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Abstract

Schupbach and Sprenger (2011) introduce a novel probabilistic approach

to measuring the explanatory power that a given explanans exerts over a

corresponding explanandum. Though we are sympathetic to their general

approach, we argue that it does not (without revision) adequately capture

the way in which the causal explanatory power that c exerts on e varies

with background knowledge. We then amend their approach so that it does

capture this variance. Though our account of explanatory power is less

ambitious than Schupbach and Sprenger’s in the sense that it is limited to

causal explanatory power, it is also more ambitious because we do not limit

its domain to cases where c genuinely explains e. Instead, we claim that c

causally explains e if and only if our account says that c explains e with

some positive amount of causal explanatory power.

1 Introduction

There are many contexts in which we care how much the occurrence of an

event causally explains the occurrence of another. Consider the recent presi-

dential election in the United States. As we try to understand why President
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Trump won, we ask ourselves how much the election results are explained

by Comey’s timely announcement of the investigation against Hillary Clin-

ton, and whether Comey’s announcement better explains the election results

than does Trump’s promise to build a wall between the United States and

Mexico.

Answering questions like these requires knowledge of the causal system at

play. If we want to know how much c causally explains e then we must know

whether and how c causes e.2 But knowledge of the causal relationship(s)

between c and e does not suffice for knowledge of the extent to which c

causally explains e. This is because the causal influence that c exerts over

e does not depend on what we know, while the extent to which c causally

explains e does depend on what we know. Roughly put, the job of an

explanation is to confer understanding, and since understanding can only

be conferred to some agent(s), the extent to which c causally explains e

should be specified relative to the understanding agent’s (or agents’) body of

knowledge. The same is not true of the extent to which c causally promotes

e since causal promotion is a worldly dependence relation that exists no

matter whether there are any agents around to witness it.

Our task in this paper is to develop a method for assessing the extent

to which c causally explains e given knowledge of the causal system at play.

We follow in the footsteps of Schupbach and Sprenger (2011) in thinking

that the explanatory power c has over e is (in some way) determined by the

extent to which the occurrence of c makes the occurrence of e less surprising.

However, we argue that Schupbach and Sprenger’s own method for deter-

mining explanatory power is not sufficient for accurately capturing the way

in which the explanatory power that c exerts over e depends on background

knowledge in paradigmatic cases of causal explanation. Our task, then, is to

develop a novel method of assessing explanatory power in terms of surprise

reduction that fares better than Schupbach and Sprenger’s approach when

applied to causal explanations.

This means that our ambitions are a bit different from Schupbach and

Sprenger’s. They restrict the domain of their account to cases where c

genuinely explains e, but do not restrict the domain of their account to

2Throughout the paper we adopt the convention of referring to variables with upper case

letters and values of variables with lower case letters. Here, we make it clear that we are

interested in the explanatory power that a value of a variable exerts over another.
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cases where c causally explains e. Our account is less ambitious in the sense

that it is limited to causal explanatory power, but more ambitious in the

sense that we do not limit its domain to cases where c genuinely explains e.3

Instead, we claim that c causally explains e if and only if our account says

that c explains e with some positive amount of causal explanatory power.4

The outline of the paper is as follows. In section 2, we introduce Schup-

bach and Sprenger’s measure of explanatory power. In section 3, we raise

some issues surrounding the interpretation of the probability function used

in the definition of their measure, before proposing an interpretation that

bypasses these problems. Section 4 considers the problem of accounting

for the influence of background knowledge on the evaluation of explanatory

power. We show that standard Bayesian methods for accounting for such

knowledge yield counterintuitive verdicts when applied to particular kinds of

causal systems. Section 5 outlines our novel approach to quantifying causal

explanatory power and shows how it naturally resolves the issues discussed

in previous sections. Section 6 concludes and outlines new directions for

future research.

Before going further, it is worth noting that this paper is situated within

a broadly interventionist understanding of causation, of the type developed

by e.g. Spirtes, Glymour and Scheines (2011), Pearl (2009), and Woodward

(2005).5 Although our approach makes extensive use of the causal modelling

framework, we do our best to make the presentation self contained. Readers

seeking a thorough introduction to the formalism should consult e.g. the

first two chapters of Pearl (2009).

2 The Logic of Explanatory Power

In developing their approach to explanatory power, Schupbach and

Sprenger (2011) start from the basic premise that

3Relatedly, our account applies only relative to a causal hypothesis, whereas their account

can be applied sans any causal hypothesis.
4We discuss these issues in greater detail in Section 5.
5Of course, the term ‘interventionist’ is a vague one and there are important differences

between the approaches forwarded by these authors. The sense in which our treatment of ex-

planatory power is distinctively interventionist will become clear in later sections.
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[A] hypothesis offers a powerful explanation of a proposition...to

the extent that it makes that proposition less surprising...for ex-

ample, a geologist will accept a prehistoric earthquake as ex-

planatory of certain observed deformations in layers of bedrock

to the extent that deformations of that particular character, in

that particular layer of bedrock, et cetera would be less surpris-

ing given the occurrence of such an earthquake.’ (Schupbach and

Sprenger 2011: 108).

