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Abstract. Determinism is established in quantum mechanics by tracing the
probabilities in the Born rules back to the absolute (overall) phase constants of
the wave functions and recognizing these phase constants as pseudorandom numbers.
The reduction process (collapse) is independent of measurement. It occurs when two
wavepackets overlap in ordinary space and satisfy a certain criterion, which depends
on the phase constants of both wavepackets. Reduction means contraction of the
wavepackets to the place of overlap. A measurement apparatus always fans out the
incoming wavepacket into spatially separated eigenpackets of the chosen observable.
When one of these eigenpackets together with a wavepacket in the apparatus satisfy
the criterion, the reduction associates the place of contraction with an eigenvalue of
the observable. The theory is nonlocal and contextual.
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Citius emergit veritas ex errore
quam ex confusione

Francis Bacon

1 Introduction

The probabilities in present-day quantum mechanics are fundamentally different
from those in classical (pre-quantum) statistical mechanics. In statistical mechanics
the probabilities are conceived to be reducible to finer details of the physical situation
considered. In an ideal gas, for example, the finer details are the positions and
momenta of the individual particles. In principle, classical statistical mechanics is
a deterministic theory. Any random appearance of macroscopic quantities is due to
their very sensitive dependence on the microscopic initial conditions [1], [2].

In contrast to this, the probabilities in quantum mechanics, according to con-
temporary orthodoxy, are irreducible to any underlying more detailed specification.
According to this view, quantum mechanics is irreparably indeterministic. As is well
known, this was always considered a serious drawback by Einstein, and Dirac wrote
[3]:

It may be that in some future development we shall be able to return to
determinism, but only at the expense of giving up something else, some
other prejudice which we hold to very strongly at the present time.

The general procedure of making quantum mechanics deterministic is to
introduce additional variables that in principle determine the outcome of each
individual measurement, and over many repetitions satisfy the approved Born
probability formulas. Such variables are usually called hidden variables or hidden
parameters, terms originally coined by v. Neumann [4]. Actually, some of the
parameters or variables that have been considered in the literature are not hidden at
all, so terms like ‘uncontrolled’ [5, p. 92], ‘determining’ or ‘fixing’ variables would be
more appropriate. Nevertheless, following entrenched usage, we also speak of hidden
variables.

In the present approach hidden variables are introduced, which are equated
with the absolute (global, overall, spacetime-independent) phase constants of the
quantum mechanical wave functions. Each wave function which represents an
individual quantum object is conceived to contain an individual phase factor exp(iα)
with a constant phase α. In an ensemble of objects the phase constants α are thought
of as being random numbers uniformly distributed in [0, 2π]. They are, however,
conceived to be pseudorandom numbers. That is, the phase constants only seem to
be random, but in reality they are determined by certain initial conditions. This
is in the spirit of the theory of deterministic chaos, which has been systematically
developed since the 1960s [2, p. 971].

The experimentally confirmed violations of the Bell inequality show that no
hidden variables can exist that would lead to a local description of nature. Another
restriction comes from the Bell [5] and the Kochen-Specker [6] theorems and requires
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any hidden-variable theory to be ‘contextual’ if it is to reproduce the predictions of
standard quantum mechanics. In the case of hidden-variable models, contextuality
means that the outcome of an experiment depends upon hidden variables in the
apparatus [7]. This is the case in the present conjecture. The Bell inequalities are
violated because our phase constants cannot be taken as common causes in the past,
those in different apparatuses being independent of each other. Actually, whatever
no-go theorems are brought forward, the present approach does reproduce the Born
rules and with them can violate the Bell inequalities. This means nonlocality.

In Sec. 2 we introduce the absolute phase constants of the wavepackets and
point out experiments where they can be determined and what their role is in
superpositions, transformations and in the reduction process.

In Sec. 3 a criterion is formulated, which decides, independent of any measure-
ment, when and where a reduction will occur. The reduction is conceived to be a
spatial contraction. The crucial new ingredient is that the phase constants of two
wavepackets are involved.

Sec. 4 introduces a new view on measurement: when the incoming wave function
is developed into eigenfunctions of the observable, the apparatus achieves that the
eigenfunctions occupy separated regions of space and a reduction associates an
eigenvalue with the position of an observable spot.

Sec. 5 then describes how and under what approximations the criterion
reproduces the Born probability rules.

The Appendices justify some more technical assumptions.

2 The absolute phase constants

The absolute phase constants, which in the present approach are the physical
quantities that play the role of the pseudorandom numbers, are nonlocal hidden
variables. Actually, they have already been proposed by Ax and Kochen [8], where
the authors state in the abstract that:

In the new interpretation, rays in Hilbert space correspond to ensembles,
while unit vectors in a ray correspond to individual members of such
an ensemble. The apparent indeterminism of SQM [statistical quantum
mechanics] is thus attributable to the effectively random distribution of
initial phases.

