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Abstract: A cause may influence its effect via multiple paths. 
Paradigmatically (Hesslow, 1974), taking birth control pills both 
decreases one’s risk of thrombosis by preventing pregnancy and 
increases it by producing a blood chemical. Building on Pearl (2001), 
I explicate the notion of a path-specific effect. Roughly, a path-specific 
effect of C on E via path P is the degree to which a change in C 
would change E were they to be transmitted only via P. Facts about 
such effects may be gleaned from the structural equations commonly 
used to represent the causal relationships among variables. I contrast 
my analysis of the Hesslow case with those given by theorists of 
probabilistic causality, who mistakenly link it to issues of causal 
heterogeneity, token-causation and indeterminism. The reason 
probabilistic theories misdiagnose this case is that they pay 
inadequate attention to the structural relationships among variables.  

 
0. Introduction 

One of the most widely discussed causal scenarios remains one of the least 
understood. In the paradigm version (Hesslow, 1974), taking birth control 
pills both decreases one’s risk of thrombosis by preventing pregnancy – itself 
a cause of thrombosis – and increases the risk of thrombosis by producing a 
certain blood chemical. Here there is an inclination to distinguish between 
the net effect of birth control on thrombosis, and the effects of birth control 
on thrombosis via the specific paths through pregnancy and the blood 
chemical. Yet it remains unclear both how to define path-specific effects and, 
as importantly, how such effects relate to the net effect. The question of how 
to understand multi-path cases was extensively debated by theorists of 
probabilistic causality, who mistakenly linked it to questions regarding causal 
heterogeneity, token-causation and indeterminism. Here I build on Pearl’s 
(2001) treatment of these cases to provide a philosophical analysis of path-
specific effects. This analysis uses the causal counterfactuals represented by 
structural equations to capture how changes in pregnancy status are 
transmitted along different causal paths. The analysis makes precise how 
path-specific effects contribute to net effects, and illustrates how structural 
equations enable one to address questions that eluded probabilistic accounts.  

The paper is organized as follows. Section 1 introduces probabilistic 
and structural equations accounts of causality, reviews standard challenges to 
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probabilistic accounts, and compares the accounts’ treatment of 
confounding. Section 2 delves into a debate between Ellery Eells and Nancy 
Cartwright to illustrate how theorists of probabilistic causality linked their 
analysis of multi-path cases to issues of type versus token causality, causal 
heterogeneity and indeterminism. Section 3 defines path-specific effects and 
provides an alternative analysis of these cases. Section 4 highlights the 
differences between the proposed account and probabilistic ones, and 
clarifies how the former diverges from Hitchcock’s (2001b) superficially 
similar account. Section 5 concludes. 
 

1. Probabilistic Causality and Structural Causal Models 
The core idea shared by theories of probabilistic causality is that causes 
increase the probabilities of their effects (Good (1961), Suppes (1970), 
Cartwright (1979), Skyrms (1980), Eells and Sober (1983), Eells (1991)). 
More precisely, causes raise their effects’ probabilities relative to certain 
background contexts – i.e. sets of variables one conditions on. On Eells’ 
account, for example, a background context for evaluating the effect of X on 
Y specifies the values of all variables that are causally relevant to Y that are 
not effects of X. He maintains that X is a positive causal factor for Y in a 
population if and only if P(Y|X&K) is greater than P(Y|~X&K) in all 
background contexts K in that population. It is a negative factor if it lowers Y’s 
probability in these contexts, and neutral if it does not change the probability 
of Y. If X raises the probability of Y in some contexts and lowers it in 
others, it has mixed causal relevance. Note that causal roles – whether a cause 
has positive, negative or mixed relevance for its effect – are population-
relative; smoking may be positively relevant to cancer in one population, but 
not another.  
 It will help to distinguish among three types of challenges to 
probability-raising accounts. The first is that of specifying sets of background 
factors relative to which probability raising indicates causation. Since X may 
raise the probability of Y not because X causes Y, but rather due to a 
common cause, one must include any common cause of these variables in 
the background context. As noted, Eells goes further and says that one must 
include other causes of Y as well. The second challenge involves cases such 
as Hesslow’s in which X influences Y along multiple paths. Most saliently, 
the distinct paths might cancel, so that there will be no probabilistic 
relationship between X and Y despite there being chains of causal influence. 
Among other issues, these cases highlight the difficulty for probabilistic 
accounts in guaranteeing the transitivity of causation. Third, there appear to 
be probability-lowering causes of an effect. In Deborah Rosen’s (1978) 
example, a golfer hits a ball, which on its way towards the hole is kicked by a 
squirrel. Suppose that the squirrel’s kick lowers the probability of the ball 
going into the hole, but the ball still does. Although the kick lowered the 
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probability of success, intuitively it caused it. One might insist that the kick 
does increase the probability of success relative to a finer-grained 
specification of its properties. But perhaps there is no such specification and 
the probability of success is irreducibly chancy. The standard probabilistic 
solution to this problem (Sober, 1984) is to distinguish between “type” and 
“token” causation, (though the labels “general” and “singular” may be 
preferable (Hitchcock, 1995)). The squirrel kick is a type-level negative causal 
factor, but a token-level cause, of the ball’s going into the hole.  
 Regarding the first challenge, probabilistic theorists never fully 
distinguished between two reasons for including variables in a background 
context. One is to eliminate confounding. Another is to get unambiguous 
facts about causal role. Suppose one considers the effect of smoking on 
cancer relative to a background context that contains all common causes, but 
omits another cause, Z, of cancer. The probabilistic relationship between 
smoking and cancer could then differ among different members within that 
context with different values for Z. So even if smoking raised the probability 
of cancer in every (incompletely specified) context, it would not follow that 
smoking raises the probability of cancer in finer-grained contexts. This is the 
rationale for conditioning on more than common causes in establishing facts 
about causal role.  