This is a natural starting point that fits well with many everyday in-

tuitions about explanation. When we try to explain the occurrence of an

event,6 e, we try to better understand why e’s occurrence was rendered likely

or necessitated by antecedent events. Consider President Trump’s victory

once more. As we try to explain what happened, we search for those events

whose occurrence makes the election results unsurprising. It thus seems

reasonable to say that there is at least a sense in which an event c explains

e to the extent that c makes e less surprising or more expected.7

There may be multiple ways to formalise what it is for one event to

make another less surprising. Schupbach and Sprenger work in the context

of Bayesian probability theory. Specifically, one event c will render another

event e less surprising if and only if P (e) < P (e|c).8 The strength of this in-

equality is called the ‘statistical relevance’ between e and c. In light of these

considerations, Schupbach and Sprenger posit the following criterion as

a basic requirement of any measure ε(e, c) of the extent to which c explains e:

Positive Relevance (PR): Ceteris paribus, the greater the degree of

6Schupbach and Sprenger speak in terms of a hypothesis explaining some evidence, rather

than in terms of an event explaining another event. We translate their discussion into event-

speak because we find it more natural when discussing distinctively causal explanations. But

it is worth mentioning that we are neutral with respect to whether a causal explanation of an

event must include information about covering laws or explanatory generalisations (in addition

to information about some antecedent event(s)). By our lights, and as will become clear later, the

explanatory power that one event exerts over is accounted for by some covering laws and/or ex-

planatory generalisations no matter whether such information must be included in the explanans.

Woodward and Hitchcock (2003) present an account according to which such information must

be included; Lewis (1986) argues that it needn’t be.
7Section 5.4.2 considers competing senses in which an event can be rendered ‘less surprising’.
8This assumes the standard definition of conditional probability as P (e|c) = P (e∧c)

P (c) .
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statistical relevance between e and c, the higher ε(e, c).

Philosophically, PR is the core idea behind Schupbach and Sprenger’s ap-

proach to measuring explanatory power. It requires that, other things being

equal, the extent to which c explains e should be a function primarily of the

degree to which c raises the subjective probability of e. Broadly speaking,

we are sympathetic to this intuition, and will use it as a guiding principle

for the development of our measure of causal explanatory power. Crucially

though, PR implies ceteris paribus that statistical relevance is both a nec-

essary and a sufficient condition for an event c to have explanatory power

over another event e.9 Though this poses no problems for Schupbach and

Sprenger (because they limit the domain to genuinely successful explana-

tions), we will see that we must drop PR in order to distinguish genuinely

successful causal explanations from unsuccessful causal explanations.

Schupbach and Sprenger posit six other criteria that ε(e, c) is required to

satisfy. Apart from PR, the only other criterion we need to consider requires

that ε(e, c) should be (partially) independent of the prior probability of c,

Irrelevance of Priors (IP): Values of ε(e, c) do not (always) depend

upon the values of P (c).10

IP encodes the idea that the extent to which a given event c explains

another event e is not dependent upon considerations of how likely c is in

itself. For example, a tornado might be an excellent explanation of a broken

weather vane, regardless of the fact that the prior probability of a tornado

occurring is very low. We are measuring the extent to which c would render

e less surprising, in the event that c occurs. Clearly, this quantity should be

independent of our prior degree of belief in c occurring.

The seven criteria postulated by Schupbach and Sprenger are jointly

sufficient to uniquely determine the following measure of explanatory power,

Definition 2.1 SSE: ε(e, c) = P (c|e)−P (c|¬e)
P (c|e)+P (c|¬e)

9The ‘ceteris paribus’ clause can be removed when we assume that c is genuinely explanatory

of e.
10The condition that Schupbach and Sprenger actually use is slightly technical, but its central

philosophical content is captured by IP as stated here.
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For our purposes, the explicit form of ε(e, c) will not be terribly impor-

tant.11 Our focus is on the fundamental assumption of PR and its impli-

cations. With Schupbach and Sprenger, we are happy to accept IP as a

philosophical constraint on the notion of explanatory power.

3 Subjective and Nomic Distributions

3.1 Actual Degrees of Belief

Implicit in the Bayesian approach to explanatory power described above

is the assumption that the probability functions deployed represent belief

states. But whose belief states, and what kind of belief state? If the prob-

ability function is interpreted as reflecting the subjective belief state of the

agent evaluating the explanation, then the Bayesian approach faces what

we might call the ‘explanatory old evidence problem’. For example, when

we ask why Newcastle beat Sunderland, we usually know that Newcastle

actually beat Sunderland, and therefore give the explanandum a subjective

prior probability of 1.12 But this is problematic. For e cannot be rendered

less surprising by anything when it already has probability 1. And that’s not

all. The explanatory old evidence problem has an equally problematic flip

side. As well as being certain that the explanandum occurred, we might also

be certain about the occurrence of the prospective explanans. For example,

when we are interested in how well the stock market crash of 1929 explains

the Great Depression, we know that both of these events occurred, but c

cannot raise the probability of e if c is already assigned probability 1. So

in order to rescue the Bayesian approach, one must think of the probability

function as expressing something other than our actual degrees of belief.

3.2 The Causal Distribution

Though the occurrence of the tornado may not make us more confident

that the weather vane has broken (since we could have already seen both

11For detailed discussions of the virtues of this and other measures of explanatory power, see

e.g. Cohen (2015), Crupi and Tentori (2012).
12Note that we are not committed here to the claim that explanation always presupposes

certainty about the explanandum, only that it often does so.
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the tornado and the broken weather vane), there is obviously a sense in

which the tornado’s occurrence makes it less surprising that the weather

vane broke. What does this reduction of surprise consist in?

At first pass, it seems that an event c reduces the surprise of another

event e to the extent that the occurrence of c provides reason to expect e

given our best understanding of the causal system at play. That is, even

when we know that there was a tornado and know that the weather vane is

broken, the tornado’s occurrence still makes the weather vane’s breaking less

surprising in the sense that our best understanding of the causal relationship

between tornadoes and weather vanes tells us that we have strong reason to

expect the weather vane to break in the event of a tornado.

