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In the literature over the Ramsey-sentence approach to structural real-
ism, there is often debate over whether structural realists can legitimately
restrict the range of the second-order quantifiers, in order to avoid the
Newman problem. In this paper, I argue that even if they are allowed to,
it won’t help: even if the Ramsey sentence is interpreted using such re-
stricted quantifiers, it is still an implausible candidate to capture a theory’s
structural content. To do so, I use the following observation: if a Ramsey
sentence did encode a theory’s structural content, then two theories would
be structurally equivalent just in case they have logically equivalent Ram-
sey sentences. I then argue that this criterion for structural equivalence is
implausible, even where frame or Henkin semantics are used.

1 Introduction

In the literature over the Ramsey-sentence approach to structural realism, there is
often debate over whether structural realists can legitimately restrict the range of the
second-order quantifiers, in order to avoid the Newman problem. In this paper, I
argue that even if they are allowed to, it won’t help: even if the Ramsey sentence
is interpreted using such restricted quantifiers, it is still an implausible candidate to
capture a theory’s structural content.
The structure of the argument is as follows. In section 2, I introduce the Ramsey

sentence and the standard semantics used to interpret it. In section 3, I explain
how the Newman problem poses difficulties for the realist credentials of a view
that wants to use the Ramsey sentence as the content of a theory. Among other
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things, wewill see that the Ramsey-sentence approach, combinedwith full semantics,
leads to an implausibly weak criterion of theoretical equivalence. In section 4, I
consider a first pass at a response based on restricting the range of the second-order
quantifiers: one which uses so-called frame semantics. I show that this leads to
an implausibly strong criterion of theoretical equivalence (viz., one stronger than
definitional equivalence). So in section 5, I consider the use of Henkin semantics as
a putative “Goldilocks” option, and show that it leads to a criterion of theoretical
equivalence that is (at least) not too strong a criterion, since it is strictly weaker than
definitional equivalence. However, section 6 shows that Henkin semantics is at risk of
collapsing back into full semantics (with the associated resurrection of the Newman
problem); and even if this could be resisted, section 7 argues that the associated
criterion of theoretical equivalence is too weak anyway (and that it is highly unlikely
that any way of amending it is to be found).

2 The Ramsey sentence

In what follows, I will suppose that the theory T with which we begin comprises a
set of sentences of first-order logic.1 Obviously, this isn’t a realistic assumption, but
it’s appropriate given the aim of this paper: if the Ramsey sentence approach cannot
deliver a plausible conception of structural content in this (highly idealised) case, then
it is very unlikely to be able to deal withmore complex or realistic examples. I will also
simplify things by considering only languages without constants or function-symbols
(save for a brief discussion in §5 below). Finally, we suppose that the vocabulary
of T is bifurcated: it consists of a “benign” vocabulary β and a (wholly disjoint)
“problematic” vocabulary π.2
The Ramsey sentence of T is then generated from T by applying the following

procedure:

1. Conjoin all the sentences of T into a single (perhaps infinitely long) sentence,∧
T .

2. Replace each n-ary predicate symbol Ri ∈ π occurring in
∧
T by an n-ary

second-order variableXi, thereby obtaining an open second-order sentence; we
1I won’t require that T be deductively closed. Nothing major hinges on this, since including the
deductive consequences does not essentially alter the Ramsey sentence so obtained: if T � φ, then
TR ≡ (T ∪ φ)R, even if the standard of equivalence is that given by frame semantics (see below).

2I borrow this terminology from (Frigg and Votsis, 2011, p. 247)
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will denote this T ∗.

3. Prefix T ∗ by a (perhaps infinite) string of second-order existential quantifiers
∃X1∃X2 . . . , one for each free second-order variable in T ∗.

It is clear from thisdescription that ifT is an arbitraryfirst-order theory, the language in
which the Ramsey sentence is formulatedmust have rather powerful logical resources.
If T contains κ-many sentences, and if λ-many predicates from π occur in T , then TR

must be in a second-order language that permits κ-size conjunctions, and permits the
introduction of λ-many second-order quantifiers. Since we will be looking at models,
it is important to specify the vocabulary of the Ramsey sentence’s ambient language
(since syntactically identical sentences of different languages will have distinct classes
of models). I will think of the Ramsey sentence itself, TR, as a sentence of L2(β)—
that is, of second-order logic (with whatever infinitary resources are necessary) over
vocabulary β. But at points, it will also be helpful to consider T̃R, the syntactically
identical sentence of L2(β ∪ π).
In order to assess the content of the Ramsey sentence, we need to specify how

second-order sentences are to be interpreted: that is, we have to specify a second-order
semantics. The standard semantics (also known as the full semantics) for second-order
logic goes as follows. A full structureM for a language with vocabulary ξ consists of
the same data as a first-order structure for vocabulary ξ: that is,

• A non-empty set |M|

• For each n ∈ N, for each n-ary R ∈ ξ, a set RM ⊆ |M|n

We call the set RM the extension of R inM; in general, for any n, I’ll refer to any set
of n-tuples of elements of |M| as an (n-ary) extension overM (whether or not it is the
extension of some particular predicate). Recall that if two such structuresM+ and
M, for vocabularies ξ+ and ξ ⊂ ξ+ respectively, are such that |M| = |M+| and for
every R ∈ ξ, RM = RM

+ , thenM+ is said to be an expansion ofM to ξ+; and thatM
is said to be the reduct ofM+ to ξ, and denotedM�ξ.
A full structure evaluates formulae of the second-order language relative to a first-

order variable-assignment g (a map from the first-order variables to elements ofM),
and a second-order variable-assignmentG (an arity-respecting map from the second-
order variables to extensions over M). For atomic formulae using second-order
variables, the relevant clause is

• M[g,G] |= Xx1 . . . xn iff 〈g(x1), . . . , g(xn)〉 ∈ G(X)
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whilst for formulae formed using the second-order quantifiers, the clause (for X an
n-ary variable) is

• M[g,G] |= ∃Xφ iff for some E ∈ P(|M|n),M[g,GX
E ] |= φ

where GX
E is a variable-assignment just like G, save that it assigns E to X . In other

words, according to the full semantics, the second-order quantifiers range over all
extensions over the structure.

