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Abstract	
	

Systems	biology	provides	alternatives	to	the	strategies	to	developing	
mechanistic	explanations	traditionally	pursued	in	cell	and	molecular	biology	
and	much	discussed	in	accounts	of	mechanistic	explanation.	Rather	than	
starting	by	identifying	a	mechanism	for	a	given	phenomenon	and	
decomposing	it,	systems	biologists	often	start	by	developing	cell-wide	
networks	of	detected	connections	between	proteins	or	genes	and	construe	
clusters	of	highly	interactive	components	as	potential	mechanisms.	Using	
inference	strategies	such	as	‘guilt-by-association’,	researchers	advance	
hypotheses	about	functions	performed	of	these	mechanisms.	I	examine	
several	examples	of	research	on	budding	yeast,	first	on	what	are	taken	to	be	
enduring	networks	and	subsequently	on	networks	that	change	as	cells	
perform	different	activities	or	respond	to	different	external	conditions.	

	
I.	Introduction	
	
The	explanations	biologists	offer	often	take	the	form	of	accounts	of	mechanisms	
responsible	for	phenomena	to	be	explained.	These	explanations	identify	a	phenomenon	
with	a	particular	mechanism,	characterize	the	parts	and	operations	that	constitute	the	
mechanism,	represent	their	organization,	and	show	that	this	mechanism	is	capable	of	
generating	the	phenomenon	when	situated	in	its	normal	environment	(Bechtel	&	
Abrahamsen,	2005;	Machamer,	Darden,	&	Craver,	2000).	Accounts	of	the	development	of	
mechanistic	explanations	in	biology	emphasize	the	empirical	research	that	links	a	
phenomenon	with	a	mechanism	and	strategies	for	decomposing	mechanisms	to	discover	
their	component	parts	and	operations	as	well	as	the	reasoning	strategies	that	build	upon	
this	information	(Bechtel	&	Richardson,	1993/2010;	Craver	&	Darden,	2013).	Since	this	
approach	is	well	exemplified	in	research	in	cell	and	molecular	biology	of	the	19th	and	20th	
century,	I	refer	to	it	as	the	‘traditional	mechanistic	approach’.	My	aim	in	this	paper	is	to	
contrast	this	traditional	approach	with	a	relatively	new	approach	that	has	emerged	with	
the	advent	of	systems	biology.	Systems	biologists	are	developing	large	databases	of	
information	about	gene	interactions,	protein-protein	interactions	and	protein-gene	
interactions	in	cells.1	This	data	is	collected	from	automated	versions	of	more	traditional	

																																																								
1	Over	the	past	15	years	numerous	large	databases	based	on	a	variety	of	interactions	
between	genes	or	between	molecules	in	cells	have	become	available.	A	regularly	updated	
compilation	of	molecular	biology	databases	is	maintained	at	
https://www.oxfordjournals.org/our_journals/nar/database/c/.	It	currently	includes	685	
databases.	Starting	with	supplementary	issues	in	April	1991	and	May	1992	and	a	regular	



experimental	investigations	that	manipulate	components	of	cells.	What	is	distinctive	is	the	
way	in	which	this	data	is	represented	and	analyzed.	To	make	sense	of	such	data	and	to	
invoke	them	in	explanations	of	biological	phenomena,	many	systems	biologists	represent	
data	in	networks	and	apply	analysis	tools	to	these	networks.2	These	network	
representations	take	a	far	more	system-wide	perspective	on	cells	than	more	traditional	
mechanistic	approaches.	However,	network	representations	are	not	ends	in	themselves;	
rather	they	provide	a	means	for	developing	new	mechanistic	explanations	and	adding	to	
existing	ones.		
	
My	main	goal	in	this	paper	is	to	characterize	the	new	network-based	approaches	to	
mechanistic	explanation	and	show	how	they	have	been	employed	in	systems	biology	to	
develop	new	hypotheses	about	mechanisms.	Elaborating	a	bit	on	traditional	mechanism	
approaches	will	facilitate	drawing	the	contrast.	Traditional	approaches	begin	by	
characterizing	a	single	phenomenon	and	subsequent	inquiry	is	directed	at	understanding	
that	phenomenon.	Research	proceeds	by	identifying	a	mechanism	responsible	for	the	
phenomenon	and	taking	it	apart	(conceptually	or	experimentally)	to	identify	its	component	
parts	(structures)	and	the	operations	(functions)	they	perform.	As	illustrated	in	the	case	of	
the	discovery	of	cell	mechanisms	(Bechtel,	2006),	different	research	strategies	enable	
structural	and	functional	decompositions.	Ultimately	both	decompositions	need	to	be	
integrated	by	localizing	operations	in	the	parts	of	mechanisms.	Research	on	oxidative	
phosphorylation	between	1940	and	1970	provides	an	illustrative	example.	By	the	1940s	
oxidative	phosphorylation	was	known	to	involve	the	catabolism	of	pyruvate	to	carbon	
dioxide	and	water	while	capturing	energy	in	the	phosphate	bonds	of	ATP.	Classical	
biochemical	techniques	that	used	heat	or	poisons	to	inhibit	individual	enzymes	revealed	
the	reactions	of	the	Krebs	cycle	and	the	electron	transport	chain	and	associated	
phosphorylation	with	specific	reactions	in	the	electron	transport	chain.	Cell	fractionation	
techniques	demonstrated	that	the	identified	enzymes	were	located	in	the	mitochondrion	
while	electron	microscopy	revealed	the	structure	of	the	mitochondrion,	especially	its	
protruding	internal	membranes.	Through	a	variety	of	experimental	approaches,	the	steps	
of	electron	transport	were	linked	to	the	internal	membrane	and	the	crucial	processes	of	
phosphorylation	were	localized	to	small	protrusions	on	it.	Building	on	Mitchell’s	(1961)	
chemiosmotic	hypothesis,	researchers	developed	a	mechanistic	account	whereby	protons	
released	during	oxidative	reactions	in	the	electron	transport	chain	accumulate	between	the	
mitochondrial	membranes,	creating	a	gradient	over	the	membrane	that	provides	the	
energy	for	synthesizing	ATP.			
	
Application	of	this	traditional	mechanistic	approach	required	first	delineating	a	
phenomenon,	which	often	itself	required	experimentation.	What	are	now	regarded	as	
																																																																																																																																																																																			
issue	in	July,	1993,	the	journal	Nucleic	Acids	Research	has	regularly	reviewed	databases.	
Starting	in	1996,	the	journal	identified	its	first	issue	of	each	year	a	Database	Issue.		
2	Many	of	these	studies	use	tools	such	as	Cytoscape	(Shannon,	Markiel,	Ozier	et	al.,	2003;	
Su,	Morris,	Demchak	et	al.,	2014)	and	VisANT	(Hu,	Chang,	Wang	et	al.,	2013),	which	can	
take	data	from	databases	and	rend	it	into	a	network	representation.	These	tools	provide	
resources	for	visualizing	networks	in	different	ways	and	to	perform	operations	such	as	
identifying	clusters.	



central	phenomena	in	cell	life—the	replication	of	cells	through	division,	the	synthesis	of	
proteins,	and	the	recycling	of	failed	cell	components—were	only	identified	through	a	
history	of	experimental	research.	In	some	cases,	the	accounts	of	the	phenomena	were	
further	developed	in	conjunction	with	the	decomposition	of	the	associated	mechanisms	
into	constituents.	But	the	legacy	of	discovering	new	cell	phenomena	indicates	that	only	
some	mechanisms	have	been	discovered	to	date.	Moreover,	the	process	of	decomposition	
into	parts	and	operations	typically	begins	with	just	a	few	of	the	parts	and	major	operations	
that	can	be	explored	with	experimental	interventions.	Even	with	what	are	regarded	as	
well-worked	out	mechanistic	accounts,	ongoing	research	continues	to	identify	additional	
parts	and	operations.	An	indication	of	just	how	incomplete	accounts	of	mechanisms	are	is	
that	at	the	beginning	of	the	twenty-first	century,	even	in	the	best	studied	model	organism,	
budding	yeast	or	Saccharomyces	cerevisiae,	the	roles	played	by	only	about	one-third	of	the	
proteins	had	been	determined,	either	directly	through	experimental	investigations	or	
indirectly	on	the	basis	of	sequence	homology	to	proteins	in	other	species	where	
experiments	had	revealed	function.	Much	of	the	yeast	cell	remains	terra	incognita.			
	