This suggests that if we want to follow Schupbach and Sprenger in con-

struing reduction of surprise as some kind of increase in probability, we

should use probability distributions that encode what it is reasonable to

expect about the events in question, given what we know about the causal

system at play. Since these distributions must be consistent with the causal

relationships (or structural equations) that govern the causal system, we

refer to them as ‘causal distributions’.13

For example, suppose that our best theory of the causal system governing

the condition of the weather vane says that the probability of there being a

tornado is .05 and that the probability of the weather vane breaking given

that there is a tornado is .75, while the probability of the weather vane

breaking given that there is not a tornado is only .005.1415

13To be clear, we don’t take ourselves to be defending a novel interpretation of probability.

Rather, we simply mean to propose that the probabilities deployed are those that express the

causal relationships in a causal hypothesis (no matter how they are interpreted). Thus there is

still room to think of our approach as situated within a broadly Bayesian approach to explanatory

power.
14For those who are familiar with structural equation models, the causal distribution for a

causal system over a variable set V can be systematically recovered through specification, first,

of the structural equations that describe the way in which the probability distribution over

each variable depends on the probability distribution of its immediate causal predecessors or

‘parents’ and its error term, and, second, the unconditional probability distribution over all of the

exogenous (parentless) variables. Since the probabilities over the exogenous variables represent

reasonable prior expectations for these variables, and the structural equations represent the ‘laws’

that govern the causal system, the probability distribution that is implied by the structural

equation model seems to give us exactly what we need.
15The reader may harbour doubts about our capacity to determine the unconditional proba-
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The causal distribution includes these probability estimates, as well as

every other probability estimate that is implied by the causal hypothesis at

hand. Moreover, the causal distribution satisfies any constraints implied by

whatever causal graph is under consideration. So if we consider a causal

hypothesis according to which the only causal dependencies between X,

Y , and Z can be represented as X → Y ← Z, then X and Z must be

probabilistically independent in the causal distribution.16

Since the causal distribution corresponds to what the causal details of the

system give us reason to expect, rather than to our knowledge about what

actually happens or has happened, the causal distribution is not obviously

riddled with problems of old evidence. That is, even when we know that

there actually was a tornado and that the weather vane actually broke, the

causal distribution does not say that these events obtain with probability 1

because its probability estimates instead correspond to what the “laws” of

the causal system tell us we have (or had) reason to expect.17

In some contexts, there may be reason to regard the laws of the causal

system as true laws of nature–e.g., if we want to discuss whether c causally

explains e relative to the (perhaps unknown) facts about the causal sys-

tem. But we also might usefully deploy causal distributions that convey

our presuppositions about the causal system at hand, rather than the truth

about the causal system. For example, if we’ve just read a textbook about

the causal relationship between c and e, then even if the textbook is wrong

(unbeknownst to us), it is reasonable for us to assess whether and to what

extent c causally explains e relative to the causal distribution that encodes

what the textbook says about the causal system. In order to capture both of

these senses, we do not require that the causal distribution is true. But we

do suspect that there are contexts where it is reasonable to care exclusively

bility estimates of exogenous variables since these are not supplied by the structural equations.

We are sympathetic to these concerns and are correspondingly ecumenical about how these

probabilities should be set. In the absence of knowledge of long-run frequencies, one might jus-

tifiably use tools in the objective Bayesian toolbox to determine these estimates–e.g., principles

of indifference.
16This follows from the Causal Markov Condition (see section 4).
17The causal distribution assigns probability 1 to an event only if the causal hypothesis at play

says that the event will certainly occur. Although we associate these probabilities with the ‘laws’,

we do not take this to constitute a necessary deviation from standard Bayesian interpretations

of probability.
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about whether c explains e relative to the truth, as well as contexts where it

is reasonable to care exclusively about whether c explains e relative to our

presuppositions (regardless of their truth).

No matter whether the causal distribution must be true, it is clear that

the notion of surprise that underwrites our treatment of causal explanatory

power is somewhat distinct from the notion that is interpreted in terms of

actual degrees of belief. Since the strength of c as an explanation for e

depends on the extent to which the occurrence of c renders e less surpris-

ing according to reasonable (causal) expectation, rather than the extent to

which c renders e less surprising to actual agent(s), the explanatory power

that c exerts over e is better understood as depending on the extent to

which c would have rendered e less surprising (given what we know about

the causal system) than as depending on the extent to which c actually does

render e less surprising.18

Alhough opting for causal distributions allows us to avoid issues that

arise when c and e are known, it gives rise to new problems because there

are certain pieces of background knowledge (not pertaining to c and e them-

selves) that seem to affect explanatory power. In the next section, we begin

to develop an account of explanatory power that can accommodate back-

ground knowledge as needed.

4 Background Knowledge

Consider the causal system in figure 1 (based on examples from Hesslow

(1976)). Birth control and pregnancy both cause thrombosis. However,

birth control causally inhibits pregnancy. It is possible for this system to be

‘unfaithful’,19 where BC and TH are statistically independent, regardless of

18It is tempting to say that the extent to which c explains e does depends on the extent to

which c would render e less surprising had c not happened, but the phrase ‘had c not happened’

is ambiguous between ‘had c not happened with certainty’ and ‘had c occurred with the non-

extreme probability suggested by the causal system’. If ‘had c not happened’ is understood in

the latter way, we are happy with this characterization of the counterfactual query. But our

survey of the literature suggests that most philosophers understand ‘had c not happened’ in the

former way (see e.g. Briggs 2012, Halpern 2000, Woodward 2005).
19When we say that a system is unfaithful, we mean that the assumed probability distribu-

tion/graph pair does not satisfy the Causal Faithfulness Condition (see Spirtes, Glymour and
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BC TH

P

Figure 1: Birth Control, Pregnancy, Thrombosis

the fact that the causal model represents TH as being causally dependent on

BC. Intuitively, this will happen when the two paths from BC to TH ‘can-

cel out’ exactly. It might be that, although birth control causally promotes

thrombosis through some physical mechanism, this effect is completely and

perfectly negated in a statistical sense by the fact that birth control is neg-

atively correlated with pregnancy, which is itself a cause of thrombosis. In

such a case there will be no correlation between birth control and thrombo-

sis, despite the causal connection between the two phenomena. It is easy to

see that ε(th, bc) = 0 will then be guaranteed to hold. So our attempted ex-

planation of Suzy’s thrombosis by her taking birth control pills will have no

power whatsoever, which seems correct. If we know nothing about whether

or not Suzy has been pregnant, then her having taken birth control would

not render her thrombosis any less surprising (since taking birth control does

not raise the probability of getting thrombosis in the causal distribution).