3 The Newman problem

However, taking the Ramsey sentence to encode the “structural content” of a theory
has a seemingly disastrous consequence: if we Ramseyfy a theory, then we wash out
the theory’s non-observational content. More precisely, it follows from the above that
a full structureM for the vocabulary β is a model of the Ramsey sentence TR iff there
is an expansionM+ ofMwhich is amodel of T :3 that is, if there is someway to define
extensions for the π-predicates onM in such a way as to satisfy T , thenM satisfies
TR. Correspondingly, a full structure N for the vocabulary β ∪ π is a model of T̃R iff
there is an expansion N ∗ of the reduct N�β which is a model of T : that is, if there is
some way to redistribute the extensions of the π-predicates on N in such a way as to
satisfy T , then N satisfies T̃R.
The standard way of explaining why this result is problematic is as follows. LetW

be “theworld”—or, better, let it be a structure for the vocabulary ω∪θwhich faithfully
represents the world (i.e., which has the extensions of the predicates distributed in
just the fashion that the actual relations are actually distributed in the world). Say
that a theory is observationally adequate if it has a modelM which is observationally
isomorphic toW : i.e., which is such thatM�ω ∼=W�ω.4 The above result then shows
that T̃R is true (of the world, i.e. is satisfied byW) if and only if T is observationally
adequate.5 Or, equally: TR is satisfiedbyW�ω iffT is observationally adequate. This is
then a Bad Thing, if the Ramsey sentence was supposed to be part of a realist strategy,

3(Ketland, 2004, Theorem 2)
4This notion of observational adequacy bears some resemblance to van Fraassen’s notion that a theory
is empirically adequate if it has an empirical substructure that can be embedded in the world (van
Fraassen, 1980, chap. 3)—although (as a referee pointed out) van Fraassen rejects the bifurcation of
a vocabulary into theoretical and observational predicates in the manner applied here. For further
discussion, see (Ainsworth, 2009, pp. 145–146) or (Lutz, 2012, §4.2).

5(Ketland, 2004, Theorem 6), (Ainsworth, 2009, Theorem 2)

4



since realists (by definition) are those committed to more than just the observational
adequacy of scientific theories.6
There’s an alternative way of getting at what’s problematic about Ramseyfication:

one framed not in terms of the relationship between theories and theworld, but rather
in terms of theoretical equivalence. I prefer this way of putting things, since it enables
us to finesse difficult questions about representation and the theory-world relation,7
and it’s this way of setting up the problem that I’ll refer back to in later sections. If
the Ramsey sentence really captures the “structural content” of a theory, and if that
structural content is the only content to which we ought to be committed (or to which
we are entitled to be committed), then we obtain a very natural associated criterion
of theoretical equivalence: two theories are equivalent just in case they have logically
equivalent Ramsey sentences.
However, this criterion of equivalence is implausibly weak (at least, implausibly

weak for any position that aspires to be described as realist). For suppose that T1 and
T2 are two theories, with signatures ω ∪ θ1 and ω ∪ θ2 respectively.8 Say that T1 and
T2 are ω-equivalent if it is the case that for every model of T1, there is an ω-isomorphic
model of T2, and vice versa. It is straightforward to show from the above that TR1 and
TR2 are logically equivalent (under full second-order semantics) if and only if T1 and
T2 are ω-equivalent. That is, two theories have equivalent Ramsey sentences if and
only if their classes of models agree on how many things there might be, and on how
the ω-structure could be distributed over those things.
Either of these ways of putting the problem points to the same conclusion: that

if the structural realist uses this Ramseyfication procedure to elaborate their view,
then structural realism collapses into ω-realism (realism only about the observational
structure of the world). In particular, if we Ramseyfy all the predicates of the theory
(i.e. if β = ∅) then the only information retained by the theory is, at best, information
about cardinality. However, it will be worth going into a little more detail about
exactly how Ramseyfication is in tension with realism, since that will enable us to
introduce some apparatus to be used later.
First, it doesn’t follow from the above that in all cases, TR must be regarded as

expressing less than T . For example, consider the following theory of colours, Tc. It

6Votsis (2003) and Zahar (2004) both argue that—this result notwithstanding—the Ramsey sentence
does indeed go beyond the observational content of a theory. I don’t have space to discuss this here:
see Ainsworth (2009) for (what I take to be) convincing replies.

7For a sense of quite howmuch there is to be said about these questions, see Frigg andNguyen (2017).
8Note that this condition is required if it is even to be possible that TR

1 is logically equivalent to TR
2 .

5



has twoobservablepredicates,R (for “is red”) andB (for “is blue”), and two theoretical
predicatesS (“ismadeof scarlatineal particles”) andA (“ismadeof azureanparticles”).
The theory has the following axioms:

∀x¬(Rx ∧Bx)

∀x(Rx↔ Sx)

∀x(Bx↔ Ax)

(1)

In this case, there is a one-to-one correspondence between the models of the theory
and those of its Ramsey sentence TRc : given any modelM of the Ramsey sentence,
there is a unique expansionM+ which is a model of Tc (and as per usual, given any
model N of Tc, its unique reduct N�ω is a model of TRc ). So there is a sense in which
in this case, Ramseyfication does not wash out any theoretical content: the models of
TRc are just as fine-grained as those of Tc.
However, Tc is pretty special (and, indeed, pretty dubious): it implicitly defines its

theoretical vocabulary in terms of its observational vocabulary.9 That is, recall that
given a vocabulary ξ and some predicate R 6∈ ξ, a theory T in vocabulary ξ ∪ {R}
implicitly defines R in terms of ξ iff for any two modelsM and N of T , ifM�ξ = N�ξ
thenM = N .10 As a result, once we know the observational structure of a model of
Tc, we already know exactly which model of Tc we are dealing with.
It is clear both that Tc implicitly defines S and A in terms of R and B, and that it

is exactly for this reason that the models of TRc (which, recall, are just the ω-reducts
of the models of Tc) have unique expansions to models of Tc. If a theory T does not
implicitly define its theoretical vocabulary in terms of its observational vocabulary,
then the passage from T to TR obliterates some “merely theoretical” distinctions
among the models of T . For, suppose that T has a pair of non-isomorphic modelsM
and N , such thatM�ω ∼= N�ω. It is natural to describe this by saying thatM and N
describe a pair of possibilities which are observationally equivalent, but theoretically
distinct. In moving from T to TR, however, M and N are reduced to just the one
model (up to isomorphism)—so TR, unlike T , does not countenance distinctions
between possibilities which differ only with regards to how the theoretical relations

9For further details of definability theory, see (Hodges, 1997, chap. 2) or (Suppes, 1957, chap. 8).
10If one is worried about the fact that this depends on identity between models, rather than just

isomorphism, then one can use the following definition instead: T implicitly defines R in terms of
ξ iff for any two modelsM and N of T , for any ξ-isomorphism f :M→ N , f is an isomorphism
fromM toN . (Note the resemblance to the definition of strong global supervenience (McLaughlin
and Bennett, 2014).) These two definitions are easily shown to be equivalent.
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are distributed.
There is a second way in which Tc is peculiar: it explicitly defines all its theoretical

vocabulary in terms of its observational vocabulary. That is, recall that given a
vocabulary ξ and some n-ary predicate R 6∈ ξ, an explicit definition of R in terms of
ξ is a formula δR of the form

