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It ain’t necessarily so: Gravitational Waves and 
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Richard Wagner: “Das Rheingold”, Scene 1 
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Abstract: 

In the following paper, I review and critically assess the four standard routes commonly taken to establish that 
gravitational waves (GWs) possess energy-momentum: the increase in kinetic energy a GW confers on a ring of 
test particles, Bondi/Feynman’s Sticky Bead Argument of a GW heating up a detector, nonlinearities within 
perturbation theory, taken to reflect the fact that gravity contributes to its own source, and the Noether 
Theorems, linking symmetries and conserved quantities. Each argument is found to either to presuppose 
controversial assumptions or to be outright spurious.  I finally examine the standard interpretation of binary 
systems, according to which orbital decay is explained in terms of the system’s energy being via GW energy-
momentum transport. I contend that a better interpretation, drawing only on the general-relativistic Equations 
of Motions and the Einstein Equations, is available - and in fact preferable; thereby also an inference to the best 
explanation for the vindication of GW energy-momentum is blocked.  
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I. Introduction 
 

In the following I endeavor to examine whether GWs carry energy-momentum. 

Many will deem this an old hat. A monograph on GW astrophysics exemplarily proclaims: 
“Since gravitational waves produce a real physical effect […] – it is clear that the wave must 
be carrying energy.”1 Such an effect is the orbital spin-up of double pulsars, discovered by 
Hulse and Taylor in 1974:  On its standard interpretation, the double pulsars demonstrate the 
binary system’s loss of energy by radiating away energy via GWs; as a result, the pulsars move 
closer to each other – a prediction corroborated with amazing accuracy.2  

At the latest since the repeated direct detection of GWs the existence of GWs is beyond 
reasonable dispute.3 But perhaps the standard interpretation of their effects as depleting the 
binaries’ orbital energy deserves a second glance:  

• Petkov has recently stressed that the pulsars are in free-fall and hence move inertially. 
Shouldn’t therefore their kinematic state remain unaltered? In particular, shouldn’t 
the binaries preserve their energy?4  

• More generally, as Norton remarked: If, in GR, the gravitational force is “geometrised 
away” shouldn’t this compromise the very notion of gravitational energy, as well?5 

• Closely related is the issue of energy-momentum conservation. As we know from 
Analytic Mechanics, conservation of energy and momentum is tied up with the 
symmetries of space and time.6 But isn’t space-time, according to GR, warped, 
generically lacking any symmetries? Shouldn’t this affect the validity of conservation 
laws? 

Following Einstein’s advice never to stop questioning, I shall subsequently challenge the 
received ascription of energy-momentum to GW by critically examining the four standard 
arguments taken to establish the energy-momentum of GWs. The first two adduce 
phenomenological effects GWs produce: The “Argument from Kinetic Energy” consists in the 
change in kinetic energy of a ring of free particles (sect. II.1) hit by a GW; the other effect 
consists in the heating-up of a detector whose constituents are held together by internal 
forces (sect. II.2). Of a more systematic nature are two other arguments, the natural energy-
momentum of a GW, obtained from a decomposition of the metric into a background and 
perturbations, and an application of Noether’s Theorem (II.4), respectively. All four arguments 
are found to be deficient – at least, when espousing GR’s “geometric” interpretation, 
                                                           
1 Anderson/Creighton (2011), p. 66 
2 E.g. Will (2014), sect. 6,7 
3 Cf. Castelvecchi/Witze (2016) 
4 Cf. Petkov (2012), Appendix C 
5 Norton (2012), sect. 3.9 
6 E.g. Landau/Lifshitz (1976) §6 
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according to which gravitational effects are re-conceptualised as manifestations of a non-
Minkowskian chronogeometric and inertial structure. 

Below, I adopt this geometric interpretation of GR throughout. This is not to deny the virtues 
(let alone, existence) of alternatives, esp. the “particle physicist view” (Pitts), which conceives 
of the metric as a physical field.7 Apart from the fact that it is the philosophers’ professional 
duty to explicate presuppositions, a conceptually rigorous development of the geometric 
interpretation, to which I hope my analysis will contribute, is likely to facilitate a systematic 
adjudication between it and rivalling choices.8  

If the standard arguments for ascribing GWs energy-momentum fail, how then to account for 
their paradigmatic effects? Section III adverts to the standard treatment of binary systems 
(III.1-2), and sketches how their spurious explanation in terms of the energy GWs carry can be 
replaced by a more satisfactory “dynamical” one (III.3), which appeals solely to the general-
relativistic Equations of Motion and the Einstein Equations. Thereby, also an inference to the 
best explanation, intended to establish GW energy-momentum is blocked (III.4). I summarise 
the results of my analysis in sect. IV and outline two promising lines of further inquiry. 

 

II. Four routes to GW energy 

 
In this section, I revisit and evaluate the four arguments canonically cited for ascribing GWs 
energy-momentum: 

(1) A GW incident on free particles, initially at rest in a lab frame, sets them into motion. 
(2) A GW can induce heat in a detector. 
(3) Within perturbation theory, higher-order contributions can be naturally construed as 

the GWs’ energy-momentum.  
(4) The framework of the Noether Theorems leads to energy-momentum in the same way 

as other field theories. 

I submit, none is compelling, either because the argument rests on conceptual distinctions not 
available within a geometrically interpreted GR (as is the case with (1) and (3)) or (as is the 
case with (2) and (4)) because they hinge on implicit, tenuous assumptions that require -at the 
least- substantive additional arguments.  

 

II.1. Kinetic energy of test masses 
 

The default argument for the energy of GWs turns on the kinetic effects of a GW on test 
particles, otherwise at rest; this energy is supposed to be extracted from the GW.  

                                                           
7 Cf. Pitts (2016a,b) 
8 Cf. Lehmkuhl (2008); Rey (2013)  
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The thought experiment rests on a perturbative treatment of GR, so-called linear GW theory9. 
(The perturbative approach will be studied in full generality in II.3.) Within linearised theory, 
one assumes that the gravitational field is weak, such that the spacetime metric 𝑔𝑎𝑏 deviates 
only slightly from a flat Minkowski background (𝜂𝑎𝑏):10  

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + ℎ𝑎𝑏,where |ℎ𝑎𝑏| ≪ 1. 

In this perturbative order ℎ𝑎𝑏 can be treated like a symmetric tensor field under global Lorentz 
transformations. (From now on Greek indices will denote approximately Lorentz tensors; 
indices thus are also raised/lowered w.r.t. the Minkowski metric.) Linearised theory thus 
effectively is a special-relativistic theory of gravity for weak fields.  

What happens then to the General Covariance of general-relativistic equations? The 
invariance of the latter under infinitesimal coordinate transformations, 𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 +
𝜉𝜇(𝑥) (where 𝜉𝜇(𝑥) is an arbitrary function of the same order of smallness as ℎ𝑎𝑏), in 
linearised theory becomes invariance under gauge transformations of the form ℎ𝜇𝜈 → ℎ′𝜇𝜈 =
ℎ𝜇𝜈 − 2𝜕(𝜇𝜉𝜈). 

Expanding the general-relativistic tensors in powers of the perturbation ℎ𝜇𝜈 yields in leading 
order the corresponding quantities in linearised theory (denoted by the scripted symbols), 
such as the linearised Einstein tensor:  

𝒢𝜇𝜈 = 𝜕𝜇,𝜈2 ℎ + □ℎ𝜇𝜈 − 𝜕𝜆,𝜈2 ℎ𝜇𝜆 − (□ℎ − 𝜕𝜅,𝜆2 ℎ𝜅𝜆)𝜂𝜇𝜈, 

with ℎ ≔ 𝜂𝜇𝜈ℎ𝜇𝜈  and the flat spacetime d’Alembertian □ ≔ 𝜂𝜇𝜈𝜕𝜇,𝜈
2 . For consistency, the 

energy-momentum tensor 𝑇𝜇𝜈 on the r.h.s. of the Einstein Equations must likewise be of first 
order in the perturbations (𝑇𝜇𝜈 ≈ 𝒯𝜇𝜈).  

Harnessing the gauge freedom for the gravitational field, the linearised Einstein Equations, 
𝒢𝜇𝜈 = −

16𝜋𝐺
𝑐4
𝒯𝜇𝜈, simplify for a particular gauge (the so-called “TT-gauge”), to an 

inhomogeneous wave equation. Its general solution is obtained via Greens functions. For the 
purposes of GWs, we may restrict ourselves to the vacuum case (𝒯𝜇𝜈 = 0) with plane wave 

packets as solutions, ℎ𝜇𝜈 = ∫𝑑3�⃗� 𝐴𝜇𝜈(�⃗� )𝑒𝑖𝑘𝜆𝑥
𝜆 (with a generic, wave-vector dependent 

function 𝐴𝜇𝜈, the so-called polarization tensor). For concrete astrophysical applications, such 
wave packets and their effects are further evaluated.    

One may demur at imposing the above TT-gauge condition. However, in the context of the 
cosmological perturbation formalism this can be shown not to curtail the general validity of 
the argument: Only the transverse, traceless degrees of freedom of the metric genuinely (i.e. 
not as an illusory artefact of a coordinate choice) obey a wave-like equation (with the other 
components satisfying an equation of the Poisson type) and hence can be identified as 
radiative.11  

                                                           
9 E.g. Misner et al. (1973), Ch. 35; Hobson et al. (2006), Ch. 17 
10 For GWs incident on our GW detectors ℎ𝜇𝜈 is typically of order 10−21. For comparison, the absolute values of 
gravitational fields in our solar system are still quite small, typically: |ℎ𝑖𝑗| ≲ 10−6, cf. Misner et al. (1973), Ch. 39. 
11 Cf. Flanagan/Hughes (2005). Such a decomposition of the metric into radiative TT-pieces, (unphysical) gauge 
pieces and gravitational pieces is always possible and unique. 
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Like an electromagnetic one, a GW possesses two linear (or two circular) polarizations. Their 
respective designations, ⨁ and ⨂, indicate the axes along which a ring of a test particles is 
distorted. The effect a purely ⨁-polarised GW travelling along the z-axis, ℎ𝑎𝑏

⨁ =
cos 𝑘(𝑐𝑡 − 𝑧) 𝑒𝑎𝑏

⨁  produces in a transverse circle of particles is shown in Figure 1.  

 

Fig. 112: Deformations of a ring of test particles in the x-y plane. The initial configuration is shown by the open 
dots. 

For laboratory practices, it is apposite to adopt the so-called proper detector frame13 - a 
coordinate system in which one fixes the origin, and then uses rigid rulers to delineate 
coordinates, enforcing thus the geometry measured in these coordinates to be Euclidean. 