But now suppose that we also happen to know that Suzy has never been

pregnant. In this case, it seems clear that Suzy’s taking of birth control

pills very strongly explains her thrombosis. For in this case our knowledge

of Suzy’s pregnancy breaks the correlation between pregnancy and birth

control, thereby inducing a strong correlation between birth control and

thrombosis. Given that we know that she is not pregnant, Suzy’s taking of

birth control pills renders her thrombosis much less surprising.

Thus, we should think that bc exerts considerable explanatory power

over th. However, the causal interpretation of the probability distribution

prevents us from straightforwardly obtaining this result. This follows from

Scheines (2000)). The Causal Faithfulness Condition is satisfied by a given graph/probability

distribution pair exactly when all and only the independencies entailed by the Causal Markov

Condition (discussed in detail later in this section) obtain.
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Figure 2: Smoking, Cancer, Nicorette

the fact that the causal probability of pregnancy does not correspond to our

subjective degree of belief about the particular instantiation of that causal

system. We need some way to update the causal distribution to allow it to

take into account our background knowledge which, as we have seen, can

have a significant effect on our judgements of explanatory strength.

Perhaps it seems like this case can be bracketed since it involves the

cancellation of causal paths, and such cancellation rarely occurs. But this is

not right. Consider the causal system in figure 2, according to which chewing

Nicorette reduces the probability that one subsequently smokes (and thereby

significantly reduces the probability of the later onset of cancer), but also

increases the probability of cancer along a distinct path (because of the

deleterious effect that chewing Nicorette has on the body).

Here, we can easily imagine that Nicorette’s total effect is healthy in

the sense that it reduces the probability of cancer because the causal path

that is mediated by smoking is stronger than the other.20 Thus if we know

nothing about whether John stops smoking after chewing Nicorette, his

taking Nicorette appears to increase the surprise (by reducing the causal

probability) of his cancer. But if we know that John quits smoking (upon

chewing the Nicorette), but does subsequently get cancer, it seems that

Nicorette does causally explain his cancer to some extent. Thus, just as the

introduction of background knowledge can render c explanatorily relevant

to e when it otherwise wouldn’t be (as in Suzy’s case), it also can change

the extent to which c is explanatorily relevant to e in cases where c is

explanatorily relevant to e sans background knowledge (as in John’s case).

20See Woodward (2003) for helpful discussion of total effects, contributing effects, and direct

effects.
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Before proposing a solution to this problem, it is useful to make two

small clarifications about our general approach. Firstly, the account pre-

sented here applies most naturally to token-level causal explanations, as

opposed to type-level explanations. In the previous case, for example, it

seems that we are interested not in the question of how much the taking of

birth control explains thrombosis in general, but rather in how much par-

ticular instances of thrombosis are explained by particular instances of the

taking of birth control pills. When considering questions of this kind, it is

clear that our judgements typically depend on our background knowledge

of the facts surrounding the relevant instantiation of the causal system.

Secondly, philosophers sometimes speak in terms of ‘how-possibly’ and

‘how-actually’ explanations. We are interested in both. That is, we want

a treatment that works well both when we are trying to explain why e did

occur and also why e might occur.

At this juncture, it is also useful to introduce Pearl’s (2009) language

of ‘d-separation’ in order to facilitate discussion of the the way in which

causal explanatory power varies with background knowledge. The language

of d-separation is useful for characterising the probabilistic conditional

independencies that are entailed by the Causal Markov Condition (an

axiom of the graphical approach to causal modeling), given a directed

acylic graph (DAG) whose edges depict the causal relations at play.21

The Causal Markov Condition is the assumption that encodes the fact

that causes “screen off” their effects and is likewise presumed by the

interventionist approach to causation (see e.g. Hausman and Wood-

ward (1999)). If every (undirected) path between a pair of variables is

d-separated by Z (according to a given causal graph), then the pair of

variables must be probabilistically independent of each other conditional

on any assignment of values over Z, where d-separation is defined as follows,

d-separation: A path between two variables, X and Y , is d-separated

(or blocked) by a (possibly empty) set of variables, Z, if and only if

i the path between X and Y contains a non-collider that is in Z, or

ii the path contains a collider, and neither the collider nor any descendant

21A DAG graphically represents the causal relations that obtain among a set of variables V as

a set of directed edges (or arrows), such that no directed path forms a cycle.
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Figure 3: Birth Control, Pregnancy, Thrombosis, Death

of the collider is in Z.

Collider: A variable is a collider along a path if and only if it is the direct

effect of two variables along the path. (So M is a collider along I →M ← J

but not along I ←M → J or I →M → J .)

4.1 Conditionalisation and Colliders

Returning to the problem at hand, there is an obvious fix available here.

In particular, we can simply condition on our background knowledge to

update the causal distribution. So, in Suzy’s case, we continue to use the

causal distribution but simply condition on the knowledge that Suzy is not

pregnant. Since P d-separates BC and TH along the top path and bc is

strong evidence for th conditional on either value of P , ε(th, bc) is forced

to have a high value. However, this solution quickly breaks down when we

consider slightly more complex causal systems.