∀x1 . . . ∀xn(Rx1 . . . xn ↔ τR(x1, . . . , xn)) (2)

where τR is an n-place formula in the language over ξ. A theory T with vocabulary
ξ ∪{R} explicitly definesR in terms of ξ iff T � δR, for some explicit definition δR ofR
in terms of ξ. Finally, given disjoint vocabularies ξ and η, a theory T with vocabulary
ξ ∪ η explicitly defines η in terms of ξ iff for every R ∈ η, T explicitly defines R.
Clearly, Tc explicitly defines S and A in terms of R and B. In fact, given that Tc is

a first-order theory, this follows from the fact that it implicitly defines them: Beth’s
Theorem tells us that if a first-order theory T implicitly defines η in terms of ξ, then it
explicitly defines η in terms of ξ. (The converse direction—that if T explicitly defines
η in terms of ξ, it implicitly defines η in terms of ξ—is immediate, and holds in many
more logical contexts than Beth’s Theorem does.)
These resources let us give a fresh gloss to the problem facing the Ramseyfying

realist. At least traditionally, scientific realism is associated with three commit-
ments.11 Metaphysically, the realist is committed to the existence of an external,
mind-independent world, which possesses more than observational structure. Epis-
temically, they are committed to the possibility of knowledge of that world, and of
(at least some aspects of) its non-observational structure. And semantically, they
are committed to a literal interpretation of scientific claims: they deny that scientific
discourse is reducible to or definable in terms of a mere observation-language.
So the Ramseyfying realist is faced with a dilemma. Either they think that (in

general) the theoretical predicates of a scientific theory are explicitly definable in
terms of the observational predicates, or they do not. If they do, then they fail to meet
the semantic criterion; and, moreover, they are saddled with a view about scientific
theories which is implausible on empirical grounds. If they do not, then by Beth’s
theorem they also think that the theoretical predicates are not implicitly definable,
from which it follows that the Ramsey sentence fails to preserve theoretical structure:
it fails to admit possibilities which agree on their observable structure, but disagree on

11I take these from (Chakravartty, 2016, §1.2)
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theoretical structure. So if the Ramsey sentence is the sum total of what we can know
vis-a-vis such a theory, then our Ramseyfying realist either fails to meet the epistemic
criterion (if they believe that possibilities can indeed differ in such purely theoretical
ways) or the metaphysical criterion (if they do not).
Now, one could challenge the sharpness of this dilemma, by pointing out that it

relies upon the original theory being first-order: in second-order logic (for example),
implicit definability does not entail explicit definability. So, it would be possible to
have a second-order theory which does not explicitly define its theoretical predicates
in terms of its observational predicates, and yetwhich is such that there is a one-to-one
correspondence between its models and those of its Ramsey sentence. Two comments
are worth making in response. First, the Beth property is not unique to first-order
logic; so this escape route will require committing to the claim that theories ought
(in general) to be formulated in logics lacking the Beth property. In the absence of
an independent justification for that claim, it looks like a rather ad hoc move. Second,
even the claim that any scientific theory implicitly defines all its theoretical terms is
rather implausible. It amounts to the claim that in a respectable scientific theory,
models of the theory are uniquely individuated by the totality of their observational
structure. But this is certainly false, at least of our best current theories: it is entirely
possible, for instance, to have a pair of distinct solutions to a particle-scattering event
that would result in the same pattern of detector excitations, given that such detectors
are not perfect (nor omnipresent).
One virtue of setting things up this way is that the analogous dilemma can be posed

for other ways of cashing out the Ramsey-sentence approach. For example, Melia and
Saatsi (2006) argue that we need not Ramseyfy away every non-observable predicate—
merely that we need to Ramseyfy away all theoretical predicates. That is, suppose
that one took the vocabulary to be trifurcated, into “observational” predicates (those
which apply only to observable things, e.g. “is red”), “theoretical” predicates (those
which apply only to unobservable things, e.g. “has colour charge red”), and “generic”
predicates (those which apply to both, e.g. “has mass”).12 Melia and Saatsi (2006)
argue that the structural realist is not obliged to Ramseyfy the mixed predicates, but
only the theoretical ones:

There is nothing in the spirit of structural realism that implies that all

12This provides some reason to avoid a two-sorted framework as ameans of formalising the distinction
between observables and unobservables (contra Ketland (2004)): if they are represented as sorts,
then one cannot have generic predicates in this sense.
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predicates which can apply to unobservables should be Ramseyfied away.
The structural realist thinks we cannot know certain aspects of the nature
of the unobservable world, but that structural aspects of the unobservable
world can be known. This is quite compatible with the structural realist
retaining some interpreted predicates for unobservables.13

In the terms of this essay, they argue that β should be identifiedwith the observational
and mixed vocabulary, and π with the observational vocabulary.
But even if we accept this, and allow the Ramseyfying realist to refrain from Ram-

seyfying away the mixed predicates, this solution only helps insofar as we think that
one’s realist credentials are retained by this more moderate form of Ramseyfication
(as Melia and Saatsi note). Clearly, the formal results outlined above transfer imme-
diately, so we have the same pair of options. On the one hand, it could be that, in
general, theories implicitly (or explicitly) define their theoretical predicates in terms
of observational and mixed predicates; on the other, it could be that they do not. So
the Ramseyfying realist needs to tell us which horn of the dilemma they choose to
grasp, and to defend the claim that grasping that horn is consistent with all three
realist commitments.14 Although there is much to be said about the permissibility of
doing so, it’s not mymain concern in this paper, so I forebear from further discussion.

4 Frame semantics

The strategy I wish to focus on instead is that of restricting the range of the second-
order quantifiers, so that they only range over “real” rather than “fictitious”, or “im-
portant” rather than “trivial”, relations. Such a strategy was canvassed by Newman
himself, who argued that although this would solve the Newman problem, such a
distinction was inadmissible.15 It seems fair to say that the consensus within the
philosophy-of-science literature has followed Newman on these two points: that this
strategy would indeed rescue the Ramsey-sentence approach, but that (at least inso-
far as the Ramsey sentence is supposed to be expressive of a structuralist position)
the strategy is impermissible, since it relies on a non-structural distinction between
different classes of objects. For instance, Psillos argues as follows:
13(Melia and Saatsi, 2006, p. 569)
14Melia and Saatsi’s “ray theory” example may be understood as an argument that the first horn is

untenable: that is, as providing an example of a recognisably scientific theory which does not
implicitly define its theoretical predicates in terms of its mixed and observable predicates.

15See (Newman, 1928, 145ff.).
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In order to pick out as important one among the many relations which
generate the same structure on a domain, we have to go beyond structure
and talk about what these relations are, and why some of them are more
important than others.

One thing should be clear. If triviality is to be avoided, then some restric-
tions should be imposed on the relations defined on a given domain: not
all subsets of the power set of the domain of discourse should be taken
into account. Some of themmust be excluded. Instead of a ‘full structure’,
the domain should already possess a more restricted, but more definite,
structure. In other words, the domain should be structured by a definite
relation. The natural suggestion here is that among all those relations-in-
extensionwhich generate the same structure, only thosewhich express real
relations should be considered. But, as I have already noted, specifying
which relations are real requires knowing something beyond structure, viz.
which extensions are ‘natural’, i.e. which subsets of the power set of the
domain of discourse correspond to natural properties and relations. Hav-
ing specified these natural relations, one may abstract away their content
and study their structure. But if one begins with the structure, then one is
in no position to tell which of the relations one studies and whether or not
they are natural.16