Ax and Kochen’s elaboration of the idea has a strong mathematical orientation.
It is not conceived to be deterministic and differs in several other respects from the
rather physically oriented elaboration in the present article. But evidently Ax and
Kochen consider the equating of the phases with the hidden variables not to be a
priori forbidden by the Kochen-Specker contextuality theorem [6].

Another hidden variable, conceived to be deterministic, is the initial position
of the point particle in the de Broglie-Bohm theory. In itself it is obviously a
local variable. The nonlocal character of the de Broglie-Bohm theory is based on
the existence of spatially separated entangled wave functions in 3N -dimensional
configuration space, with the same time variable for all N particles. This theory
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has not found broad acceptance among physicists. I suppose that one of the deepest
reasons for this is that its basic element is a point particle. Einstein, for example,
wrote [9]:

On the other hand, it seems to me certain that we have to give up
the notion of an absolute localization of the particles in a theoretical
model. This seems to me to be the correct theoretical interpretation of
Heisenberg’s indeterminacy relation.

In the present theory, the concept of a point particle is replaced by the concept of
a real, objective wavepacket of finite extension, according to the realist interpretation
expounded in [10] - [13]. The argument r in the wave function here does not mean
the position of a point particle. Rather, the position of the wavepacket is given by
the (not explicitly shown) parameter r0 in ψ(r, t), which specifies its center given by∫
r|ψ(r, t)|2d3r, say. Such a wavepacket is endowed with special properties implying

correlations between results of spacelike separated measurements that are not fully
determined by causes in the common past. We argue with Schrödinger wavepackets,
but the solutions of any of the quantum mechanical equations of motion, and even
photon packets of electromagnetic waves, do as well. A more detailed description
of that interpretation is not needed here, but one consequence is that the concept
of a point position is never used in the present article, and when we speak of a
particle we always mean an extended wavepacket. Readers who are still determined
adherents of the Copenhagen interpretation can easily translate our formulations
into the language they prefer.

Now, the fact that in the Born probability rule

p ∝ |ψ(r, t)|2

the phase of ψ does not appear at all, immediately raises the question whether this
might not be the very reason for the probabilistic feature. Actually, Born raised
that question already in the first two papers in which he proposed the probability
interpretation [14, p. 826, 827], [15, p. 866], although only briefly and without
pursuing the matter further. In [15, p. 866] he wrote:

... we have so far no reason to believe that there are some inner properties
of the atom which condition a definite outcome for the collision. Ought
we to hope later to discover such properties (like phases of the internal
atomic motion) and determine them in individual cases?

We thus conceive each wave function of the standard formalism of quantum
mechanics which represents a quantum object to contain an individual phase factor
exp(iα), with α being a real number, independent of r and t. The wave functions are
still normalized to 1. In an ensemble of such wave functions the αs are pseudorandom
numbers. They are assumed to be uniformly distributed in the interval [0, 2π] if they
refer to some kind of equilibrium, that is, if we do not select sets of wave functions
with determined phase values and then isolate them (in those situations where it
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is possible; see below). This is a postulate. It fits with the postulate of random
phases already met in quantum statistical mechanics [16, p. 173, 190]. And it is
analogous to the postulate in classical statistical mechanics that in equilibrium the
density of points in phase space is uniform [16, p. 129]. In other words, probabilities
in quantum mechanics will be traced back to a uniform distribution of phases in
the same way as probabilities in classical statistical mechanics are traced back to a
uniform distribution of points in phase space.

The total wave function written in polar form reads

ψ(r, t) = eiα eiϕ(r,t)|ψ(r, t)| = ei(α+ϕ(r,t))|ψ(r, t)|,

where exp(iϕ(r, t)) |ψ(r, t)| is a normalized solution of the Schrödinger equation,
α+ϕ(r, t) is the total phase, and α is the absolute phase constant. If α is uniformly
distributed in [0, 2π], then α + ϕ(r, t) modulo 2π for any fixed r and t is also so
distributed [17]. Thus, with respect to random appearance the total phase and the
phase constant play the same role, and it is irrelevant which moment we choose as
the initial moment for defining the phase constant.

The absolute phase constants are physical in the sense that physical situations
exist where they can be determined. For example, when two independent weak quasi-
monochromatic laser beams (photon wave functions) are superposed [18], [19]. In
the superpositions the absolute phases become relative phases and determine the
positions of the interference fringes. This can also be said of the wave functions of
Bose-Einstein condensates of atoms [20] and photons [21]. Note that it is not possible
to speak of a definite phase difference between two independent wave functions if
these functions do not each have a definite phase of their own ([8, p. 41]).

What happens to the phase constants when a one-particle wavepacket ψ is
written as ψ =

∑
i λiφi? The φi s here are simply terms in a largely arbitrary

mathematical decomposition and no single φi represents the whole particle. As the
phase constant refers to the wavepacket that represents the whole particle, it is put
in front of ψ and so in front of each of the φi s. If the φi s were to contain individual
random phase factors exp(iαi), then, after averaging over the αi s, there would be no
interference terms in the probability expressions, and the superposition could only
be a statistical mixture (cf. [22, p. 254]).