The GW incident on our above ring of test particles (each assumed to be of mass m) deforms 
the latter, stretching and squeezing the ring in x- and y-direction, respectively:  𝛿𝑥(𝑡) =
ℎ⨁
2
sin𝜔𝑡 and 𝛿𝑦(𝑡) = −ℎ⨁

2
sin𝜔𝑡. (Fig.1 depicts the deformations by the black arrows). The 

particles start moving, thereby changing their kinetic energy:  

𝐸𝑘𝑖𝑛 =
𝑚
2
(𝛿�̇�2 + 𝛿�̇�²) =

𝑚
4
ℎ⨁2 𝜔2 cos²𝜔𝑡. 

Whence this energy gain - so the rationale of the first canonical argument goes - if not from 
the GW?  

What to make of this Argument from Kinetic Energy? Two objections can be made: The first 
one repudiates the argument for its appeal to a non-inertial frame; the second objection 
targets the ambiguity of “kinetic energy” in a GR context. 

At the core of the Argument from Kinetic Energy lies its reliance on the proper detector frame. 
However, this reference is not physically privileged in GR. In fact, with the coordinate proper 
detector frame’s coordinates being delineated by rigid rulers, according to a theorem first 
formulated by Helmholtz14, a proper detector frame cannot be physically realized in space of 
variable curvature, unless forces are operant that counterbalance the deformations the 
curvature inflicts on extended bodies, such as rigid rulers. 

More natural15 and privileged - as inertial - is the so-called TT-frame: In it coordinate labels are 
attached to freely falling test particles. Lest the picture be unnecessarily obfuscated by inertial 

                                                           
12 Taken from Hobson et al. (2006), p. 506. 
13 E.g. Maggiore (2008), Ch. 1.3.3 
14 Cf. Mittelstaedt (1981), Ch. II §3.  
The first rigorous proof seems to stem from Sophus Lie in 1888. Thanks to Marco Giovanelli for this hint.  
15 Kennefick (2007), p. 131, nicely likens the TT-frame with the natural way oceanographers would introduce 
coordinates for orientation on sea. 
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effects, such as the fictitious forces, known from Classical Mechanics, let us re-evaluate the 
above situation of test masses in these inertial reference frames. 

In the TT frame, however, as follows immediately from the geodesic equation, no particle 

changes its coordinate position, 𝑑𝑥
𝑎

𝑑𝜏
= 0. Hence, the GW does not affect the particles’ kinetic 

energy.  

The non-gain of kinetic energy in the TT frame notwithstanding, the physical (spatial) 

distances/separation, √|𝑔𝑖𝑗𝜉𝑖𝜉𝑗|, for a spacelike vector 𝜉 = (0, 𝜉𝑖), do, of course, change 

while the coordinate distance √|𝛿𝑖𝑗𝜉𝑖𝜉𝑗| remains constant. (To be sure, one can recover the 

rate of change of the physical distances16 (i.e. and interpret the result as a force law, coinciding 
with the proper detector frame description). However, within the spacetime setting inherent 
in Minkowskian physics, co-moving coordinate and physical (proper) distances coincide.)  

This objection to the Kinetic Argument’s privileged treatment of a non-inertial reference frame 
employed the notion of kinetic energy – tacitly assuming that within GR, this is an 
uncontroversial notion. A different line of attack therefore arises from disputing this.  

First, recall that in Classical Mechanics, kinetic energy plays two distinct roles, only 
contingently related:  On the one hand it is the residual part of the total energy, after 
subtracting the contributions from all dynamical interactions; on the other hand, kinetic 
energy is the numerical value of the Lagrangian that yields the equation of motion of free 
particles.17  

In the transition to general-relativistic mechanics, these two roles are no longer played by the 
same object. An evaluation of kinetic energy is not as straightforward as my preceding 
thoughts may have insinuated.   

To remedy this, consider – in a manner familiar from SR18 - a particle’s energy (with mass m 
and the 4-momentum 𝑝𝑎 ) 𝐸[𝜉] = 𝑔𝑎𝑏𝑝𝑎𝜉𝑏, relative to an observer with the 4-velocity  𝜉𝑎. 
Subtract from this energy 𝐸[𝜉] the particle’s rest energy 

𝐸kin = 𝑝𝑎𝜉𝑎 − 𝑚𝑐². 

We can evaluate this further via the length of the norm of the observer’s  4-velocity, 𝑐² =

𝑔𝑎𝑏𝑢𝑎𝑢𝑏 = 𝑐²𝑔00 (
𝑑𝑡
𝑑𝜏
)
2
+ 2𝑐𝑔0𝑖𝑣𝑖

𝑑𝑡
𝑑𝜏
+ 𝑐²𝑔𝑖𝑗𝑣𝑖𝑣𝑗 (

𝑑𝑡
𝑑𝜏
)
2
, with 𝜏 denoting the affine 

parameter and 𝑣𝑗 = 𝑑𝑥𝑗

𝑑𝑡
 the coordinate velocity, respectively.  

                                                           
16 E.g. Ohanian/Ruffini (2013), Ch. 5.2. 
17 This is how kinetic energy is occasionally even defined, cf. Landau/Lifshitz (1976), §4. 
18E.g. Malament (2012), Ch. 2.4 
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For a GW in TT-gauge (such that 𝑔0𝑖 = 0) and an inertial observer, hence 𝜉𝑖 = 0, one obtains: 

𝜉0 = 𝑐 𝑑𝑡(obs)
𝑑𝜏

= 𝑐
√𝑔00

 and hence for the kinetic energy:19 

𝐸𝑘𝑖𝑛 = 𝑚𝑐²(√
𝑔00

𝑔00 + 𝑔𝑖𝑗𝑣𝑖𝑣𝑗
− 1). 

We are now in a position to evaluate this general-relativistic analogue of kinetic energy: With 
the inertial coordinates of the TT frame, in which the particle positions don’t change, 𝑣𝑗 = 0, 
the kinetic energy is indeed zero. Our previous counterargument to the Argument from Kinetic 
Energy thus goes through.  

But does this also hold for the correct GR counterpart to the second notion of kinetic energy? 

The GR Lagrangian whose variation yields the equation of motion for a free massive particle, 
in generalisation of the special-relativistic case, reads:  

ℒ0 = √|𝑔𝑎𝑏
𝑑𝑥𝑎

𝑑𝜏
𝑑𝑥𝑏

𝑑𝜏
| 

Being a scalar with the constant numerical value c for massive particles, and zero for photons, 
it does not change, even when a GW passes through the particle. Consequently, again our 
counterargument goes through. 

To summarise: The Argument from Kinetic Energy draws its force from allocating non-inertial 
frames a special status that from a GR perspective is unjustified. A description of the 
phenomena in GR’s inertial frames the apparent increase of kinetic energy lapses. 

A related phenomenological argument is the Sticky Beads Argument. Rather than free 
particles, the Sticky Beads Argument involves systems with friction. 

 

II.2 Bondi-Feynman’s Sticky Bead Argument 
 

The idea is similar to the Argument from Kinetic Energy: The thought experiment assumes that 
a GW can heat up matter, the thermal energy allegedly being extracted from the GW energy. 
  
In the 1950s, during an era where the emission of GWs was still fiercely debated20, Bondi and 
Feynman (it seems, independently) proposed a simple, qualitative thought experiment21 that 
appears to compellingly demonstrate that GWs must carry energy (and hence must be real).22  
                                                           
19 To reassure the reader that we are on the right track: In Minkowski spacetime, this reduces to the familiar 

special-relativistic expression for kinetic energy 𝑚𝑐² ( 1
√1−𝑣²/𝑐²

− 1) = 1
2
𝑚𝑣² + 3

8
𝑚 𝑣4

𝑐²
+ ⋯. 

20 Cf. Kennefick (2007), Ch. 5-7 
21 Cf. Feynman et al. (2002), Foreword.  
22 It is worth pointing out that many, explicitly e.g. Bunge (2017), seem to regard energy transport of GWs also 
as a necessary criterion for their existence. The view I am advocating here is that, while I do not deny that energy 
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The setup includes beads on a stick, serving as a detector: The two beads can “[slide] freely 
(but with a small amount of friction) on a rigid rod. As the wave passes over the rod, atomic 
forces hold the length of the rod fixed, but the proper distance between the two beads 
oscillates. Thus, the beads rub against the rod, dissipating heat.”23 
According to Feynman, the subsequent heating up indicates that the GW can do work: For 
conservation of energy to hold, whence should the gain in thermal energy stem, if not from 
the GW? We are thus licenced to ascribe GWs energy-momentum. 
 
In order to discern more sharply a potentially problematic assumption underlying the Sticky 
Bead Argument, let us render it more quantitive with a simple damped spring.24 Consider two 
masses m1 and m2 placed on the x-axis and connected by spring of spring constant k. The 
spring is at equilibrium when the masses are separated by length L. Let x measure the 
displacement of the masses w.r.t. this equilibrium. If a purely ⊕-polarised GW hits the system, 

the induced oscillations obey  𝑑²𝑥
𝑑𝑡²
+ 2𝛽 𝑑𝑥

𝑑𝑡
+ 𝜔02 = −

1
2
ℎ⊕𝐿𝜔² cos𝜔𝑡 with the characteristic 

frequency of the oscillator 𝜔0 ≔ √𝑘𝜇, the reducedmass of the system 𝜇 ≔ 𝑚1𝑚2
𝑚1+𝑚2

 and the 

damping parameter 𝛽 ≔ 𝑏
2𝜇

, where the dissipative force is assumed to be 𝐹diss = −𝑏
𝑑𝑥
𝑑𝑡

. The 

work done by the GW on the oscillator, averaged over a cycle of oscillation, can thus be 
determined to give 〈𝑊𝐺𝑊〉 = −〈𝐸kin + 𝐸pot〉 = − 〈

𝜇
2
(𝑑𝑥
𝑑𝑡
) ² + 𝑘

2
𝑥²〉 = 𝛽𝜇𝑥max2 𝜔² with the 

resonant amplitude 𝑥max =
1
2

ℎ⨁𝐿𝜔²

√(𝜔02−𝜔)²+4𝜔²𝛽²
. This dissipated energy manifests itself as 

thermal energy.  
The changes in total energy of the system, 𝐸kin + 𝐸pot, are counterbalanced by changes in the 
energy of the GW, which we can thus determine from the dissipation.  
 
The Sticky Bead Argument appears compelling – once one accepts its two underlying 
premises: 
 

                                                           
transport would constitute a sufficient criterion for the reality of GWs, I do not regard it a necessary one: GWs in 
my opinion are real, and they manifest themselves as losses of matter energy-momentum – without, however, 
there being any energy-momentum exchange between the GW and matter; GWs exist, but need not carry 
energy-momentum.  
23 Feynman et al. 2002), p. xxv-xvi 
24 Cf. Anderson/Creighton (2012), pp. 65.  (This is the idea underlying resonant mass or bar detector, e.g. 
Maggiore (2008), Ch. 8.) 