It is not so obvious to me that this strategy is impermissible: insofar as I have an
intuitive grasp on what counts as “structural” or not, I find it hard to see why the
presence of objective unity among certain classes of objects or tuples (but not others)
counts as a non-structural feature of the world. (After all, it’s natural to think that an
abstract algebraic group is a “purely structural” notion; yet that is consistent with—
indeed, consists in—the fact that certain sets of tuples over the domain of the group
are privileged.)
However, whether Psillos’ argument succeeds is by the by for my purposes. I want

to argue that even if the structural realist is allowed to distinguish between the natural
classes and the non-natural classes, theRamsey sentence still fails to deliver an account
of theoretical content which is acceptable to structural realists. I will show that even if
the Ramsey sentence is interpreted using more restricted (rather than full) structures,
the account of theoretical equivalence which is delivered is either implausibly strong

16(Psillos, 1999, p. 66); see also the discussion in (Ainsworth, 2009, §6).
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or implausibly weak. I take such a result to be useful to those (like me) who find
it hard to get a clear sense of whether the use of non-full structures is allowed for
the structural realist: whatever the outcome of that debate might be, the use of such
structures will not (by itself) be enough to save the Ramsey-sentence approach to
structural realism.
To look at the details of this, we need to get more precise about what the proposal

looks like. The intuitive idea is that we add a little more data to the structures used to
interpret second-order sentences: we include information about which sets of tuples
are privileged (i.e., over which such sets the second-order quantifiers will range).
More formally, a structure equipped with this extra data is known as a frame (or a
pre-structure) for second-order logic.17 A frame F (for vocabulary ξ) consists of

• A non-empty set |F|

• For each n ∈ N, a set EFn of subsets of |F|n; let EF := ∪n∈NEFn

• For each n ∈ N and n-ary R ∈ ξ, a set RF ∈ EFn

A second-order variable-assignment G for a frame F assigns each n-ary variable
to some element of EFn . A frame provides sufficient structure to interpret the lan-
guage L2(ξ): each set EFn gives the range of the second-order n-ary quantifiers. More
precisely, given first- and second-order variable-assignments g and G, a frame F de-
termines the truth-value of formulae involving the second-order quantifier (for X an
n-ary variable) via the clause

• F [G, g] |= ∃Xφ iff for some E ∈ EFn , F [GA
X , g] |= φ

Consequently, one can base a second-order semantics on frames (by taking validity
to be truth-in-all-frames, etc.), but the logic obtained is very weak. A correlate of
this is that the Ramsey sentence of a theory is much stronger if interpreted over
frame semantics rather than full semantics. Certainly, it is strong enough to block the
Newman problem as discussed above, as the following example illustrates.

Example 1. Let β = ∅, π = {R} (where R is a unary predicate), and consider the
theory

T = {∃!x(x = x),∀xRx} (3)

Clearly,
TR = ∃X (∃!x(x = x) ∧ ∀xXx) (4)

17The below follows (Manzano, 1996, chap. 4).
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Since β = ∅, β-isomorphism reduces to equinumerosity. But if we use the frame
semantics, then it is not the case that any pair of equinumerous frames must either
both satisfy or fail to satisfy TR. For example, the frame 〈{0}, {{0}}〉 is a model for
TR, whilst the equinumerous frame 〈{0},∅〉 is not.

The reason why the logic based on frame semantics is so weak is because there are
no constraints on what the privileged extensions in a frame are like. In particular,
just because a frame F privileges (say) a pair of unary extensions E and E ′, it doesn’t
follow that their “conjunction” {a ∈ |F| : a ∈ E and a ∈ E ′} is privileged in F . This
makes some sense if the privileged extensions are thought of as the extensions of
perfectly natural properties:18 such properties are fully metaphysically independent
from one another, and there is no reason (in general) why logical constructs out of
the extensions of two natural properties should be the extension of another natural
property.
However, there are good reasons to think that using frame semantics for the Ramsey

sentence does not deliver a conception of theoretical content that is anymore palatable
to the structural realist than that based on using full semantics—but for the opposite
reason. Using the full semantics meant, as we saw above, that it was too easy for two
theories to be Ramsey-equivalent: they needed only to agree onmatters of cardinality
in order for their Ramsey sentences to be (full-)logically equivalent. Using the frame
semantics, however, makes it too hard for two theories to be Ramsey-equivalent. More
specifically, there are definitionally equivalent theories whose Ramsey sentences are not
equivalent under the frame semantics.
To explain this, we need a little more in the way of definability theory.19 Suppose

we have a single benign vocabulary β but disjoint problematic vocabularies π1 and
π2. A dictionary for π2 in terms of β ∪ π1 is a set ∆ of explicit definitions, one for each
R ∈ π2, in terms of β∪π1. Given a dictionary ∆ for π2 in terms of β∪π1, any first-order
(β ∪π1)-structure S can be converted into a (β ∪π2)-structure ∆(S), by first taking the
unique expansion of S to β ∪ π1 ∪ π2 that satisfies ∆, and then taking the reduct to
β ∪ π2.
Now suppose that T1 and T2 are a pair of first-order theories, in signatures β ∪ π1

and β ∪ π2 respectively. A dictionary ∆ for π2 in terms of β ∪ π1 is a translation manual
for T2 in terms of T1 if, for every modelM of T1, ∆(M) is a model of T2. If there
is a translation manual ∆ for T2 in terms of T1 and a translation manual ∆′ for T1 in

18In (something like) the sense of Lewis (1983).
19Again, see (Hodges, 1997, chap. 2) or (Suppes, 1957, chap. 8) for more details.
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terms of T2, then we will say that T1 and T2 aremutually interpretable. If the translation
manuals are such that T1∪∆ is logically equivalent to T2∪∆′, then we say that T1 and
T2 are definitionally equivalent; the theory T1 ∪∆ (or the logically equivalent T2 ∪∆′) is
referred to as the common definitional extension.
Recall that β includes, at least, all the observational vocabulary (even if we follow

Melia and Saatsi in also including the mixed vocabulary). This provides a good rea-
son for thinking that definitional equivalence, as defined here, should be considered
sufficient for theoretical equivalence: definitionally equivalent theories are empiri-
cally equivalent (in at least some sense), and their theoretical vocabularies are entirely
intertranslatable.20 Certainly, it seems that it would be a mistake for the structural
realist to insist on a criterion of equivalencemore fine-grained than definitional equiv-
alence. If they are to see off the pessimistic meta-induction,21 then they will want to
regard theories as equivalent if they define the same theoretical structures, even if
they do so using different basic resources—i.e., if they have a common definitional
extension.22 This is a problem for applying frame semantics to the Ramsey sentences
of theories: there are definitionally equivalent theories whose Ramsey sentences are
not frame-equivalent.

Example 2. Let T1 = {∃xFx}, T2 = {∃x¬Gx} (where β = ∅, π1 = {F}, and π2 = {G}).
T1 and T2 are definitionally equivalent, by the dictionaries

∆ = {∀x(Gx↔ ¬Fx)}

∆′ = {∀x(Fx↔ ¬Gx)}
(5)

However, their Ramsey-sentences

TR1 = ∃X∃xXx

TR2 = ∃X∃x¬Xx
(6)

20For arguments to this effect, see Glymour (1970), Glymour (1977).
21Recall that an originating motivation for structural realism (in Worrall (1989)) was to explain how

the realist could resist the pessimistic meta-induction: the concern that, given that many of our past
theories have been radically wrong about the ontological content of the world, we should conclude
that our current best theories are similarly strewn with radical ontological mistakes (Laudan, 1981).