Suppose we also represent whether Suzy dies with another variable D

(see figure 3). Plausibly, death is causally influenced by both the taking

of birth control pills and thrombosis.22 If we have no knowledge about

whether Suzy is pregnant, then thrombosis is independent of birth control,

and this rules out birth control as a viable explanation. But now suppose

that we happen to know that Suzy tragically went on to die. Following the

22For instance, imagine that birth control pills have as a positive side-effect that they causally

inhibit the occurence of particular types of cancer, and so are negatively correlated with death.
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D2 D3

D4

D1

Figure 4: Dominoes 1-4

procedure of conditioning on background knowledge, we should condition

on our knowledge that Suzy died. Unfortunately, this leads to some dubious

results. Crucially, death is causally downstream of both birth control and

thrombosis. So updating our knowledge of D involves conditioning on a

collider between BC and TH. This means that we may introduce a spurious

correlation between birth control and thrombosis. If birth control has a

negative direct causal effect on death (which is conceivable) then the nature

of this new correlation will be positive. This will mean that ε(th, bc) will

be positive after we condition on D = d, whereas it was zero before we

did so, i.e. conditioning on death gave the explanation of thrombosis by

birth control power where it previously had none. But this seems wrong.

D is causally downstream of both the explanans and the explanandum, and

our knowledge of its value should have no bearing on our assessment of the

prospective causal explanation. Indeed, if one thinks only about temporal

order then this point become even more apparent. How can death affect

the extent to which birth control causally explains thrombosis when it only

occurred after the birth control pills had been taken and the subject had

developed thrombosis? Clearly, something is wrong here.

Another amendment suggests itself. In particular, it is tempting to im-

pose the condition that we only update on knowledge that is not causally

downstream of the explanandum. This deals nicely with the case discussed

above without requiring any major ammendments to the overall strategy.

Sadly though, it doesn’t work. To see this, consider the causal system in

figure 4.

Here, we are considering a system of four dominoes (D1, ..., D4).

D1, D2, D3 are lined up in a row and D4 is placed off to the side, equidistant

from D2 and D3. The nodes in the network each have two possible values,
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i.e. the dominoe either does or doesn’t fall. D1 has some prior probability

of falling, and if it falls, it will knock down D2 with some probability, and

D2 will then have some probability of knocking down D3. Similarly, D4 has

some prior probability of falling, and once it falls there is some probability

that it knocks down D2/D3.

We are interested in knowing how well D1 falling explains D3 falling.

Suppose that we know that D2 fell. In this case, when explanatory power is

understood in terms of reduction of surprise, it seems like D1 falling should

exert zero explanatory power over D3 falling, since D1 can only influence

D3 via D2.
23,24 So if we know that D2 fell, then any knowledge about D1

should be explanatorily irrelevant to D3. Once we know that D2 fell, D1

falling doesn’t tell us anything new about why D3 fell.

Now, since D2 is not causally downstream of the explanandum (D3) we

are allowed to condition on this knowledge. But since D1 and D4 are d-

connected by D2, it is consistent with the Causal Markov Condition that

there is a correlation between the falling of the first and fourth dominoes

when we condition, even though there is no explanatory power. Thus, by

conditioning on our background knowledge, we get the wrong result again.

And this time we can’t blame the problem on the fact that the background

knowledge is downstream of the explanandum. There is something else going

wrong at a deeper level.

4.2 A Helpful Intervention

Even with the restriction that we only update on background knowledge

that is not downstream of the explanandum, conditioning on background

knowledge appears to affect our judgments of explanatory power in an un-

intuitive way. Luckily, there is an alternative approach available to us. In

particular, we can invoke the notion of a counterfactual ‘intervention’. The

proposal then is to intervene on the relevant items of background knowledge,

rather than conditioning.

23See section 5.4.1 for further discussion of possible objections that may arise for this sort of

case.
24Contrast this with the case where we know nothing about whether D2 fell. In that case,

D1’s falling does look like a very good explanation of D3’s falling, since it does seem to tell us a

lot about why D3 fell.
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One can compute the effect of intervening on a causal system to set a

variable to a particular value. Following Pearl (2009), Spirtes, Glymour

and Scheines (2000), and Woodward (2005), allow the intervention on X

to represent some justifiably omitted cause of X that can be exploited to

set X to a value x. Since omitted causes cannot be common causes, the

intervention on X must be d-separated and therefore independent from all

of X’s non-descendants.

Consider again the causal system depicted in figure 4. As before, suppose

that we happen to know that D2 fell. In this case, D1’s falling should exert

no explanatory power over D3 falling. This is because all of D1’s potential

explanatory power is via D2, and we already know that D2 fell (the causal

influence that D1 exerts over D3 all travels through D2). We saw that simply

conditioning on our knowledge that D2 fell violates these intuitions. But

according to our new proposal, we should rather intervene on the causal

system to ensure that D2 falls. Since the intervention to make D2 fall is

d-separated from D1 (and therefore not correlated with D1), intervening

effectively ‘breaks’ the edge between D1 and D2. (This may be intuitive

since there is a sense in which exogenous interventions are disruptions to the

causal system.) This allows us to set the probability of d2 to 1 (accurately

reflecting our background knowledge), but because we have broken the edge

between D1 and D2, no new correlations between D1 and D3 via D4 are

introduced. Thus we get the good without the bad. D1 and D3 are now

statistically independent, meaning that ε(d3, d1) = 0 will have to hold, as

desired. Our proposal naturally provides the right answer in this case.

