Anderson, J. L., 1967. Principles of relativity physics. Academic Press, San Diego, CA. Anderson, J. L., Finkelstein, D., 1971. Cosmological constant and fundamental length. American Journal of Physics 39 (8), 901-904. Asada, H., Futamase, T., Hogan, P. A., 2011. Equations of motion in general relativity. Oxford University Press, Oxford, UK. Bain, J., 2004. Theories of Newtonian gravity and empirical indistinguishability. Studies in History and Philosophy of Modern Physics 35 (3), 345-376. Balashov, Y., Janssen, M., 2003. Presentism and relativity. The British Journal for the Philosophy of Science 54 (2), 327-346. Barrett, T., 2015. Spacetime structure. Studies in History and Philosophy of Modern Physics 51, 37-43. Bekenstein, J. D., 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D 70 (8), 083509. Bezares, M., Palomera, G., Pons, D. J., Reyes, E., 2015. The ehlers-geroch theorem on geodesic motion in general relativity. International Journal of Geometric Methods in Modern Physics 12 (3), 1550034. Blanchet, L., 2000. Post-Newtonian gravitational radiation. In: Schmidt, B. (Ed.), Einstein's Field Equations and Their Physical Implications. Springer, Berlin, pp. 225-271. Bleecker, D., 1981. Gauge Theory and Variational Principles. Addison-Wesley, Reading, MA, reprinted by Dover Publications in 2005. Brown, H. R., 2005. Physical Relativity. Oxford University Press, New York. Brown, H. R., Pooley, O., 2006. Minkowski space-time: A glorious non-entity. In: Dieks, D. (Ed.), The Ontology of Spacetime. Elsevier, Amsterdam, pp. 67-89. Christian, J., 1997. Exactly soluble sector of quantum gravity. Physical Review D 56 (8), 4844 -4877. Curiel, E., 2017. A primer on energy conditions. In: Lehmkuhl, D., Schiemann, G., Scholz, E. (Eds.), Towards a Theory of Spacetime Theories. Birkhüser, Boston, MA, pp. 43-104. a Damour, T., 1989. The problem of motion in Newtonian and Einsteinian gravity. In: Hawking, S. W., Israel, W. (Eds.), Three Hundred Years of Gravitation. Cambridge University Press, New York, pp. 128-198. Dewar, N., 2017. Maxwell gravitation, forthcoming in Philosophy of Science. Pre-print available at http://philsci-archive.pitt.edu/12470/.Dewar, N., Weatherall, J. O., 2017. On gravitational energy in Newtonian theories, arXiv:1707.00563 [physics.hist-ph]. DiSalle, R., 2008. Understanding Space-Time. Cambridge University Press, New York. Duval, C., K¨nzle, H. P., 1978. Dynamics of continua and particles from general covariance of Newtonian u gravitation theory. Reports on Mathematical Physics 13 (3). Duval, C., K¨nzle, H. P., 1984. Minimal gravitational coupling in the Newtonian theory and the covariant u Schr¨dinger equation. General Relativity and Gravitation 16 (4), 333-347. o Earman, J., 2003. The cosmological constant, the fate of the universe, unimodular gravity, and all that. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4), 559-577. Earman, J., Friedman, M., 1973. The meaning and status of Newton's law of inertia and the nature of gravitational forces. Philosophy of Science 40, 329. Ehlers, J., 1981. uber den Newtonschen grenzwert der Einsteinschen gravitationstheorie. In: Nitsch, J., ¨ Pfarr, J., Stachow, E.-W. (Eds.), Grundlagen Probleme der Modernen Physik. Bibliographisches Institut, Zurich. Ehlers, J., 1997. Examples of Newtonian limits of relativistic spacetimes. Classical and Quantum Gravity 14, A119-A126. Ehlers, J., Geroch, R., 2004. Equation of motion of small bodies in relativity. Annals of Physics 309, 232-236. Einstein, A., Grommer, J., 1927. Allgemeine Relativit¨tstheorie und Bewegungsgesetz. Verlag der Akademie a der Wissenschaften, Berlin. Einstein, A., Infeld, L., Hoffman, B., 1938. The gravitational equations and the problem of motion. Annals of Mathematics 39 (1), 65-100. Ellis, G. F., 2014. The trace-free Einstein equations and inflation. General Relativity and Gravitation 46 (1), 1619. Ellis, G. F., Van Elst, H., Murugan, J., Uzan, J.