Even so, one need not condition on a complete set of background 
factors to avoid confounding – a point that probabilistic theorists ought to 
grant. Yet Eells denies that there is ever a reason to consider incomplete 
background contexts, as becomes clear from his response to Dupré (1984). 
Dupré maintains that causal relevance need not be evaluated relative to a 
complete background context, but merely relative to a “fair sample”. Eells 
justifiably criticizes Dupré for not clarifying what he means by a “fair 
sample”, though some have charitably interpreted Dupré as considering a 
sample from an experimental population where confounding has been 
eliminated (Hausman, 2010). In such a population, the effect size – the 
amount by which the cause raises the probability of its effect – may differ for 
individuals with different background factors, but the magnitude of the effect 
in the population is just the average of the individual effect sizes. Eells rejects 
this proposal, stating that the “average effect is a sorry excuse for a causal 
concept” (1987, 113). The basis for this rejection is that since the average 
effect depends on the contingent frequencies of background factors in the 
population, allowing such effects undermines one’s ability to provide an 
account of causal laws (which do not depend on such contingent factors).   

According to Hitchcock (2001a), Eells and Dupré are not 
disagreeing, but rather are explicating distinct concepts. Eells explicates 
causal laws, which are evaluated relative to homogenous background 
contexts. Dupré explicates the causal effects measured in randomized 
experiments. What Hitchcock’s conciliatory approach leaves out is that 
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neither Eells nor Dupré specify how one can eliminate confounding with an 
incomplete set of background variables. As noted, Dupré vaguely refers to a 
“fair sample” and – charitable interpretations aside – he never discusses 
experiments in the cited article.  Given a specification of which incomplete 
sets of background factors are sufficient for avoiding confounding, one can 
draw a clear boundary between issues of confounding and those of 
heterogeneity, as I will presently show. But such a specification is absent 
from the probabilistic literature. This accounts for the mistrust of average 
effects even among those who sometimes allow for them. We will see that 
this mistrust influences probabilistic discussions of the Hesslow case.  
 Within the causal modeling framework developed by Spirtes, 
Glymour and Scheines (2000), and Pearl (2009), one can make precise which 
variables must be held fixed to eliminate confounding and establish causal 
relevance. These frameworks represent causal hypotheses using directed 
acyclic graphs, or DAGs, in which the nodes are random variables and the 
edges are arrows. The arrows represent direct causal relationships.1 ‘Acyclic’ 
indicates that no variable is a cause (either direct or indirect) of itself.  
 When there is an unmeasured common cause of X and Y, P(Y|X) 
provides a biased measurement of the effect of X on Y.2 In contrast, if X and 
Y share a complete and proximate common cause Z, one can learn about the 
effect of X on Y by conditioning on Z at a particular value. In this simple 
case, one can get an unbiased measurement of the effect of X on Y by 
conditioning on the common cause. Common causes are not the only 
variables that bias an effect measurement. If one conditions on a common 
effect of X and Y, this may also introduce bias. Consider a bathtub in which X 
is the rate at which water flows into the tub, Y is the size of the drain, and Z 
is the water’s depth. X and Y cause Z, and are probabilistically independent. 
Yet conditional on the water’s depth, the size of the drain is informative 
about the rate of flow. This reveals how conditioning on a common effect 
can render its causes probabilistically dependent. Accordingly, any 
probabilistic dependence between the causes will not reliably indicate the 
presence of a causal relationship between them.  

                                                
1 The concept of direct cause (Woodward, 2003 p.55) is distinct from that of the direct 
effect (section 3). ‘Direct cause” is a qualitative concept corresponding to whether there is an 
arrow in a DAG. ‘Direct effect” is a quantitative concept. In what follows, I presuppose 
knowledge of the correct DAG. While the existence of a direct effect entails a direct cause, 
the converse does not hold. 
2 P(Y|X) may differ for different values of X=x and Y=y (uppercase italicized letters denote 
variables, and lowercase italicized letters their values). There are various measures of causal 
strength that may be inferred from the distribution P(Y|X) (Fitelson and Hitchcock, 2011), 
though one need not distinguish among these to determine whether one can infer causal 
information from the probability distribution.  



 5 

 DAGs enable one to generalize these considerations to cases 
involving any number of variables. A path from X to Y is a set of connected 
arrows between X and Y going in any direction. A causal path from X to Y is 
a set of connected arrows going in the same direction (from X to Y). Y is a 
collider on a path X–Y–Z just in case X!Y"Z. A path is blocked iff it 
contains a collider that one does not condition on3 or a non-collider that one 
does condition on. The correlation between X and Y conditional on variable 
set V provides an unbiased estimate of the effect of X on Y iff V blocks all 
and only the non-causal paths from X to Y.4 Crucially, V need not include 
all causes of Y. Where there are causes of Y that are not linked to X by any 
unblocked path, these do not induce bias.  
 Putting this all into language that would be more familiar to Eells, X 
is causally relevant to Y iff X changes the probability of Y relative to at least 
one background, V , which includes variables blocking all and only the non-
causal paths between X and Y. This is not the standard formulation of causal 
effects within the more recent frameworks. A more common formulation is 
that X causes Y if it is possible to change the value of Y via an ideal 
intervention on X. More precisely, let P(Y|do(X)) be the probability of Y 
given an intervention on X. X is causally relevant to Y if there are at least 
two values of X, x and x′ such that P(Y|do(X=x))≠P(Y|do(X=x′)). An 
ideal intervention on X sets it to a particular value such that its value depends 
only on the intervention and not any of X’s other causes (see Pearl, 2009; 
Woodward, 2003). This explication of causes using ideal interventions 
elucidates how one can establish causal claims experimentally. Yet talk of 
interventions is dispensable: when one’s background V is sufficient for 
getting an unbiased estimate, P(Y|do(X), V)=P(Y|X, V) for all values of X, 
Y and V .5 Accordingly, X raises the probability of Y relative to V  iff 
intervening on X would increase the probability of Y.  
 While I have emphasized how graphical models help establish causal 
relevance, this is not their only – or even their primary – use. Graphical 
models allow one to represent the functional dependence of effects on their 
causes using structural equations. We may refer to a variable’s direct causes in a 