Instead	of	starting	locally	to	delineate	and	explain	a	specific	phenomenon,	network	
research	starts	from	a	cell-wide	perspective.	Large	throughput	procedures	generate	
massive	amounts	of	data	about	interactions	between	large	numbers	of	genes	or	proteins	in	
individual	cells.	The	results	of	these	experimental	investigations	are	typically	collected	into	
publically	accessible	databases	that	strive	to	include	interactions	between	all	genes	or	
proteins	of	an	organism.	Although	actual	databases	fall	short	of	these	aspirations,	they	
include	vastly	more	genes	and	proteins	than	have	been	the	focus	of	traditional	mechanistic	
research.	Moreover,	this	process	is	not	guided	by	prior	characterization	of	a	phenomenon	
or	an	identification	of	a	responsible	mechanism.	Rather,	information	about	phenomena	and	
mechanisms	is	developed	from	the	analysis	of	the	interaction	data.	Further,	it	is	often	
different	scientists,	many	of	whom	are	trained	in	bioinformatics,	that	develop	mechanistic	
accounts	from	these	databases.	To	do	so,	these	researchers	represent	the	data	they	extract	
from	databases	in	networks,	making	a	number	of	choices	along	the	way	about	how	to	lay	
out	the	genes	or	proteins	as	nodes	and	connections	between	them	as	edges.	They	then	
employ	a	variety	of	analysis	procedures	on	these	networks	to	find	patterns	within	them.	
One	important	class	of	analytic	techniques	aims	to	identify	nodes	that	cluster	together	in	
terms	of	the	increased	density	of	connections	between	those	nodes	(there	are	a	variety	of	
algorithms	for	identifying	clusters,	and	each	produces	somewhat	different	results).	
Researchers	interpret	increased	connectivity	in	a	cluster	(also	referred	to	as	a	‘module’,	
‘complex’,	or	‘community’)	as	indicating	that	the	entities	represented	by	those	nodes	work	
together	to	perform	an	activity	in	the	cell—that	is,	that	they	constitute	a	mechanism.	This	
process	can	be	applied	at	different	scales,	often	yielding	clusters	within	clusters.		
	
Since	the	network	researchers	did	not	set	out	to	explain	a	specified	phenomenon,	once	they	
have	identified	a	cluster	and	construed	it	as	a	mechanism,	they	must	figure	out	to	what	
phenomenon	it	contributes.	In	some	cases	clusters	include	nodes	for	proteins	that	on	the	
basis	of	previous	research,	often	as	compiled	in	Gene	Ontology		(Ashburner,	Ball,	Blake	et	
al.,	2000),	had	been	recognized	as	parts	of	a	mechanism	responsible	for	a	specific	
phenomenon.	Employing	an	inference	strategy	known	as	‘guilt-by-association’,	researchers	
infer	that	the	other	nodes	in	the	cluster	contribute	to	the	same	phenomenon.	In	this	way,	



network	research	advances	hypotheses	about	new	parts	of	mechanisms	and	what	these	
parts	are	doing	that	can	spur	further	research	into	operations	within	mechanisms.	In	many	
instances,	the	clusters	or	modules	do	not	contain	nodes	identified	with	any	known	
mechanism.	The	researchers	view	these	clusters	as	representing	new	mechanisms.	The	
hypothesis	that	such	a	cluster	constitutes	a	mechanism	motivates	an	investigation	(using	
more	traditional	mechanistic	approaches)	into	the	phenomenon	for	which	it	is	responsible.		
	
The	approach	I	have	just	outlined	is	a	potent	heuristic	or	hypothesis	generator	about	
mechanisms	that	functions	differently	than	the	heuristics	of	decomposition	and	localization	
(Bechtel	and	Richardson,	1993/2010)	or	forward	and	backward	chaining	(Craver	and	
Darden,	2013).	It	is	far	more	data-driven	than	these	traditional	strategies.	Instead	of	
relying	on	experiments	guided	by	a	hypothesis	about	a	phenomenon	or	a	mechanism,	
network	research	starts	with	broad-scale	interventions	that	identify	interactions	between	
large	numbers	of	entities	and	takes	advantage	of	the	fact	that	some	of	them	cluster	
together.	Once	the	clusters	are	identified,	the	interpretation	of	the	nodes	as	representing	
potential	parts	is	straightforward.	The	edges,	on	the	other	hand,	do	not	represent	specific	
operations	but	simply	interactions	between	the	parts.	The	location	of	an	edge	between	
clustered	nodes	may	provide	clues	about	the	operation	a	part	performs,	but	filling	in	these	
mechanistic	details	requires	more	traditional	mechanistic	studies.	The	potency	of	the	
network	approach	results	from	starting	from	a	cell-wide	perspective.	This	results	in	
identifying	many	entities	that	traditional	mechanistic	research	never	associated	with	the	
mechanism	and	clusters	that	do	not	correspond	to	any	previously	characterized	
mechanisms.	Network	research	thus	pursues	different	heuristic	strategies	than	traditional	
mechanistic	research	and	these	offer	novel	insights	into	biological	mechanisms.	
	
Although	the	strategies	for	discovering	mechanisms	are	different,	the	mechanisms	sought	
are	much	like	those	characterized	by	mechanistic	philosophers	of	science—they	consist	of	
entities	or	parts	(e.g.,	enzymes)	performing	activities	or	operations	(catalyzing	reactions)	
organized	in	a	particular	manner.	Moreover,	the	hypotheses	put	forward	must	be	tested	in	
the	same	manner	as	those	advanced	in	more	traditional	mechanistic	research—e.g.,	by	
experimentally	demonstrating	that	changing	the	part	or	operation	alters	the	phenomenon	
and	that	the	part	or	operation	is	altered	appropriately	when	the	mechanism	is	functioning.	
The	differences	between	traditional	mechanistic	and	network	approaches	are	ones	of	
emphasis.	As	noted	above,	network	research	itself	typically	does	not	provide	a	detailed	
account	of	the	operations	performed	by	the	parts—that	remains	to	be	filled	in	by	more	
traditional	modes	of	research.	On	the	other	hand,	it	provides	insight	into	aspects	of	
mechanisms	often	missed	in	traditional	mechanistic	approaches,	especially	how	individual	
mechanisms	are	integrated	into	larger	systems,	ultimately	cells	and	organisms.	Once	it	has	
identified	a	mechanism,	traditional	mechanistic	research	focuses	on	its	components	and	
only	occasionally	recognizes	how	parts	of	a	given	mechanism	are	often	connected	to	parts	
of	other	mechanisms.	Identifying	interactions,	whether	within	or	between	mechanisms,	is	a	
strength	of	network	approaches,	with	the	result	that	it	emphasizes	more	than	traditional	
approaches	the	interactions	between	components	of	different	mechanisms,	treating	the	
whole	organism	as	much	more	interconnected	than	did	traditional	mechanistic	accounts.	
	



Even	though	systems	biologists	analyzing	networks	approach	mechanisms	from	a	cell-wide	
perspective,	they	employ	an	analog	to	the	contrast	between	structural	and	functional	
decomposition.	Sometimes	clustering	is	done	to	reveal	how	components	are	composed	into	
structural	units	(e.g.,	how	proteins	are	bound	to	other	proteins	or	to	genes).3	In	other	cases	
it	is	done	to	reveal	how	components	contribute	functionally	to	the	activities	of	the	cell	(e.g.,	
cell	replication	or	procuring	energy).	I	will	illustrate	how	these	strategies	figure	in	the	
analyses	researchers	perform	on	networks	and	will	focus	in	particular	in	how	they	are	
integrated	in	a	way	that	parallels	the	role	played	by	localization,	the	linking	of	operations	
with	parts,	in	traditional	mechanistic	research.	
	
My	focus	will	be	on	the	actual	inference	strategies	researchers	have	developed	to	analyze	
networks	in	terms	of	mechanisms.	I	will	present	several	examples	from	network	research	
over	the	last	fifteen	years.	In	the	next	section,	I	will	focus	on	inferences	about	mechanisms	
derived	from	constructing	what	are	treated	as	enduring	networks,	networks	representing	
protein-protein	interactions	or	gene	interactions	that	exist	in	the	cell	independently	of	the	
conditions	the	cell	confronts.	The	first	example	involves	a	network	based	on	structural	
relations	between	proteins,	but	subsequent	examples	will	include	interactions	between	
genes	that	address	their	functional	contribution.	In	section	three	I	turn	to	attempts	to	use	
network	analyses	to	understand	how	network	organization	in	the	cell	changes	as	cells	
undergo	mutations	or	engage	in	different	activities	either	initiated	endogenously	(e.g.,	the	
cell	cycle)	or	exogenously	(responding	to	environmental	stress).	Once	again,	I	will	start	
with	networks	emphasizing	structural	relations	before	bringing	in	studies	employing	
functional	information	about	gene	interactions.		
	
Research	of	the	type	I	am	describing	has	been	pursued	on	a	number	of	model	organisms,	
but	budding	yeast	(Saccharomyces	cerevisiae)	has	been	the	most	studied.	Accordingly,	I	
limit	myself	to	examples	of	research	conducted	on	this	model	organism.	
	
2.	Analyzing	Networks	under	Static	Conditions	
	
Traditional	mechanistic	research	assumed	mechanisms	were	enduring	entities	that	
performed	their	functions	whenever	appropriate	conditions	arose.	Philosophical	accounts	
of	mechanistic	explanation	likewise	have	treated	mechanisms	as	static	entities.	A	similar	
perspective	was	adopted	in	the	initial	studies	using	networks	to	study	cellular	
mechanisms—the	networks,	and	the	clusters	found	in	them,	were	viewed	as	representing	
enduring	conditions	within	the	cell.	I	will	focus	on	three	exemplar	studies,	published	
between	2003	and	2008,	that	adopted	this	perspective	and	generated	new	hypotheses	
about	mechanisms	in	yeast.		
	