When two independent wavepackets eiα1ψ1 and eiα2ψ2 get entangled, the phase
constant of the wave function of the entangled system is (α1 + α2) modulo 2π.

What happens to the absolute phase constants in transformations in Hilbert
space that correspond to transformations in classical physical space, such as
rotations or Lorentz transformations? In the traditional ray representation of the
wave functions, where their absolute phases are given no physical significance, the
transformation operators in Hilbert space also only need to be ray representations,
that is, they only need to be defined up to an arbitrary phase factor. Instead of
writing the transformation T in the form

ψ1 = T ψ2
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it is therefore possible to write

ψ1 = eiα T ψ2 = T eiα ψ2 = T ψ3.

However, this means that by a mere transformation, the wave function ψ may
acquire an additional arbitrary contribution to its absolute phase constant. As our
theory is based on a vector representation of the wave functions, where their absolute
phases do have physical significance, we must also insist on a vector representation of
the transformation operators. That is, if in a ray representation the product of two
operators is written as Tk = exp(iαkji)Tj Ti, where αkji is a certain phase depending
on the phases for Ti, Tj and Tk, in a vector representation the phases have to be
fixed in such a way that all of the αkji s are zero, Tk = Tj Ti, and the transformations
are not independent of attaching arbitrary phase factors to the wave functions. This
is not possible for all transformations, for example not for Galilean boosts, but it
is possible for the important cases of permutations, Lorentz boosts (pure Lorentz
transformations), space and time translations, and also for spatial rotations, with
the restriction that the phase factors exp(iαkji) for spinors are either +1 or −1, rather
than only +1 [23], [24, Chapter XV, §6–§8], [25], [26].

What happens with the phase constants in the reduction process is discussed in
Sec. 3.

3 Reduction

In the present theory the reduction is a real physical process which has nothing
to do with measurement. Therefore, we describe reduction before we come to the
role which it plays in a measurement. The description will not be in (necessarily
nonlinear) analytical terms complementing the Schrödinger equation but in terms
of a criterion specifying when and where the Schrödinger evolution is interrupted by
a reduction. In this we are guided by known facts.

Thus we conjecture:

(a) A reduction can occur when two wavepackets overlap, of which at least one
represents a massive elementary particle or a cluster of them.

A cluster consists of several elementary particles bound together, such as an
atom, a molecule, or a larger compound. The wavepacket Ψ representing such a
(free) cluster is the product of two wave functions

Ψ = eiα ψ(r, t)× ψR(ρ1, · · · , ρN , t) (3.1)

namely a center-of-mass (CM) function eiαψ(r, t), which is a superposition of de
Broglie waves of a particle with the mass of the cluster as a whole, and of an
internal function ψR(ρ1, · · · , ρN , t), which represents the relative positions ρi of the
constituent elementary particles [24, Ch. IX, §12, 13]. In the remainder of this article
eiαψ(r, t) will mean the CM wave function. For an elementary particle there is no
quantum mechanical internal wave function in the present sense; its wave function
is counted among the CM functions.
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(b) The reduction is a sudden spatial contraction of both CM wave functions
involved. Each of the two functions contracts to a volume of the order of the volume
υo of the spatial overlap region, i.e. where E := |ψ1(r, t)| |ψ2(r, t)| is practically
concentrated (its effective support) at the first time the criterion (3.2) given below
is satisfied; for example the region where E then is larger than 1/e2 of its maximum
value. The center of the contraction is around the center of that overlap volume.

Note that the spatial extension of the CM wave function eiαψ(r, t) can be very
much larger than the de Broglie wavelength λdB = ~/m0v, where m0 is the mass and
v the velocity of the cluster as a whole, and it can also be very much larger than the
extension of the internal wave function. This is in accordance with the interference
patterns observed with atoms and complex molecules at diffraction gratings [27] -
[29]. These experiments show that it is the CM function of the atom or molecule
that is responsible for the interference patterns. Numerical estimates show that the
initial volume of this function, supposing it is equal to the extension of the internal
wave function, is small compared with the slit separation, and thus cannot produce
interference effects. But due to spreading on the way from formation through vacuum
to the grating (cf. e.g. [11, Appendix A]), its extension becomes larger than the slit
separation and then does produce the interference pattern.

(c) The spatial form of the contracted wave functions is Gaussian (in x, y, z). This
is the form of the minimum wave function in the sense of the Heisenberg relations
with equality sign. The phase constant is not changed.

(d) If one of the two overlapping wavepackets represents an entangled system
of two wavepackets, its phase constant, as stated earlier, is the sum of the phase
constants of the constituent particles modulo 2π, and this phase constant is the one
that enters the formula (3.2a) as α1 or α2, respectively. When the two wavepackets
which represent the entangled system are spatially well separated, as e.g. in
the Einstein-Podolsky-Rosen situation, the reduction contracts these wavepackets
around corresponding points. Moreover, reduction disentangles these two, and we
stipulate that each one takes over the phase constant of the entangled system.