                                                
3 Conditioning on downstream effects of a collider also unblocks a path containing the 
collider.   
4 Note that even when P(Y|X, V ) does not provide an unbiased estimate, the effect of X 
on Y may be identifiable via an adjustment procedure (Pearl, 2009 p. 79-83). 
5 Pearl (2009, p. 85-6) provides a sound and complete set of rules for when it is possible to 
replace a do-expression with a non-do-expression. Rule 2 entails that P(Y|do(X), 
V )=P(Y|X, V ) when every non-causal path between X and Y is blocked by V (in applying 
the rule, one considers a graph in which all arrows out of X are deleted so that there are no 
causal paths from X to Y). Spirtes, Glymour, and Scheines (2000, pp. 164, 313) give a 
theorem that is equivalent to Pearl’s rules.  
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graph as its parents. For each variable in a graph, there is a structural equation 
representing that variable as a function of its parents and (typically) an error 
term. A variable’s error term represents its causes that are not included in the 
model, and which vary in the probability distribution. The form of the 
functional relationship between a variable and its parents need not be 
assumed a priori. Given a graph and a probability distribution, this 
relationship is identifiable iff it is uniquely determined from the graph and the 
probability distribution without intervening. The conditions under which a 
cause is identifiable are identical to those under which one can get an 
unbiased effect measurement. The presence of error terms underscores the 
fact that not all causes must be included in a model to identify causal effects. 
But one must not omit common causes. The presence of unmeasured common 
causes may render some causal quantities non-identifiable. To simplify 
things, in the following I consider only DAGs over variable sets not omitting 
any common causes of variables in the set.  
 DAGs allow for a clean distinction between quantitative and 
qualitative causal facts. Given a DAG in which X!Y, the quantitative 
relationship between X and Y is identified, where possible, based on the 
probability distribution. It is the probability distribution rather than the 
qualitative causal relationships in the DAG that determine quantitative facts 
about causal role. Relatedly, DAGs do not distinguish between homogenous 
and heterogeneous causal relationships. Suppose that X!Y and there is a 
cause Z of Y that is omitted from the DAG. The relationship between X and 
Y is homogenous with respect to Z if it is the same for all values of Z and 
heterogeneous with respect to Z otherwise. When Z is omitted from the 
graph, any influence that it has on the probabilistic relationships between X 
and Y is nevertheless reflected in the probability distribution that does not 
include Z. The graph itself does not specify whether the causal relationship 
between X and Y is homogenous with respect to Z (or other causes of Y).  
 One might suppose that heterogeneity is problematic in one version 
of the Hesslow case. Specifically, the paths by which birth control causes 
thrombosis might cancel such that birth control is uncorrelated with 
thrombosis in a population. The paths might nevertheless not cancel in 
subpopulations with different background factors. It might seem like the 
absence of a correlation between X and Y in the population would lead one 
to misidentify the effect of X on Y. Yet, given a DAG in which X!Y, one 
would draw the correct conclusion that X has no net effect on Y.6 One might 
wonder how we would learn that X causes Y. But the present point is that 

                                                
6 It is non-obvious whether there should be arrow from X to Y when X has no net effect on 
Y in the distribution, but does influence Y relative other distributions.  I write as if we 
should include the arrow, although nothing here depends on it. If we omit the arrow, there is 
no causal quantity to identify and no false conclusion to draw about the effect of X on Y.  
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given a correct DAG, all other facts about the quantitative relationship 
between the variables are identified from the probability distribution. 
Heterogeneity raises no barriers to doing so.  

Hesslow’s case raises a more subtle issue. Can probabilistic theories 
account for the intuition that birth control does not merely have a net effect 
on thrombosis, but also influences it via particular paths? And should they? 
Probabilistic theorists extensively debated these issues. They tried to resolve 
them using the same tools that they used to address the three challenges 
enumerated above. As we will see, these were not the right tools for the job.  
 

2. Cartwright and Eells Debate Birth Control 
Probabilistic causal theorists were greatly interested in multi-path cases 
(Hesslow, 1976; Dupré, 1984; Otte, 1985; Cartwright, 1988). Unlike the 
account I will present, these philosophers did not attempt to quantify the 
influence of birth control on thrombosis via a path.7 They nevertheless tried 
to make sense of the idea that birth control can have a positive effect on 
thrombosis along one path, and a negative one along another. In chapter 4 of 
Probabilistic Causality, Eells rejects various proposals for unpacking this idea. 
He grants that birth control is causally relevant to pregnancy and to the 
blood chemical and that these are relevant to thrombosis. He further grants 
that these distinct causal relationships can differ in strength across 
populations and that this can make a difference in the net effect across 
populations. Yet he denies that there is any population in which birth control 
is type-level causally relevant to thrombosis in two ways. 

Eells resistance was justified, given that no one had advanced a 
compelling account of the allegedly “dual” nature of this effect. Yet the flaws 
in these accounts do not show that we cannot make sense of path-specific 
effects. Rather, they highlight the limitations of probabilistic approaches. The 
problem with these approaches is that they explicate the dual nature of the 
effect in terms of there being different populations in which birth control 
influences thrombosis differently. An oversimplified but illustrative version 
of such a view would be that in each homogenous population of women, 
birth control influences thrombosis via one path rather than the other. On 
this picture, the relationship between the net effect and path-specific effects 
is akin to that between an average effect and the homogenous effects in the 
populations that get averaged. Here I focus on Cartwright’s analysis of the 
Hesslow case, which she developed as part of an extended debate with Eells 
(Eells and Sober 1983; Eells, 1988; Cartwright, 1988a; Cartwright 1988b, 
Cartwright 1989, Eells, 1991). Her view is more sophisticated than that just 
suggested. Yet it resembles it in viewing the net effect as an average effect. 

                                                
7 Though see Cartwright (1988, pp. 91, 92-7).  
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Correspondingly, Eells rejects path-specific effects by denying that the net 
effect is an average effect.  
 The technical point of contention in Eells’ and Cartwright’s debate 
concerns when one should condition on intermediate variables, or mediators, 
in evaluating the effect of birth control on thrombosis. Eells maintains that 
one should never condition on mediators, although one should condition on 
all causes of mediators that are not themselves mediators.8 Eells and Sober 
(1983, p. 40) provide an example illustrating why one should not condition 
on mediators. Suppose you call me, which causes the phone to ring, leading 
me to pick it up. There is no caller ID, so whether I pick up is not influenced 
by whether it is you calling. We should not say that your calling me is 
relevant to my picking up only if it changes the probability of my picking up 
conditional on the phone’s ringing. Since your calling me influences my picking 
up via the phone’s ringing, we should not hold the phone’s ringing fixed in 
evaluating the effect. While this example involves only a single path, the 
reasoning generalizes to multi-path cases. 