Furthermore, our new proposal makes the artificial condition that we

should only take into account background knowledge that is not down-

stream of the explanandum unneccessary. Consider again the system in

figure 3 and suppose that we know that Suzy went on to die, but we have

no other background knowledge about her particular case. According to the

previous proposal, we should condition on Suzy’s death, but as we saw this

affects our evaluation of the explanatory relationship between bc and th in a

problematic way. Following the new procedure, we propose that we should

rather intervene to ensure Suzy’s death.25 Because the intervention on D

is d-separated from the causal predecessors of D (unlike D itself), the cor-

relation between between BC and TH remains unaffected, so ε(th, bc) = 0

25No Suzies were harmed in the writing of this paper.
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continues to hold, as desired.26 Thus, the new procedure is equally able

to deal with background knowledge of events that are causally downstream

of the explanandum. This means that we no longer need to impose by

hand the artificial restriction that some of our background knowledge about

the particular case should be ignored when we’re evaluating explanatory

strength.

In light of these examples, we conclude that when updating the causal

distribution to take into account the background knowledge of the agent

assessing the strength of an explanation, we should always intervene (and

not condition) on the relevant background knowledge. More generally, the

examples discussed so far clearly illustrate the importance of taking into

account background knowledge when assessing the strength of a prospective

causal explanation.

5 Causal Explanatory Power

Let’s summarise our progress so far. We saw that the Bayesian faces two

old-evidence style problems when probabilities are interpreted as actual de-

grees of belief. Happily, these problems were resolved by opting for the

causal distribution. However, this led to a new problem regarding how to

take into account the background knowledge of the agent evaluating the ex-

planation. We saw that taking an interventionist approach to background

knowledge gave intuitively correct answers in cases where standard Bayesian

conditionalisation failed. So now that we have a satisfactory interpretation

of the relevant probability distributions and are able to account for the con-

text sensitivity of causal explanatory power, all that remains is to find a

suitable measure. At this stage, it is tempting to simply adopt the following

procedure.

(1) First, represent the causal system in which the explanans and ex-

planandum are embedded and work out the causal distribution for

that system, according to our current best knowledge.

26Woodward (2005) famously exploits this feature of interventions when definining ‘direct

cause’ and ‘contributing cause’. By intervening on colliders, we do not induce spurious associa-

tions that would arise were we to simply condition.
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(2) Second, update on all your background knowledge (excluding only the

explanans and the explanandum themselves) regarding the causal sys-

tem by intervening to set the relevant variables to their known values.

(3) Calculate the explanatory power that the explanans exerts over the

explanandum using the measure ε, relative to the updated causal dis-

tribution.

On this approach, we would continue to use Schupbach and Sprenger’s

measure ε, but it would now be measuring statistical relevance relative to a

causal distribution that has been updated via interventions on the relevant

items of background knowledge.

5.1 The Applicability of Explanatory Power

Before going further, it makes sense to take into account a significant caveat

that Schupbach and Sprenger place on the applicability of ε. Specifically,

they write

[W]e restrict ourselves ... to speaking of theories that do in fact

provide explanations of the explanandum in question. This ac-

count thus is not intended to reveal the conditions under which

a theory is explanatory of some proposition (that is, after all,

the aim of an account of explanation rather than an account of

explanatory power); rather, its goal is to reveal, for any theory

already known to provide such an explanation, just how strong

that explanation is. (Schupbach and Sprenger 2011: 107)

To translate this passage into causal language, the measure ε is only

supposed to be applied to genuine causal explanations. We cannot apply

the measure in cases where the explanans has no causal explanatory bearing

whatsoever on the explanandum. Rather, we should rely on some external

theory of causal explanation to delineate for us the class of genuine causal

explanations, to which we can subsequently apply the measure. The mea-

sure itself cannot decide for us whether or not one event causally explains

another, but given that such an explanatory relationship exists, it can tell

us the strength of that relationship.

And this is fine, as far as it goes. However, it would be nice if our

measure of causal explanatory power was itself capable of determining, for
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Figure 5: Storm, Barometer, Atmosphere

any explanandum event e and any other event c, whether or not c is causally

explanatory of e. To see why this would be desirable, consider an analogy. It

might be that we are only interested in using scales to measure the weight of

things with mass, but it would also be nice if the scales read zero whenever

there is no mass to weigh.

5.2 Statistical Relevance 6= Causal Explanatory

Power

To see why ε can only be applied to genuine causal explanations, consider

the example depicted in figure 5. A is a binary variable corresponding to the

presence (or absence) of a sudden drop in atmospheric pressure. S and B

represent the coming of a storm and a drop in the Barometer, respectively.

Now, suppose that we want to explain a storm by a drop in the Barometer.

Clearly, this is a terrible causal explanation that should have zero strength.

However, B and S are both highly correlated with A. Since B and S are

d-connected and we have no background knowledge about A, B could have

a high degree of statistical relevance to S. It is not hard to see that ε(s, b)

will generally be high in such a setup, which conflicts with our very strong

intuitions that the drop in the barometer should have no causal explanatory

strength with respect to the storm. The upshot of this example is that

statistical relevance is not sufficient for causal explanatory strength, and so

ε, as a measure of statistical relevance, is bound to give the wrong answer

in such cases.

As noted above, Schupbach and Sprenger actually anticipate this sort of

problem. Since b does not provide a genuine causal explanation of s, the

measure simply shouldn’t be applied in this kind of case. However, it is
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independently desirable to have a measure that is itself able to detect when

an event c fails to provide a causal explanation of an explanandum e. We

now turn our attention to providing such a measure.

5.3 Interventionist Explanatory Power

Finally, we propose the following procedure for computing explanatory

power,

(1) First, represent the causal system in which the explanans and ex-

planandum are embedded and work out the causal distribution for

that system, according to our current best knowledge.