Bechtel	and	Richardson	(1993/2010)	note	that	in	traditional	mechanistic	research	
investigators	sometimes	begin	by	decomposing	a	mechanism	structurally	and	build	up	to	a	
																																																								
3	Although	on	some	accounts,	the	interaction	of	a	protein	with	another	or	with	DNA	might	
count	as	functional,	biologists	characterize	them	as	structural	(often	researchers	also	use	
the	term	‘physical’)	since	they	result	in	the	construction	of	a	complex.	The	term	‘functional’	
is	then	reserved	for	research	focused	on	what	the	component	contributes	to	cell	function.		



functional	characterization,	and	other	times	begin	by	characterizing	a	mechanism	
functionally,	and	subsequently	link	the	functions	to	structural	components	of	the	
mechanism.	A	comparable	distinction	is	found	in	network	research.	Protein-protein	
interactions	are	intended	to	identify	complexes	of	proteins	that	constitute	structures	in	the	
cell.	In	section	2a	I	consider	an	example	in	which	researchers	built	their	network	based	on	
structural	information	(protein-protein	interactions)	and	then	seek	information	about	how	
components	in	it	contribute	to	cell	life.	In	section	2b	I	consider	two	examples	in	which	
researchers	included	functional	interactions	(gene	interactions)	in	the	construction	of	the	
network	itself.			
	
2a.	Networks	constructed	from	structural	relations	between	proteins	
	
Proteins	are	major	structural	components	of	biological	cells,	important	in	part	because	of	
their	functional	role	as	enzymes	catalyzing	chemical	reactions.	Their	functional	role	has	
long	been	linked	to	their	complex	three-dimensional	structure.	In	classical	biochemical	
approaches	to	biological	phenomena,	researchers	focused	on	individual	enzymes	as	
catalysts.	They	were	linked	into	pathways	through	the	metabolites	on	which	each	of	them	
operated.	But	it	has	increasingly	become	clear	that	proteins	function	in	biological	
mechanisms	as	complexes,	often	semi-stable	ones.	Even	when	they	do	not	form	stable	
complexes,	interactions	between	proteins	enable	one	protein	to	alter	the	behavior	of	
others.	Knowing	which	proteins	can	form	complexes	with	other	proteins	provides	evidence	
about	the	working	parts	in	functioning	cells.		
	
In	the	late	twentieth	century	researchers	developed	two	techniques	that	enabled	mass	
screening	for	protein	interactions	(complex	formation).	The	first,	yeast	two-hybrid	
screening,	involves	separating	the	domains	of	a	transcription	factor	and	binding	one	
domain	to	one	protein	and	the	other	either	to	another	protein	(or	a	library	of	cDNA	
fragments	from	multiple	proteins).	If	the	proteins	are	able	to	bind,	the	domains	of	the	
transcription	factors	are	reunited	and	activate	transcription	of	a	reporter	gene	(Fields	&	
Song,	1989;	Young,	1998).	The	second,	affinity	purification	followed	by	mass	spectrometry,	
first	segregates	a	tagged	protein	together	with	its	interaction	partners	and	then	uses	mass	
spectrometry	to	identify	them	(Rigaut,	Shevchenko,	Rutz	et	al.,	1999).	Many	proteins	
interact	with	multiple	partners.	Thus,	one	can	construct	an	interconnected	network	by	
treating	individual	proteins	as	nodes	and	detected	interactions	between	proteins	as	edges.		
	
Spirin	and	Mirny	(2003)	provide	an	early	example	of	the	basic	strategy	for	using	protein-
protein	interactions	to	identify	mechanisms.	Drawing	upon	the	Munich	Information	Center	
for	Protein	Sequences	(MIPS)	database	of	protein-protein	interactions,	they	constructed	a	
network	that	treated	proteins	as	nodes	and	interactions	as	edges.	The	resulting	network	
consisted	of	3,992	nodes	and	6,500	edges.4	Using	the	criterion	that	to	count	as	a	cluster,	
nodes	must	be	totally	or	very	highly	interconnected,	Spirin	and	Mirny	identified	more	than	
																																																								
4	It	is	important	to	recognize	that	the	databases	upon	which	networks	are	being	
constructed	are	themselves	growing	as	new	experimental	research	is	conducted.	A	
subsequent	attempt	to	build	a	network	from	the	same	database	may	generate	somewhat	
different	results.	



fifty	clusters	with	from	four	to	thirty-five	nodes.	Three	example	clusters	are	shown	against	
a	portion	of	the	background	network	in	Figure	1.	Just	looking	at	the	network,	it	is	notable	
that	there	are	a	large	number	of	connections	outside	of	the	clusters	and	that	nodes	in	a	
cluster	are	also	connected	to	many	other	nodes,	some	in	other	clusters.	What	makes	
clusters	distinctive	is	that	the	nodes	in	them	are	highly	connected	to	each	other,	suggesting	
that	they	form	structural	complexes	or	modules.	Individual	proteins	in	the	complexes	may	
be	able	to	bind	to	other	proteins,	but	these	bindings	are	viewed	as	less	central	to	the	
structure	of	the	cell.	
	
These	clusters	are	candidate	mechanisms	and	the	proteins	in	them	candidate	parts	of	these	
mechanisms.	Although	the	clusters	are	identified	on	structural	criteria,	the	researchers	also	
sought	to	determine	how	these	mechanisms	contribute	functionally	to	the	cell.	Spirin	and	
Mirny	thus	applied	the	functional	annotations	provided	in	MIPS	to	the	nodes	in	each	
module	and	used	this	information	to	propose	a	function	for	each	mechanism.	Thus,	they	
identified	the	nodes	in	the	SAGA_TFIID	transcription	factor	cluster	(shown	in	red)	as	
involved	in	transcription	regulation,	those	in	the	anaphase-promoting	complex	(blue)	as	
involved	in	cell-cycle/cell-fate	control,	and	those	in	the	TRAPP	complex	(yellow)	as	
involved	in	protein	transport.5	They	thus	treated	the	clusters	as	cell	mechanisms.		
	

																																																								
5	Although	Spirin	and	Mirny	analyzed	the	network	as	if	it	were	static,	they	do	note	that	
many	of	the	clusters	consist	of	proteins	that	are	synthesized	at	different	times.	As	such,	
they	cannot	form	a	complex.	They	proposed	that	these	proteins	form	functional	modules	
that	operate	in	a	coordinated	manner	over	time,	e.g.,	in	a	signaling	pathway	or	being	
synthesized	successively	to	advance	a	cell	through	the	cell	cycle.	



	
Figure	1.	A	fragment	of	the	protein-protein	interaction	network	used	by	Spirin	and	
Mirny	(2003).	Colored	nodes	and	the	connections	between	them	constitute	modules	
that	are	interpreted	as	complexes:	the	SAGA/TFIID	complex	(red),	the	anaphase-
promoting	complex	(blue),	and	the	TRAPP	complex	(yellow).	Reprinted	from	Spirin,	
V.,	&	Mirny,	L.	A.,	‘Protein	Complexes	and	Functional	Modules	in	Molecular	
Networks’.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	
America,	100,	12123-12128,	Copyright	(2003)	National	Academy	of	Sciences.	

	
The	inference	from	nodes	forming	a	cluster	to	nodes	representing	parts	of	a	mechanism	
with	particular	functions	was	grounded	on	the	fact	that	some	of	the	parts	were	already	
recognized	as	parts	of	a	mechanism	that	performed	a	cell	function.	Since	they	began	with	
all	nodes	that	clustered	together,	Spirin	and	Mirny	identified	many	new	parts	of	thirteen	
known	mechanisms.	For	example,	because	they	clustered	together,	they	identified	two	
small	ribosomal	subunits	as	members	of	the	Lsm	splicing	mechanism.	They	employed	the	
guilt-by-association	strategy	to	propose	that	these	new	components	contributed	to	the	
same	cell	activity.	Not	all	clusters	could	be	linked	to	known	mechanisms	in	this	manner.	
Spirin	and	Mirny	report	finding	eight	previously	uncharacterized	complexes	and	seven	
uncharacterized	functional	modules	(see	note	5)	that	could	function	as	mechanisms.	One	
complex	consists	of	six	proteins,	only	one	of	which,	YIP1,	had	previously	been	
characterized—as	a	Golgi	membrane	protein.	Since	the	others	share	a	degree	of	homology	
with	other	membrane	proteins,	Spirin	and	Mirny	propose	that	this	complex	is	a	mechanism	
involved	in	membrane	construction	and	maintenance.		
	