Fig. 2: 
 
Upper part: sticky beads at rest 
Lower part: The incident GW sets the 
beads in motion along the stick, which 
causes friction. The stick heats up 
(yellow). 
 
(picture taken from Larson (2015)) 
 
 
 

https://writescience.files.wordpress.com/2015/04/stickybeads.jpg
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(1) General-relativistic correction terms on the internal structure of the stick (in particular 
its binding energy) are negligible.25 This is manifest in our qualitative version of the 
argument by the fact that the spring constant, which certainly depends on the internal 
structure of the spring, is assumed to be the same before and after the GW.  
 

(2)  Energy conservation holds: An increase of energy is always counterbalanced by a 
decrease of energy elsewhere. This principle was expressly invoked in both versions of 
the Sticky Bead Argument. 

 
Neither premise, however, was affirmed without any further argument. Both may legitimately 
be challenged: Cooperstock and Tieu, for instance, have -pace Feynman26 - attacked (1) to the 
effect that they claim no heat transfer occurs, when properly modelling the sticky: “what has 
been overlooked is that the bar itself has been presumed to be unaffected by the gravity 
waves”.27 
 
Rather than dwelling on the details of a physically adequate modelling of the Sticky Bead 
Argument (and the sometimes underestimated subtleties of the interplay between gravity and 
electromagnetism28,) I want to focus on (2). Energy conservation may hardly be taken for 
granted. In fact, it is fair to say that the violation of energy-momentum conservation for non-
flat spacetimes has long and widely been acknowledged in the GR literature.29  
   
Therefore, even if (1) is warranted and we did register an increase in thermal energy of a Sticky 
Bead detector, we cannot infer a transfer of energy from the GW, so as to restore energy 
balance: Energy conservation simply does not hold in GR. Rather, the heating-up ex nihilo, the 
(quantifiable) violation of energy conservation upon a GW hitting a detector, would be merely 
another instance of the sundry conceptual revisions GR has enforced on physics.  
 
To summarise: The cogency of the Sticky Bead Argument derives from premises that, albeit 
uncontroversial in Classical Mechanics, become highly controversial, if not downright false in 
GR. 
 
Let us now move away from these more qualitative arguments to more systematic approaches 
to GW energy. 
 

II.3. Perturbative approach 
 

We encountered linearised GW theory in both the Argument from Kinetic Energy and the 
Sticky Bead Argument, where one expands the metric around a flat background. Perturbation 

                                                           
25 Cf. Cooperstock/Tieu (2012), pp. 85 
26 Cf. Feynman, cited in Kennefick (2007), p. 136 
27 Op.cit., p. 85 
28 Think, for instance, of the vexed question whether a point charge in free-fall radiates or not, e.g. Lyle (2008) 
By no means do I intend to disparage Cooperstock’s efforts to rebut the Sticky Bead Argument. In fact, a 
satisfactory response to them is still pending, cf. Kennefick (2007), pp. 254. 
29 E.g. Eddington (1923), pp. 135 ; Schrödinger (1950), pp. 72, Weinberg (1972), p. 166, Misner et al. (1974), 
§19.4, Padmanabhan (2010), p. 213; Hoefer (2000), Lam (2011), Dürr (2017ab, ms) 
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theory generalises this idea by decomposing the metric into a slowly-varying background and 
a fast-varying perturbation; the latter then is identified as the GW - a ripple of the spacetime.30 
An object then emerges that appears to qualify naturally as representing the GW’s energy-
momentum. 

For simplicity, we restrict ourselves to vacuum solutions of the full Einstein Equations, 𝐺𝑎𝑏 =
0. Let there exist of suitable length (or time) scales of the variation. This enables us to 
decompose the metric into a background and small fluctuation components. 

 

Applying the standard procedure for perturbation theory for the metric (with the formal book-
keeping parameter 𝜖), 

𝑔𝑎𝑏 = 𝑔𝑎𝑏
(0) + 𝜖𝑔𝑎𝑏

(1) + 𝜖2𝑔𝑎𝑏
(2), 

the Einstein tensor can then be expanded up to 𝒪(𝜖²) as 

𝐺𝑎𝑏 = 𝐺𝑎𝑏
(0)[𝑔𝑎𝑏

(0)] + 𝜖𝐺𝑎𝑏
(1)[𝑔𝑎𝑏

(0), 𝑔𝑎𝑏
(1)] + 𝜖² (𝐺𝑎𝑏

(1)[𝑔𝑎𝑏
(0), 𝑔𝑎𝑏

(2)] + 𝐺𝑎𝑏
(2)[𝑔𝑎𝑏

(0), 𝑔𝑎𝑏
(1)]). 

Here, the superscript “(0)“ denotes the unperturbed (0th order) quantities and, 
correspondingly, “(1)“ the 1st order perturbations, etc.  The dependence of the 1st order 

Einstein tensor, 𝐺𝑎𝑏
(1)[𝑔𝑎𝑏

(0), 𝑔𝑎𝑏
(1)] , on the arguments in brackets denotes that it is built from 0th 

and 1st order terms of the metric.  

In the expansion of the Einstein tensor, the first two terms describe the unperturbed 
background geometry, and the evolution of the perturbations on the background, i.e. the 
GWs, respectively. The last term is of principal interest for us: It describes how the 2nd order 
perturbations are related to the background and 1st order perturbations. Recast as  

𝐺𝑎𝑏
(1)[𝑔𝑎𝑏

(0); 𝑔𝑎𝑏
(1)] =

8𝜋𝐺
𝑐4
𝑡𝑎𝑏
(eff), 

with the “effective GW energy-momentum tensor” 𝑡𝑎𝑏
(eff) = − 𝑐4

8𝜋𝐺
𝐺𝑎𝑏
(2)[𝑔𝑎𝑏

(0); 𝑔𝑎𝑏
(1)] on the r.h.s.,  

third term in the expansion of the Einstein tensor is susceptible  to a natural  elucidation: The 
2nd order perturbations of the metric are sourced by the effective GW energy-momentum, 
reflecting, as the standard explanation goes31, the back-reaction of the gravitational field upon 

                                                           
30 Cf. Maggiore (2008), Ch. 1.4; Padmanabhan (2010), Ch. 9.5  
31 E.g. Hobson et al. (2008), Ch. 17.11 

Fig. 3: 

Characteristic length scales 𝜆 of the GW and of 
the background curvature L, respectively 

(picture taken from Straumann (2013), p. 246) 
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itself;32 gravitational energy qua energy contributes to its own generation: “Gravity itself 
gravitates.”  

An immediate blemish tarnishes the effective GW energy-stress tensor 𝑡𝑎𝑏
(eff). For simplicity, 

let the spacetime background be flat. Then, the effective gravitational energy-stress pseudo-
tensor is not invariant under the gauge transformations of the type ℎ𝜇𝜈 → ℎ′𝜇𝜈 = ℎ𝜇𝜈 −
𝜕(𝜇𝜉𝜈). This lack of gauge-invariance can be cured by averaging over a 4-volume Δ𝒱 of several 
wave lengths of the GW (but still smaller than the length scale of variation of the 
background):33 

𝑇𝑎𝑏
(GW): = 〈𝑡𝑎𝑏

(eff)〉 =
1
|Δ𝒱|

∫ 𝑑4𝑥
Δ𝒱

√|𝑔(0)|𝑡𝑎𝑏
(eff). 

(This ruse is seen as unproblematic, since perturbations can only be defined w.r.t. the typical 
length/time scales of the background.) This averaged GW energy-momentum then is gauge-
invariant: The changes of 𝑡𝑎𝑏

(eff) resulting from gauge transformations take the form of total 
divergences and are hence eliminated by the integration. The effective GW energy-
momentum 𝑇𝑎𝑏

(GW) has the following properties that at first blush commend it for an 
interpretation as encoding the energy-momentum of a GW: 

(1) It transforms tensorially w.r.t. tensor transformations of the background metric 𝑔𝑎𝑏
(0). 

(Indices therefore are also raised and lowered w.r.t. to 𝑔𝑎𝑏
(0).) 

(2) It is by construction symmetric (an important requirement for defining angular 
momentum). 

(3) It obeys a generally covariant conservation law, ∇𝑏(𝑇𝑎𝑏 + 𝑇𝑎𝑏
(GW)) = 0 where the 

covariant derivative is defined w.r.t. the background metric 𝑔𝑎𝑏
(0).  

(4) Like other energy-momentum tensors from classical field theories, it is quadratic in the 

dynamical components of the gravitational field, the GW field variables 𝑔𝑎𝑏
(1).  

(5) It is regarded34 to originate in the non-linearity of the Einstein equations, supposed to 
reflect the fact that “gravity gravitates”, with all forms of energy including gravitational 
energy itself act as a source for the gravitational field. 

An equivalent re-formulation of the perturbative approach is possible in terms of a variational 
principle (“Isaacson’s variational approach”)35. The idea is to expand the action 𝑆[𝑔𝑎𝑏 +
ℎ𝑎𝑏] = ∫𝑑4𝑥 √|𝑔[𝑔𝑎𝑏 + ℎ𝑎𝑏]|𝑅[𝑔𝑎𝑏 + ℎ𝑎𝑏] w.r.t. the perturbations ℎ𝑎𝑏 around the 
background 𝑔𝑎𝑏, such that: 

                                                           
32 For the sake of the argument, I grant that the gravitational field should indeed be identified with the metric – 
eliding thereby the prolonged debate over this, cf. Read (2017, forth).   
33 Cf. Misner et al. (1973), §35.15 
34 Op. cit. pp. 486.  
35 Cf. Schutz/Ricci (2010), Sect. 4.2  
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𝑆[𝑔𝑎𝑏 + ℎ𝑎𝑏] = 𝑆[𝑔𝑎𝑏] + ∫𝑑𝑥4ℎ𝑎𝑏
𝛿(√|𝑔|𝑅)
𝛿𝑔𝑎𝑏

+
1
2
∫𝑑𝑥4 (

𝜕2(√|𝑔|𝑅)
𝜕𝑔𝑎𝑏𝜕𝑔𝑐𝑑

ℎ𝑎𝑏ℎ𝑐𝑑 + 2
𝜕2(√|𝑔|𝑅)
𝜕𝑔𝑎𝑏𝜕(𝜕𝑒𝑔𝑐𝑑)

ℎ𝑎𝑏𝜕𝑒ℎ𝑐𝑑

+
𝜕2(√|𝑔|𝑅)

𝜕(𝜕𝑒𝑔𝑐𝑑)𝜕(𝜕𝑓𝑔𝑐𝑑)
𝜕𝑒ℎ𝑐𝑑𝜕𝑓ℎ𝑐𝑑 + 2

𝜕2(√|𝑔|𝑅)
𝜕𝑔𝑎𝑏𝜕(𝜕𝑒,𝑓𝑔𝑐𝑑)

ℎ𝑎𝑏𝜕𝑒,𝑓ℎ𝑐𝑑) + 𝒪(ℎ3). 