(2) Second, update on all your background knowledge (excluding only the

explanans and the explanandum themselves) regarding the causal sys-

tem by intervening to set the relevant variables to their known values.

(3) Calculate the explanatory power that intervening to make the ex-

planans true exerts over the explanandum using the measure ε, relative

to the updated causal distribution.

Thus, according to the new procedure, the explanatory power that an

explanans c exerts over an explanandum e will be defined as E(e, c) =

ε(e, do(c)), where ε is Schupbach and Sprenger’s measure of statistical rele-

vance and do(c) represents our intervention to make c occur.27

27One might be concerned that the new procedure for calculating explanatory power suffers

from a basic flaw. Suppose, for example, we want to explain the storm by the drop in the

barometer and we happen to know that there was a drop in atmospheric pressure. Following our

procedure, we (i) adopt the causal distribution for the system, (ii) update on our background

knowledge by intervening to make A = a true, (iii) measure the relevance of do(B = b) to S = s,

i.e. intervene to make B = b true and see how the probability of S = s changes in the updated

causal distribution. But now, suppose that we are also interested in evaluating the explanatory

power of a drop in atmospheric pressure for the presence of a storm, and we happen to know that

the barometer dropped. Following the procedure, we would (i) adopt the causal distribution,

(ii) update on our background knowledge by intervening to make B = b true, (iii) measure the

relevance of do(A = a) to S = s, i.e. intervene to make A = a true and see how the probability

of S = s changes in the updated causal distribution. Intuitively, these two explanations should

receive very different scores. The first one seems like a very bad explanation while the second

one looks like a potentially good explanation. But, it may seem that E will have to assign them

equal explanatory power because in both cases we end up intervening on B = b and A = a

20



To justify this new procedure, consider again the example from figure 5.

If we have no relevant background knowledge, then P is just the standard

causal distribution. As before, suppose that we attempt to explain the storm

by the dropping of the barometer. It is not hard to see that intervening

to make the barometer drop is independent of the presence of a storm.

Specifically, intervening to make b true will sever the causal link between A

and B, thereby rendering S statistically independent of B. So P (s|do(b))−
P (s) = 0, i.e. E(b, s) = 0. And this is exactly the result that we wanted.

The dropping of the barometer has no explanatory power with respect to

the storm. Simply applying the measure ε to the explanandum and the

explanans gives the wrong result here, but applying ε to the explanandum

and the intervention on the explanans gives the right answer.28

Thus, the new measure E has a much broader domain of application than

Schupbach and Sprenger’s measure. E doesn’t rely on any external theory

of explanation in order to determine the candidate explanations to which it

can apply. Rather, E can be applied to any prospective causal explanation

and will itself determine whether or not it really deserves the name, and if

so, to what extent.

Although this new approach departs significantly from the original sta-

tistical relevance criterion PR, it still respects the intuition that a strong

explanation is one that makes the explanandum less surprising, but in a

and measuring how the probability of S = s changes. The only difference is the order in which

we intervene on B and A, and since interventions commute (as long as they are on different

variables), it may seem that this will make no difference (see Redacted).

Luckily, this objection rests on a basic misunderstanding. To see this, let’s introduce some new

terminology. Let C be the causal distribution for the system, and let CU be the result of updating

the causal distribution according to our background knowledge. Clearly, CU will be a different

function in each case (Since we have updated on different pieces of background knowledge in

the two cases) and so the degree to which s is subsequently confirmed by intervening on the

candidate explanandum will differ between the cases. The confusion stems from the fact that

the overall degrees of confirmation C(s|do(b), do(a)) and C(s|do(a), do(b)) are the same, but this

does not imply that E(s, b) and E(s, a) will be equal. And indeed, it is not hard to see that our

approach will provide the correct result that E(s, a) will be much greater than E(s, b) in these

cases.
28It should be noted that since E is defined as applying only to do(c), E fails to apply to

disjunctive explanations, since it is not clear how to intervene to make a disjunction true. A

similar issue arises with conjunctions (but it has been suggested that this can be solved through

the use of multiple interventions).
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different sense. On our approach, c is a good causal explanation for e to

the extent that intervening to make c occur would render e less surprising

in the causal distribution. And this seems right. By intervening to make c

true, we discard all non-causal correlations between c and e and isolate the

genuinely causal relationships between c and e, which are all we should take

into account when assessing the causal explanatory power of c for e.

5.4 E Illustrated

Consider the example depicted in figure 6. We suppose that there is a gene

that (i) makes people more likely to smoke, (ii) makes people less likely to

develop lung cancer. As usual, suppose that smoking also causes lung can-

cer. Suppose finally that this is an unfaithful causal system, i.e. smoking

and lung cancer are statistically independent even though smoking causally

promotes lung cancer. This is possible since smoking is now positively cor-

related with another causal inhibitor of lung cancer (G = g). However,

smoking could still be a very good explanation for somebody developing

lung cancer. So we have significant explanatory power and no statistical

relevance. Statistical relevance is neither necessary nor sufficient for ex-

planatory power. Contrast this with Hesslow’s example in figure 1. In that

case, the explanans (bc) is also statistically independent of the explanandum

(th). However, in that case, taking birth control does not make thrombosis

any less probable (because the canceling paths are causal), so it seems in-

tuitive that there should be zero explanatory power. Equating explanatory

power with statistical relevance gives the result that smoking has no ex-

planatory power for lung cancer and birth control has no explanatory power

for thrombosis. We only want the second of these results to obtain.
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Happily, the new measure E gets these cases exactly right. In the case

from figure 6, we intervene to give S a positive value. In doing so we

break the edge between S and G and leave S positively correlated with LC.