 In contrast, Cartwright holds that one sometimes should hold fixed 
the values of mediators. In Hesslow’s case we should hold fixed the 
pregnancy variable for those women for whom birth control was not a 
singular cause of their not getting pregnant. Cartwright’s reasoning for why 
we must appeal to singular causation goes as follows.9 Consider the influence 
of birth control on thrombosis via the path going through the blood 
chemical. Birth control is a type-level positive cause of the blood chemical, 
which in turn is a cause of thrombosis. Does this show that birth control 
causes thrombosis via the blood chemical for the women in this population? 
Not necessarily. Suppose there are some women who have the blood 
chemical, though not as a result of having taken the pill. In these women, it is 
not the case that birth control causes thrombosis via producing the blood 
chemical, since their having the blood chemical does not depend on their 
taking birth control. So if we want to pick out the population of individuals 
for whom birth control influences thrombosis via this path, we should 
consider only those who had the blood chemical as a result of the pill and got 
thrombosis as a result of the chemical. In cases where these causal 

                                                
8 Eells changed his position between Eells, 1988 and Eells, 1991, and here I give the latter. 
In the former, he requires one to hold fixed causes of mediator M that are “simultaneous 
with or prior to the time of the cause” (99). One need not hold fixed causes of the mediator 
occurring after C but before M. In the book, however, Eells maintains that one must hold 
fixed all causes of the mediator (whenever they occur), provided they are not effects of C. 
Eells never notes his change in position. This is important, since Cartwright’s primary 
objection is that Eells arbitrarily distinguishes between causes of the mediator that occur 
before and after C (89). By not acknowledging his change of position, Eells leaves the reader 
with the false impression that Cartwright was responding to the revised view. 
9 What follows is my best attempt at reconstructing the argument in Cartwright 1988. 
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relationships are irreducibly chancy, which women get the blood chemical as 
a result of the pill will not be determined by their properties alone. So to pick 
out the relevant set of individuals, we cannot appeal just to type-level facts 
about the women in the population (i.e. to their properties), but must also 
appeal to facts about singular causation.  

Cartwright takes her argument not merely to show that we must 
appeal to singular causal facts in evaluating the effect of birth control on 
thrombosis via a path. She claims that even in evaluating the net effect of 
birth control on thrombosis, we must condition on mediators in the way she 
proposes. Since taking the pill token-influences the mediators differently in 
different women, averaging over mediators (by not conditioning on them 
where appropriate) obscures the “true causal role” (1988, p. 92) of birth 
control.  

As Hitchcock (2001a) notes, the type/token distinction conflates (at 
least) two separate distinctions, both of which matter here. One distinction is 
that between actual causes and causal tendencies: Birth control may tend to 
cause thrombosis in a woman or population of women even if she or they 
never actually take birth control and get thrombosis as a result. Another 
distinction is between causal generalizations involving heterogeneous and 
homogenous populations. In a population where everyone is causally similar 
to Lisa, Lisa has the same tendency to get thrombosis as anyone else in the 
population. In contrast, if the effect of the pill on thrombosis differs among 
members of a heterogeneous population, then the tendency of the pill to 
cause thrombosis in Lisa may differ from that of other members of the 
population. The second distinction is crucial for Cartwright here. We must 
consider singular causal facts since without them we miss a form of within-
population heterogeneity. But heterogeneity in what? Heterogeneity in which 
women actually have the blood chemical, or in which women have the 
tendency to get it?  

Neither answer is satisfying. As Eells emphasizes, Cartwright’s 
argument presupposes that all variation in which women get pregnant is 
irreducibly the result of chance. For each variable that causally influences 
pregnancy, Eells’ theory requires it to be held fixed at the same value for 
every member of the population. For example, the population must be 
uniform with respect to whether the women are sexually active, as this 
influences their chance of pregnancy. With such factors fixed there is no 
further property determining which women get pregnant, and therefore no 
variation in their tendencies to get pregnant. So maybe Cartwright is referring 
to heterogeneity in which women actually get pregnant. But even if there is 
variation in which women get pregnant, this need not be variation in the effect 
of birth control on pregnancy, as there must be for her argument to succeed.  

Arguably, the best way to respond to Cartwright would be to deny 
the existence of causal variation in populations with homogenous 
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background factors. This is not the route that Eells takes. Eells grants that 
there might be variation in the token-causal relationships that lead to women 
getting (or not getting) thrombosis via one path or the other (1991, p. 234-5), 
but notes that this variation is consistent with there being type-level 
homogeneity. Eells’ most straightforward argument that type- and token-
relationships may come apart is a variant of the phone call case. In 90% of all 
cases, your calling me causes the phone to ring, which in turn causes me to 
pick up the phone. In the other 10% of cases, there is a device that randomly 
causes the phone to ring (and for me to pick up the phone) whether or not 
you’ve called me. Now imagine a set of cases in which you call me and, 
coincidentally, every time you call the device activates and causes the phone 
to ring independently of your calling. Question: What is the effect of your 
calling me on my picking up the phone? Answer: calling me increases my 
probability of picking up the phone by .9. On Cartwright’s approach, we 
would hold fixed the phone’s ringing, since in every case it is token 
independent of your calling. This yields the result that your calling is not 
relevant to my picking up. Yet the requirement that we must hold fixed the 
mediator when it is token-independent of its cause throws out the baby with 
the bathwater. Type-level causal claims concern the relationship between 
variables in a representative sample. In such a sample, your calling me does 
cause me to pick up the phone 90% of the time. Yet Cartwright’s account 
denies that there is any causal relevance relationship here.   

While Eells’ example shows why we should not condition on 
mediators in the way Cartwright suggests, it is controversial whether it shows 
that token causal facts come apart from type-level causal facts. Instead of 
maintaining that your calling is a type-level, but not a token-level, cause of 
the phone’s ringing, one could argue that because the relationship between 
events is irreducibly probabilistic, your calling is neither a type- nor token-
level cause of the ringing. Instead, it is a deterministic cause (of both 
varieties) of the probability of ringing (Hausman, 1998).10  This strikes me as 
the best thing to say here, though I will not insist upon it. My point in 
revisiting the Eells/Cartwright debate is to illustrate how these philosophers 
came to link the analysis of multipath cases to issues of causal heterogeneity 
and the distinction between type and token causation. In the next section, I 
argue that these issues are not relevant to giving an account of path-specific 
effects. This account appeals not to variation across individuals, but to 
counterfactual values of mediators for an individual. I characterize 
individuals entirely in terms of their properties, so everything in the account 
can be cashed out in terms of causal tendencies.  
 