22cf. Melia and Saatsi’s critique of restricting the second-order quantifiers to range over just the
extensions of “natural” properties, on the grounds that some properties thought to be natu-
ral/fundamental later turn out to be somehow “disjunctive”; this is a problem for the structural
realist, they argue, since he “wants his Ramsey sentences to be preserved across theory change—
they are supposed to capture something that is constant between theories, else the structural realist
does little better than the full blown realist in dealing with the pessimistic meta-induction.” (Melia
and Saatsi, 2006, p. 576)
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are not frame-equivalent. Indeed, let F be any frame such that EF1 = {|F|}. Then
F |= TR1 , but F 6|= TR2 .

5 Henkin semantics

This example suggests that the advocate of the Ramsey sentence should attend more
closely to the notion of definability. Roughly speaking, given a frame F , an (n-ary)
extension E over F is definable if there is some n-place formula φ such that E contains
all and only those n-tuples which satisfy φ. The most natural way to generate a more
fruitful semantics is to limit our attention to those frames which are closed under
definability: i.e., which are such that for any extension E definable over F , E ∈ EF .
Say that such a frame is a Henkin structure. However, as we change what language
φ may be written in, we will get different conceptions of definability, and hence
different notions of Henkin structure.23 Moreover, we may want consider not just
(mere) definability, but the broader notion of definability with parameters. An (n-ary)
extension E over a frame F is definable with parameters if there is (a) some formula
ψ with k ≥ n free first-order variables and m ≥ 0 second-order variables, (b) k − n
individuals from |F|, and (c) m extensions from EF , such that: E contains all and
only those n-tuples which satisfy ψ when its remaining free variables are assigned to
the chosen individuals and extensions. As we proceed, we will need to be somewhat
careful to keep an eye on this moving part in the account.
The reason to move to Henkin structures is that we are far more restricted in

which frames we can consider. For example, the frame F considered in Example 2
is not a Henkin structure on any plausible unpacking of definability: the set |F| is
definable over F by a formula such as x = x, and so it at least would have to be
included in EF . So, we might hope that by a judicious choice of definability, we
can ensure that definitionally equivalent theories will generate equivalent Ramsey
sentences. And indeed, this is the case: by choosing a notion of definability for
frames designed to “mimic” definability over associated first-order structures, we can
show that definitional equivalence is sufficient for equivalence of Ramsey-sentences
(under the chosenHenkin semantics—and hence, under anyHenkin semantics which
permits a richer notion of definability). In fact, itwill turn out that not evendefinitional

23So my usage of the term “Henkin structure” is a little non-standard, given that I have not fixed
on a specific notion of definability: usually, a Henkin structure is a frame which is closed under
(specifically) definability, with parameters, in the language of finitary second-order logic.
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equivalence, but merely mutual interpretability, is sufficient. In the remainder of this
section, I demonstrate this.
First, the relevant notion of definability. A formula of second-order logic is said to

be first-order if it contains no second-order quantifiers (note that a first-order formula
is permitted to contain second-order variables). Given a frame F , over signature
ξ, we say that an n-ary extension E over F is first-order definable with second-order
parameters if there is some first-order formula ψ ∈ L2(β) with free first-order variables
x1, . . . , xn and free second-order variables Y1, . . . , Ym, and there are some extensions
E1, . . . , Em ∈ EF , such that, for any a1, . . . , an ∈ |F|,

〈a1, . . . , an〉 ∈ E ⇔ F [Yi 7→ Ei, xj 7→ aj] |= ψ (7)

where Yi 7→ Ei denotes any second-order variable-assignment G such that G(Yi) = Ei

(for all 1 ≤ i ≤ m), and xj 7→ aj denotes any first-order variable-assignment g such
that g(xj) = aj (for all 1 ≤ j ≤ n). We then have the following result.

Proposition 1. Suppose that T1 and T2 are two mutually interpretable theories, in
signatures β∪π1 and β∪π2 respectively (where β = {Si}i, π1 = {R1

p}p, and π2 = {R2
q}q).

Then TR1 (wherein each R1
p has been replaced by a variable X1

p ) is logically equivalent
to TR2 (wherein each R2

q has been replaced by a variableX2
q ), on the Henkin semantics

generated by first-order definability with second-order parameters.

Proof. Suppose the proposition were false; then (without loss of generality) we can
suppose that there is some Henkin structure H (of signature β) such that H |= TR1

but H 6|= TR2 , where H is closed under first-order definability with second-order
parameters. In the below, we will derive a contradiction, by showing thatH |= TR2 .
To begin, we have that H[G] |= T ∗1 , for some second-order variable-assignment G.

So consider the first-order structureM for vocabulary β ∪ π1 defined by

|M| = |H| (8)

SMi = SHi (9)

(R1
p)
M = G(X1

p ) (10)

Clearly,M |= T1.
Since T1 and T2 are mutually interpretable, we can use the translation manual ∆ for

T2 in terms of T1 to construct a model ∆(M) of T2. We use this model to generate a
second-order variable assignmentG′ such thatH[G] |= T ∗2 (which will then show that
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H |= TR2 ).
So, let G′ be the second-order variable-assignment such that:

• for any second-order variable X2
q occurring in TR2 ,

G′(X2
q ) = (R2

q)
∆(M) (11)

• for any other n-ary second-order variableX , letG′(X) be some arbitrary element
of EHn .

I show that G′ is a variable-assignment for H, i.e., that for any second-order variable
X , G′(X) ∈ EH. Clearly, this is true by stipulation for any X not occurring in TR2 . So,
suppose that X does occur in TR2 , i.e. that X = X2

q for some q.
For the associated predicateR2

q ∈ π2, we know that the formula τR2
q
(occurring in the

definition δR2
q
∈ ∆ of R2

q in terms of β ∪ π1, as per equation (2)) defines the extension
(R2

q)
∆(M) inM. It does not define the extension inH, however, sinceH is of signature

β and τR2
q
is of signature β ∪ π1.

But now observe that for each p, G(X1
p ) ∈ EH (since G was an assignment for

H); that means, by equation (10), that (R1
p)
M ∈ EH. So now consider the formula

τ ∗R2
q

:= τR2
q
[Yp/R

1
p], i.e., the formula obtained by uniformly substituting variables Yj for

the predicates R1
p in τR2

q
. Note that τ ∗R2

q
is a first-order formula of L2(β): i.e., it has

second-order variables but no second-order quantifiers, and is of signature β.
If the second-order variables Yp are assigned to the parameters (R1

p)
M, then τ ∗R2

q

defines the extension (R2
q)

∆(M). But since all of those parameters are in EH, that
means that τ ∗R2

q
parametrically defines (R2

q)
∆(M) inH, relative to assigning Yp to (R1

p)
M.

Given thatH is closed under first-order definability with second-order parameters,
it follows that (R2

q)
∆(M) ∈ EH. By equation (11), this means that G′(X2

q ) ∈ EH, as we
were required to show. So G′ is a variable-assignment forH.
But now, given that ∆(M) |= T2, it is clear that H[G′] |= T ∗2 . Therefore, H |= TR2 .