2b.	Networks	constructed	using	information	about	functional	interactions		
	
I	turn	now	to	network	approaches	that	start	with	functional	data	about	genes,	specifically,	
when	genes	interact	in	the	generation	of	a	phenotype.	A	simple	form	of	interaction	occurs	
when	either	of	two	genes	can	be	knocked	out	without	killing	the	organism,	but	knocking	
out	both	together	is	lethal.	This	is	known	as	‘synthetic	lethality’.	In	its	simplest	form,	
synthetic	lethality	results	when	the	two	gene	products	are	involved	in	alternative	ways	to	
achieve	a	required	function.	In	that	situation,	when	one	is	knocked	out	the	product	from	
the	other	still	performs	the	function.	A	related	condition,	‘synthetic	sickness’	arises	when	
each	knockout	affects	colony	growth	but	the	effect	of	knocking	out	both	differs	from	the	
multiplicative	effect	that	would	be	expected	if	the	two	were	independent.	Neither	synthetic	
lethality	nor	synthetic	sickness	reveals	what	the	function	of	a	given	gene	is,	but	either	effect	
indicates	that	two	genes	are	performing	the	same	function	or	closely	related	ones.	
	
One	advantage	of	focusing	on	gene-interactions	rather	than	protein-protein	interactions	is	
that	they	can	occur	both	between	genes	that	code	for	proteins	that	interact	to	form	a	
complex	and	also	between	genes	whose	proteins	reside	in	different	complexes.	They	thus	
provide	insight	into	how	the	individual	complexes	are	organized	into	larger	mechanisms.	
To	explore	this,	Kelley	and	Ideker	(2005)	constructed	both	a	structural	network	(based	not	
just	on	protein-protein	interactions	but	also	protein-DNA	interactions	and	interactions	via	
shared	metabolites)	and	a	functional	network	based	on	synthetic-lethal	or	synthetic-sick	
interactions.	Kelley	and	Ideker	identified	any	densely	connected	set	of	proteins	as	
pathways	(modules).	Their	analysis	focused	on	functional	(genetic)	interactions	between	
the	structurally	identified	pathways;	they	refer	to	these	sets	of	pathways	as	‘models’.	
Figure	2A	shows	three	such	models,	with	the	rectangles	in	each	representing	pathways	and	
the	circles	within	them	genes/proteins	belonging	to	that	pathway.	Blue	lines	between	
circles	indicate	structural	relations	between	the	proteins	and	red	arrows	indicate	
functional	(genetic)	interactions	between	the	respective	genes.	In	Figure	2A	some	of	the	
red	arrows	are	contained	within	the	rectangles	representing	pathways,	but	most	cross	
between	two	pathways	belonging	to	the	same	model.	The	arrows	between	pathways,	
Kelley	and	Ideker	propose,	reflect	that	the	different	pathways	perform	redundant	or	
complementary	functions.	Whereas	the	pathways	represent	low-level	mechanisms,	the	
models	correspond	to	larger-scale	mechanisms	composed	from	the	pathways.	
	
A.	 	 	 	 	 	 	 	 B.		Between	pathway			Within	Pathway	



	 	
Figure	2.	A.	Three	models	of	interconnected	pathways	in	which	blue	edges	indicate	
protein-protein	interactions	while	red	arrows	indicate	genetic-interactions.	B.	Two	
examples,	one	between	pathways	and	one	within	a	pathway,	of	using	incomplete	
motifs	to	propose	additional	edges	between	nodes.	Reprinted	by	permission	from	
Macmillan	Publishers	Ltd:	Nature	Biotechnology,	Kelley,	R	and	Ideker,	T.,	‘Systematic	
Interpretation	of	Genetic	Interactions	using	Protein	Networks’,	copyright	2005.		

	
By	building	the	network	using	information	about	synthetic	lethals,	Kelley	and	Ideker	
included	functional	relations	in	the	network	itself.	But	just	the	fact	that	two	genes	produce	
a	synthetic	lethal	does	not	reveal	what	functions	are	involved.	Thus,	like	Spirin	and	Mirny,	
Kelley	and	Ideker	appeal	to	what	was	already	known	(e.g.,	in	GO)	about	the	individual	
genes/proteins	in	their	network,	for	example,	that	proteins	in	pathway	M	constitute	the	
prefoldin	complex,	which	promotes	the	folding	of	α-	and	β-tubulin	into	functional	
microtubules.	These	microtubules	are	important	for	the	function	of	the	proteins	in	the	
other	two	complexes	to	which	they	are	linked:	proteins	in	the	dynactin	complex	are	
involved	in	translocating	the	spindle	and	other	molecules	along	microtubules	while	those	
in	the	kinetochore	complex	anchor	chromosomes	to	spindle	microtubules	during	
metaphase.	These	annotations	allow	Kelley	and	Ideker	to	interpret	the	edges	between	
pathways	generated	from	the	gene	interaction	data	mechanistically.		

		
Kelley	and	Ideker’s	goal	was	not	just	to	show	that	a	mechanistic	analysis	could	be	
recovered	from	these	networks	but	also	to	show	that	by	incorporating	functional	
information	about	synthetic	lethals	in	their	network	they	could	develop	new	functional	
hypotheses	about	what	the	parts	of	these	mechanisms	do.	To	do	this,	they	selected	from	
their	network	structural	pathways	in	which	annotations	were	assigned	to	less	than	one	
hundred	genes	overall	and	in	which	the	percentage	of	the	proteins	assigned	common	
annotations	was	statistically	significant	(p	<	.05)	when	compared	to	random	networks.	
Employing	guilt-by-association	they	predicted	973	annotations	for	343	proteins	in	these	
models.	This	was	four	times	as	many	as	could	have	been	predicted	from	the	structural	
network	alone	(i.e.,	using	the	strategy	exhibited	in	the	Spirin	and	Mirny	study	discussed	
above).	The	difference	was	due	to	including	functional	synthetic	lethal	information	in	the	
network	itself	and	not	just	in	the	annotation	process.	As	an	illustrative	example,	the	



authors	predicted	that	Yll049w	in	pathway	N	(shown	on	the	left	middle	of	Figure	2A),	
which	binds	Jnm1,	and	is	regulated	by	common	elements	in	pathway	M,	is	a	dynactin	
protein	required	for	spindle	partitioning	in	anaphase.	This	prediction	would	have	been	
difficult	without	correlating	the	gene	interaction	with	protein	interaction	information	since	
each	protein	engages	in	more	than	a	dozen	other	interactions	in	the	genetic	network.		
	
Both	the	protein-protein	interaction	and	gene	interaction	databases	on	which	Kelley	and	
Ideker’s	network	analysis	is	based	are	known	to	be	incomplete.	This	presents	an	
interesting	challenge:	can	the	network	analysis	itself	predict	new	functional,	gene	
interactions?	To	show	how	it	might,	Kelley	and	Ideker	invoked	Alon’s		account	of	motifs	
(Milo,	Shen-Orr,	Itzkovitz	et	al.,	2002).	Motifs	are	subnetworks	(two	to	four	nodes)	with	a	
specific	pattern	of	connectivity	that	occurs	in	a	larger	network	far	more	frequently	than	
would	be	expected	by	chance.	In	their	between-pathway	models,	Kelley	and	Ideker	found	
many	four-node	‘complete	bipartite	motifs’,	in	which	the	first	two	nodes	are	connected	in	
all	possible	ways	to	the	second	two	nodes.	Kelley	and	Ideker	then	took	a	step	beyond	Alon,	
interpreting	other	sub-networks	in	which	only	three	of	the	four	connections	were	realized	
as	incomplete	motifs	and	predicted	that	the	fourth	connection	should	occur	as	well	(Figure	
2B,	left).	Kelley	and	Ideker	could	not	directly	test	the	correctness	of	this	inference	
procedure,	but	they	offered	indirect	evidence	of	its	reliability	by	withholding	data	about	
one-fifth	of	the	interactions	and	constructing	a	network	from	the	reduced	data	set.	They	
then	identified	incomplete	motifs	in	these	networks	and	were	able	to	predict	eight-seven	
per	cent	of	the	connections	about	which	information	had	been	withheld.6	This	novel	
strategy	for	inferring	new	connections	suggests	a	way	of	extending	the	ability	of	network	
analysis	to	advance	new	mechanistic	hypotheses.	Not	only	might	researchers	be	able	to	use	
the	structural	and	functional	connections	identified	in	databases	to	identify	previously	
unrecognized	structural	and	functional	interactions	in	biological	mechanisms,	but	they	may	
also	be	able	to	predict	new	structural	and	functional	relations	not	yet	observed	in	the	data.		
	