                                                
10 To make this view plausible, one must maintain that token causal claims are true in virtue 
of counterfactuals about the token relata.  
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3. Defining Path-Specific Effects 
Let’s now consider the thrombosis example using structural causal models. 
In figure 1, birth control (X) causes thrombosis (Y) both indirectly via 
pregnancy (M) and directly through mediators that were not included in the 
model. One could of course include mediators such as blood chemical in the 
model, but here I want to emphasize that one need not include a mediator 
along every causal path to evaluate the contributions of particular paths. I 
refer to X as the treatment, M as the mediator, and Y as the outcome. The causal 
path going through M is the indirect path and that consisting of a single 
arrow from X to Y is the direct path. Clearly, the notions of direct and 
indirect are model-relative.  

The aim of causal mediation is to determine how much of the total effect 
– the effect going through all paths – depends on the contributions of 
particular paths. The contributions via the direct path are direct effects and 
those via the indirect path are indirect effects. The term “path-specific effects” 
encompasses both direct and indirect effects.  
 
 
 
 

  
The graph in figure 1 corresponds to two structural equations: that 

for the effect of the treatment on the mediator and that for the effect of the 
treatment and mediator on the outcome. The parameters in these equations 
can be identified via interventions or by conditioning on confounders. One 
might suppose that facts about path-specific effects could be 
straightforwardly read off from the structural equations. And in models with 
linear parameters, this is roughly the case. Suppose that the equations for the 
model in figure 1 were as follows:  

 
(1) M = aX + UM 
(2) Y = bM + cX + UY 

 
In such a case, the direct effect is c the indirect effect is given by a times b 
and the total effect by ab + c (Baron and Kenny, 1986).  
 The linear case obscures the true challenges. When the mediator and 
treatment do not contribute additively to the outcome, it is not clear it even 
makes sense to decompose the total effect into direct and indirect 
components. Consider the influence of the treatment on the outcome along 
the direct path. When the treatment and mediator interact, how the treatment 
influences the outcome along the direct path depends on the value of the 

X Y 

  M 
Figure 1 – X: Birth control 
      M: Pregnancy 
      Y: Thrombosis 
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mediator, which itself depends on the treatment. So there is no neat way to 
divide the total effect into two additive components.  
 The challenge of providing an account of path-specific effects is not 
merely that of extending the definitions of the direct and indirect effect 
beyond the linear case. The core philosophical question is that of whether we 
can make literal sense of claims that an effect is transmitted via a path. Eells 
was willing to grant that the total effect of the pill on thrombosis would be 
different in a population of women for whom birth control has no effect on 
pregnancy. But he denies that the effect in such a population is relevant to 
understanding the effect of birth control on thrombosis in which there are 
two paths.   
 I now use Pearl’s (2001) definitions for path-specific effects to 
address these challenges.11 Let’s begin with the direct effect. A glance at the 
model suggests an obvious way for finding the contribution of the direct 
path: one should intervene on the mediator. Doing so makes it so that the 
treatment cannot influence the mediator, and it will therefore influence the 
outcome only via the direct path. Yet defining a direct effect is not just a 
matter of saying that one must intervene on the mediator, since one must 
specify the value to which the mediator is set. Moreover, privileging any 
value or set of values of the mediator as being relevant to measuring the 
direct effect seems arbitrary. In intervening on the mediator, we are trying to 
determine what the effect would be of the treatment on the outcome if, 
contrary to fact, it had no influence on the mediator. But this question does 
not lend itself to a non-arbitrary answer; if the mediator no longer depends 
on its prior causes, what constraints are there on which values it might take 
on?  
 The question of how the treatment would directly influence the 
outcome independently of the value of the mediator cannot be answered in 
models with interaction. A question that can be answered is that of how a 
particular change in the value of the treatment would influence the outcome if 
it were only transmitted via the direct path. To see how focusing on changes 
helps, consider the variables in the model prior to changing the value of the 
treatment and prior to disrupting any of the paths. According to this model, 
the variables have the values they would have corresponding to the pre-
change value of the treatment and the relevant structural equations. Now 
imagine what would happen were one to change the value of the treatment, 
and this change made no difference in what happened along the direct path. 
The question of what value the mediator would take on in this scenario can 
be unambiguously answered: it would have the exact same value (or 
distribution) that it would have were one not to have changed the value of 

                                                
11 Although I rely on Pearl’s formulations, many of the key insights discussed here are 
already present in Robins and Greenland (1992).   
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the treatment. This is the key to defining the direct effect. Informally, it is the 
effect of changing the treatment from one value to another, while intervening 
on the mediator to make it behave as if there were no such change.   

Let’s make this more precise. Here Donald Rubin’s (1974) potential 
outcome notation is useful. Potential outcomes are counterfactuals 
concerning how an individual would respond to a treatment. The potential 
outcome of receiving treatment X=x on outcome Y=y for individual i is 
denoted as follows: 

 
1  𝑌!! = 𝑦 

 
(1) is a deterministic counterfactual saying that if i receives treatment level x, 
her outcome with respect to Y will be y (we will later generalize this to 
populations). For example, if X=x is taking the pill and Y=y is getting 
thrombosis, (1) says that were i to take the pill she would get thrombosis. 
The truth-value of this statement follows from the structural equation linking 
X and Y. In general, the properties of potential outcome expressions are 
derivable from structural causal models (Pearl, 2009, chapter 7). The utility of 
potential outcomes notation for explicating path-specific effects derives from 
the following two features. First, one can easily represent interventions on 
two (or more) variables as follows:  
 

2  𝑌!,!! = 𝑦 
 
(2) says that Y=y when one sets X to x and M to m via interventions. Second, 
one can nest potential outcomes:  
 

3  𝑌!"! = 𝑦 
 
(3) denotes that Y=y when M is set to the value that it would take on were X 
to be set to x via intervention.   
 In potential outcomes notation, the total effect is given as follows:  
 

4  𝑇𝐸!,!! (𝑌) = 𝑌!! − 𝑌!! 
 
