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Abstract: This paper discusses how to update one’s credences based on evidence that has initial 

probability 0. I advance a diachronic norm, Kolmogorov Conditionalization, that governs credal 

reallocation in many such learning scenarios. The norm is based upon Kolmogorov’s theory of 

conditional probability. I prove a Dutch book theorem and converse Dutch book theorem for 

Kolmogorov Conditionalization. The two theorems establish Kolmogorov Conditionalization as 

the unique credal reallocation rule that avoids a sure loss in the relevant learning scenarios. 

 

§1. Dutch book arguments for conditionalization 

How should you update your credences in light of new evidence? The most widely 

discussed norm is Conditionalization, which requires that: 

If you assign credence P(H) to a proposition H, and you gain new evidence that is 

exhausted by knowledge of E, then you respond to your new evidence by assigning 

credence P(H | E) to H. 

Here P(H | E) is the conditional probability of H given E. Conditionalization traces back to 

Bayes’s seminal discussion (Bayes and Price, 1763). It is a linchpin of Bayesian decision theory. 

 Philosophers have pursued various strategies for justifying Conditionalization. One 

prominent strategy builds upon the classic Dutch book arguments advanced by Ramsey (1931) 
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and de Finetti (1937/1980). A Dutch book is a collection of acceptable bets that inflict a sure 

loss. An agent is Dutch bookable when it is possible to rig a Dutch book against her. Dutch 

bookability is a very undesirable property, because a sufficiently devious bookie can pump a 

Dutch bookable agent for money by offering her bets that she gladly accepts. Ramsey and de 

Finetti independently noted that one can rig a Dutch book against an agent whose credences 

violate the probability calculus axioms. They argued that such an agent’s credal allocation is 

rationally defective. They concluded that credences should conform to the probability calculus 

axioms. This is a synchronic Dutch book argument, because it addresses credences at a moment 

rather than credal evolution over time. Subsequent authors have pursued diachronic Dutch book 

arguments concerning how to reallocate credence in light of new evidence. In particular, Lewis 

proved a Dutch book theorem for Conditionalization. Teller (1973) publicized the theorem (with 

full credit to Lewis), and Lewis (1999) eventually published his own treatment. 

Lewis’s theorem concerns an idealized agent who learns a proposition drawn from some 

mutually exclusive, jointly exhaustive set of propositions E1, …, En, with P(Ei) > 0 for each i. 

When Ei has non-zero probability, one defines conditional probability through the ratio formula: 
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For the proposed learning scenario, we may reformulate Conditionalization as a norm that I will 

call Ratio Conditionalization. This norm requires that: 

If you assign credence P(H) to each proposition H, and E1, …, En are mutually exclusive, 

jointly exhaustive propositions with P(Ei) > 0 for all i, and you gain new evidence that is 

exhausted by knowledge of one particular proposition Ei, then you respond to your new 

evidence by assigning credence 
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Lewis proved that one can rig a diachronic Dutch book (a Dutch book involving bets offered at 

different times) against an agent who violates Ratio Conditionalization. Skyrms (1987) proved a 

converse theorem: one cannot rig a diachronic Dutch book against an agent who conforms to the 

probability calculus axioms and who obeys Ratio Conditionalization. These two theorems 

establish Ratio Conditionalization as the unique update rule that avoids diachronic Dutch books 

in the specified learning scenario. Lewis and Skyrms argue on that basis that one should conform 

to Ratio Conditionalization. 

 When P(Ei) = 0, the ratio formula is not well-defined and Ratio Conditionalization does 

not apply. Ratio Conditionalization does not say how an agent should update her credences based 

upon evidence that has probability 0. I call such cases null updating scenarios. A simple example 

is conditioning on the value of a continuous random variable X, i.e. a random variable with 

continuum many values. Orthodox probability theory demands that P(X = x) = 0 for all but 

countably many values x. When P(X = x) = 0, the ratio formula does not yield well-defined 

conditional probabilities P(H | X = x). Thus, Ratio Conditionalization does not specify how to 

reallocate credence if you learn that X = x. How should you reallocate credence under these 

circumstances? More generally, what diachronic norms govern null updating? 

 Kolmogorov (1933/1956) offered an influential mathematical framework that bears 

directly upon these questions. He advanced a theory of conditional probability general enough to 

cover scenarios where the conditioning evidence has probability 0. Kolmogorov’s treatment 

plays a foundational role within probability theory. It informs every standard graduate-level 

textbook. A few philosophers have explored its potential to illuminate credal reallocation (e.g. 