Let us denote the term in brackets in the last integral as the GW Lagrangian, as a function of 
the background metric and its perturbation, 32𝜋𝐿(𝐺𝑊) = 32𝜋𝐿(𝐺𝑊)(𝑔𝑎𝑏, ℎ𝑎𝑏).  

Given this GW Lagrangian, we can define an effective energy-stress tensor associated with the 
GW as a variational derivative w.r.t.  the background metric:  

𝑡(𝐺𝑊)𝑎𝑏 =
2
√|𝑔|

𝛿
𝛿𝑔𝑎𝑏

(√|𝑔|𝐿(𝐺𝑊)). 

Averaging as before (in order to cure gauge-dependence), yields the same effective energy-
momentum: 

𝑇(𝐺𝑊)
𝑎𝑏 = 〈𝑡(𝐺𝑊)𝑎𝑏 〉. 

The capacities of the perturbative approach remain limited, however, for reasons: The first 
one turns on its problematic reliance on conceptual prerequisites, not tenable at GR’s 
fundamental level; the other one consists in the limited utility of perturbatively defined GW 
energy, tout court. 

The perturbative approach explicitly presupposes a background-perturbation split, entering 
both the very construction of the energy-momentum from perturbative orders and the 
averaging procedure to overcome gauge-dependence. 

Such a split is occasionally justified from a practical point of view, say for primordial GWs on 
an FLRW background, when one is dealing with distinguishable scales, λ and L, over which the 
background geometry and the perturbation vary, 𝜆 ≪ 𝐿.  

A straightforward comparison of the orders of magnitude discloses, however, that “one 
cannot introduce the concept of a gravitational wave of arbitrarily large amplitude but varying 
at a length scale that is sufficiently small compared with the background scale of variation and 
develop a systematic perturbation theory”.36 For, instance, at early times during cosmic 
inflation, the wavelength of GWs is smaller than the Hubble scale ("inside the horizon"); as 
inflation proceeds, the GW's wavelength redshifts and becomes eventually larger than the 
Hubble scale ("outside the horizon").37 A GW thus cannot be fundamentally characterized as 
such a “ripple on a background”. Such a split of the metric is artificial, however: There is only 
one metric, defying any intrinsically meaningful severing of “perturbations” from a 
“background”.  

                                                           
36 Padmanabhan (2010), p. 420; see also Padmanabhan (2004) 
37 Cf. Flanagan/Hughes (2005), Sect. 5.2 
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I am not avowing that only fundamental quantities are conceptually kosher.38 My presently 
primary purpose is not to tackle when/how the introduction of higher-level concepts is 
justified and ontologically juicy; I merely point out what can be said by availing oneself only of 
the concepts fundamentally at our disposal in GR – and then show that the perturbative 
approach to GW energy treats these non-fundamental concepts in a way GR vetoes.  

The best way thus to regard the perturbative approach is as describing the transition from a 
fundamental to a coarse-grained description39- a tool convenient for approximations under 
certain conditions, but not a fundamental account.40  

This might elicit the worry that such skepticism towards the background-perturbation split on 
the grounds of its non-fundamentality throws out the baby with the bathwater: Does such a 
“fundamentalism” not bereave us of the very concept of a GW altogether? Does the latter not 
presuppose a perturbative approach? One reply could be: There exist fundamental GWs, if by 
that one means exact wave-solutions of the Einstein Equations, such as the pp-wave metric.41 
This may be seen as too restrictive, leaving almost no realistic cases of GWs. Hence, a second 
kind of reply is perhaps more satisfactory, disavowing that higher perturbative orders of the 
metric adequately characterise GWs: Rather, GWs should be identified with the Weyl tensor.42 
I shall not dwell further on such semantic issues and, for the time being, merely assume that 
GWs are indeed only non-fundamental entities. 

Should this non-fundamentality disconcert us? Albeit not in itself problematic, it is enmeshed 
in three problematic facets of the perturbative approach. 

The first one is related to the way the perturbative approach breaks GR’s general covariance: 
The effective energy-momentum transforms tensorially only under tensor transformations of 
the background metric, not under general transformations. GR’s conceptual framework, 
however, gainsays such a preferred status of any background. 

A second problem arises, when 𝑇𝑎𝑏
(eff) (or 𝑡𝑎𝑏

(eff)) is introduced to explain how the 2nd order 
perturbation propagates on the background. This suggests that whereas the Einstein 
Equations suffice to explain the behaviour of the background metric, the behaviour of the 
perturbations calls for an explanation transcending the Einstein Equations. One thus imputes 
the perturbations a different status than the background – an explanatory asymmetry that the 
fundamental level, on which no perturbative order of the metric is privileged, disclaims. For a 
flat background this asymmetry is even more striking: Then the fact that the propagation of 
the second order-perturbations is seen in explanatory need amounts to postulating that the 
non-linear terms of GR call for an explanation of a type that the linear ones do not. But this 

                                                           
38 E.g. Wallace (2012), Ch. 2, who pleas for taking also non-fundamental objects ontologically seriously. 
39 Cf. Maggiore (2008), Ch. 1.4.2 
40 The averaging over several wavelengths we prescribed above in order to overcome the gauge-dependence of 
the effective GW energy-momentum is in fact a special case of renormalization group transformations, familiar 
from effective field theories to describe transitions from different levels of description, cf. Peskin/Schroeder 
(1995), Ch. 12.  
41 Cf. Misner et al. (1973), Ch.35.9, 35.10; 35.11. 
42 E.g. Padmanabhan (2010) Ch. 5.5.3; 6.3 
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simply ignores the fact the GR is fundamentally non-linear43 – one just cannot privilege the 
linear parts of an essentially nonlinear theory.44  

A third problem in the way the perturbative approach utilises the background-perturbation 
split becomes evident in Isaacon’s variational approach: In order to obtain the correct field 
equations, both the background metric and the perturbation must be treated as independent 
variables, so that the variation w.r.t. each vanishes. Thus, the perturbation is effectively 
treated like a matter field (as opposed to the background metric, which presumably retains its 
orthodox spacetime interpretation), with its own energy-momentum tensor.45 Such a re-
classification of a perturbative order of the spacetime metric to an independent matter field 
certainly is a substantive deviation from GR’s conceptual basis. 

After such conceptual worries, let us finally turn to two practical shortcomings that curb the 
value of any applications of GW energy, based on the perturbative approach:46   

To begin with, the perturbative approach does not provide any notion of a “gravitational 
energy of the system”. (The quotation marks are to signify that it is not obvious that it even 
makes sense in GR.47) Consequently, the perturbative approach falls short of paradigmatic 
applications, such as binary systems, “gravitational energy” of which is depleted by the GWs. 
Furthermore, a perturbatively defined GW energy is also too crude to deliver the flux of 
angular momentum, important for the correct description of millisecond pulsars, whose 
rotation rate increases due to a transfer of angular momentum from the accretion disk 
surrounding the pulsar.48 Consequently, since the primary raison d’être of a definition of GW 
energy consists in its astrophysical utility, the perturbative road seems to be a blind alley from 
the start. 

Before reconnoitring the most systematic and hence promising path to GW energy, let us 
summarise the preceding critique of the perturbative approach: It presupposed a 
fundamentally ungrounded background-perturbation split; based on this, GW energy was 
introduced and used in a way at variance with GR’s conceptual framework. Last, not least we 
also found the perturbative approach as a whole unsuitable for astrophysical applications, 
which renders the value of a perturbatively defined GW energy-momentum questionable 
altogether. 

 

II.4. The Noetherian perspective 
 

                                                           
43 Cf. Aldrovandi et al. (2007) 
44 Hence, one should generally restrain one’s penchant to compare GR with the linear Maxwell theory; any 
analogies should preferably be drawn with the likewise genuinely non-linear vectorial Yang-Mills-type theories, 
cf. Deser (1970). It is noteworthy that in such Yang-Mills theories energy is localisable: Thus, the problems with 
localising gravitational energy in GR does not originate in its nonlinearity per se, as sometimes claimed.  
45 Schutz/Ricci (2010), p. 41 are explicit about this. 
46 Cf. Poisson/Will (2014), Ch. 12.2.5 
47 E.g. Hoefer (2000), Dürr (2017) 
48 Cf. Poisson/Will (2014), Ch. 12.2.4 
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In this subsection, I shall examine the presumably most systematic approach to GW energy-
momentum, via (a suitable generalisation of) Noether’s Theorems, which treats GR’s metric 
completely analogously to other classical fields.  

One of GR’s characteristics from the gauge theoretical point of view, to the fecundity of which 
I already alluded, is its general covariance (GC), the invariance under general 
diffeomorphisms.49 GC as a local symmetry of the Einstein-Hilbert action ∫𝑑4𝑥 √|𝑔|𝑅 lends 
itself to an application of Noether’s 2nd Theorem, linking local gauge symmetries and 
conserved quantities.50  

For GR, a generalisation of Noether’s Theorem is more apposite: Firstly, the results of the 
Noether Theorem are gauge-dependent. In light of the havoc laxness regarding gauge-
dependence has wreaked in the history of GWs51, we should be particularly circumspect in 
assuring ourselves of the gauge-invariance of our results. A second (and related) shortcoming 
of Noether’s Theorem consists in that it only exploits the information encoded in the vanishing 
of the interior contributions to the Variational Problem. This seems unduly restrictive: Why 
assume a priori that GR’s metric suitably peters out at infinity so that contributions to the 
boundary can be discarded without impunity? (One can easily construct even exact GW 
solutions as counterexamples.) The Klein-Utiyama Boundary Theorem addresses both 
issues.52 It purports the following:    

Consider the action 𝑆[𝜓𝑖] = ∫ 𝑑4𝑥𝔏 (𝜓𝑖, 𝜕𝜓𝑖, 𝑥) of the generic fields 𝜓𝑖  be invariant (up to a 
surface term) under an infinite-dimensional Lie group 𝐺∞,𝜌 of transformations that smoothly 
depend on 𝜚 functions 𝑝𝛼(𝑥𝑎) and their derivatives53 𝜕𝛽𝑝𝛼(𝑥𝑎) and give rise to the variation 
of the dynamical fields 𝜓𝑖  (of generic tensorial type), 𝛿𝜓𝑖 = ∑ (𝑎𝛼𝑖Δ𝑝𝛼 + 𝑏𝛼𝑖𝑐 𝜕𝑐Δ𝑝𝛼)𝛼 , where 
𝑎𝛼𝑖 and 𝑏𝛼𝑖

𝜇  are coefficient functions that depend on 𝑥𝑎, 𝜓𝑖  and 𝜕𝑐𝜓𝑖. (The Δ𝑝𝛼′s indicate that 
we are taking infinitesimal pα’s.) 