A	subsequent	study	by	Bandyopadhyay,	Kelley,	Krogan	et	al.	(2008)	expanded	upon	the	
Kelley	and	Ideker	study	and	revealed	even	more	potential	for	networks	built	from	both	
functional	and	structural	interaction	data	to	generate	new	hypotheses	about	mechanisms.	
They	utilized	data	about	both	synthetic	lethality	and	synthetic	sickness,	and	in	the	case	of	
synthetic	sickness	differentiated	to	‘positive’	or	‘alleviating’	effects	in	which	the	reduction	
in	colony	growth	is	less	than	the	product	of	the	individual	knockouts	and	‘negative’	or	
‘aggravating’	effects	if	it	is	greater	than	the	product.7	
																																																								
6	Kelley	and	Ideker	found	a	different	sub-network	pattern	in	within-pathway	models	built	
from	structural	information:	two	nodes	that	share	connections	to	common	neighbors	are	
also	connected	(Figure	2B,	right).	They	performed	the	same	sort	of	analysis	of	deleting	
edges	and	predicting	them	from	the	remaining	network.	In	this	case	the	accuracy	in	the	
validation	test	was	far	less	(thirty-eight	per	cent)	but	still	much	greater	than	chance.	
7	Segrè,	DeLuna,	Church	et	al.	(2005)	found	that	interactions	within	the	same	cluster	
tended	to	be	either	all	positive	or	all	negative,	and	introduced	the	concept	of	
‘monochromicity’	that	fostered	merging	clusters	into	a	hierarchy	that	minimized	clustering	
together	positive	and	negative	interactions.	
	



	
Rather	than	relying	on	gene	interaction	databases,	the	researchers	took	advantage	of	rapid	
screening	techniques	to	develop	epistatic	miniarray	profiles	(E-MAPs)	of	interactions	
among	all	pairs	of	genes	in	a	group.	Thus,	for	each	pair	of	genes	they	determined	whether	it	
generated	synthetic	lethality	or	aggravated	or	alleviated	synthetic	sickness.	They	
integrated	these	functional	results	with	structural	relations	based	on	protein-protein	
interactions,	assigning	those	genes/proteins	that	exhibited	both	strong	genetic	interactions	
and	structural	relations	to	a	single	complex	and	those	with	strong	genetic	but	weak	
physical	interactions	to	separate	but	functionally	related	modules.	As	shown	in	Figure	3,	
with	this	procedure	they	identified	ninety-one	distinct	complexes	(one,	the	co-chaperone	
prefoldin	complex	consisting	of	seven	proteins	that	has	twenty-five	links	to	other	modules,	
is	not	shown	to	enhance	clarity).	The	color	in	which	a	complex	is	shown	indicates	whether	
the	interactions	within	it	are	primarily	alleviating	or	aggravating	while	the	color	of	the	
edges	indicates	whether	the	interconnections	between	complexes	are	primarily	alleviating	
or	aggravating.	Ten	of	these	modules	had	not	been	picked	out	by	any	other	techniques	and	
since	they	have	no	common	name,	are	indicated	by	just	the	names	of	the	constituent	
proteins	(for	example,	VPS64,HCS1	on	the	bottom	left).	These	are	new	candidate	
mechanisms.	The	procedure	also	identified	eight-four	new	members	of	modules	
corresponding	to	known	mechanisms—new	parts	of	previously	identified	mechanisms.		
	

	
Figure	3.	Network	of	protein	complexes	involved	in	chromosome	biology.	The	size	
of	nodes	indicates	the	number	of	proteins	in	the	complex	whereas	the	color	
indicates	whether	the	interactions	within	it	are	predominately	alleviating	or	
aggravating.	Likewise,	the	color	of	the	edges	indicates	whether	the	interactions	
between	modules	are	predominately	alleviating	or	aggravating.	Reprinted	from	
Bandyopadhyay,	S.,	Kelley,	R.	M.,	Krogan,	N.	J.,	&	Ideker,	T.	(2008).	‘Functional	Maps	
of	Protein	Complexes	from	Quantitative	Genetic	Interaction	Data.	Plos	
Computational	Biology,	4(4):	e1000065.	

	



The	studies	I	have	described	in	this	section	show	how	researchers	are	using	
protein-protein	interaction	and	gene	interaction	networks	(individually	or	together)	to	
advance	new	mechanistic	hypotheses.	Clusters	or	modules	that	do	not	correspond	to	
previously	identified	mechanisms	are	new	candidate	mechanisms.	Genes	or	proteins	that	
cluster	with	those	in	known	mechanisms	are	new	candidate	parts.	Using	guilt-by-
association,	researchers	advanced	new	hypotheses	about	the	function	of	mechanisms	and	
their	parts.	Although	confirming	evidence	for	some	of	these	has	been	generated,	many	of	
these	hypotheses	have	not	yet	been	tested.	For	my	purposes	of	showing	how	network	
analyses	can	contribute	to	making	discoveries	about	mechanisms,	whether	hypotheses	
have	been	confirmed	is	less	important	than	that	network	research	is	being	used	to	
construct	such	hypotheses.		
	
3.	Analyzing	Changes	in	Networks	Across	Conditions	
	
A	long-standing,	if	implicit,	assumption	in	cellular	research	is	that	the	mechanisms	that	are	
identified	in	research	are	enduring	entities.	Their	parts,	operations,	and	organization	
remain	the	same.	They	may	behave	differently	on	different	occasions	due	to	different	
inputs	or	different	control	processes,	but	the	mechanisms	are	not	themselves	
fundamentally	altered.	This	assumption	carried	over	to	the	network	research	I	discussed	in	
the	previous	section.	The	databases	from	which	the	network	analyses	are	constructed	do	
not	take	into	account	different	conditions	under	which	a	cell	might	function.	Rather,	they	
extract	information	about	protein-protein	interactions	or	gene	interactions	from	yeast	cells	
grown	on	a	rich	medium	under	normal	conditions.	While	this	strategy	has	been	highly	
successful,	biologists	have	long	recognized	that	cells	are	highly	dynamic	entities	that	
function	differently	under	different	conditions.	For	example,	different	genes	are	expressed	
under	different	conditions,	and	accordingly	different	proteins	are	operative.	Systems	
biologists	are	employing	network	analytic	tools	to	characterize	the	differences	in	cell	
function	at	different	times.	If	interacting	nodes	constitute	mechanisms,	revealing	different	
interactions	at	different	times	can	reveal	that	some	mechanisms	are	differentially	active	
under	specific	conditions,	or	even	come	into	existence	only	in	those	conditions.	These	
variations	in	mechanisms	are	missed	if	one	does	not	look	at	specific	conditions	separately	
but	averages	over	all.8	In	this	section	I	describe	two	forms	of	network	analysis	that	are	
revealing	mechanisms	that	are	differentially	active	or	come	into	existence	when	cells	
experience	different	conditions.	
	
	 	

																																																								
8	Once	one	recognizes	variability	in	the	mechanisms	that	exist	in	cells	in	different	
circumstances,	one	may	wonder	why	researchers	pursue	static	networks.	One	answer	is	
that	if	static	networks	offer	only	a	time-limited	perspective	on	cell	mechanisms,	the	
mechanisms	they	identify	do	exist	at	those	times.	Another	is	that	there	are	practical	limits	
to	how	many	conditions	can	be	investigated	in	a	given	study	as	well	as	limits	in	the	ability	
to	represent	and	interpret	the	results.			



3a.	Active	subnetworks	
	
To	investigate	dynamic	changes	in	cells,	Ideker,	Ozier,	Schwikowski	et	al.	(2002)	proposed	
comparing	gene	expression	and	protein	interactions	under	different	conditions9	to	identify	
‘active	subnetworks’	(sometimes	referred	to	as	‘active	modules’,	‘network	hotspots’,	or	
‘responsive	subnetworks’).	They	define	active	subnetworks	as	“connected	sets	of	genes	
with	unexpectedly	high	levels	of	differential	expression”	when	the	biological	system	is	
confronted	with	a	specific	circumstance.	Since	the	cell	exhibits	different	phenomena	when	
it	functions	in	different	conditions,	it	is	plausible	to	view	the	subnetworks	active	under	
specific	circumstances	as	corresponding	to	the	mechanisms	responsible	for	these	
distinctive	phenomena.		
	
A	study	by	Luscombe,	Babu,	Yu	et	al.	(2004)	illustrates	the	approach	to	discovering	active	
sub-networks	or	mechanisms.	These	researchers	contrasted	the	networks	active	when	
yeast	cells	were	in	conditions	requiring	one	of	five	different	activities—cell	cycle,	
sporulation,	diauxic	shift,	DNA	damage,	and	stress	response.	Unlike	most	philosophical	
accounts	of	mechanistic	explanations,	which	emphasize	the	generation	of	a	product	(e.g.,	
the	synthesis	of	a	protein),	the	mechanisms	Luscombe	et	al.	investigated	were	those	that	
controlled	more	basic	mechanisms.	Thus,	they	focused	on	transcription	factors	that	
regulate	gene	expression,	yielding	the	proteins	that	figure	in	the	sort	of	mechanisms	
characterized	in	philosophical	accounts.	They	represented	the	network	in	which	
transcription	factors	regulate	the	expression	of	target	genes	in	a	circular	plot	(Figure	4,	top	
left).	Transcription	factors	are	shown	at	the	top	of	the	plot,	grouped	by	the	number	of	
conditions	in	which	they	are	active	(indicated	by	the	color	of	the	band	around	them	and	the	
number	inside	the	band).	Target	genes	are	shown	around	the	bottom,	and	the	band	around	
them	indicates	the	number	of	conditions	in	which	they	are	expressed.	An	arrow	from	a	
transcription	factor	to	a	target	gene	indicates	that	the	transcription	factor	regulates	a	given	
target	gene,	with	the	color	of	the	arrow	indicating	the	number	of	conditions	in	which	the	
target	gene	is	expressed.	Transcription	factors	can	also	operate	on	other	transcription	
factors,	so	some	arrows	terminate	in	transcription	factors.	This	plot	makes	it	clear	that	
over	half	of	the	target	genes	are	only	active	in	one	condition.10	Since	the	target	genes	that	
are	expressed	in	each	condition	are	the	constituents	of	mechanisms	active	in	that	
condition,	these	results	indicate	different	mechanisms	operative	in	yeast	cells	in	these	
different	conditions.	
		