Easwaran, 2008; Gyenis and Rédei, 2017; Huttegger, 2015). More commonly, though, 
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philosophers either reject Kolmogorov’s approach (e.g. Hájek, 2003, 2011; Howson, 2014; 

Myrvold, 2015; Seidenfeld, 2001) or else ignore it altogether. 

I think that the philosophical community has paid Kolmogorov’s insights into conditional 

probability far less attention than they merit. One can extract from Kolmogorov’s discussion a 

plausible diachronic norm that governs many important null updating scenarios. I call this norm 

Kolmogorov Conditionalization. I will prove a Dutch book theorem and converse Dutch book 

theorem for Kolmogorov Conditionalization. The theorems establish Kolmogorov 

Conditionalization as the unique update rule that avoids diachronic Dutch books in relevant 

learning scenarios.
1
 

 Considerable stage-setting is needed before I state and prove the two main theorems. §§2-

3 offer background remarks on null updating and Dutch book arguments. §4 presents 

Kolmogorov’s theory of conditional probability. §5 introduces Kolmogorov Conditionalization 

and constructs a diachronic Dutch book for agents who violate it. §6 more rigorously states and 

proves a strengthened Dutch book theorem. §7 proves a converse Dutch book theorem. §8 

discusses the significance of the two theorems. I assume throughout that credences should be 

countably additive. This assumption is controversial (de Finetti, 1972), (Howson, 2014), 

(Kadane, Schervish, and Seidenfeld, 1986), (Savage, 1954). However, exploring the two main 

theorems will keep us busy enough without wading into controversies over countable additivity. 

 

§2. Null updating 

                                                 
1
 McGee (1994) generalizes Lewis’s setup so as to analyze a special case of null updating. He considers an agent 

who learns a proposition drawn from some mutually exclusive, jointly exhaustive set E1, …, En, where P(Ei) may be 

0. For this special case, McGee proves a Dutch book theorem and converse Dutch book theorem involving Popper’s 

(1959) theory of conditional probability. McGee’s setup is not general enough to cover even our motivating example 

of conditioning on a continuous random variable, since a continuous random variable induces an infinite partition of 

the probability space. The theorems I prove below cover conditioning on a continuous random variable and many 

other learning scenarios unaddressed by previous Dutch book results. 
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 Why study null updating? One reason is that it figures prominently in scientific practice. 

Our world is populated by continuously varying quantities: shapes, sizes, colors, 

locations, and so on. Bayesian agents must frequently estimate these quantities. Accordingly, 

continuous random variables are fixtures within scientific applications of the Bayesian paradigm, 

including Bayesian statistics (Lindley, 1982), probabilistic robotics (Thrun, Burgard, and Fox, 

2006), and game theory (Fudenberg and Tirole, 1991). They also play a large role within 

Bayesian cognitive science (Chater and Oaksford, 2008), which provides Bayesian models of 

core mental processes such as perception (Knill and Richards, 1996), motor control (Wolpert, 

2007), and navigation (Madl, et al. 2014). All these fields routinely adduce credences over a 

continuous hypothesis space. For example, probabilistic robotics aims to construct a robot that 

estimates its own location. Similarly, Bayesian perceptual psychology hypothesizes that the 

perceptual system uses Bayesian inference to estimate the shapes, sizes, colors, and locations of 

observable objects. Scientific applications of Bayesianism cannot get far without a continuous 

probability space. 

 Standard probability theory requires that all but countably many values of a continuous 

random variable receive probability 0. Scientific applications of Bayesianism therefore assign a 

central role to null updating. For example, one might estimate the mass of some star by 

measuring perturbations in the orbit of a nearby planet; or one might estimate the location of an 

underwater missile by taking sonar readings; or one might estimate the color of a distal surface 

by measuring the light spectrum emitted by the surface. All these learning scenarios, and 

numerous others that arise in scientific applications, require conditioning on the value of a 

continuous random variable (or random vector). 
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Nevertheless, null updating receives surprisingly little philosophical discussion. One 

reason is that many philosophers endorse regularity: the doctrine that one should assign positive 

probability to metaphysically possible propositions (Jeffrey, 1992), (Kemeny, 1955), (Shimony, 

1955), (Skyrms, 1980), (Stalnaker, 1970). Assuming regularity, a rational agent cannot learn a 

proposition to which she formerly assigned probability 0. However, regularity is implausible 

(Hájek, 2003, 2012). It conflicts with the aforementioned scientific applications of Bayesianism. 