This is the difference in the value of the outcome between the case where 
one receives the treatment and that where one receives the control. In 
evaluating the total effect, one does not, of course, intervene on the 
mediator. One could nevertheless use potential outcomes to indicate that the 
mediator is a function of the treatment:  
 

5  𝑇𝐸!,!! (𝑌) = 𝑌!,!(!)! − 𝑌!,!(!)!  
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In contrast, to evaluate the direct effect of going from X=0 to X=1, 

one does not want the mediator to respond to this change in the value of the 
treatment. One therefore holds it fixed to M0 – the value it takes on in the 
control scenario: 
 

6 𝐷𝐸!,!(𝑌) = 𝑌!,!(!)! − 𝑌!,!(!)!  
 
This equation clarifies how although one disrupts the indirect path by 
intervening on the mediator, one does not try to make the system behave as 
if the treatment had no influence on the mediator. One intervenes on the 
mediator to make it behave as if it were still a function of the treatment, 
though one pretends that the treatment was maintained at its control value. 
By setting the mediator as a function of the treatment, one makes the 
subjects of the intervention behave as if they were governed by the same 
structural equations as the subjects in whom one evaluates the total effect. By 
setting the mediator to its control value, one makes the indirect path behave 
as it would in the absence of the change from X=0 to X=1.  

It is possible to generalize the potential outcomes framework to cases 
involving populations of non-homogenous individuals. It is straightforward 
to represent the probability that Y would be y were X to equal x: 𝑃(𝑌! = 𝑦). 
Given a distribution of outcomes, one is often interested in the expected 
value of the outcome, E(Yx). While it is possible to define the total effect for 
an individual (as we have done), in practice one can only learn the average 
treatment effect (from here on out, I remove the superscript i to allow for 
average effects):  

 
7  𝐴𝑇𝐸!,!(𝑌) = 𝐸(𝑌! − 𝑌!) = 𝐸(𝑌!)− 𝐸(𝑌!) 

 
The direct effect of going from X=0 to X=1 for a heterogeneous population 
is the expected change in the outcome when one changes the treatment from 
0 to 1 while setting the mediator to M0 for each member of the population, where 
individuals may differ in their values for M0. In evaluating the direct effect, 
knowing the average value of the mediator is not sufficient. Populations with 
the same average value of the mediator may differ their direct effects.  
 What I have called the direct effect is sometimes called the natural 
direct effect, to indicate that one sets the value of the mediator to the value 
(or distribution) that it would take on when X=0. This may be contrasted 
with the controlled direct effect:  
 

8 𝐶𝐷𝐸 𝑚 !,!(𝑌) = 𝑌!,! − 𝑌!,! 
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The controlled direct effect is evaluated by holding the mediator to some 
arbitrary value m for every individual in a population. It corresponds to what 
Hitchcock (2001b) calls the “direct effect”. Yet, there are as many controlled 
direct effects as there are values of the mediator, and Hitchcock provides no 
guidance as to which ones are relevant in which contexts. All uses of ‘direct 
effect’ in what follows refer to the natural direct effect.   
 A consequence of the fact that path-specific effects are defined 
relative to changes in the value of the treatment is that the direct effect of 
going from X=0 to X=1 is different from that of going from X=1 to X=0. 
The key difference between these is that in the former one holds the 
mediator fixed to M0 and in the latter one holds it fixed to M1. Relative to 
TE0,1(Y), I refer to the former (eq. 6) as the sufficient direct effect and the 
latter as the necessary direct effect, which I define as follows:  

(9)−𝐷𝐸!,!(𝑌) = 𝑌!,!(!) − 𝑌!,!(!) 
I have stipulated that the necessary direct effect corresponds to negative 
𝐷𝐸!,!(𝑌) so that with both the sufficient and necessary direct effects, one 
subtracts the potential outcome for the control scenario from the potential 
outcome for the treatment.12  

As how we label the values of X is arbitrary, the distinction between 
necessary and sufficient may seem so as well. Nevertheless, once we define a 
total effect as going from one value to another, whether an effect is sufficient 
or necessary relative to that effect is not arbitrary. While TE0,1(Y) equals 
negative TE1,0(Y), and these are thus not independent quantities, stipulating a 
direction for the total effect allows one to treat one value of X as a default. 
When the default value of the treatment is X=0, we can call M0 the default 
value of the mediator and Y0,M(0) the default value of the outcome. The 
sufficient direct effect is the amount by which the change in the treatment to 
its non-default value (X=1) would raise (or lower) the expected value of the 
outcome were all of the variables along the indirect path to remain at their 
default values. This is the sense in which the change in the value of X is only 
transmitted via the direct path. With the necessary direct effect, one starts 
with a system in which all the variables are at their non-default values and 
considers what would happen if one ‘removed’ the effect of the treatment 
(by changing it back to its default values) while maintaining the variables 
along the indirect path at their non-default values.  

The counterfactuals given by the sufficient and necessary effects are 
relevant to different individuals. The sufficient direct effect would be relevant 
for considering a woman who does not take the pill, and wants to know what 
would have happened were she to have taken the pill, but it had no influence 

                                                
12 I am grateful to Malcolm Forster for pointing out the benefits of defining necessary 
effects in this manner.  
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on whether she got pregnant. The necessary direct effect is relevant to the 
woman who does take the pill and wonders what would have happened had 
she not taken the pill and doing so had not increased her chance of 
pregnancy. 

I will now explain how to evaluate indirect effects. In cases where 
there is a mediator along every causal path, measuring indirect effects 
presents no problems beyond those already discussed with respect to the 
direct effect. By intervening on a mediator along every path aside from the 
path of interest, one can measure the indirect effect in the same way that one 
measures the direct effect. Novel difficulties arise in measuring the indirect 
effect for models without a direct path. There is no included mediator that 
one can intervene on in order to disable the direct path. It might seem 
impossible to measure the indirect effect without including such a mediator 
in the model and intervening on it. Yet, it is possible to do so.  
 As with direct effect, in evaluating the indirect effect one relies on a 
model’s structural equations to determine the behaviors of variables under 
counterfactual circumstances. The structural equation linking the treatment 
to the mediator specifies what values the mediator would take on in the 
treatment and control scenarios. So to make the mediator behave as it would 
were it responding to a change in the treatment, we need not actually 
intervene to change the treatment, but can instead intervene on the mediator 
to behave as if it were responding to a change in the treatment. Accordingly, 
we can measure the indirect effect by holding the treatment fixed at its 
control value while varying the mediator to behave as it would in response to 
a change in treatment: 
 

10  𝐼𝐸!,!(𝑌) = 𝑌!,!(!)− 𝑌!,!(!) 
 