Now, the criterion for such a contraction to occur is conjectured to consist of the
two conditions:

|α1 − α2| ≤ 1
2 αs (3.2a)

K :=

[ ∫
R3

|ψ1(r, t)| |ψ2(r, t)|d3r

]2

≥ α/2π. (3.2b)

Formula (3.2a) is a ‘phase-matching condition’. αs = e2/~c ≈ 1/137 is
Sommerfeld’s fine structure constant. The CM wave functions exp(iα1)ψ1(r, t) and
exp(iα2)ψ2(r, t) become capable of contraction when one phase constant lies in an
interval of size αs around the other.

Formula (3.2b) is an ‘overlap condition’. The phase constant α is the smaller
one of α1 and α2. Due to the Schwarz inequality for the real-valued, positive and
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normalized functions |ψ1| and |ψ2| ([22, p. 95, 96]), the quantity K lies in the interval
[0, 1].

The functions exp(iα1)ψ1 and exp(iα2)ψ2 may pass by each other only at some
distance and their overlap may be accomplished only by their respective marginal
regions. In any case the integral depends on time. The moment of contraction is as
soon as (3.2b) is satisfied, given that the wave function has already encountered a
phase matching cluster, i.e. (3.2a) is already satisfied.

The contraction is sudden, that is, it may occur with superluminal speed.
Experimental evidence, existing since 1913, is collected in [11, Secs. 2.3, 3.1], [12].
It is one aspect of the by now well known quantum mechanical nonlocality.

Some remarks may be of interest:

1) The conjecture goes beyond a re-interpretation of the standard quantum
mechanical formalism. Formulas (3.2) are on an equal footing with the Schrödinger
equation in describing the temporal evolution of the wavepackets.

2) The formulas are symmetric in the wavepackets.

3) The phase-matching interval is conjectured to be of the order of Sommerfeld’s
fine structure constant αs because the phases are dimensionless and αs is the
only dimensionless fundamental constant of nature which plays a role in quantum
mechanics (hydrogen-like atoms [30], natural linewidth [31]).

4) The contraction in our theory is a localization, but a more radical one than that
in the decoherence theories [32] - [34], where localization only means that through
creation of entanglement between a quantum system and its (quantum) environment,
‘phase relations between macroscopically different positions are destroyed’ [34, p. 1,
6], [35]. The contraction is responsible for the persistent illusion of a point particle.

5) Contraction here is not the weird process of reduction directly to the
eigenfunction of some arbitrarily chosen observable. ‘Observable’ is suggestive of
‘measurement’, but measurement should not even be mentioned here.

6) The appearance of the signs ≤ and ≥ in the criterion (3.2) means that several
initial conditions can lead to contraction. But afterwards they leave no trace, so
there is no longer time reversal symmetry in reduction/contraction.

7) Though the absolute phases and the reduction process open a door to a
deterministic quantum mechanics, the details of the specifications here proposed
may be modified in future elaborations. The case of three or more overlapping
wavepackets, for example, being far less frequent, is not dealt with here.

In the remainder of this article we will no longer show the phase factors exp(iα)
explicitly, but will regard them again as hidden in the symbols ψ.

4 The spacetime nature of measurements

Our conception of a quantum mechanical measurement is different in several respects
from most other treatments. There is an abundance of literature on the measurement
process in quantum mechanics [40] and it is not our purpose to review it here.
We restrict ourselves to those aspects that are relevant to our approach. One
point of difference is that we take the stand that it is always possible to relate
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a property of a system by deterministic physical laws to spacetime events, so that
the measurement of any property is ultimately explained by one or several spacetime
position measurements. This is not a new idea. Einstein, for one, wrote [41]:

Now it is characteristic of thought in physics, as of thought in natural
science generally, that it endeavours in principle to make do with “space-
type” concepts alone, and strives to express with their aid all relations
having the form of laws. The physicist seeks to reduce colours and tones
to vibrations, the physiologist thought and pain to nerve processes, in
such a way that the psychical element as such is eliminated from the
causal nexus of existence, and thus nowhere occurs as an independent
link in the causal associations.

And similar statements have been made by Bell [5, p. 10, 34, 166] and many
others, for example [42], [43]. In the cited papers the idea is not further elaborated.
In our treatment it plays a fundamental role. Thus, the measurements we are
concerned with are typical quantum mechanical measurements, that is those where
the extended wavepacket nature of the particles plays a role. This implies that the
spatial resolving interval of the measuring apparatus is smaller than the spatial
extension (volume) of the wavepacket representing the measured object. Thus, the
measurement proceeds in four steps: fanning out, contraction, dynamical interaction,
and magnification.