																																																								
9	Ideker	et	al.’s	approach	to	identifying	mechanisms	is	a	version	of	the	subtraction	
methodology	familiar	in	other	fields.	For	example,	to	identify	the	brain	activity	involved	in	
performing	a	given	mental	operation,	researchers	will	often	subtract	the	activity	found	
when	a	participant	is	performing	a	related	task	that	does	not	require	the	operation.	One	
important	point	to	note	is	that	just	because	a	given	mechanism	is	not	differentially	active	in	
a	given	condition	does	not	mean	it	is	not	performing	important	roles	in	that	condition.	
Network	analysts	recognize	this,	but	characterize	the	operations	that	are	not	differentially	
involved	as	‘housekeeping’.		
10	Only	sixty-six	interactions	are	active	in	four	or	more	conditions.	The	researchers	termed	
these	‘hot	links’	and	identify	them	as	mostly	regulating	housekeeping	functions.	



On	the	right	side	of	Figure	4B	Luscombe	et	al.	plot	the	connections	between	transcription	
factors	and	genes	active	in	individual	conditions	and	distinguish	two	clusters.	They	group	
cell	cycle	and	sporulation	as	endogenous	conditions	since	both	involve	the	cell	progressing	
through	multiple	stages	under	internal	control.	They	term	the	three	other	cell	conditions	
(diauxic	shift,	DNA	damage,	and	stress	response)	‘exogenous’	since	they	involve	cellular	
responses	to	external	stimuli.		
	
To	analyze	how	the	networks	are	structured	in	each	condition,	Luscombe	et	al.	employ	a	
number	of	standard	measures	used	in	graph	theory	to	characterize	networks.	I	focus	on	
two.	Path	length	is	the	number	of	edges	that	must	be	traversed	on	the	shortest	path	
between	two	nodes.	If	mean	path	length	is	short,	then	signals	are	transmitted	rapidly	
through	the	whole	network.	The	clustering	coefficient	measures	how	interconnected	a	local	
set	of	nodes	is.	If	it	is	high,	then	nodes	are	highly	connected	to	their	neighbors.	
Interconnected	nodes	form	clusters	(of	the	sort	identified	in	the	previously	discussed	
studies)	that	can	work	together	to	perform	a	common	activity.		
	

	
Figure	4.	Changes	in	the	network	of	transcription	factors—target	gene	network	
under	two	endogenous	conditions	and	three	exogenous	conditions.	The	static	
network	is	shown	in	the	upper	left.	A.	Contrast	in	network	structure	under	
endogenous	and	exogenous	conditions.	B.	Network	projections	active	in	each	
condition.	C.	Network	statistic.	Reprinted	by	permission	from	Macmillan	Publishers	
Ltd:	Nature,	Luscombe,	N.	M.,	Babu,	M.	M.,	Yu,	H.,	Snyder,	M.,	Teichmann,	S.	A.,	&	
Gerstein,	M.,	‘Genomic	Analysis	of	Regulatory	Network	Dynamics	Reveals	Large	
Topological	Changes’,	copyright	2004.	

	
The	endogenous	and	exogenous	conditions	exhibit	very	different	profiles	on	these	network	
measures,	as	indicated	by	the	highlighting	of	the	values	in	the	middle	rows	of	Figure	4C.	



Luscombe	et	al.	relate	these	to	the	mechanisms	functioning	in	the	different	conditions.	
They	propose	that	the	short	path	length	in	the	exogenous	condition	indicates	rapid	
response	across	the	network	while	the	low	clustering	suggests	little	coordination	between	
components	in	generating	a	response.	In	contrast,	the	authors	propose	that	the	‘long	paths	
in	the	multi-stage,	endogenous	conditions	suggest	slower	action	arising	from	the	formation	
of	regulatory	chains	to	control	intermediate	phases’	(p.	309).	The	larger	clustering	in	
endogenous	conditions	indicates	that	the	nodes	constitute	modules	that	collaborate	in	
performing	activities.	Overall,	Luscombe	et	al.	hypothesize	that	‘sub-networks	
[mechanisms]	have	evolved	to	produce	rapid,	large-scale	responses	in	exogenous	states,	
and	carefully	coordinated	processes	in	endogenous	conditions’	(p.	309).	
	
In	addition	to	identifying	different	overall	organization	of	mechanisms	operative	in	the	two	
types	of	conditions,	Luscombe	et	al.	determined	that	they	exhibited	different	local	
organization	in	terms	of	sub-graphs	or	motifs.	Of	particular	interest	is	their	observation	
that	feed-forward	loops,	in	which	an	input	node	has	both	direct	effects	on	an	output	unit	
and	effects	mediated	by	an	intermediate,	are	twice	as	frequent	in	mechanisms	operative	in	
the	endogenous	condition.	Alon	and	his	colleagues	showed	that	feed	forward	loops	in	
which	all	connections	are	excitatory	and	in	which	input	on	both	pathways	is	required	for	
the	output	are	able	to	function	as	persistence	detectors	in	which	the	output	only	is	
generated	when	the	input	condition	persists	(Milo	et	al.,	2002).	This	is	important	in	
mechanisms	in	which	it	would	be	problematic	to	commence	an	operation	if	the	
requirements	for	its	successful	completion	were	uncertain.	
	
Having	used	their	network	representation	both	to	identify	different	types	of	control	
mechanisms	operative	in	different	cell	conditions	and	to	reveal	relevant	features	of	their	
organization,	Luscombe	et	al.	also	analyze	their	network	to	reveal	how	transcription	
factors	exercise	their	control.	They	zeroed	in	on	one	of	the	endogenous	control	conditions	
in	their	study,	the	cell	cycle,	identified	genes	differentially	expressed	in	specific	phases	of	
the	cell	cycle	(early	G1,	late	G1,	S,	G2,	and	M)	and	determined	what	transcription	factors	
regulated	each	of	these	genes.	They	differentiated	two	classes	of	transcription	factors:	
those	that	are	approximately	equally	active	in	all	phases,	and	those	that	are	primarily	
active	in	just	one	phase.	The	saturation	of	the	colors	in	Figure	5A	indicates	how	active	each	
of	the	transcription	factors	listed	across	the	top	is	in	each	phase.	The	phase-specific	
transcription	factors	each	have	a	dark	row	indicating	they	are	most	active	in	that	phase.	
There	are	no	dark	rows	for	the	ubiquitous	transcription	factors.	Focusing	on	those	most	
active	in	a	specific	phase,	they	showed	in	Figure	5B	that	these	tend	to	regulate	
transcription	factors	active	in	subsequent	phases	(for	those	active	in	late	phases,	
subsequent	phases	are	those	at	the	beginning	of	a	subsequent	cycle).	This	activation	
pattern	presumably	explains	cells	progress	through	the	stages	of	the	cell	cycle.	As	Figure	5C	
illustrates,	the	ubiquitous	transcription	factors	tend	to	regulate	other	transcription	factors	
that	are	phase	specific.	This	analysis	of	transcription	factors	provides	perspective	on	how	
particular	cell	mechanisms	are	regulated.	



	
Figure	5.	A.	Genes	clustered	according	to	the	phase	of	the	cell	cycle	in	which	they	are	
active—the	darkness	of	the	shading	indicates	how	active	each	gene	is	during	each	
phase.	B.	Projections	of	regulation	from	those	active	in	one	phase,	mostly	to	those	in	
a	subsequent	phase.	C.	Projections	from	transcription	factors	active	in	all	phases	to	
those	active	in	specific	phases.	Reprinted	by	permission	from	Macmillan	Publishers	
Ltd:	Nature,	Luscombe,	N.	M.,	Babu,	M.	M.,	Yu,	H.,	Snyder,	M.,	Teichmann,	S.	A.,	&	
Gerstein,	M.,	‘Genomic	Analysis	of	Regulatory	Network	Dynamics	Reveals	Large	
Topological	Changes’,	copyright	2004.	

	
The	Luscombe	et	al.	study	on	which	I	have	focused	exemplifies	how	network	analyses	can	
be	used	to	identify	active	subnetworks	and	thus	control	mechanisms	that	are	active	or	even	
come	into	existence	when	the	cell	confronts	specific	conditions.	By	focusing	on	
transcription	factors	that	regulate	the	transcription	of	target	genes	and	showing	that	



different	networks	are	involved	in	specific	cell	conditions,	Luscombe	et	al.	provided	a	
means	to	identify	active	control	and	target	mechanisms.	By	applying	network	measures	to	
the	networks	active	in	different	conditions,	they	were	able	to	reveal	organizational	
differences	between	control	mechanisms	operative	in	different	types	of	conditions	and	
even	to	zero	in	on	the	temporal	dynamics	through	which	control	is	exercised.	
	