It also conflicts with Ratio Conditionalization: conditionalizing on Ei leads you to assign 

credence 1 to Ei and credence 0 to conflicting propositions, even when those propositions are 

metaphysically possible. Anyone sympathetic to Ratio Conditionalization should reject 

regularity. 

 Jeffrey (1983) argues that Conditionalization has limited applicability to real world 

agents, since experience rarely authorizes credence 1 for an empirical proposition Ei. More 

typically, experience authorizes you to reallocate credence across certain select propositions E1, 

…, En, with no single proposition receiving credence 1. On that basis, you must assign new 

credences to all remaining propositions H. Jeffrey formulates an update rule (Jeffrey 

Conditionalization) tailored to this learning scenario. 

Although Jeffrey focuses his critique on Ratio Conditionalization, a similar worry arises 

even more forcefully for null updating. We are finite beings with limited representational and 

discriminative capacities. Our perceptual organs and measuring instruments rarely if ever specify 

the value of a random variable X with infinite precision (Borel, 1909/1956), (Myrvold, 2015). At 

best, we learn that X has value x plus or minus some margin of error. At best, we learn that X’s 

value falls in some interval, where the interval has positive probability. Thus, one might argue 

that we rarely if ever learn null propositions with anything approaching complete confidence. 
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From this viewpoint, null updating looks like an overly fanciful learning scenario that idealizes 

away crucial features of real-world statistical inference. 

 To a certain extent, I sympathize with such worries. Null updating scenarios are heavily 

idealized. There is value in studying less idealized learning scenarios. But I insist that there is 

also value in studying null updating. In field after field --- from statistics to economics to 

robotics to cognitive science --- researchers have found it explanatorily or pragmatically fruitful 

to consider null updating scenarios. These scenarios form an essential starting point for inquiry 

into less idealized scenarios. Normative models of null updating persist as benchmarks against 

which we can compare less idealized models. Thus, current scientific practice establishes null 

updating as a theoretically important phenomenon that merits intensive foundational 

investigation. For further argument that we should study null updating, see (McGee, 1994).  

 

§3. Dutch book theorems versus Dutch book arguments 

 Even philosophers who agree that null updating merits investigation may doubt that 

Dutch books shed much light upon it. Although Dutch book arguments are still fairly popular, 

they have attracted increasingly harsh criticism over the past few decades. 

 We must carefully distinguish here between Dutch book theorems and Dutch book 

arguments. Dutch book theorems are mathematical results that admit definitive proof. For 

example, Lewis proves that one can rig a diachronic Dutch book against anyone who violates 

Ratio Conditionalization. Dutch book arguments use Dutch book theorems to defend a 

philosophical conclusion: namely, that one should conform to certain norms governing credal 

allocation. Over the past few decades, philosophers have grown increasingly skeptical that one 

can convert Dutch book theorems into compelling Dutch book arguments (Hájek, 2009). Most 
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fundamentally, Dutch book arguments seem to elide pragmatic and epistemic factors. If you are 

Dutch bookable, then you are vulnerable to a guaranteed net loss. This vulnerability is a 

pragmatic defect, so it indicates that your credences are defective from a pragmatic viewpoint. 

But why conclude that your credences are defective from an epistemic viewpoint? How can 

Dutch book considerations establish a failure of epistemic rationality?
2
 

 The present paper focuses on Dutch book theorems rather than Dutch book arguments. I 

will prove a Dutch book theorem and converse Dutch book theorem for Kolmogorov 

Conditionalization. I will not use the theorems to argue that Kolmogorov Conditionalization is 

epistemically privileged. Even without an accompanying Dutch book argument, the theorems are 

useful and informative. Specifically, they show that Kolmogorov’s theory of conditional 

probability captures fundamental links between conditional probability, credal reallocation, and 

decision-making. 

 

§4. Kolmogorov’s theory of conditional probability 

 I now present the basic elements of Kolmogorov’s theory. Billingsley’s (1995, pp. 427-

440) more detailed exposition serves as a partial basis for my own exposition. In §4.1, I 

introduce the learning scenarios modeled by Kolmogorov. In §4.2, I describe how Kolmogorov 

delineates conditional probabilities tailored to these learning scenarios. 