Then there exist three sets of 𝜚 relationships: 

• ∑ 𝑎𝛼𝑖
𝛿𝔏
𝛿𝜓𝑖
≡ −∑ 𝜕𝑐 (𝑎𝛼𝑖

𝜕𝔏
𝜕(𝜕𝑐𝜓𝑖)

)𝑖𝑖  

• ∑ 𝑏𝛼𝑖
𝜇 𝛿𝔏
𝛿𝜓𝑖
≡ −∑ (𝑎𝛼𝑖

𝜕𝔏
𝜕(𝜕𝜇𝜓𝑖)

+ 𝜕𝜈 (𝑏𝛼𝑖
𝜇 𝜕𝔏
𝜕(𝜕𝜈𝜓𝑖)

))𝑖𝑖  

• ∑ (𝑏𝛼𝑖𝜐
𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)
+ 𝑏𝛼𝑖

𝜇 𝜕𝔏
𝜕(𝜕𝜈𝜓𝑖)

) ≡ 0𝑖  

 

Here 𝛿𝔏
𝛿𝜓𝑖

 denotes the variational derivatives, i.e.  the familiar Euler-Lagrange expressions. 

Germane to our purposes is the first identity: After some rearranging, one can infer from it 
that the Noetherian 4-current  

                                                           
49 As a symmetry group, the role of, say, the 𝑈(1) gauge group in electrodynamics, in GR is taken over by the 
(non-Abelian) diff(ℳ) group, e.g. Straumann (2013), Ch. 3.3; 3.6.  
50 E.g. Maggiore (2008), Ch. 2; Brading/Brown (2000); Brown/Brading (2002)  
51 Cf. Kennefick (2007), esp. Ch. 4,5 
52 Cf. Brading/Brown (2000); Ohanian (2013), Appendix 1 recapitulates all the steps. 
53 For simplicity, a restriction is made to first derivatives.  
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𝑗𝑘
𝜇 ≔ −∑ {

𝜕𝔏
𝜕(𝜕𝜇𝜓𝑖)

𝜕(𝛿0𝜓𝑖)
𝜕(∆𝑝𝑘)

+ +𝔏
𝜕(𝛿𝑥𝜇)
𝜕(∆𝑝𝑘)

−
𝜕(∆Λ𝜇)
𝜕(∆𝑝𝑘)

}
𝑖

 

(with the terms Λ𝜇, arising, when the action is not strictly invariant, such as in the case of GR) 
can be brought into the following form: 

𝑗𝑘
𝜇 = 𝑏𝑘𝑖

𝜇 (
𝜕𝔏
𝜕𝜓𝑖

− 𝜕𝜈
𝜕𝔏

𝜕(𝜕𝜇𝜓𝑖)
) + 𝜕𝜈𝑈𝑘

[𝜇𝜈]. 

Here, the last term, 𝑈𝑘
[𝜇𝜈], is a so-called superpotential, antisymmetric in its upper indices. 54 

Let us now apply Klein-Utiyama Theorem to GR with the (dynamically equivalent55) truncated 
Einstein-Hilbert (“ΓΓ”) Lagrangian   

ℒ̅ = 2𝑔𝑎𝑏Γ𝑎[𝑏𝑑 Γ𝑐]𝑑𝑐 . 

The last two identities of the Klein-Utiyama Theorem yield some interesting implications for 
GR’s matter field equations.56 More important for our present purposes is the equation the 
first identity of the Klein-Utiyama Theorem, together with the Einstein Equation, entails: 

√|𝑔|(𝑇𝑎𝑏 + 𝑡𝑎 𝑏) = 𝜕𝑐𝔚𝑎
[𝑏𝑐]. 

Here 𝑡𝑎 𝑏:=
1
√|𝑔|

(−ℒ̅𝛿𝑎𝑏 +
𝜕ℒ̅

𝜕(𝜕𝑏𝑔𝑑𝑒)
𝜕𝑎𝑔𝑑𝑒) denotes the so-called Einstein pseudotensor57 and 

𝔚𝑎
[𝑏𝑐], again antisymmetric in its upper indices. 

The Einstein pseudotensor corresponds to canonical gravitational energy-momentum, as we 
would expect it from other field theories. This suggests that 𝔗𝑎𝑏 ≔ 𝑇𝑎𝑏 + 𝑡𝑎 𝑏 should be 
interpreted as the total (matter cum gravitational) energy-momentum.  

Thanks to the superpotential’s antisymmetry in its upper indices, total energy-momentum 
obeys a continuity equation: 

𝜕𝑏(√|𝑔|𝔗𝑎𝑏) = 𝜕𝑏,𝑐𝔚𝑎
[𝑏𝑐] ≡ 0. 

Albeit not a tensor equation, the continuity equation holds in every coordinate system and is 
intuitively construed as a conservation principle, reflecting the absence of sinks and sources 
of the total energy-momentum. 

 

For the moment, let us assume that the Klein-Utiyama Theorem is applicable without any 
further technical problems (related to, say, the convergence of the integrals). Then, what 
sense are we to make of the result it yields, i.e. its canonical gravitational energy-momentum 
pseudotensor? In particular: To what extent are we licenced to interpret it realistically, i.e. 
ascribe it a status other than merely formal? 

                                                           
54 The details of superpotentials need not detain us here, cf. Trautmann (1962). 
55 E.g., Hobson et al (2008), Ch. 19.19 
56 Brown/Brading (2006), sect. IV 
57 For a handier form, cf. Dirac (1975), Ch. 32  
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The question comprises two facets: The first one concerns problems of the interpretation of 
the Noetherian energy-momentum 4-currents (“local energy-momentum”); the second one 
questions whether these 4-currents give rise to global (integral) quantities, identifiable as 
gravitational energy-momentum. 

Regarding the status of the gravitational energy-momentum 4-current, a straightforward 
realist interpretation is impeded by four difficulties:  

• Gauge-dependence: Being a pseudotensor, the energy-momentum 4-current does not 
transform tensorially under arbitrary coordinate transformations; its invariance is only 
preserved under linear transformations. However, in spacetimes other than 
Minkowski space, linear transformations are no longer privileged. The object denoted 
by the pseudotensor thus depends on the arbitrary, conventional choice of a 
coordinate system – in contrast to the invariance one would naturally demand of a 
physical quantity.58 
Weyl neatly summarises the pickle: “Indeed all the [pseudotensor components] can, 
through a suitable choice of a coordinate system, be made to vanish; [...] on the other 
hand one obtains [pseudotensor components] that are different from zero in a 
‘Euclidean’, completely gravity-free world by using a curvilinear coordinate system, 
where it seems pointless to speak of gravitational energy.”59 

• Index-nonsymmetry: The pseudotensor is not symmetric in its indices, marring its 
physical suitability for defining angular momentum.  
One can cure this blemish by the standard Belinfante- Rosenfeld technique. But this 
technique requires privileging a symmetry in a manner prima facie not justified within 
GR.60    

• Ambiguity: The canonical energy-momentum 4-current above is defined only up to a 
choice of a superpotential. But different choices of superpotentials – none in itself less 
apt than any other – yield different pseudotensors, potentially associated with 
different global/integral energy-momentum distributions. The pseudotensor thus is 
vastly underdetermined.61 

• Physical significance: Klein adverted to the fact that the formal continuity equation, 
deduced from the Klein-Utiyama Theorem, holds without any need to take a 
divergence: 62 Given the Einstein Equations, its status thus rather resemblance that of 
a mathematical identity. Does this mean, as Klein believed, that the continuity 
equation is vacuous in content and cannot be conferred upon a realist meaning?  

In light of such qualms, ought we perhaps to follow Weyl’s suggestion that a realist 
interpretation of the Klein-Utiyama-Noetherian results be reserved for the global quantities, 
associated with the 4 -currents?63  

                                                           
58 E.g. Vollmer (2010) 
59 Weyl (1923), p. 273 
60 Cf. Leclerc (2006) 
61 In fact, (uncountably) infinitely many choices are possible, cf. Bergmann (1958), Komar (1959). 
62 Cf. Brading (2005) 
63 “Still, from a physical point of view, it seems meaningless to introduce the [pseudotensor] as energy 
components of the gravitational field, for they form neither a tensor nor are they symmetric […]. Even if the 
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Again, the devil lurks in the detail. For the integrals to be well-defined, the metric must satisfy 
certain coordinate conditions (“asymptotic flatness”). This raises a number of delicate points: 
Do the required coordinate conditions amount to an unnatural gauge fixing, i.e. do they 
artificially pick out certain coordinate systems? How to justify asymptotic flatness? How 
physically plausible is it? How restrictive are the constraints it imposes on the space of 
admissible spacetimes? (The to-date most successful cosmological ΛCDM model of the 
universe, for instance, fails to be asymptotically flat.) How much do the quantities, thus 
formally defined, meet our desiderata for gravitational energy-momentum in a substantive 
sense (e.g. via a sufficient family resemblance with notions of field energy in other field 
theories)? What is the relation to other alternative proposals for capturing general-relativistic 
gravitational energy-momentum? 

None of these issues pertains to GW energy-momentum specifically; rather, they bedevil 
gravitational energy-momentum in GR more generally. It is beyond the present paper’s ambit 
to enter this thorny debate. Yet, the lesson seems clear: We must countenance the 
controversial nature of gravitational (and, a fortiori, GW) energy-momentum obtained via the 
Klein-Utiyama theorem; the Noetherian approach to GW energy-momentum ultimately 
prompts more questions than it conclusively answers. 

 

III. Are binary systems evidence for GW energy? 
 

In this section, I shall analyse the received explanation of binary systems, and whether it is 
sound. I contest this and proffer an alternative and in several regards superior explanation 
exclusively in terms of the general-relativistic Equations of Motion and the Einstein Equations.   

 

III.1. The standard view 
 

The dynamical standard interpretation of the binary problem explains the orbital decay via 
the system’s total energy being carried away by the emitted GWs. 

More precisely64, the standard interpretation starts from an energy balance of the (symbolic) 
form �̇� = −𝐿, with the change in a system’s total energy on the l.h.s. being compensated by 
the energy-flux on the r.h.s., the energy-momentum radiated away. 