4.1 Fanning out
In the first step the active region of the measuring apparatus must achieve that the
incoming wavepacket ψ1(r, t), develops into a superposition

ψs(r, t) =
∑
l

cl ψl(r, t) (4.1)

with cl = (ψl(r, t), ψs(r, t)) =

∫
ψ∗l (r, t)ψs(r, t) d3r (4.2)

or, in the continuous case,

ψs(r, t) =

∫
c(a)ψ(a; r, t)da (4.3)

with c(a) = (ψ(a; r, t), ψs(r, t)) =

∫
ψ∗(a; r, t)ψs(r, t) d3r (4.4)

with normalized eigenpackets ψl(r, t) and ψ(a; r, t), respectively, of the observable
(self-adjoint operator) corresponding to the physical quantity under consideration,

subject however to the condition that the different eigenpackets are located in
different regions of space.

A fresh look at what is actually done in real experiments shows that every apparatus
fans out the incoming wavepacket into a coherent superposition of eigenpackets of
the observable, which are located in separate regions of space. This fanning-out
step is an essential new ingredient of our theory. It associates a particular region of
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space with a particular eigenvalue of the observable. It is not a mathematical but
a physical problem. The mathematical expansions (4.1), (4.3) are always possible.
But the wavepacket must be exposed to such a physical situation in which the
eigenfunctions {ψl} and {ψ(a)}, respectively, become spatially separated from each
other. The design of an apparatus with the physical laws accomplishing this is a
challenge to the inventiveness and ingenuity of the experimental physicist. Familiar
examples are the prisms, polarizing beam splitters, diffraction gratings, and the
magnetic field in the Stern-Gerlach device.

incoming
wavepacket

active
region of
apparatus

eigenpackets
of the observable

constituent
wavepackets
of the screen

screen

spot

Figure 1: Sketch of the apparatus fanning out the incoming wavepacket

4.2 Contraction
According to what was stated in Section 2, all superposed eigenpackets ψl(r, t) or
ψ(a; r, t) have the same absolute phase constant as the original incoming wavepaket.
They are all coherent and together represent the incoming particle. They then enter
the sensitive region of the apparatus. We call it the screen (e.g. a photographic
layer). This is the region (‘context’) where the contractions are to occur. The screen
consists of many very small incoherent cluster wavepackets with differing phase
constants. There is certainly one cluster whose phase constant matches the one of
the eigenpackets and satisfies the contraction condition (3.2b), where ψ1 now is the
incoming wavepacket and ψ2 one of the cluster packets of the screen. The overlap
volume between these two is very small because the cluster packets are very small.
The incoming wavepacket is thus effectively contracted to the place of one of the
cluster packets.

That different cluster wavepackets have different phase constants is a crucial
condition in our approach. The facts that the clusters are very small, and that
in calculating scattering amplitudes it is an approved approximation that each
scattering center in the target material acts as if it were alone [24, p. 370], favors
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our assumption.

The incoming wavepacket, according to Section 3, turns into a Gauss function of
the order of the overlap volume υo, that here is practically the volume of the clusters
in the screen or part of it. It can be assumed that the bounds which keep the cluster
together are much stronger than those between the cluster and its environment, so
that in first approximation Eq. (3.1) applies here too. In any case the incoming
wavepacket after the contraction occupies the place of a particular eigenfunction of
the observable. This wavepacket need not be exactly equal to the eigenpacket but
can be taken to be a good approximation to it.

4.3 Dynamical interaction
The incoming wavepacket after contraction interacts with the wavepacket that
represents the cluster. This is a dynamical interaction governed by the Schrödinger
equation. It leads to the final wavepacket ψf(r, t), and the internal wave functions
have participated in this.

The final wavepacket ψf may be absorbed (photons, neutrons, atoms), or it may
escape the interaction region. If it escapes, it may be close to the contracted packet
ψc or it may differ appreciably from it, depending on the details of the interaction.
As ψc may not be exactly equal to the eigenpacket ψn of the observable, so also
ψf may not be exactly equal to ψn. It is, however, reasonable to assume that ψf

immediately after the interaction is also, like ψc, concentrated about the position r0

of the cluster. Therefore, though we cannot generally say that when the measurement
is over, the incoming superposition of eigenpackets has turned into a function that is
exactly equal to an eigenpacket ψn of the observable (the traditional postulate), we
may suppose that usually this happens to an acceptable degree of approximation.
The exact degree of approximation is difficult to determine, because there are many
thought experiments about the wavepacket ψ when it, after contraction, leaves the
measuring apparatus, but to my knowledge there is no real experiment concerned
with this question.

Photons are a special case. In contrast to massive particles they vanish completely
in the act of reduction, and speaking of the place where a vanished thing is does not
seem to make much sense. However, the statement that a one-photon wavepacket,
due to its quantum nature, is absorbed as a whole does not in itself imply that
the absorption occurs at one narrow place, narrower than the wavepacket’s original
extension. As this is indeed the case, we continue to speak of contraction for both
massive and massless particles.

Whether ψf will get entangled with other packets is not relevant because this
does not change the result of the measurement.