This contradicts our assumption, and so the proposition follows.

Sincedefinitional equivalence entailsmutual interpretability, thisproposition shows
that (this form of) Henkin semantics will rule out problematic examples such as Ex-
ample 2. So moving to Henkin semantics, with its more restricted notion of a model,
enables us to avoid the problem canvassed in the previous section. However, in the
final two sections, I turn to two problems with Henkin semantics: the first that it
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collapses back into full semantics, and the second that—even if such a collapse is
resisted—it is associated with an implausibly weak criterion of equivalence.

6 Trivialisation

First, the risk of collapse. The basic form of the worry is that with a sufficiently liberal
conception of definability, perhaps it will turn out that all extensions over a frame
are definable, and hence that any Henkin model is forced to include all extensions—
bringing us back to full semantics, and hence to the Newman problem. This is how I
read the following remarks of Newman:

The onlypossibility of combating this objection [i.e., theNewmanproblem]
seems to be to deny the truth of the proposition about relation-numbers
[i.e. extensions] on which it depends, namely that given an aggregate A,
there exists a system of relations, with any assigned structure compatible
with the cardinal number of A, having A as its field. This involves aban-
doning or restricting Mr. Russell’s own definition of a relation, namely,
the class of all sets (x1, x2, . . . , xn) satisfying a given propositional function
φ(x1, x2 . . . , xn). If this definition is retained our assertion is clearly true.
For example if a, α, β, γ are any four objects whatever, a relation which
holds between a and α, a and β, and a and γ, but no other pairs is the set
of all couples, x and y, satisfying the propositional function

x is a, and y is α or β or γ (12)

Note that it is granted in the argument that we may only consider those extensions
which are definable. Newman’s claim, however, is that if we are allowed to freely
name elements of the domain, then restricting our attention to definable extensions is
no restriction at all: every relation will be definable by some means or other.
In more precise terms, the claim would be something like the following. Suppose

that H is a Henkin structure of signature ξ, and that for every a ∈ |H|, there is some
constant α ∈ ξ such that αH = a. It then follows (says Newman) that every set of
n-tuples over |H| is definable, and hence that EHn = P(|H|n). A more modern way of
making Newman’s point would appeal to the notion of definability with first-order
parameters, rather than to the introduction of new constants. In those terms, the
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relevant claim is then that for any Henkin structure H, every extension is definable
with first-order parameters.
It should be observed that the truth of this claim is not quite so trivial as Newman

makes out. In order to prove it, we need to suppose that the cardinality of |H| is
no greater than the cardinality of permissible disjunction in the language used to
formulate definitions. If the language in which we formulate definitions permits
disjunction of κ-many formulae, then if |H| contains no more than κ-many elements,
any extension E over |H| can be (parametrically) defined by a formula of the form∨

λ

(x1 = yλ1 ∧ x2 = yλ2 ∧ · · · ∧ xn = yλn) (13)

with parameters bλi , each of which gets assigned to yλi : here λ indexes the different
elements of E, so that for every 〈a1, . . . , an〉 ∈ E, there is some value of λ such that
bλi = ai (1 ≤ i ≤ n). The fact that |H| has no more than κ elements means that E has
no more than κ elements,24 and hence that the above disjunction is well-formed. As a
result, the claim is only true in full generality if we have no upper bound whatsoever
on the formation of disjunctions in the defining language. That said, it is hard to
see how one could motivate such an upper bound, at least insofar as we are doing
metaphysics rather than logic.
A better response to this trivialisation objection is to argue that the notion of de-

finability is too generous in a different way: the issue is not the expressive resources
available within the defining language, but rather the use of definability with param-
eters. Newman considers just such a response, which he puts as follows:

It may, however, be held that “real” relations can be distinguished from
“fictitious” ones; that the example just given is a fictitious one, while the
generating relation of the structure of theworld is real; and that there is not
always a real relation having an assigned structure and a given field. Here
“fictitious” has awell defined sense; it means that the relation is onewhose
only property is that it holds between the objects that it does hold between;
i.e., the propositional function defining it is of the type (12) above.25

Melia and Saatsi (2006) consider a similar proposal: rather than the “real/fictitious”
distinction, they consider the distinction between qualitative properties (those “tied
24Unless κ is finite—but in that case,Ewill have only finitelymany elements. So unless we areworking

in a (very strange) language with finite bounds on disjunction, this won’t be a problem.
25(Newman, 1928, p. 145)
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to what the objects are like, the kinds of features that they have, the qualities that they
possess”)26 and non-qualitative properties (properties such as “being identical to a, b or
c”)27.
The most natural way of making this precise is to restrict ourselves to definability

without first-order parameters. After all, as we have seen, we do not need first-order
parameters for Proposition 1. Of course, in structures in which everything carries
a name, then this is no limitation (as the Newman quote above points out); but
not all structures are like that. (It seems that we should still admit definability by
second-order parameters, since we want to allow that “theoretical” properties—i.e.,
properties whose corresponding predicates we are seeking to Ramseyfy—are still
qualitative properties.)
Even without getting any more specific about the language of definition, we can

show that if definability with first-order parameters is excluded, then not all Henkin
structures are full structures. The basic observation here—which is a standard piece
of model theory—is that if a set is definable (without first-order parameters), then it
is invariant under automorphisms. That is, let h be an automorphism of the frame F ,
i.e., a bĳection h : |F| → |F| such that for every E ∈ EF ,

〈a1, . . . , an〉 ∈ E ⇔ 〈h(a1), . . . , h(an)〉 ∈ E (14)

It will take only a straightforward proof by induction to show that, for any formula
ψ(x1, . . . , xn, Y1, Y2, . . . ),

F [Yi 7→ Pi, xj 7→ aj] |= ψ ⇔ F [Yi 7→ Pi, xj 7→ h(aj)] |= ψ (15)

Thus, if the extensionD is defined by ψ (with respect to the second-order parameters
Pi), then for any a1, . . . , an ∈ |F|,

〈a1, . . . , an〉 ∈ D ⇔ 〈h(a1), . . . , h(an)〉 ∈ D (16)

But if F admits some non-trivial automorphism (i.e., an automorphism which is not
the identity map), then not all sets will be invariant under all automorphisms; from
which it follows that not all sets are definable. So we are not facing the same level of
trivialisation as we had before.