By holding the treatment fixed at X=0 one ensures that any unmeasured 
mediator along the direct path behaves exactly as it does when one does not 
receive the treatment. By comparing the values of the mediator for M1 and 
M0, one simulates how the mediator would respond to an intervention that 
changes the treatment from X=0 to X=1. While we distinguished between 
natural and controlled versions of the direct effect, there is no controlled 
version of the indirect effect, since there is no variable in the model to 
intervene on to identify the effect.  
 In the thrombosis case, the indirect effect is the effect that the pill 
would have on thrombosis via pregnancy, were it to have no influence 
through the direct path. Put differently, it is the effect that it would have if it 
influenced thrombosis only via pregnancy. In this case, we know that in 
addition to the pill influencing thrombosis via pregnancy, it also influences 
thrombosis via a blood chemical. Yet one does not need to know about the 
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blood chemical in order to measure the indirect effect.13 When one sets the 
treatment to X=0, the (non-included) variable corresponding to the blood 
chemical takes on whatever value it does when one does not take the pill. 
The same is true for any other mediator along a path not going through 
pregnancy. Moreover, even if there were no mediators corresponding to the 
direct path, it would still be possible to identify the indirect effect. We tend 
to think that such cases of action-at-a-distance are impossible, or at least rare. 
It is nevertheless significant that our concept of the indirect effect does not 
entail the existence of omitted variables along the direct path.  
 We may distinguish between sufficient and necessary indirect effects, 
as follows:  
 

Sufficient Indirect Effect: 𝐼𝐸!,!(𝑌) = 𝑌!,!(!)− 𝑌!,!(!) 
Necessary Indirect Effect: −𝐼𝐸!,!(𝑌) = 𝑌!,!(!)− 𝑌!,!(!) 
 

The sufficient indirect effect compares the case in which taking the treatment 
only influences the outcome through the indirect path to the case where one 
does not take the treatment. The necessary indirect effect compares the case 
in which taking the treatment has no effect via the indirect path to the case 
where it makes a difference through both paths. The necessary indirect effect 
would be relevant to a woman who took the pill, did not get pregnant, and 
got thrombosis, and wants to know what her chance of thrombosis would 
have been had the pill not lowered her chance of getting pregnant.  

Here I lack the space to discuss the range of cases in which path-
specific effects are relevant. Here’s one suggestive case (Pearl, 2001). In the 
US, being black may lead one to have fewer opportunities to develop the 
qualifications required for a certain job. But if being black causes one not to 
get a job via having fewer qualifications, this would not show that the hirer 
discriminated. The hirer discriminated if being black directly influenced one’s 
not getting the job. Specifically, the relevant question is whether the applicant 
would have been more likely to get the job had she been non-black, but had 
the same qualifications she has as a result of being black. That is, is there a 
sufficient direct effect?  

For reference, I provide a visual representation of the effects 
described here (figure 2). The arrows in the figures should be interpreted as 
in DAGs. The nodes have been replaced with empty circles for variables that 
take on their default values (X=0, M0, Y0,M(0)) and filled circles for variables 
with non-default values (X=1, M1, Y1,M(1)). Variables with other possible 

                                                
13 Although one need not know which mediating factors lie along the direct path, one 
must assume that none of them are causes of mediators along the indirect path. If any 
were, there would be an omitted common cause of the mediator and the outcome.  
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values are given a question mark. Each of the effects described corresponds 
to the result of subtracting the expected value of the outcome variable on the 
left from its expected value on the right. The nodes in the diagrams resemble 
those in David Lewis’ neuron diagrams, although instead of the shading 
indicating the occurrence or non-occurrence of an event, the nodes 
correspond to whether a variable takes on its default value. Provided one 
bears this in mind, figure 2 serves as a convenient shorthand representation 
for the complex interventions required for measuring path-specific effects.  

In cases without interaction, TE0,1 is equal to the sum of DE0,1 and 
IE0,1. Yet the total effect is not, in general, the sum of the sufficient direct 
and sufficient indirect effects. To see this, consider the extreme case where 
either path would be sufficient for bringing about a certain value of the 
outcome. In such cases, adding together the sufficient direct and indirect 
effects would be double counting. Instead, the total effect is the sum of the 
sufficient direct effect and the necessary indirect effect: 
 

11  𝑇𝐸!,! = 𝐷𝐸!,! + −𝐼𝐸!,! = 𝐷𝐸!,! − 𝐼𝐸!,! 
 
To see what’s going on here, imagine that the sufficient direct effect is less 
than the total effect. Since the direct path is unable to account for the full 
effect, the indirect path must ‘pick up the slack’ so to speak and the necessary 
indirect effect indicates the amount that it must contribute in order to get to 
the full effect. Alternatively, the total effect may be decomposed into the sum 
of the sufficient indirect effect and the necessary direct effect:  
 

12  𝑇𝐸!,! = 𝐼𝐸!,! − 𝐷𝐸!,! 
 
The validity of (11) and (12) may be easily verified by consulting the relevant 
diagrams in figure 2.  

In cases without interaction, −𝐼𝐸!,! is equal to 𝐼𝐸!,!. Substituting this 
into (11) yields:  
 

13 𝑇𝐸!,! = 𝐷𝐸!,! + 𝐼𝐸!,! 
 
While the decomposition in the additive case is more easily grasped than 
those in (11) and (12) it is a special case. Unless one can rule out interactions 
among variables, one must use the more complicated decompositions 
presented here. 
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Figure 2: White circles indicate X=0, M0, or Y0,M(0) . Shaded circles indicate X=1, M1, or 
Y1,M(1). Outcomes with values that need not match those mentioned have question marks. 
Each effect is derived by subtracting the (expected) outcome on the left from that on the 
right. 
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In general, describing path-specific effects in terms of the 
decomposition of the total effect into direct and indirect contributions is 
misleading. While one can give a non-additive decomposition, this does not 
change the fact that one cannot fully separate the contributions of the paths 
in cases with interaction. A better way to think about path-specific effects is 
as representing the way that a path would transmit a particular change in the 
treatment were this change not transmitted via the others. These two ways of 
thinking about path-specific effects do not come apart in additive models, 
but diverge in models with interaction. It is the relativity of path-specific 
effects to changes in the treatment that determines the counterfactual scenario 
relevant for evaluating them – it is the scenario in which the behaviors along 
the other paths remain unchanged.  