The first three steps may thus be summarized as: ψ1 → ψs → ψc → ψf, where
ψ1 = incoming wavepacket, ψs = superposition of spatially separated eigenpackets
ψn, ψc = contracted wavepacket, and ψf = escaping final wavepacket.

4.4 Magnification
The dynamical interaction of the contracted wavepacket with the cluster wavepacket
must lead to a magnification, that is, to a macroscopic, observable spot in the screen.
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A typical case of spot formation is an atom which is ionized, excited or de-excited and
from which an avalanche develops, involving more and more particles (‘secondary
electron multiplier’).

Not all clusters are capable of spot formation, those that are, we call ‘sensitive’
clusters or grains (grain wavepackets). As one example think of the grains in a
photographic emulsion. Generally, the magnification still involves a microscope or a
chain of apparatuses with a great deal of electronic equipment. The spot formation
is the step that accomplishes the ‘circumstancial evidence” of the microworld in the
macroworld. But the details of this process are beyond the intended scope of the
present article. The observation of the spot then is like any classical observation of
what already is and concludes the measurement.

The dependence of the criterion on the phases of both the incoming particle (α1)
and the sensitive cluster in the apparatus (α2) satisfies Conway and Kochen’s [7]
definition of contextuality given in the Introduction. It also answers an objection
raised by Wigner against deterministic theories [44]. Wigner considers a number of
Stern-Gerlach apparatuses in series whose axes point alternately in the z and in the
x direction, perpendicular to the direction y of the particle entering the respective
apparatus. Assume that the particle in the first apparatus escapes the contracting
interaction in the screen with almost unchanged direction and with spin component
in the +z direction. Then the value of the determining hidden variable must lie
in a fraction of the total range originally available for it. In the deflection in the
subsequent apparatus, with axis in x direction, the value must lie in a fraction of
that fraction, and so on; so that after N apparatuses, if N is large enough, it would
seem that the hidden variable lies in such a narrow range that it would determine
the outcomes of all later experiments. This is in contradiction to the predictions of
quantum mechanics. In the present proposal the pseudorandom phases of the wave
functions representing the clusters in the apparatuses ensure the continuing random
appearance of the outcomes after any number of apparatuses.

In traditional, indeterministic quantum mechanics, no superluminal signals can
be transmitted because although the result of the sender can influence (steer)
the result of the receiver, the sender cannot influence his own result, this being
irreducibly indeterministic. In contrast to this, in the deterministic quantum
mechanics here proposed, his result is determined by the form and the phase constant
of the incoming wavepacket and the phase constants of all the grains in the measuring
apparatus. Can he thus send superluminal signals? Notice that knowledge alone is
not sufficient for this: whether or not he knows all the above-listed quantities of the
wavepacket and the grains, the results and with them the correlations are the same.
What would be required for communication is that he be capable of determining all
those quantities. This is virtually impossible, signaling being anyway an operation
between macroscopic bodies. We thus have determinism but no predictability, just
as in throwing dice.

The contextuality here introduced may also be taken as a concrete example of
the

impossibility of any sharp separation between the behaviour of atomic
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objects and the interaction with the measuring instruments which serve
to define the conditions under which the phenomena appear,

as emphasized by Bohr [45].

5 Reproducing the Born rules

In order to show that our conjecture is consistent with established laws, we here
reproduce the Born rules; only here probabilities come in. We begin by defining
what exactly we mean by the Born probability rules. We consider 3 cases:

(i) The probability of finding in a position measurement a value lying in the
interval d3r about r [22, p. 19, 225, 226], [24, p. 117, 192]:

P1 = |ψ(r)|2d3r, (5.1)

where ψ(r) is the incoming wavepacket ψ1(r, t) of Section 4. We leave out the time
variable (as in most textbooks). Here it is always the moment of contraction.

(ii) The probability of finding in a measurement the eigenvalue on of an
observable with a discrete non-degenerate spectrum [22, p. 216], [24, p. 188-190]:

P2 = |(ψn(r), ψ(r))|2, (5.2)

where ψn(r) is the normalized eigenfunction associated with the eigenvalue on.
(iii) The probability of finding an eigenvalue a of an observable with a continuous

non-degenerate spectrum in the interval da about a [22, p. 218], [24, p. 188, 189]:

P3 = |(ψ(a; r), ψ(r))|2da, (5.3)

where ψ(a; r) is the eigenfunction associated with the eigenvalue a.

It is important to note that in any case the Born probabilities only mean that
a certain value is found, not that the object measured has had that value before
the measurement. P1 for example means that a position at r is found, not that an
object is at r when it is not observed. Generally, the probability of finding an object
in a certain volume differs from the probability that the object is in that volume. If
there is a needle in a haystack the probability of finding it depends on the amount
of work and time spent in the search [46]. Consider the normalization convention∫
R3 |ψ(r)|2d3r =1. Of course, the probability that the needle, say, is somewhere

must be 1, but the probability of finding it somewhere may be considerably less
than 1. The finding probability can only be 1 if the finding procedure works with an
efficiency η of 100%. This shows generally that in the Copenhagen interpretation,
formulas (5.1) to (5.3) refer to apparatuses which are tacitly presupposed to function
in all cases with 100% efficiency. So we may put all constant efficiency factors, met
in the derivation below, finally into the value of η, and then set η = 1.