Such an energy balance is provided by a realist interpretation of the continuity equation for 
total energy-momentum, based on the energy-momentum tensor of matter and 

                                                           
differential relations [i.e. the pseudotensor-based continuity equation, P.D.] are without any real physical 
meaning, they do give rise to an invariant statement of conservation via integrating over an isolated system.” 
Weyl (1923), p. 273 
64 Cf. Poisson/Will (2014), Ch. 6-12 
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pseudotensor encoding gravitational and GW energy-momentum. A standard choice is the 
index-symmetric pseudotensor proposed by Landau and Lifshitz:65 

𝜕𝑏 (|𝑔|(𝑇𝑎𝑏 + 𝑡(𝐿𝐿)𝑎𝑏 )) = 0. 

Integration over a 3-region 𝒱3 then yields the corresponding total energy-momentum 𝑃𝑎 =
(𝐸 𝑐⁄ , 𝑃𝑖): 

𝑃𝑎 =
1
𝑐
∫ 𝑑³𝑥|𝑔|(𝑇𝑎0 + 𝑡(𝐿𝐿)𝑎0 )
𝒱3

 

(Recall that this total energy-momentum transforms like a Minkowski tensor at infinity.) It is 
sometimes more convenient to express the volume integrals as surface integrals, exploiting 
that the continuity equation can be re-written in terms of Landau and Lifshitz’s superpotential 
𝐻𝛼𝜇𝛽𝜈 as 

𝑃𝑎 =
𝑐³
16𝜋𝐺

∮ 𝑑𝜎𝑘𝜕𝜇𝐻𝛼𝜇0𝑘.
𝜕𝒱3

 

The next step consists in approximately evaluating this balance equation for a suitable model 
of the binary system for the regime of interest, most commonly the far fields of a compact 
source (whose energy content is dominated by its rest mass). The standard framework for 
such an evaluation is the so-called PPN formalism, which essentially expands the metric in 
orders of the small ratio between the bodies’ velocity and the speed of light.   

Expanding thus the balance equation to leading (viz. 5th) order of the onset of GW effects, we 
extract those parts of the energy-momentum that are identified with the radiative degrees of 
freedom. We then lump them into what we shall refer to as the “GW luminosity”, i.e. the 
energy-momentum flux due to GW emission. This GW luminosity forms the r.h.s. of the energy 
balance, �̇� = −𝐿, the dissipated energy.  

The residual terms in the expression for the total energy-momentum are then identified as 
the “total energy of the system”, reproducing in leading order the total (kinetic plus 
gravitational) energy of the Newtonian 2-body/Kepler problem. For a higher accuracy, next-
leading order terms can also be consistently incorporated, yielding correction terms to the 
Kepler potential (responsible for, say, the perihelion shift), as well as only velocity-dependent 
terms, perhaps best construed as corrections to kinetic energy. 

Solving the Equations of Motion, one then finds that the physical distance between the 
binaries is decreasing: Like radiative losses in electromagnetic theory (or a mechanical system 
with friction), the emission of GWs dissipates energy from the system, causing its orbital 
decay: The system’s motion is no longer bound; the energy loss destabilizes it.  

For the sake of concreteness66, consider a system of two point-particles of equal mass M, 
rotating around their centre point with constant angular velocity 𝜔 and with the coordinate 

                                                           
65 E.g. Landau/Lifshitz (1971), §101 
66 E.g. Hobson et al. (2006), Ch. 18 
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distance a between them (imagine them to be connected by a light rod). The corresponding 
balance equation in leading order reads thus: 

1
2
(2𝑀)𝑣2 −

𝐺𝑀
2𝑎

= −
128𝐺
5𝑐5

𝑀²𝑎4𝜔6. 

The l.h.s. is corresponds to the system’s total energy; the r.h.s. describes the energy drain via 
emission of GWs. From this balance equation, one can derive an equation for the spin-up, i.e. 
the rate of change of the orbital period P, directly accessible to observation: 

�̇� = −
96
5
4
1
3𝜋 (

2𝜋𝐺𝑀
𝑃

)
5
3⁄

. 

The logical structure of the standard explanation of the binary problem can thus be explicated 
via the following three statements: 

(1) Along the bound or scattered orbits of a 2-body system, i.e. if the orbit prescribed by 
the Equations of Motion does not decay, the system’s total (i.e. gravitational cum 
matter) energy-momentum is conserved. 

(2) The binary system’s total energy-momentum is conserved. 
(3) GWs carry away energy-momentum from the system. 

Given (1), it follows from (2) and (3) that orbits decay: Because GWs carry energy away from 
the system, the otherwise bound orbits decay. GW energy in (3), together with the principle 
(1), here serves as the explanans for the decrease in total energy, which in turn via modus 
tollens of (1) entails the explanandum orbital decay (“ℰ”): 

(3) ⟶ ¬(2)
(1)
→ ℰ. 

III.2. Criticism  
 

Let us now critically examine this standard explanation.  I submit, it is fraught with three types 
of defects: Firstly, it contains assumptions and concepts that are at odds with GR; secondly, 
the third premise is unnecessarily strong, and thirdly, the crucial premise (1) remains 
unjustified.  

The first strand of criticism applies to all three steps: (1), (2) and (3) all involve the concepts of 
GW energy or gravitational energy. Both are highly controversial – in fact, we saw in sect. II 
that the standard arguments cited for the energy ascribable to GWs are spurious -  and have 
even been argued to be alien to GR’s conceptual framework:67 After all, GR is a theory that 
“geometrises away” gravity, i.e. re-conceptualises gravity as a manifestation of a non-
Minkowskian/Newtonian inertial structure.68 If thus GR “geometrises away” the gravitational 

                                                           
67 E.g. Hoefer (2000), Curiel (2011), Petkov (2017)  
68 An elegant derivation of the Einstein Equations that makes this geometrisation explicit is found in Geroch 
(2013), Ch. 19 
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force, one should expect this to compromise the idea of gravitational energy-momentum, as 
well.69 

Furthermore, the standard explanation tacitly assumes that one can clearly sever the system’s 
gravitational energy-momentum from the GWs’. While this is true for the lowest perturbative 
orders, in higher orders the radiative and the static gravitational degrees of freedom are 
inextricably intertwined.  In consequence, the Equations of Motion defy a standard Lagrangian 
or Hamiltonian formulation, undermining the notion of the system’s total energy-momentum. 

If one wants to introduce energy for (gravitationally or electromagnetically) radiating systems, 
one needs to resort to a principle of energy-momentum conservation: The radiated energy is 
constructed such that energy conservation is restored. But in GR this principle becomes 
doubtful: In fact, many have argued that in GR matter energy-momentum just fails to be 
generically conserved. Energy conservation, however, lies at the heart of a realist 

interpretation of the continuity equation 𝜕𝜇 (|𝑔| (𝑇𝜇𝜈 + 𝑡(𝐿𝐿)
𝜇𝜈 )) = 0. But such a 

straightforward realist interpretation, which takes the pseudotensor to represent 
gravitational or GW energy, is obstructed by in particular the pseudotensor’s gauge-
dependence.  

A second line of attack aims at assumption (3) as unnecessarily strong: It is not necessary to 
demand that energy be carried away. For the argument to go through, it suffices to accept a 
decrease in the system’s total energy-momentum – without this loss in energy-momentum 
being compensated for by equally real energy ascribable to the GW and propagating un-
intermittently from one place to another. What matters is only the violation of energy 
conservation; the transport of the “missing” energy is irrelevant.  

One may well ask: What is the difference between violation of energy conservation and the 
“missing energy” being carried elsewhere? After all, as Curiel has pithily remarked: “One 
cannot tag hunks of energy as one can hunks of cheese, and so one cannot identify the energy 
that this system lost with the energy that that one gained in the same way one could if one 
were talking about cheese.”70 The choice between failure of energy conservation and its 
transference elsewhere hinges on the status of the conservation law to which the second 
option appeals in order to justify the postulated energy transport.  

Three things can be said in this regard: Firstly, as I mentioned already, within GR it is widely 
acknowledged that the failure of the vanishing covariant divergence of the energy-momentum 
tensor, ∇𝑎𝑇𝑎𝑏 = 0, to yield a conserved global/integral quantity  simply reflects that energy 
conservation no longer holds71 – a line less revisionary than may appear at first blush: After 
all, the special-relativistic conservation laws for energy-momentum and angular momentum 
depend on the 10 Killing vectors of Minkowski space. Generic GR spacetimes, by contrast, lack 
any symmetries. So, absent such symmetries, why should we expect energy-momentum 

                                                           
69 E.g. Norton (2012), pp. 19 
The argument carries over to Newton-Cartan Theory, the geometrized version of Newtonian Gravity, cf. 
Dewar/Weatherall (2017). 
70 Curiel (2011),  
71 E.g. Carroll (2010) 
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conservation to hold? Secondly, there does not exist any conceptually unproblematic way to 
express the dissipated energy: The most prominent way, for instance, via pseudotensors, 
suffers from numerous problems that obviate any straightforward realist interpretation. By 
contrast, the energy emitted by an electromagnetically radiating system allows for an 
innocuous tensorial representation. Indeed, there is a large consensus regarding the “non-
localisability” of the dissipated energy: It does not seem to be possible to specify where in 
spacetime this GW energy resides.72 A third and last aspect germane to adjudicating between 
energy non-conservation and energy transport via GWs is the explanatory surplus value of the 
latter choice: Does postulating GW energy transport help us explain anything better? Should 
this be the case, an inference to the best explanation may abet that energy-momentum non-
conservation should best be accounted for in terms of GW energy-momentum transport. 

It is to this question I shall now turn: Is it possible to devise a perhaps better explanation of 
the orbital decay? 

 

III.3. A dynamical explanation 
 

To this end, let us revisit premise (1), pivotal to the standard explanation. How to vindicate it? 
Why believe that if the particles follow the scattered or bound orbits, prescribed by the 
Equations of Motion, the system’s total energy is conserved?  

The answer is: Because the theory’s dynamics, i.e. the Equations of Motion (EoMs) – I use the 
term synonymously with “field equations”-, tell us so: In Newtonian Gravity, energy is 
generally conserved and the EoMs imply that orbits of celestial bodies are either hyperbolic 
(“scattered”) or elliptical (“bound”): An object cannot spiral into the centre without energy 
dissipation, e.g. via tidal friction.  