The net effect is that lc gets confirmed, meaning that E(lc, s) will have a

positive value, as desired. In the case from figure 1, we intervene to give

BC a positive value. But since BC has no parents, this is just the same as

conditioning on BC = bc and since BC is independent of TH, th doesn’t

get confirmed. So E(th, bc) = 0 will hold, as desired.

Another important question concerns the relationship between E and

Schupbach and Sprenger’s condition IP, which requires that the explanatory

power of c for e is not generally proportional to the prior probability of c.

It is easy to see that E will naturally satisfy IP. For, E(e, c) measures the

extent to which intervening to make c occur is statistically relevant to e’s

occurence, and this is obviously not proportional to the prior probability of

c. Indeed, the opposite will often be the case. If c has an extremely high

prior probability, then intervening to make c occur generally won’t have

much of an effect on the probability of e. So, ceteris paribus, highly likely

causes have low explanatory power for their effects. This suggests that our

approach to explanatory power may naturally capture our preference for

‘abnormal causes’ (see e.g. Halpern and Hitchcock (2014)).2930

29One prominent issue in the causal explanation literature concerns the phenomenon of causal

overdetermination. To illustrate, suppose that there are two extremely accurate marksmen M1

and M2, and a potential gunshot victim who might die, D. Further, suppose that whether

M1 shoots is independent of whether M2 shoots, but if either of them shoot, D is extremely

likely. Now, suppose that we want to explain D by M1 shooting. If we happen to know nothing

about whether or not M2 shot, then our account gives the intuitively correct verdict that this

is a very good explanation, since M1’s shooting renders D much less surprising. However, if

we also happen to know that M2 shot, then M1 shooting would be a very poor explanation

since intervening to make M1 shoot would not make D significantly less surprising (because D

is already near-guaranteed by M2’s shooting). Thus, our approach to causal explanatory power

appears to give intuitive results for cases of causal overdetermination. This is a topic we will

explore in more detail in future work.
30At this juncture, it is also worth mentioning that, despite some surface similarity, our account

of causal explanatory power is very different from the accounts proposed by Halpern (2016). The

essential difference is that according to any of the notions of explanatory power suggested by

Halpern, the extent to which c explains e does not track the extent to which c renders e less

surprising. Our focus on surprise reduction is what allows our approach to favour abnormal

causes without any additional apparatus.
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5.4.1 An Objection

Finally, consider the following example. Ettie’s Dad went to see the local

football team play in a crucial end of season match. Unfortunately, Ettie

was busy on the day of the game, so she couldn’t go with him. On her way

home, she read a newspaper headline saying that the local team had lost.

When she got home, she asked him ‘Dad, why did we lose?’, to which her

witty father replied ‘because we were losing by fifty points when the fourth

quarter started’. Understandably, Ettie still wanted to better understand

why her team lost, so she asked her Dad why they were down by so much

entering the fourth quarter. He replied that their best player was injured in

the opening minutes of the game, and, finally, Ettie’s curiosity ran out.

This may look like a problem for our account in a couple ways. First,

it may seem that when Ettie’s Dad answered her initial question, a better

answer would have been that the best player got injured, even though E will

assign his actual answer a much higher degree of explanatory power (since a

massive fourth quarter deficit renders the loss more certain than does a first

quarter injury). Second, as the story is told, Ettie asks her second question

in order to better understand why her favorite team lost, but according to

E, the player’s injury does not qualify as explanatory of the loss (since her

background knowledge of the fourth quarter deficit would seem to screen off

the injury from the loss).

Regarding the first problem, there are a couple of things to say. Firstly,

this problem is not unique to our approach. Schupbach and Sprenger’s mea-

sure ε will be equally susceptible to such examples, since trailing by fifty

points in the fourth quarter is more highly correlated with losing than is an

early injury to one’s best player, and ε tracks statistical relevance. Indeed,

any approach that tracks the reduction of surprise will treat this case in this

way. Secondly, and more importantly, there may be more than one sense

in which one explanation can be more successful than another. On the one

hand, being down by fifty points entering the fourth very strongly causally

explains the loss (in much the same way that the penultimate domino’s

falling strongly explains the last domino’s fall) by almost entirely eliminat-

ing any surprise. On the other hand, the injury may be a deeper explanation

(perhaps because it explains more facts about the causal system). We be-

lieve that explanatory depth is worthy of philosophical investigation, but the

measure E should be taken as a measure of explanatory power, not explana-
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tory depth.31 Moreover, relative to the empty set of background knowledge,

our account does capture the sense in which the injury explains more, since

the injury is explanatorily relevant to two variables in the system, while

fourth quarter deficit is explanatorily relevant to only one.

Regarding the second problem, when we think carefully about this case,

upon hearing her Dad’s initial answer, Ettie acquires a new fact that she

wants explained–namely, the massive fourth quarter deficit. Upon doing so,

it seems that Ettie’s explanatory target shifts, and that the player’s injury

is (relative to her background knowledge) a strong explanation of the new

explanatory target. Our account gets this exactly right.

6 Conclusion

In summary, we have presented a novel method for determining the extent to

which an event c causally explains another event e. Unlike others before us,

our approach successfully captures the effect that background knowledge has

on judgements of explanatory power. Moreover, our account can distinguish

between genuine and illegitimate causal explanations without recourse to

any external theory of explanation.

In future work, we hope to explore

i How and whether these resources can be used to understand and refine

the notion of ‘explanatory depth’.

ii The bearing of this approach upon questions surrounding our prefer-

ence for abnormal causes.

iii How and whether our account can be extended to deal with‘multi-

level’ explanations in which synchronic dependence relations such as

supervenience play a role.

iv The possibility of empirically testing our account of causal explana-

tory power as predictive of the way people actually make explanatory

judgements.

31See Hitchcock and Woodward (2003) for a good discussion of explanatory depth.
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