26(Melia and Saatsi, 2006, p. 577)
27(Melia and Saatsi, 2006, p .578)
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Nevertheless, that does not mean that there is no threat of trivialisation. Melia and
Saatsi, after making the above argument, go on to claim that it only provides a short
respite for the Ramsey-philiac:28

Unfortunately, though attractive, restricting the quantifiers to qualitative
properties is too weak to stave off Newman-style arguments for very long.
True, restricting the second order quantifier in this manner implies that
it is not necessarily true that whenever you have a set of objects there
is one and only one property that those objects instantiate. The possi-
bility of symmetric worlds [i.e., models with non-trivial automorphisms]
demonstrated that. But worlds showing such symmetry are extremely
rare. Where a world lacks this level of symmetry, it will be the case that,
again, for every set of objects there is a qualitative property that the mem-
bers of this set, and only themembers of this set, instantiate. If the world is
such that every object has a unique qualitative property then, by forming
the relevant disjunction, every set of objects will correspond to a unique
qualitative property too.29

On our assimilation of qualitative properties to the notion of definability without
first-order parameters, this argument requires the converse of the principle discussed
above: i.e., it requires the claim that if an extension E over a frame F is invariant
under every automorphism ofF , thenE is definable (without first-order parameters).
Again, so long as we are willing to grant the defining language as much expressive
power as necessary, then this claim seems plausible. It will indeed then follow that in
rigid frames (those with no non-trivial automorphisms), every extension is definable,
so that we face triviality once again. Thus, the very coherence of a position that uses
Henkin structures rather than full structures is in question: barring restrictions on the
defining language, a rigid Henkin structure just is a full structure.

7 The weakness of mutual interpretability

Finally, I want to adduce one more problem for the move to Henkin semantics, even if
we do fix on some limited conception of definability (and hence avoid the trivialisation
results). The concern is that evenwith such limits, the notion of equivalence associated
28Newman has his own reply to this response (at (Newman, 1928, pp. 145–146)); I confess, however,

that I don’t fully understand his reply.
29(Melia and Saatsi, 2006, p. 578)
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withRamsey sentences interpretedbyHenkin semantics is tooweak: evenwith a fairly
limited defining language, there are theories which seem intuitively inequivalent,
which nevertheless generate Ramsey sentences that are equivalent (with respect to
the Henkin semantics). Note that this problem will not be resolved by appeal to a
richer notion of definability. As we enrich the defining language, we make it harder
for something to be a Henkin structure (since it is harder for it to be closed under
definability); we therefore make it easier for a pair of Ramsey sentences to have all
their Henkin models in common, i.e., move to a weaker notion of equivalence. (To
put it another way, the problem with full semantics was that the associated notion
of equivalence was too weak, and the problem with frame semantics was that the
associated notion of equivalence was too strong. Enriching the defining language
moves us towards full semantics, i.e., in the direction associated with a weaker notion
of equivalence.)
More specifically, consider again the Henkin semantics generated by first-order

definabilitywith second-order parameters. We saw above thatmutual interpretability
is a sufficient condition for Ramsey-equivalence with respect to this semantics. But
the following example shows that mutual interpretability is an implausible criterion
of theoretical equivalence, since there are mutually interpretable theories which one
has good reason to consider inequivalent.30

Example 3. Let β = ∅, π1 = {P}, and π2 = {Q,R} (where P , Q and R are all unary
predicates). Consider the following pair of theories:

T1 = {∀x(Px ∨ ¬Px)}

T2 = {∀x(Qx→ Rx)}

Intuitively, T1 and T2 are inequivalent: T1 is a triviality, true in every structure of
signature β ∪ π1, whilst T2 is not. Yet they are mutually interpretable. Consider the
following dictionary ∆ for π2 in terms of β ∪ π1:

∀x(Qx↔ Px)

∀x(Rx↔ Px)

This is a translation manual for T2 in terms of T1. For, given any modelM of T1 (i.e.,
30Further examples besides this one may be adduced: for instance, the pair of theories in Example 4 of

Barrett and Halvorson (2015) are mutually interpretable. This shows that completeness of theories
is not preserved under mutual interpretability.
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any structure of signature β ∪ π1), ∆(M) is a structure of signature β ∪ π2 in which
whatever set constituted the extension of P inM is now the extension of both Q and
R. Thus, ∆(M) |= T2. On the other hand, consider the following dictionary ∆′ for π1

in terms of β ∪ π2:
∀x(Px↔ Qx) (17)

This is a translation manual for T1 in terms of T2. For, given any modelN of T2, ∆′(N )

will be a structure of signature β ∪ π1—and hence, a model of T1. So T1 and T2 are
mutually interpretable.31

One response, of course, is to think that some further ingenious tweak to the notion
of a Ramsey sentence will see off the problem. I’ll now take a moment to explain why
I am pessimistic about the prospects of doing so.
First, note that Example 3 will persist as a problem if we move to any second-

order semantics which is stronger than that employed here. If we use any form of
semantics in which frames are closed under first-order definability with second-order
parameters, thenProposition 1will apply, andmutual interpretabilitywill be sufficient
for logical equivalence of the Ramsey sentences. To put the same point another way:
strengthening the semantics means allowing fewer frames to count as structures; that
makes it easier for two theories to have logically equivalent Ramsey sentences (i.e.,
Ramsey sentences satisfied by exactly the same structures); and hence, it leads to a
more liberal criterion of equivalence. But Example 3 is exactly a concern that the
criterion of equivalence we have arrived at is too liberal—so further liberalising it will
hardly help!
The alternative, then, is toweaken the semantics. This will lead to a stricter criterion

of theoretical equivalence, which may then enable us to rule out Example 3. The
problem is that we are then apt to run into cases like Example 2: i.e., cases showing
that the associated criterion of theoretical equivalence is stricter than definitional
equivalence. The following proposition gives a sufficient condition for this to occur.

Proposition 2. Suppose that F is a frame of signature β = {Si}i, and that there is a
formula ψ with free variables x1, . . . , xn and Y1, . . . , Ym such that for any extensions
31Thus, by Proposition 1, they have Henkin-equivalent Ramsey sentences. This may be seen directly

by observing that the Ramsey sentence of T2 is

TR
2 = ∃X1∃X2∀x(X1x→ X2x) (18)

which is a logical validity under Henkin semantics. For, in any Henkin structure H, if G is any
second-order assignment such that G(X1) = G(X2), thenH[G] |= T ∗

2 .
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E1, . . . , Em ∈ EF (with Ei of the same arity as Yi), the extension defined by ψ with
respect to the parametersE1, . . . , Em is not in IF . Then, for any semantics underwhich
F is admissible as a structure, one can have definitionally equivalent theories whose
Ramsey sentences are not logically equivalent (with respect to that semantics).

Proof. First, define π1 = {R1
1, . . . , R

1
m}. Then take some particular sequence of ex-

tensions E1, . . . , Em ∈ IF , with Ei of the same arity as Yi, and define a first-order
structureM of signature β ∪ π1 as follows:

|M| = |F| (19)

SMi = SFi (20)

RMi = Ei (21)

Now, let
T1 = {φ :M |= φ} (22)

Second, let π2 = {R2
1, . . . , R

2
m, R}, and let

T2 = {φ[R2
i /R

1
i ] : φ ∈ T1} ∪ {∀x1 . . . ∀xn(Rx1 . . . xn ↔ ψ[R2

i /Yi](x1, . . . , xn)) (23)