Now we are ready to deduce the Born probability rules in taking the absolute
phase constants to be pseudorandom numbers. We do not deduce the Born rules from
general fundamental principles [47], but reproduce them based on our conception of
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measurement and our criterion for contraction. That is, we are going to show how
the probability of recording a spot at the place of a phase-matching grain leads to
the Born probability.

A good measuring apparatus must satisfy several conditions. In the ideal case
the spots in the screen are small compared to the extensions of the individual
eigenpackets and, in the case of discrete eigenvalues, also to the distance between
them. The grain wavepackets in the screen differ only in their positions and phase
constants. They produce a spot independent of the properties of the particular
eigenpacket that covers them. Their centers r0 are distributed with constant density
over the screen. To accomplish this or to correct for known deviations from it in the
raw data, is the task of the experimenter.

We first consider the Born rule for position measurements. Like time, position in
our theory is a parameter, not an observable (self-adjoint operator). Thus fanning out
is not needed here. Owing to the described properties of the screen, the probability
of phase matching (3.2a) in d3r is independent of position r and can be absorbed
in the efficiency constant η.

Given that (3.2a) is satisfied, the probability that the overlap condition (3.2b)
is also satisfied and contraction occurs is just

K :=

[ ∫
R3

|ψ1(r)| |ψ2(r)|d3r

]2

because the phase matching numbers α/2π are uniformly distributed in the interval
[0, 1], and any number which lies in the interval [0,K] leads to contraction. Thus
the probability P4 that a spot is produced in d3r is

P4 = ηKd3r .

Due to the smallness of the volume υgr of the grain packet ψ2 compared to the
volume of the incoming packet ψ1, we expect that the integral I in K

I :=

∫
R3

|ψ1(r)| |ψ2(r)|d3r

can be approximated by I = η |ψ1(r0)|, where r0 is the center of the grain packet ψ2,
and η is independent of r0. This is suggested by the fact that I effectively extends
only over the volume υgr of the grain packet and we may apply the mean value
theorem for integration in the form

I := |ψ1(r′0)|
∫
υgr

|ψ2(r)| d3r,

where r′0 lies somewhere inside υgr. By the presupposed properties of the screen, the
integral is the same for all grain packets, i.e. independent of r0, so that I = η |ψ1(r′0)|,
with some constant η. And as υgr is small, we may then approximate r′0 by r0, so
that indeed, with some new η,

I = η |ψ1(r0)|. (5.4)
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In Appendix B it is confirmed that any still existing dependence of this η on the
difference ∆ = r′0 − r0 is very weak, and that neglecting it is a fair approximation.
With (5.4) and K = I2 the probability P4 turns into

P4 = η3 |ψ1(r0)|2 d3r.

Then setting η = 1 and writing r, ψ instead of r0, ψ1, respectively, we arrive at

P4 = |ψ(r)|2d3r,

and this is the Born rule (5.1) for a position measurement.

The Born rules for other than position measurements are obtained from the Born
rule for a position measurement and the fanning out concept, independent of the
special criterion for contraction.

First consider an observable with discrete eigenvalues on. Any spot observed in
the spatial region ∆n, covered by the eigenfunction ψn, means that the eigenvalue on
has been observed. Thus the probability P5 of observing on is obtained by integrating
the probability P4 of observing a spot in d3r over the region ∆n

P5 =

∫
∆n

|ψ(r)|2 d3r =

∫
∆n

ψ∗(r)ψ(r) d3r.

In the second integral we use the expansion (4.1)

ψ(r) =
∑
l

cl ψl(r) (5.5)

with (4.2)

cl = (ψl(r), ψ(r)) =

∫
ψ∗l (r)ψ(r) d3r. (5.6)

But as the integral
∫

∆n
extends only over the region covered by ψn, and as the

apparatus is presupposed to have enough resolving power, the sum
∑

l can be
replaced by one of its terms, so that (5.5) reduces to ψ = cn ψn. With this we
obtain

P5 = |cn|2
∫

∆n

ψ∗n(r)ψn(r) d3r,

and as ψn by definition is negligible outside ∆n, the integral may be extended over
all space and is then 1 for the normalized ψn. With cn from (5.6) (l→ n), we arrive
at

P5 = |cn|2 = |(ψn(r), ψ(r))|2,

and this is Born’s rule (5.2) for a general discrete variable.

In the case of a continuous spectrum no apparatus can have sufficient resolving
power to separate the eigenvalues from each other, and we can only ask for the
probability of observing an eigenvalue in some specified interval ∆a (cf. [22, p. 260-
265]). We begin by considering a discrete spectrum whose eigenfunctions ψn overlap
in space. Having observed a spot in the interval ∆3r then means that we have
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observed either on or on+1 or ... . Thus the probability P6 of observing an eigenvalue
in the interval ∆3r is the sum of the probabilities P5 over the eigenvalues on in the
interval ∆o that is associated with the interval ∆3r:

P6 =
∑
on∈∆o

|(ψn(r), ψ(r))|2.