In focusing on changes in the value of the treatment, one introduces 
an asymmetry that is not present in the structural equations. One treats the 
variable values corresponding to one value of the treatment as being defaults, 
and variable values corresponding to another as changes from the default.14  
Here I take no stand on whether the treatment of certain values as defaults is 
a pragmatic choice, or whether it reflects something deeper about causation 
(Maudlin, 2004). The reason why talk of defaults helps in understanding 
mediation is that it highlights why path-specific effects corresponding to a 
particular change in the treatment differ from those corresponding to the 
reverse change.  

The relativization of path-specific effects to changes in the treatment 
goes hand in hand with the evaluation of these effects in populations where 
the structural equations are “preserved”. While intervening on the mediator 
destroys the treatment-mediator relationship, I have explained how it is 
possible to do so to simulate the case where the structural equations are 
intact and only the information the paths transmit regarding the value of the 
treatment differs. In the next section, I argue that it was this feature of path-
specific effects that was beyond the reach of probabilistic theorists.  
 

4. Path-Specific Effects and Probabilistic Causality 
For path-specific effects measured in one set of individuals to correspond to 
a quantity that can be said to play a role in bringing about the total effect in a 
distinct set of individuals, one needs a basis for saying that these two distinct 
sets of individuals may be used to evaluate the same total effect. Our 
discussion has revealed such a basis. The individuals in whom one measures 

                                                
14 A reviewer suggests that the definitions provided could be made more concrete by 
applying them to a linear model with interaction. Although I lack space to do so here, I 
direct interested readers to Pearl (2014), section 3.3. There one can verify that DE0,1 depends 
on b0, which is the baseline value of the mediator when X=0. This illustrates the relativity of 
path-specific effects to default states of off-path variables.  
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the path-specific effects are made to behave in such a way as if they were still 
governed by the same structural equations that account for the total effect. It 
is unsurprising that probabilistic theorists missed this similarity. They 
distinguished between groups of individuals by referring to sets of 
background factors, and the populations in which one measures total and 
path-specific effects differ in their background factors.  

Probabilistic theorists’ emphasis on background factors as opposed 
to structural equations helps explain why they thought that separating the 
contributions of paths might require an account of token causation. For 
them, to explain the total effect in some individuals by referring to 
individuals with different background factors would be to change the topic. 
Yet amongst individuals with the same background factors there is, of 
course, no variation in any causally relevant properties. So (it seemed) any 
further distinction regarding how a cause influences its effect in one way 
rather than another must appeal to token-level causal facts that do not obtain 
in virtue of the properties of individuals.  

Structural equations allow us to model path-specific effects in terms 
of how individuals would vary under relevant counterfactual circumstances 
rather than in terms of some alleged causal variation among individuals. This 
is why, more generally, the question of whether an effect averages over 
heterogeneous populations is orthogonal to whether it is a genuine effect. To 
the extent that we can measure average effects in heterogeneous populations, 
it is because this effect averages over the total effects for the individuals in 
that population (Weinberger, 2015). What matters are an individual’s 
outcomes for counterfactual values of the treatment, rather than whether 
there is actual variation among individuals. A similar point holds for path-
specific effects. These effects, by design, average over the relevant values of 
M0 and M1 for individuals in a population. This feature of path-specific 
effects leads to practical complications (Imai et al., 2011). But this does not 
undermine the conceptual point that the definitions for path-specific effects, 
like those for total effects, need not distinguish between homogenous and 
heterogeneous populations. 

In short, when it comes to understanding multipath cases, theorists 
of probabilistic causality were on the wrong track. The definitions provided 
for the four path-specific effects do not rely on the distinction between type 
and token causation, however it is understood. The definitions apply to both 
homogenous or heterogeneous populations, and the total effect is not an 
average over different path-specific effects. The definitions for path-specific 
effects do not entail that any variable values are instantiated, and the 
quantities they require may be read off from the structural equations. 
Accordingly, they reflect causal tendencies rather than facts about actual 
causation. Whatever motivations there are for distinguishing between type 
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and token causation, providing an analysis of path-specific effects is not one 
of them.  
 Accounts proposed since the heyday of probabilistic theories have 
been no better at clarifying the relationship between the total effect and path-
specific effects. Consider Hitchcock’s (2001b) distinction between net and 
component effects. His notion of a component effect is very similar to that 
of a path-specific effect – in some models it corresponds to the controlled 
direct effect. Yet, he does not aim to show how component effects relate to 
net effects. His point is precisely that component effects and net effects are 
two distinct concepts and our discomfort in saying whether birth control 
prevents thrombosis results from not disambiguating them. Birth control 
may be a net preventer of thrombosis while also promoting thrombosis via 
the blood chemical. Although there is a question for Hitchcock as to why 
one cares sometimes about net effects and at other times about component 
effects, the question of how the former relate to the latter does not arise. In 
contrast, I have defined path-specific effects in relation to the total effect.  
 

5. Conclusion 
Although Pearl’s definitions for direct and indirect effects are now several 
years old, the concept of a path-specific effect explicated here substantially 
diverges from that of prior philosophical accounts. This is evident from the 
fact that the present analysis allows for quantitative definitions of the 
contributions of paths, even in cases with interaction. Yet the philosophical 
importance of path-specific effects derives less from their enabling us to use 
numbers than from their allowing us to clarify what these numbers measure. 
We no longer need to treat path-specific effects as unrelated to the total 
effect, but can specify their counterfactual contribution to it.  
 Given that I have argued that probabilistic theories were on the 
wrong track in thinking about multipath cases, why discuss them at all? The 
reason that the probabilistic theorist’s misdiagnosis of the Hesslow case is 
interesting is that in many respects these theories resemble those relying on 
structural causal models. In linking causation to probability, the recent 
literature fulfills many of the ambitions of the probabilistic project. Yet 
structural equations theories reorient us away from thinking about causation 
in terms of correlations in populations and towards thinking about it in terms 
of counterfactual relationships among variables. Just as in physics, new 
theories distinguish themselves from their predecessors by rendering the 
anomalous lawful, so too new conceptual schemas are distinguished by their 
rendering the unintelligible sensible. By introducing structural equations, we 
transform the transmission of influence along a path from something that 
must be explained away into something explicable using the same resources 
that suffice for understanding the total effect: the structural relationships 
among variables.  
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