Why should we assume (1) also holds in GR? I think we just should not: The EoMs simply 
dictate that the binary pulsars’ orbit decay. There is no need to invoke any quantity to explain 
the deviation from bound orbits. Why assume that such a deviation from bound orbits 
mandates an explanation? If one were to maintain (1), one would pick out from the full 
Equations of Motions those parts that describe conservative systems, i.e. systems whose 
energy is conserved; the deviation from the orbits of these conserved systems would then be 
explained in terms of the energy losses via GWs. One thus splits the EoMs into a conservative 
and a non-conservative part (“cEoMs”) and treats the former as explanatorily distinguished: 
The deviation of the system’s orbits from the ones obtained from the cEoMs calls for an 
explanation in terms of energy losses, whereas the conservative orbits are seen as the 
explanatory default motion. But what vindicates such a split? The reason seems to be simply 
habituation from pre-GR physics (where energy-momentum conservation is, of course, valid 
and ubiquitously useful): That all systems are conservative, unless some friction or radiation 
dissipates energy, has been so deeply engrained in our physical intuition that it has ossified 

                                                           
72 E.g. Misner et al. (1973), p. 467 
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into dogma. But if its plausibility presupposes the validity of energy-momentum conservation, 
and the latter needs to be jettisoned in GR, the justification of (1) lapses. 

Rather, GR compels us just to accept that no bound solutions of the general-relativistic 2-body 
problem exist.73 As Cooperstock and Tieu put it, “on this basis, the period-changing binary 
pulsar is simply manifesting its conformity with the mathematical demands of Einstein’s 
General Relativity rather than the preconceptions regarding energy.”74  
 

It thus seems apposite to supplant (1) by the following principle, a direct consequence of the 
EoMs and the Einstein Equations: 

(1GR) If a two-body system is emitting GWs, its orbits are in-spiralling. 

By the same token, let us supplant (2) by simply accepting GR’s failure of energy-momentum 
conservation. In order to eschew the problems associated with gravitational energy, the 
reference to total energy-momentum must be dropped: 

(2GR) In generic (non-flat) spacetimes, matter energy-momentum is not conserved. 

Since (3) turned out to be unnecessarily strong, we replace its reference to the purported 
energy-momentum transport by merely acknowledging that in spacetimes with GWs systems 
lose energy: 

(3GR) GWs deplete a system’s (matter) energy-momentum. 

This principle (3GR) is obviously a special case of (2GR), since a spacetime with a GW is by 
definition non-flat and hence displays energy-momentum non-conservation.  

While both (2GR) and (3GR) are true, we do not need them for the explanation of the orbital 
decay (as before: “ℰ”) as independent principles: They follow from the EoMs. (1GR) on its own 
affords us with an explanation that draws only on bona fide GR concepts and assumptions: 
Because the system emits GWs, its orbits are inspiralling.  

The explanans now is the GW emission simpliciter, itself rooted in the specificities of the 
energy-momentum distribution. Since (1𝐺𝑅) is a consequence of the EoMs, our explanation is 
a special case of an explanation employing the EoMs: We can thus  hone it by replacing (1𝐺𝑅) 
by the EoMs and specifying the antecedent matter conditions (QUA)  that generate GWs, viz. 
the time-variation of its matter quadrupole moment tensor 𝐼𝑖𝑗 = ∫𝑑3 𝑦𝑇00(𝑐𝑡, 𝑦 )𝑦𝑖𝑦𝑗. 

The explanation we have thus arrived at makes only reference to a condition on the matter 
energy-momentum (QUA), the Einstein Equations (EEs) and the EoMs; instead of GW energy 
and (1) in the standard explanation, the explanantia are the EoMs and the matter energy-
momentum distribution as the antecedent conditions: Because the quadrupole moment of 
the matter energy-momentum distribution varies in time (QUA), the EoMS imply that the 
system’s orbits decay (as before, denoted by "ℰ”):  

                                                           
73 Cf. Papapetrou (1957,58) 
74 Cooperstock/Tieu (2012), p. 83 
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(QUA)
(𝐸𝑜𝑀𝑠)&(𝐸𝐸𝑠)
→          ℰ. 

I shall call this the “dynamical” explanation of the orbital decay, as it employs only the 
dynamics encoded in the EoMs. 

Note that in the dynamical explanation, GWs no longer play any explanatory role: The 
emission of GWs and the orbital decay share a common cause in the antecedent matter 
condition: 

(QUA)
(𝐸𝑜𝑀)&(𝐸𝐸𝑠)
→         ℰ & GW emission. 

By means of illustrating the dynamical interpretation, it is illuminating to address now Petkov’s 
recent objection75 to the standard interpretation of binary systems on the grounds that “[…] 
[it] contradicts general relativity, particularly the geodesic hypothesis […], because by the 
geodesic hypothesis the neutron stars, whose worldliness had been regarded as exact 
geodesics […] move by inertia without losing energy since the very essence of inertial motion 
is motion without any loss of energy.”76 

Glossing over mathematical qualms about the use of point-particles in GR77, the dynamical 
interpretation resolves the conflict Petkov perceives: W.r.t. the metric the EEs of the orbiting 
pulsars dictate, the pulsars indeed follow geodesics which, in contrast to the rectilinear ones 
in Minkowski spacetime, are spiraling-in towards each other: The 4-dimensional view of the 
binaries is that of a double helix whose radius decreases with time. This helical shape of the 
binaries’ worldlines is a brute fact of GR’s spacetime geometry (more precisely: GR’s inertial 
structure, encoded in the affine connection compatible with the metric): The orbits of the 2-
body problem, i.e. the three-dimensional projection of the two world lines onto planes of 
simultaneity, just fail to be stable. The dynamical explanation expressly boycotts the 
identification of the system’s total energy-momentum with the energy-momentum 
constructible from the conservative parts of the dynamics.78 In fact, the dynamical explanation 
does not even need any notion of energy-momentum other than the one of matter (which 
turns out to be not conserved): For the point-particles in free-fall this energy coincides with 
their rest mass – and is indeed conserved. In summary, Petkov’s diagnosis of inconsistency of 
the standard explanation rests on the premise that the orbits of the general-relativistic 2-body 
problem must be bound and that the inspiral must be explained in terms of energy-
momentum transport. The dynamical explanation just denies these assumptions as 
unwarranted by a proper conceptual analysis of GR. 

                                                           
75 In fact, Bondi had voice the same argument earlier, cf. Kennefick (2007), p. 200 
76 Petkov (2017), p. 11 (Petkov’s emphasis) 
77 Cf. Straumann (2013), Ch. 6.4,6.5 
78 More precisely, on the standard explanation, one would define the system’s energy the energy associated with 
the Einstein-Infeld-Hoffmann Lagrangian, e.g. Straumann (2013), Ch. 6.5 
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III.4. Dynamical vs. standard interpretation 
 

We are now in a position to compare the standard and the dynamical interpretation to each 
other: How does the dynamical explanation fare vis-à-vis the one involving GWs dissipating 
gravitational (binding) energy from the system? I submit, the dynamical one is superior on 
grounds of parsimony, universal scope and unificatory power; the merits of the standard 
explanation, by comparison, are limited to its familiarity to pre-GR concepts and principles. 

For reasons of space, my discussion is confined to the binary system’s problem of motion, 
thereby setting aside the question whether there are applications other than the problem of 
motion whose explanations involve GW energy. (Germane phenomena might include the so-
called CFS instability of rotating neutron stars79, (classical) black hole thermodynamics80 or 
astrophysical energy extraction processes.81) 

The standard explanation relies on gravitational energy, GW energy and energy-momentum 
conservation, all three of which are highly controversial concepts within a consistent GR 
framework. Here, I shall refrain from the strong claim that such concepts are illegitimate 
within GR. Rather, I shall grant that postulating all the quantities and assumptions the 
standard explanation utilizes is, at least on a practical level, unproblematic.  

For a fair comparison, I first need to re-formulate and refine the standard explanation for 
orbital decay by explicating the more fundamental principles on which its individual steps rest. 
Those comprise: 

- A time-varying quadrupole momentum distribution of matter (QUA), as in the 
dynamical explanation 

- the Einstein Equations (EEs) 

                                                           
79 Cf. Ricci/Schutz (2010), sect. 6.2 
80 Cf. Curiel (2014); Dougherty/Callender (2016) 
81 E.g. Geroch (1973) 

Fig. 3:  

Helical worldline of one of the binary 
partners. One spatial dimension is 
suppressed. 
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- the split (“∆”) of the EoMs into the conservative parts (cEoMs), associated with the 
dynamics of the system, and non-conservative parts, associated with the dissipative 
gravitational radiation 
 

From these fundamental building blocks, all three assumptions (1)-(3) of the standard 
interpretation can be re-defined: A system’s total energy-momentum is defined as the energy 
associated with the conservative dynamics encoded by cEoMs; by construction, it is 
conserved, unless the system radiates - as previously stated in (1) and (2). Since the effective 
full EoMs also contain non-conservative dynamics (in other words: as a result of the cEoMs-
EoMs split ∆), the GW depletes the system’s energy -as previously stated in (3). The existence 
of non-conservative EoMs is warranted by the EEs, which also ensure the generation of GWs 
for a time-varying quadrupole moment of matter energy-momentum (QUA). 

On the now refined standard explanation, the binary system’s orbits decay, because the 
system’s quadrupole moment varies in time (QUA), which according to the EEs triggers 
gravitational radiation; the difference ∆ between the full EoMs and the cEoMs implies that the 
GWs deplete the system’s total energy, manifesting itself via the effective full EoMs in orbital 
decay.  

The refined standard explanation takes the following logical form. 

(QUA)
(𝐸𝐸𝑠)
→    GW emission 

∆
→GWs deplete the system′s energy 

(𝐸𝑜𝑀𝑠)
→    ℰ   

We can now embark on a comparison between the (refined) standard explanation and the 
dynamical one. For the reader’s benefit, I list the latter again:  

(QUA)
(𝐸𝑜𝑀)&(𝐸𝐸𝑠)
→         ℰ 

I first want to rebut three claims regarding putative advantages of the standard explanation - 
its intuitive appeal and heuristic value, its close ties to observable quantities and its causal-
mechanistic character. 

With its appeal to familiar concepts and principles, the standard explanation of the binary 
problem undeniably has intuitive attraction and – especially in light of the analogy with 
electromagnetism- heuristic value.82 Yet, many will dismiss such subjectively perceived 
advantages as irrelevant to an explanation’s quality: Does the (putative) un-intuitiveness of 
quantum mechanical explanations, say, of 𝛼-decay in terms of quantum tunneling lessen their 
value? Furthermore, our “intuitions” and “heuristic value” are likely to be shaped considerably 
by the formal approach to the Problem of Motion we adopt: The to-dated preponderant so-
called “T-approach“ (Lehmkuhl), which focuses on the energy-momentum tensor, certainly 
invites intuitions involving gravitational and GWs’ energy-momentum. By contrast, the 
neglected so-called “vacuum approach”, which focuses on the l.h.s. of the Einstein Equations, 

                                                           
82 The emphasis of such analogues between GR and non-GR physical theories played a vital sociological part in 
GR’s reinvigoration and re-integration into mainstream physics in the 1950s and 60s, cf. Schutz (2012). 
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is no less suitable for the Problem of Motion:83 With its different outlook, explanations 
involving gravitational or GW energy (or energy simpliciter) seem less natural. 