3b.	Differential	network	biology	
	
In	a	second	example	I	consider	how	network	analyses	such	as	those	discussed	in	section	2	
above	can	be	extended	to	reveal	mechanisms	operative	or	even	existing	only	in	specific	cell	
conditions.	Ideker	and	Krogan	(2012)	term	this	approach	‘differential	network	biology’.	In	
section	2b	I	introduced	epistatic	miniarray	profiles	(E-MAPs)	of	gene	interactions.	
Differential	network	biology	subtracts	the	E-MAP	for	a	cell	in	an	altered	state	from	one	for	
a	cell	in	the	default	state	to	yield	a	differential	E-MAP	(dE-MAP).	A	dE-MAP	thus	focuses	
attention	on	those	genes	that	interact	differently	in	the	two	conditions.	As	the	cases	below	
illustrate,	the	contrast	reveals	genes/proteins	whose	interactions	do	not	appear	significant	
in	either	condition	treated	alone	but	may	constitute	important	mechanisms	in	the	cell.	
	
Bandyopadhyay,	Mehta,	Kuo	et	al.	(2010)	introduced	the	dE-MAP	strategy	in	a	study	in	
which	they	compared	yeast	colonies	grown	under	two	conditions,	an	unperturbed	
condition	in	a	rich	medium	and	a	perturbed	condition	resulting	from	adding	to	the	medium	
methyl	methanesulfonate	(MMS),	a	DNA-alkylating	agent	that	creates	base	modifications	in	
DNA.	When	creating	the	differential	map	from	the	E-maps	constructed	in	each	condition,	
Bandyopadhyay	et	al.	identified	873	highly	significant	interactions,	sixty-two	per	cent	of	
which	were	not	detectable	in	either	static	E-MAP.	The	researchers	developed	several	new	
hypotheses	about	the	mechanisms	involved	in	DNA	damage	response,	but	of	particular	
interest	was	the	finding	that	the	connections	that	showed	up	as	changed	in	the	differential	
network	were	more	likely	to	connect	modules	(identified	using	a	variety	of	criteria)	than	
nodes	within	modules.	The	researchers	conclude	‘known	protein	complexes	tend	to	be	
stable	across	conditions—it	is	the	genetic	interactions	between	these	modules	that	are	
reprogrammed	in	response	to	perturbation.’	Put	in	the	language	of	mechanisms,	the	
components	of	mechanisms	may	exist	in	both	conditions,	but	they	are	assembled	into	
different	mechanisms	on	different	occasions.			
	
Guénolé,	Srivas,	Vreeken	et	al.	(2013)	followed	up	on	this	finding	in	order	-‘to	understand	
how	functional	interconnections	between	pathways	are	formed	and	altered	in	response	to	
various	genotoxic	insults.’	They	deployed	three	different	DNA	damaging	agents:	MMS;	
Camptothecin	(CPT),	a	topoisomerase	I	inhibitor	that	causes	double-strand	breaks	in	DNA;	
and	Zeocin	(ZEO),	a	DNA-intercalating	agent	that	causes	single-strand	lesions.	They	used	
the	dE-MAP	strategy	first	to	identify	‘specific	repair	mechanisms’	activated	in	the	DNA	
damage	response	process.	This	involved	creating	yeast	strains	which	each	had	a	deletion	of	
one	of	fifty-five	representative	genes	known	to	figure	in	DNA	damage	repair	pathways.	
They	crossed	these	with	approximately	2000	strains	involving	deletions	of	genes	involved	
either	in	DNA	damage	repair	or	in	a	related	process—cell-cycle	regulation,	chromatin	
organization,	replication,	transcription,	and	protein	transport	(included	so	as	to	investigate	
the	interaction	of	DNA	damage	repair	with	these	other	cell	processes).	From	each	of	these	



four	E-MAPs	they	generated	networks.	While	these	networks	shared	a	number	of	edges	
(interpreted	as	involved	in	basic	cellular	processes),	they	also	exhibited	substantial	
differences—almost	one-half	of	the	positive	interactions	and	one-third	of	the	negative	
interactions	were	unique	to	one	of	the	treated	networks.	By	subtracting	the	network	in	
each	of	the	three	damage	conditions	from	the	unperturbed	case	from	the	network,	they	
generated	three	differential	networks.	As	shown	in	Figure	6A,	most	interactions	only	
showed	up	in	one	of	the	differential	networks.11			
	

	 	
Figure	6.	Analysis	of	the	differential	networks	identify	by	Guénolé	et	al.	The	labels	
MMS,	ZEO,	and	CPT	refer	to	the	differential	networks	in	which	the	static	network	
generated	in	the	unperturbed	condition	was	subtracted	from	the	static	network	in	
the	designated	perturbed	condition.	A.	Most	of	the	connections	identified	in	the	
differential	networks	were	unique	to	one	of	the	differential	networks.	B.	The	p-value	
for	the	enrichment	for	genes	in	different	pathways	for	the	three	differential	
networks.	Reprinted	from	Molecular	Cell,	Vol	49,	Guénolé,	A.,	Srivas,	R.,	Vreeken,	K.,	
Wang,	Z.	Z.,	Wang,	S.,	Krogan,	N.	J.,	Ideker,	T.,	van	Attikum,	H.,	‘Dissection	of	DNA	
Damage	Responses	Using	Multiconditional	Genetic	Interaction	Maps’,	Figure	2c,	
Copyright	2010,	with	permission	from	Elsevier.	

	
To	determine	whether	the	interactions	in	the	three	differential	networks	reflected	known	
mechanisms,	Guénolé	et	al.	investigated	whether	they	were	specifically	enriched	for	genes	
in	the	six	major	DNA	damage	repair	pathways.	They	found	that	the	individual	networks	
were	differentially	enriched	(Figure	6b)	and	that	the	enrichment	in	each	network	made	
sense	given	the	action	of	the	specific	damage	agents.	For	example,	CPT	is	known	to	act	by	
stabilizing	DNA	topoisomerase	1-DNA	complexes,	resulting	in	double	stranded	breaks	
(DSB)	during	S-phase.	Fittingly,	the	CPT	differential	network	was	greatly	enriched	for	DSB	
repair.	In	contrast,	the	ZEO	network	was	less	enriched	for	DSB	repair.	Instead,	it	was	
enriched	for	genes	employed	in	base	excision	repair	(BER)	and	postreplication	repair	
(PBR).	This	fits	with	the	fact	that	at	the	concentrations	used	ZEO	generates	abasic	sites	

																																																								
11	Guénolé	et	al.	investiged	the	forty-five	genes	involved	in	all	differential	networks.	Several	
of	them	were	highly	conserved	genes	involved	in	DNA	damage	repair	pathways.	The	
authors	interpreted	as	showing	a	‘a	nonredundant	role	for	these	factors	in	multiple	DDR	
mechanisms,	including	the	resection	of	DSBs	and	subsequent	Mec1-dependent	activation	of	
the	DDC.’	



rather	than	DNA	strand	breaks.	Accordingly,	Guénolé	et	al.	conclude	they	were	detecting	
repair	mechanisms	suited	for	the	particular	condition	in	the	cell.	
	
To	determine	whether	their	approach	could	generate	new	information	about	these	DNA-
damage	repair	mechanisms,	Guénolé	et	al.	investigated	the	hubs	(highly	connected	nodes)	
in	the	differential	networks.	They	determined	that	the	hubs	were	more	sensitive	to	DNA	
damage	but	also	took	on	more	diverse	functions.	They	focused	specifically	on	SAE2,	a	hub	
found	in	the	CPT	network	and	known	to	encode	the	homolog	of	the	human	endonuclease	
CtIP	that	functions	in	processing	double-strand	breaks	into	3’	single-stranded	tails.	They	
found	that	the	majority	of	SAE2’s	interactions	were	induced	by	CPT	and	that	SAE2	
interacted	with	numerous	DNA	repair	genes.	An	unanticipated	finding	was	that	SAE2	has	
negative	interactions	with	genes	belonging	to	the	PP4	complex	that	are	needed	to	
dephosphorylate	Rad53,	the	major	checkpoint	kinase,	and	to	allow	recovery	from	the	
arrest	of	the	cell-cycle.	The	researchers	proposed	that	SAE2	works	in	parallel	with	PP4,	a	
proposal	they	confirmed	by	examining	the	effects	of	mutating	just	one	of	SAE2	and	PPH3	(a	
component	of	the	PP4	complex)	or	of	mutating	both.	The	authors	conclude:	‘this	example	
illustrates	the	power	of	our	differential	network	analysis	in	identifying	connections	
between	different	DDR	factors’—that	is,	in	finding	connections	between	components	in	a	
mechanism.	
	