-P., 2011. On the trace-free Einstein equations as a viable alternative to general relativity. Classical and Quantum Gravity 28 (22), 225007. Finkelstein, D. R., Galiautdinov, A. A., Baugh, J. E., 2001. Unimodular relativity and cosmological constant. Journal of Mathematical Physics 42 (1), 340-346. Fletcher, S. C., 2013. Light clocks and the clock hypothesis. Foundations of Physics 43 (11), 1369-1383. Fletcher, S. C., 2014. On the reduction of general relativity to Newtonian gravitation, unpublished manuscript. Friedman, M., 1983. Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton, NJ. Geroch, R., Jang, P. S., 1975. Motion of a body in general relativity. Journal of Mathematical Physics 16 (1), 65. Geroch, R., Weatherall, J. O., 2017. The motion of small bodies in space-time, arXiv:1707.04222 [gr-qc]. Glymour, C., 1980. Theory and Evidence. Princeton University Press, Princeton, NJ. Gralla, S. E., Wald, R. M., 2011. A rigorous derivation of gravitational self-force. Classical and Quantum Gravity 28 (15), 159501. Havas, P., 1989. The early history of the ‘problem of motion' in general relativity. In: Howard, D., Stachel, J. (Eds.), Einstein and the History of General Relativity. Vol. 11 of Einstein Studies. Birkhüser, Boston, a pp. 234-276. Hawking, S. W., Ellis, G. F. R., 1973. The Large Scale Structure of Space-time. Cambridge University Press, New York. Holman, M., 2010. Generalized noether theorems for field theories formulated in minkowski spacetime, arXiv:1009.1803 [gr-qc]. Janssen, M., 2009. Drawing the line between kinematics and dynamics in special relativity. Studies in History and Philosophy of Modern Physics 40 (1), 26-52. Kennefick, D., 2005. Einstein and the problem of motion: A small clue. In: Kox, A. J., Eisenstaedt, J. (Eds.), The Universe of General Relativity. Vol. 11 of Einstein Studies. Birkhüser, Bosont, pp. 109-124. a Knox, E., 2011. Newton-Cartan theory and teleparallel gravity: The force of a formulation. Studies in History and Philosophy of Modern Physics 42 (4), 264-275. Knox, E., 2013. Effective spacetime geometry. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3), 346-356. Knox, E., 2014. Newtonian spacetime structure in light of the equivalence principle. The British Journal for the Philosophy of Science 65 (4), 863-888. Knox, E., 2017. Physical relativity from a functionalist perspective. Studies in History and Philosophy of Modern PhysicsThis volume. K¨nzle, H. P., 1976. Covariant Newtonian limit of Lorentz space-times. General Relativity and Gravitation u 7 (5), 445-457. Lehmkuhl, D., 2017a. General relativity as a hybrid theory: The genesis of Einsteins work on the problem of motion, forthcoming in Studies in History and Philosophy of Modern Physics (this volume). Lehmkuhl, D., 2017b. Literal vs careful interpretations of scientific theories: the vacuum approach to the problem of motion in general relativity, forthcoming in Philosophy of Science. http://philsci archive.pitt.edu/12461/. Malament, D., 1986a. Gravity and spatial geometry. In: Marcus, R. B., Dorn, G., Weingartner, P. (Eds.), Logic, Methodology and Philosophy of Science. Vol. VII. Elsevier Science Publishers, New York, pp. 405-411. Malament, D., 1986b. Newtonian gravity, limits, and the geometry of space. In: Colodny, R. (Ed.), From Quarks to Quasars. University of Pittsburgh Press, Pittsburgh. Malament, D., 2012a. A remark about the “geodesic principle” in general relativity. In: Frappier, M., Brown, D. H., DiSalle, R. (Eds.), Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos. Springer, New York, pp. 245-252. Malament, D. B., 2012b. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago. Milgrom, M., 1983. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal 270, 365-370. Myrvold, W., 2017. How could relativity be anything other than physical? Studies in History and Philosophy of Modern PhysicsThis volume. O'Neill, B., 1983. Semi-Riemannian Geometry. Academic Press, San Diego, CA. Poisson, E., Pound, A., Vega, I., 2011. The motion of point particles in curved spacetime. Living Reviews in Relativity 14 (7). Pooley, O., 2013. Substantivalist and relationalist approaches to spacetime. In: Batterman, R. (Ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press, Oxford, UK, pp. 522-586. Puetzfeld, D., L¨mmerzahl, C., Schutz, B., 2015. Equations of Motion in Relativistic Gravity. Springer, a Heidelberg. Sachs, R. K., Wu, H., 1973. General Relativity for Mathematicians. Springer-Verlag, New York. Samaroo, R., 2015. There is no conspiracy of inertia. British Journal for the Philosophy of ScienceForth coming. Saunders, D. J., 1989. The geometry of jet bundles. Cambridge University Press, Cambridge, UK. Schneider, M. D., 2017. What's the problem with the cosmological constant?, unpublished manuscript. Souriau, J.-M., 1974. Mod`le de particule a spin dans le champ ´lectromagn´tique et gravitationnel. Annales e ` e e de l'Institut Henri Poincar´ Sec. A 20, 315. e Stein, H., 1967. Newtonian space-time. The Texas Quarterly 10, 174-200. Stein, H., 1977. Some philosophical prehistory of general relativity. In: Earman, J., Glymour, C., Stachel, J. (Eds.), Foundations of Space-Time Theories. University of Minnesota Press, Minneapolis, MN, pp. 3-49. Sternberg, S., Guillemin, V., 1984. Symplectic Techniques in Physics. Cambridge University Press, Cam bridge. Sus, A., 2014. On the explanation of inertia. Journal for General Philosophy of Science 45 (2), 293-315. Tamir, M., 2012. Proving the principle: Taking geodesic dynamics too seriously in Einstein's theory. Studies in History and Philosophy of Modern Physics 43 (2), 137-154. Teh, N., 2017. Recovering recovery: On the relationship between gauge symmetry and trautman recovery, forthcoming in Philosophy of Science. Trautman, A., 1962. Conservation laws in general relativity. In: Witten, L. (Ed.), Gravitation: An Intro duction to Current Research. John Wiley & Sons, New York, NY, pp. 169-198. Trautman, A., 1965. Foundations and current problem of general relativity. In: Deser, S., Ford, K. W. (Eds.), Lectures on General Relativity. Prentice-Hall, Englewood Cliffs, NJ, pp. 1-248. Unruh, W. G., 1989. Unimodular theory of canonical quantum gravity. Physical Review D 40 (4), 1048. Wald, R. M., 1984. General Relativity. University of Chicago Press, Chicago. Wallace, D., 2016a. Fundamental and emergent geometry in Newtonian physics, http://philsci archive.pitt.edu/12497/. Wallace, D., 2016b. Who's afraid of coordinate systems? an essay on representation of spacetime structure, http://philsci-archive.pitt.edu/11988/.Weatherall, J. O., 2011a. The motion of a body in Newtonian theories. Journal of Mathematical Physics 52 (3), 032502. Weatherall, J. O., 2011b. On (some) explanations in physics. Philosophy of Science 78 (3), 421-447. Weatherall, J. O., 2011c. On the status of the geodesic principle in Newtonian and relativistic physics. Studies in the History and Philosophy of Modern Physics 42 (4), 276-281. Weatherall, J. O., 2012. A brief remark on energy conditions and the Geroch-Jang theorem. Foundations of Physics 42 (2), 209-214. Weatherall, J. O., 2016a. Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis 81 (5), 1073-1091. Weatherall, J. O., 2016b. Maxwell-Huygens, Newton-Cartan, and Saunders-Knox spacetimes. Philosophy of Science 83 (1), 82-92. Weatherall, J. O., 2016c. Spacetime geometry from Newton to Einstein, feat. Maxwell, unpublished lecture notes from the 2016 MCMP Summer School. Weatherall, J. O., 2016d. Void: The Strange Physics of Nothing. Yale University Press, New Haven, CT. Weatherall, J. O., 2017a. A brief comment on Maxwell(/Newton)[-Huygens] spacetime, arXiv:1707.02393 [physics.hist-ph]. Weatherall, J. O., 2017b. Inertial motion, explanation, and the foundations of classical spacetime theories. In: Lehmkuhl, D., Schiemann, G., Scholz, E. (Eds.), Towards a Theory of Spacetime Theories. Birkhüser,a Boston, MA, pp. 13-42. Weyl, H., 1922. Space-Time-Matter. Methuen & Co., London, UK, reprinted in 1952 by Dover Publications.