A different line of defence of the standard view might be this: Does the use of gravitational 
and GW energy perhaps enable us to ascertain more easily GR’s empirical content? I fail to 
see how: If on the one hand one construes the argument as emphasizing the intuitive 
accessibility of the explanatory steps, it seems to collapse onto the already rejected appeal to 
familiarity. If on the other hand, one reads the argument as the claim that the standard 
explanation renders the observational content more explicit, it seems false: Information about 
the observables, i.e. the orbital decay, is no less present in the dynamical interpretation.  

Perhaps most promising might be the idea that the standard explanation furnishes a causal-
mechanistic explanation. The guiding thought here is that energy transfer is the hallmark of 
causal processes84, and that causal-mechanistic explanations are pre-eminent types of 
explanations. But this maneuver faces two objections: Firstly, the notion of causality -and a 
fortiori causal explanations- is notoriously ambiguous – the difficulties being even exacerbated 
in GR.85 Furthermore, it is not clear that causal explanations necessarily involve energy 
transfer: Are the explanations of action-at-a-distance theories, such as Bohmian Mechanics or 
Feynman-Wheeler absorber theory (neither of which prima facie involves energy transfer) un-
controversially non-causal? Secondly, it is not obvious that causal-mechanistic explanations 
are inherently superior to non-causal ones. Electron degeneracy pressure is explained in terms 
of the Pauli exclusion principle, i.e. a symmetry principle, rather than a causal mechanism. 
Why should this non-causal explanation of, say, white dwarf formation, impinge on its 
explanatory value?  

Let us move on and see how the standard and the dynamical explanation each score on the 
central virtues of explanations, parsimony, scope, depth and unificatory power.   

Regarding parsimony, it should first be pointed out that in terms of calculational efforts, both 
explanations are on a par: The question thus can only be which status to allocate to the split 
∆ the (refined) standard explanation involves. As I argued when criticism of premise (1), there 
is no sound a priori justification of distinguishing the conservative parts of the EoMs: After all, 
GR is supposed to supersede these less fundamental theories. In consequence, the dynamical 
explanation, dispensing with this distinguished treatment of the (cEoMs) i.e. the split ∆, is 
preferable.  

(A fortiori, in order for the initial standard explanation to get off the ground it requires that 
gravitational energy and GW energy be formally definable and separable from each other – 
which is non-trivial nor in fact always possible.) 

It also deserves reiterating that the refined formulation of the standard explanation renders 
it transparent that claim (3), purporting the transport of GW energy-momentum, is 
explanatorily redundant. An inference to the best explanation for energy-momentum 
transport via GWs is thus blocked. Rather than contributing to the explanation of the orbital 

                                                           
83 Cf. Lehmkuhl (2017a,b) 
84 E.g. Dowe (2009) 
85 Cf. Curiel (2011) 
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decay, it requires yet another principle to hold, viz. conservation of energy-momentum (EC), 
i.e. a realist interpretation of the formal energy-momentum balance of the Landau-Lifshitz 
type, purporting that the energy-momentum dissipated from a system must continue to exist 
elsewhere: 

(QUA)
(𝐸𝐸𝑞)
→    GW emission 

(𝐸𝑜𝑀𝑠)
→    GWs deplete the system′s senergy 

(𝐸𝐶)
→  (3). 

Hence, if one wants to appeal to the standard explanation to abduct the GW energy-
momentum transport, one must first substantiate not only the privileged status of the cEoMs, 
but also (EC) (a realist interpretation of the energy-momentum continuity equation): This 
need for two additional principles then, however, seems to undermine the prerequisite for 
the abduction that it be the best explanation. 

In summary, the verdict on parsimony disfavors the standard explanation: Why employ more 
explanantia than necessary (and thereby being ontologically committed to them – 
contravening Occam’s plea for parsimony)? 

What about scope? Is the standard explanation able to cover a wider domain than the 
dynamical one? This can be negated: In higher perturbative orders, the gravitational and 
radiative degrees of freedom of the metric mix; it is no longer possible to systematically 
classify the higher order contributions of the EoMs as either pertaining to the GW or the 
system86 -as the standard interpretation via its split ∆ presupposes. One could, of course, still 
insist that only the cEoMs describe the system qua their conservativeness. But such a 
stipulation by fiat would lack any physical foundation, for in the higher-order EoMs the 
radiative and the gravitational degrees of freedom cannot be severed. In short, the scope of 
the standard explanation is limited to low levels of approximation (viz. 2.5 or 3PPN terms).87 
By contrast, the scope of the dynamical explanation coincides with the scope of GR and the 
general-relativistic EoMs: Wherever classical GR is valid, a dynamical explanation of a 
phenomenon is possible. 

This leads us to the issue of depth: At what level of description do the two explanations 
operate? From the aforesaid, it is clear that the (refined) standard explanation with its reliance 
on the cEoMs employs a non-fundamental principle. By contrast, the dynamical explanation, 
only draws on the EoMs and the Einstein Equations, which for non-quantum purposes may 
without impunity be regarded as fundamental. Hence, also w.r.t. depth, the dynamical 
explanation prevails over the standard one. (I am not claiming that depth, thus construed, is 
a value per se: Sometimes, it can be traded-off for other explanatory benefits.88 Ceteris 
paribus, however, it seems plausible to give preference to deep explanations.) 

Let us conclude our comparison with investigating the unificatory power of both explanations. 
Prima facie, one might be inclined to extoll the standard explanation’s insistence on 

                                                           
86 E.g. Maggiore (2007), p. 249, fn 17 
87 ”In my opinion, a Lagrangian or a Hamiltonian for this problem only makes sense up to 2PN order, where 
energy is truly conserved (if you artificially turn off the 2.5PN radiation reaction terms, you can also write down 
a Lagrangian for the 3PN terms). Beyond this order, the fundamental things are the equations of motion.” Clifford 
Will, personal communication. 
88 E.g. Knox (2016, 2017); Franklin/Knox (2017, ms) 
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conservative dynamics as an advantage: It thus appears to preserve continuity with the 
dynamics of non-GR theories. So, one might think that the standard interpretation’s 
procedure to privilege the cEoMs (and construct from them the system’s energy) can be 
subsumed under a successful general explanatory scheme.  

The contrary, however, is the case: Firstly, as I argued, dividing the EoMs into a conservative 
and a non-conservative part is not even consistently feasible in GR.  Such a division of the 
EoMs would be artificial - in contrast to pre-GR theories. Because of its reliance on this 
division, the standard explanation therefore cannot be subsumed under a more general 
explanatory scheme. In other words, the general explanatory scheme we find also in other 
theories is just to take the EoMs -be they conservative or not-  and predict from them how 
matter would behave under certain conditions (MAT). This is precisely the rationale of the 
dynamical explanation. The latter thus can be subsumed under the widespread unificatory 
explanatory scheme:  

(MAT)
(𝐸𝑜𝑀𝑠)
→     explanandum. 

Also regarding unification, the dynamical explanation thus seems to trump the standard one: 
The dynamical explanation turns out to instantiate a conservative explanatory scheme of great 
unificatory power, whereas the standard one unduly generalizes contingent features of pre-
GR theories.      

In summary, on the four central virtues of good explanations, parsimony, depth, scope and 
unificatory power, the dynamical view seems to outperform the standard one. We may thus 
conclude that also on purely epistemological grounds the former has much to commend itself. 

 

The conclusion of this section is that there exists an attractive alternative to the standard 
explanation of the binary system’s orbital decay that does not invoke gravitational or GW 
energy, only availing itself of the Einstein Equations and the general-relativistic Equations of 
Motion. The section’s title question can therefore be answered in the negative. In fact, the 
standard interpretation should be rejected. 

 

IV. Conclusion and outlook 
 

I argued that all four standard arguments for the energy-momentum transport of GWs are 
problematic:  

(1) That a GW sets in apparent motion a ring of test masses is explained in terms of the 
non-Minkowskian inertial structure of spacetimes with GWs: The latter manifest 
themselves as deviations from the rectilinear geodesics of Minkowksi spacetime; only 
adopting a non-inertial frame does create the appearance of actual increase in kinetic 
energy.  

(2) The received assumption that GWs can cause the release of surplus thermal energy in 
extended matter is, albeit plausible, not beyond doubt. Should it indeed be true, the 



30 
 

increase in total energy can be accounted for in terms of GR’s revision of energy-
momentum conservation for matter, which in generic spacetimes must be jettisoned. 
Contrariwise, the Sticky Bead Argument crucially hinges on energy-momentum 
conservation, which is simply assumed, to infer that GWs transmit some of their 
energy to the Stick Bead setup. 

(3) The perturbative approach expands the metric in terms of small perturbations around 
a slowly varying background. These perturbations are then sourced by a term that it is 
tempting to identify as the GW energy-momentum.  While it would be folly to baulk at 
the use of perturbation theory on the grounds of it being not fundamental, the 
interpretation of the aforesaid perturbatively defined object as “GW energy-
momentum” rests on assumptions in conflict with GR’s principles. 

(4) The canonical Noether approach to GW energy yielded prima facie auspicious formal 
results, involving the gravitational energy-momentum pseudotensor and its associated 
integral quantity; but their interpretation turned out to pose essential difficulties.   

We then turned to the most prominent application of GW energy, the spin-up of binary 
systems: According to the standard view, because the GWs carry away energy from the 
system, the pulsars precipitate onto more narrow orbits. I argued that such an explanation 
hinges on an unwarranted, and in fact not consistently feasible split of the Equations of Motion 
into one part, describing a conservative system, and one describing the radiation damping.  A 
dynamical explanation, by contrast, accepts the in-spiralling orbits as a brute-fact of the full 
general-relativistic Equations of Motion, if the quadrupole momentum distribution of energy-
momentum varies in time. Furthermore, greater parsimony, scope, depth and unificatory 
power distinguish the dynamical explanation over the standard one. I concluded that binary 
systems do indeed not provide evidence for the energy-momentum transfer of GWs.  

For the line of thought pursued in this paper, two directions of further enquiry are specially 
promising:  

One concerns the more general question of the status and role of the various proposals for 
gravitational energy-momentum in GR.89 Of particular interest here for the philosophy and 
foundations of GWs, is the status of Bondi’s News Function, which according to its inventor 
himself, “nobody has fully understood”.90 

The other concerns an analysis of the role GW energy plays in relativistic astrophysics, in 
particular astrophysical processes during which energy is extracted from a gravitating source, 
such as the energy gain of a particle passing through the ergosphere of a Kerr Black Hole.  

 

 

 

                                                           
89 Dürr (2017ab, ms), partly in response to Read (2017, forth.) 
90 Kennefick (2007), p. 208 
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