A	final	step	in	Guénolé	et	al.’s	analysis	was	to	integrate	the	differential	genetic	interaction	
data	with	structural	(protein-protein)	interaction	data	into	a	global	map.	Much	like	the	
network	analyses	I	discussed	in	the	section	2,	modules	are	identified	as	sharing	both	
structural	and	functional	(genetic)	interactions.	These	modules	are	shown	as	nodes	in	
Figure	7	while	the	edges	reflect	funcitonal	(genetic)	interactions	between	modules.	The	
edges	derived	from	the	three	differential	networks	are	overlaid	in	color,	with	those	from	
just	one	differential	network	shown	in	red,	yellow,	and	blue.	The	few	edges	derived	from	
two	differential	networks	are	shown	in	purple,	green,	and	orange.	Not	only	does	this	figure	
make	clear	how	the	various	repair	mechanisms	are	coordinated,	it	also	reveals	prevously	
unknown	relations,	such	as	that	between	RTT109	and	Polδ,	a	repair	specific	polymerase	
involved	in	translesion	synthesis.	The	researchers	then	investigated	the	mechanistic	
connection	in	more	detail	by	acetylating	HEK56,	which	is	required	for	recruiting	Polδ	to	the	
site	at	which	DNA	replication	is	stalled.		



	
Figure	7.	Functional	interactions	between	modules,	shown	as	nodes.	Colors	indicate	
the	dE-MAPs	in	which	genetic	interactions	are	found	between	modules.	Those	
shown	in	blue,	yellow,	and	red	only	occur	in	one	dE-MAP,	suggesting	that	the	
mechanism	involving	the	different	modules	only	forms	in	those	conditions.	
Reprinted	from	Molecular	Cell,	Vol	49,	Guénolé,	A.,	Srivas,	R.,	Vreeken,	K.,	Wang,	Z.	Z.,	
Wang,	S.,	Krogan,	N.	J.,	Ideker,	T.,	van	Attikum,	H.,	‘Dissection	of	DNA	Damage	
Responses	using	Multiconditional	Genetic	Interaction	Maps’,	Figure	6A,	Copyright	
2010,	with	permission	from	Elsevier.	
	

The	two	examples	of	differential	network	biology	that	I	have	presented	illustrate	how	static	
representations	of	functional	(gene)	interactions	(E-MAPs)	developed	for	yeast	grown	in	
different	conditions	can	be	combined	to	reveal	mechanisms	that	become	operative	only	
when	the	cell	is	grown	in	specific	conditions.	Not	only	did	the	studies	reveal	mechanisms	
already	known	to	be	operative	in	these	specific	conditions,	but	also	previously	unknown	
mechanisms.	Moreover,	the	Guénolé	et	al.	study	makes	clear	that	these	mechanisms	result	
from	establishing	connections	between	modules	already	present	in	the	cell.	Together	with	
the	Bandyopadhyay	et	al.	(2010)	example	discussed	earlier,	these	studies	show	how	
network	analyses	enable	researchers	to	advance	beyond	a	static	view	of	cell	mechanisms	to	
one	that	sees	mechanisms	as	dynamically	changing	given	conditions	in	the	cell.		
	



4.	Conclusion	
	
Traditional	strategies	for	developing	mechanistic	explanations	start	with	a	mechanism	
identified	as	responsible	for	a	phenomenon	and	invoke	experimental	manipulations	to	
identify	its	parts	and	operations.	For	example,	demonstrating	that	lesioning	or	poisoning	a	
part	inhibits	a	phenomenon	is	interpreted	as	showing	that	the	part	inhibited	is	a	working	
part	of	the	mechanism.	Likewise,	demonstrating	that	activity	in	a	component	increases	
when	the	phenomenon	is	exhibited	is	again	taken	to	show	that	the	part	figures	in	the	
operation	of	the	mechanism.	My	focus	has	been	to	describe	a	different	strategy	for	
developing	hypotheses	about	biological	mechanisms	and	their	components	that	has	been	
developed	and	deployed	within	systems	biology.	It	takes	advantage	of	the	large	databases	
characterizing	structural	and	functional	interactions	between	components	of	cells,	
especially	genes	and	proteins,	from	which	network	representations	are	constructed.	These	
networks	are	analyzed	to	identify	clusters	of	highly	connected	nodes,	which	sometimes	can	
only	be	detected	when	data	from	yeast	grown	in	different	conditions	are	compared.	The	
interconnections	between	these	nodes	suggest	that	the	entities	being	represented	interact	
in	the	manner	of	a	mechanism.	In	the	examples	I	have	presented,	this	has	resulted	in	the	
identification	of	new	mechanisms	and	new	parts	of	mechanisms	beyond	those	that	have	
been	discovered	through	more	traditional	mechanistic	strategies.	Invoking	the	guilt-by-
association	strategy,	researchers	hypothesize	that	genes	or	proteins	not	previously	
associated	with	a	specific	cell	activity	are	involved	in	the	same	cell	phenomenon	as	other	
nodes	that	correspond	to	genes	or	proteins	whose	role	is	already	known.	That	is,	they	are	
new	constituents	of	the	same	mechanism.		
	
In	articulating	how	network	analyses	facilitate	making	new	discoveries	about	mechanisms	
I	am	not	suggesting	that	these	strategies	operate	totally	independently	of	more	traditional	
mechanistic	research	strategies.	First,	the	data	from	which	networks	are	discovered	result	
from	(automated)	versions	of	more	traditional	molecular	experiments.	Second,	
interpretation	of	clusters	in	networks	relies	directly	on	annotations,	often	derived	from	
ontologies	such	as	GO.	The	hierarchical	organization	of	these	ontologies	is	intended	to	
encapsulate	curated	mechanistic	knowledge	about	the	structures	in	which	proteins	appear,	
the	chemical	reactions	in	which	they	are	involved,	and	the	cellular	phenomena	in	which	
they	figure.12	Finally,	the	hypotheses	generated	from	the	network	analyses	are	further	
investigated	using	more	traditional	mechanistic	interventions.	The	network	strategy	may	
generate	a	hypothesis	that	a	given	gene	or	protein	is	involved	in	a	given	cell	function,	but	to	
confirm	or	falsify	this	inference,	researchers	must	intervene	directly	on	the	gene	or	protein	
and	determine	whether	it	has	the	predicted	effects.	Moreover,	such	intervention	is	needed	
																																																								
12	More	recently,	Dutkowski,	Kramer,	Surma	et	al.	(2013)	have	taken	advantage	of	the	cell-
wide	nature	of	network	representations	to	develop	a	Network	Extracted	Ontology	(NeXO).	
From	NeXO	they	have	made	mechanistic	discoveries	that	have	been	accepted	into	GO.	NeXO	
also	includes	large	numbers	of	genes	that	reside	outside	the	scope	of	the	curated	
knowledge	on	which	GO	is	based.	Nonetheless,	NeXO	is	also	dependent	on	GO.	The	
researchers	constrained	themselves	to	developing	an	ontology	of	roughly	the	same	size	as	
GO	and	devoted	major	efforts	to	align	NeXO	with	GO	to	take	advantage	of	the	annotations	
already	in	GO.		



to	work	out	the	details	of	how	it	contributes	to	the	phenomenon	(i.e.,	what	operation	it	
performs	in	the	mechanism).		
	
While	acknowledging	major	respects	in	which	network	reasoning	about	mechanisms	is	
reliant	on	more	traditional	mechanistic	approaches,	my	goal	has	been	to	show	how	it	
provides	new	tools	for	developing	and	expanding	mechanistic	explanations.	The	reasoning	
begins	not	with	trying	to	explain	a	particular	phenomenon	but	with	the	databases	storing	
data	about	protein	and	gene	interactions	and	uses	clusters	in	the	networks	constructed	
from	this	data	to	make	inferences	about	mechanisms.	These	steps	are	not	part	of	the	
traditional	mechanistic	explanations,	but	as	I	have	tried	to	show,	provide	additional	
strategies	for	constructing	and	amending	mechanistic	explanations.	Network	approaches	
also	points	to	ways	the	traditional	conception	of	mechanisms	needs	to	be	expanded	and	
amended.	As	a	result	of	adopting	a	cell-wide	focus,	network	approaches	reveal	that	the	
various	mechanisms	of	cells	are	far	more	interconnected	than	traditionally	assumed.	
Moreover,	as	the	examples	in	section	3	showed,	biological	mechanisms	may	not	be	a	stable	
as	traditionally	conceived.	The	constituents	of	cells	are	organized	into	different	clusters,	
corresponding	to	different	mechanisms,	when	cells	confront	different	conditions.	The	
clusters	identified	in	networks,	whether	representing	static	or	differential	conditions,	
though,	are	still	treated	by	researchers	as	representing	mechanisms.	Network	analysis	has	
introduced	new	avenues	for	generating	hypotheses	about	mechanisms	beyond	those	
pursued	in	traditional	mechanistic	research,	and	has	thereby	extended	the	ability	of	
biologists	to	make	discoveries	about	biological	mechanisms.	
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