In otherwords, we obtain T2 by uniformly substituting theR2
i for theR1

i everywhere in
T1, and then adjoining an explicit definition ofR in terms of β ∪π2—where τR is given
by ψ, with the R2

i uniformly substituted for Yi. Clearly, T1 and T2 are definitionally
equivalent (since T2 is a definitional extension of a notational variant of T1).
I now show that F |= TR1 . First, let G be a second-order variable-assignment such

that G(X1
i ) = Ei (which is permitted, since all Ei ∈ EF ). A straightforward proof by

induction will demonstrate that for any φ ∈ L1(β ∪ π1) and any first-order variable-
assignment g forM, ifM[g] |= φ then F [G, g] |= φ[X1

i /R
1
i ]. Thus, sinceM |= φ for all

sentences φ ∈ T1, and given the definition of T ∗1 , we have that F [G] |= T ∗1 ; and hence,
F |= TR1 .
It remains only to show that F 6|= TR2 . So suppose that this were not the case. Then

for some second-order variable-assignment G′ for F , F [G′] |= T ∗2 . Thus, in particular,

F [G′] |= ∀x1 . . . ∀xn(Xx1 . . . xn ↔ ψ[X2
i /Yi](x1, . . . , xn)) (24)

But now letE ′i := G′(X2
i ), and letE ′ := G′(X). Then it follows that for any a1, . . . , an ∈

23



|F|,
〈a1, . . . , an〉 ∈ E ′ ⇐⇒ F [Yi 7→ E ′i, w, xj 7→ aj] |= ψ (25)

Hence, E ′ is defined by ψ with respect to the parameters E ′1, . . . , E ′m. But then by
hypothesis, E ′ 6∈ EF , and so G′ is not a variable-assignment for F after all. So by
contradiction, the proposition follows.

The hypothesis of Proposition 7 is stronger than merely supposing that F is not
closed under first-order definability with respect to second-order parameters: the
latter conditionwould require only that for some sequence of parameters, the intension
defined by ψ with respect to those parameters is not in IF . Still, it is hard to see how
structures of the formofF could be decisively ruled outwithout imposing that closure
condition; and as soon as we have done so, we are subject to counterexamples of the
form of Example 3. This strongly suggests that fiddling with exactly which semantics
to employ is unlikely to help.
Another way of seeing this is to observe that the difference between definitional

equivalence and mutual interpretability is not based on a difference over how to
unpack the notion of definition: by contrast, the same notion of definition is used in
both. Definitional equivalence strengthens mutual interpretability, not by changing
the conditions on what is apt to count as a translation, but by requiring that the pair
of translations relate to one another in a certain kind of way: namely, that they are
inverse to one another.32 This is a distinction that the Ramsey-sentence approaches
considered in this paper are simply blind to.
In other words, the problem here is not that we are failing to consider the right kind

of Ramsey-sentence construction, or the right kind of semantics for interpreting such
a construction. Rather, the issue is something more fundamental: it does not appear
that one can isolate some specific construction that it is appropriate to identify as
the structural content of a theory. This suggests an important methodological lesson.
Structural realists are often challenged to explicate their view, and to explain exactly
what they mean by the “structural content” of a theory. The way they have typically
sought to do this is by writing down some new theory, which (they claim) captures
all and only the structural content of the old, without any of the descriptive fluff. If
the above is correct, then this kind of approach is misguided.
So much the worse for structural realism? Not necessarily, for the analysis above

suggests an alternative. I observed above that if the Ramsey sentence captures the

32See Barrett and Halvorson (2015).
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“real” content of a theory, then that (togetherwith a choice of second-order semantics)
naturally induces an associated criterion of theoretical equivalence;33 much of my
critique was based on showing that the criteria so obtained were implausible criteria
for theoretical equivalence. So perhaps the problem is that we are putting the cart
before the horse. After all, the notion of a fully fluff-free presentation of a theory is a
fantasy; any presentation of a theorywill incorporate some inessential representational
features (the colour of the ink, the typeface, etc.). So rather than questing after such
chimeras, perhaps we can only specify the content of a theory insofar as we can say
what it would take for two theories to agree in their content: that is, by endorsing a
criterion of theoretical equivalence. For structural realists, this means specifying a
criterion of structural equivalence. Translational equivalence (perhaps with a fixed
specification of how to translate between the observational vocabularies of the two
theories) seems like a plausible candidate, at least for the kinds of theories discussed
in this paper. In a slogan: hitherto the philosophers have only extracted the content of
a theory, in various ways; the point, however, is to abstract it.

References

Ainsworth, P. M. (2009). Newman’s Objection. The British Journal for the Philosophy of
Science, 60(1):135–171.

Barrett, T. W. and Halvorson, H. (2015). Glymour and Quine on Theoretical Equiva-
lence. Journal of Philosophical Logic, 45(5):467–483.

Chakravartty, A. (2016). Scientific Realism. In Zalta, E. N., editor, The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016
edition.

Coffey, K. (2014). Theoretical Equivalence as Interpretative Equivalence. The British
Journal for the Philosophy of Science, 65(4):821–844.

Frigg, R. and Nguyen, J. (2017). Models and representation. In Magnani, L. and
Bertolotti, T., editors, Springer Handbook of Model-Based Science. Springer, Berlin;
New York.

Frigg, R. and Votsis, I. (2011). Everything you alwayswanted to know about structural
realism butwere afraid to ask. European Journal for Philosophy of Science, 1(2):227–276.

33cf. Coffey (2014)

25



Glymour, C. (1970). Theoretical RealismandTheoretical Equivalence. PSA: Proceedings
of the Biennial Meeting of the Philosophy of Science Association, pages 275–288.

Glymour, C. (1977). The Epistemology of Geometry. Noûs, 11(3):227–251.

Hodges, W. (1997). A Shorter Model Theory. Cambridge University Press, Cambridge,
UK.

Ketland, J. (2004). Empirical Adequacy and Ramsification. The British Journal for the
Philosophy of Science, 55(2):287–300.

Laudan, L. (1981). A confutation of convergent realism. Philosophy of science, 48(1):19–
49.

Lewis, D. (1983). Newwork for a theory of universals.Australasian Journal of Philosophy,
61(4):343–377.

Lutz, S. (2012). Criteria of Empirical Significance: Foundations, Relations, Applications.
PhD thesis, University of Utrecht.

Manzano, M. (1996). Extensions of First Order Logic. Cambridge University Press,
Cambridge, UK.

McLaughlin, B. and Bennett, K. (2014). Supervenience. In Zalta, E. N., editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
spring 2014 edition.

Melia, J. and Saatsi, J. (2006). Ramseyfication and Theoretical Content. The British
Journal for the Philosophy of Science, 57(3):561–585.

Newman, M. H. A. (1928). Mr. Russell’s "Causal Theory of Perception". Mind,
37(146):137–148.

Psillos, S. (1999). Scientific Realism: How Science Tracks Truth. Routledge.

Suppes, P. (1957). Introduction to Logic. Van Nostrand Reinhold, New York.

van Fraassen, B. C. (1980). The Scientific Image. Oxford University Press, Oxford, UK.

Votsis, I. (2003). Is Structure Not Enough? Philosophy of Science, 70(5):879–890.

Worrall, J. (1989). Structural Realism: The Best of Both Worlds? Dialectica, 43(1-2):99–
124.

26



Zahar, E. G. (2004). Ramseyfication and structural realism. Theoria. Revista de Teoría,
Historia y Fundamentos de la Ciencia, 19(1):5–30.

27