Now, the transition to a continuous spectrum consists in replacing the sum in P6 by
the integral (cf. [21, p. 217-218]):

P7 =

∫
∆a
|(ψ(a; r), ψ(r))|2 da,

where ψ(a; r) is the (improper) eigenfunction associated with the eigenvalue a of
a continuous spectrum. From this it follows that the probability of observing an
eigenvalue in the interval da is

P8 = |( ψ(a; r), ψ(r) )|2 da,

and we have arrived at Born’s rule (5.3) for a general continuous spectrum.

The natural idea of a contracting wavepacket here introduced should be
compared with the Copenhagen idea of a point particle inside the wavepacket, which,
in order to account for the observed interference effects, is not allowed to exist at a
definite position until a measurement is made. I hope the arguments brought forward
in this article will help to break the evil spell cast on this part of quantum mechanics.
The article actually completes a consistent picture of the phenomena considered in
quantum mechanics [11], [12], [48].

Appendix A. Valuation of the absolute phase

Here, we want to deal with the frequently encountered assertion that the absolute
phase of a wave function is undetermined if the wave function represents a definite
number of particles, in the same way as the position is undetermined if the wave
function represents a particle of definite momentum [49] - [51]. This would contradict
our approach, in which a definite phase is ascribed to every wave function.

We plainly reject that assertion. It stems from the introduction of a phase
operator, which does not commute with the particle-number operator. There are,
however, serious difficulties with the construction of a phase operator. The original
phase operator, introduced by Dirac [52], is not Hermitian and thus cannot be
an observable. Subsequently there have been many attempts to construct a phase
operator that is less deficient, but each proposal had its own difficulties and none
has met with general approval. Details can be found in [53] and in the literature
cited there.

Moreover, in a plane wave exp(i(kr − ωt + α)), the phase constant appears on
an equal footing with the time t. So, what holds for time should also hold for phase.
Regarding time, Pauli [54] pointed out that it is generally not possible to satisfy the
canonical commutation relations between the operators time and energy; he wrote:
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We, therefore, conclude that the introduction of an operator t is basically
forbidden and the time t must necessarily be considered as an ordinary
number (‘c-number’) in Quantum Mechanics.

Indeed, there is a position operator but no time operator in non-relativistic
quantum mechanics [22, p. 252], [54] - [56]. And in relativistic quantum field theory
both position and time are parameters, not operators. We therefore take the stand
that we do not need a phase operator for observing the phase, just as we do not need
a time operator for observing the time. Dispensing with the phase operator frees us
from the phase/number uncertainty relation and allows us to ascribe a definite phase
to every wave function, though the actual values of the phases may be unknown to
us.

Appendix B. Approximation in Eq. (5.4)

We estimate here the degree of approximation in taking the η in formula (5.4) as
independent of the difference ∆ = r′0 − r0, under the conditions for a measurement
of position. That is, we want to show that∫

R3

|ψ1(r)| |ψ2(r)|d3r ≈ η |ψ1(r0)|,

To this end we choose the measured packet |ψ1|2 and the grain packet |ψ2|2 to be one-
dimensional (normalized) Gaussian functions with full width σ1 and σ2, respectively.
Thus

|ψ1(x)| =
(

2

πσ2
1

)1/4

exp
(
− (x− x′0)2/σ2

1

)
,

|ψ2(x)| =
(

2

πσ2
2

)1/4

exp
(
− (x− x0)2/σ2

2

)
.

The center of the grain function |ψ2| lies at the position x0, while the center of the
measured function |ψ1| lies at x′0. The value of the integral

I :=

∫ +∞

−∞
|ψ1(x)| |ψ2(x)|dx

can then be evaluated exactly, with the result

I(δ) =

[
2

σ1/σ2 + σ2/σ1

]1/2

exp

(
δ2

σ2
1

[
1

1 + (σ1/σ2)2
− 1

])
, (B1)

where δ = x0 − x′0. This can be written as

I(δ) = Q(δ) × |ψ1(x0)| with

Q(δ) =

[
2

σ1/σ2 + σ2/σ1

]1/2 (πσ2
1

2

)1/4

exp

(
δ2

σ2
1

[
1

1 + (σ1/σ2)2

])
. (B2)
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From (B1) and (B2) it is seen that Q(δ) varies only slowly with δ where I(δ) has
appreciable values. For example, with σ2 = 0.05σ1 (corresponding to the small vgr),
the value of Q at δ/σ1 = 2 has increased by only 1% from its value at δ/σ1 = 0,
whereas I thereby has decreased to 2% of its value at δ = 0, and with this rarely
satisfies the overlap condition (3.2b). We therefore conclude that (5.4) is a fair
approximation.
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