF,EP) (right figure) on b
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