 

§4.1 Kolmogorov learning scenarios 

                                                 
2
 Another prominent worry focuses more specifically on diachronic Dutch book arguments. van Fraassen (1984) 

proves a diachronic Dutch book theorem for the Principle of Reflection, which is widely regarded as implausible. 

Some authors conclude that diachronic Dutch book arguments are suspect (Christensen, 1991). van Fraassen himself 

concludes that we should accept both Conditionalization and Reflection. Others try to isolate a principled difference 

between Lewis’s diachronic Dutch book theorem for Conditionalization and van Fraassen’s diachronic Dutch book 

theorem for Reflection, so that the former may yield a compelling Dutch book argument even though the latter does 

not (Briggs, 2009), (Mahtani, 2015). 
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 Kolmogorov assumes an idealized agent whose credences are modeled by a probability 

space (, F, P), where  is a set, F is a -field over , and P is a probability measure on F. 

Elements of  are outcomes. Elements of F are events. For some purposes, we might regard 

outcomes as possible worlds and events as propositions. However, Kolmogorov’s theory does 

not presuppose this philosophical gloss. 

 Kolmogorov considers a learning setup much more general than that considered by 

Lewis. In both setups, an idealized agent awaits partial information about the true outcome . 

In Lewis’s setup, the agent learns where  falls within some finite partition of . In 

Kolmogorov’s setup, the agent learns whether  belongs to each GG, where GF is itself -

field. Intuitively, the sub--field G serves as an “information filter.” The agent does not learn 

everything about outcome , but she learns about  as filtered through G. I call learning 

scenarios of this kind Kolmogorov learning scenarios. Thus, a Kolmogorov learning scenario is 

one where the agent gains full membership knowledge for a sub--field GF regarding the true 

outcome . If we view events as propositions, then we can say that G contains all the new 

propositions learned by our agent. 

To illustrate Kolmogorov learning scenarios, consider a continuous random variable X:  

 . When you learn that X() = r, you thereby learn many additional facts about the events to 

which  belongs. Assuming that expression “r” is suitably informative, knowledge that X() = r 

allows you to affirm or deny each proposition 

   X()  (a, b)     a, b  . 

In that sense, you gain membership knowledge for all sets 

   X 
-1

(a, b)     a, b  . 
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Let (X) be the -field generated by these sets, i.e. the result of starting with the sets X 
-1

(a, b) 

and closing under complementation and countable unions. If your knowledge were closed under 

complementation and countable union, then you could extrapolate from membership knowledge 

for the sets X 
-1

(a, b) to full membership knowledge for (X). Thus, the sub--field (X) helps us 

model the knowledge of an idealized superhuman who learns that X = r and whose knowledge is 

closed under complementation and countable union. 

Of course, the explicit knowledge of an ordinary finite human is not usually closed under 

complementation and countable union. However, there is a natural sense in which full 

membership knowledge for (X) is implicit in an ability to affirm or deny each proposition 

   X()  (a, b)     a, b  . 

In that sense, complete membership information for (X) models the implicit knowledge gained 

by an agent who learns that X = r. 

 Even if we use (X) to model implicit rather than explicit knowledge, the envisaged 

learning scenario assumes superhuman mental capacities. If (X) models possible implicit 

knowledge that an agent might acquire, then the agent has uncountably many possible doxastic 

states corresponding to each value of X. Finite beings such as ourselves do not have uncountably 

many possible doxastic states. In particular, we do not have the capacity to represent arbitrary 

real numbers with infinite precision. Thus, Kolmogorov’s model even viewed as a model of 

implicit knowledge assumes an idealized superhuman with infinitary mental capacities. As 

indicated in §2, idealized models of this kind play an important role in current science. They 

serve as benchmarks against which we can compare less idealized models. Scientific applications 

of Bayesian modeling have repeatedly demonstrated the explanatory and pragmatic benefits that 

accrue when we take these idealized benchmarks as a starting point. 
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 Many important cases of rational credal reallocation can be fruitfully modeled (in an 

idealized way) as Kolmogorov learning scenarios. I do not say that all cases of rational credal 

reallocation can be so modeled. Some learning scenarios do not naturally fit the Kolmogorov 

template: scenarios of the kind highlighted by Jeffrey, where experience authorizes you to 

reallocate credence across certain select propositions E1, …, En, with no single proposition 

receiving credence 1; scenarios involving memory loss or the threat of memory loss (Arntzenius, 

2003); scenarios involving conceptual discoveries that add new propositions to your cognitive 

repertoire (Lewis, 1999); and so on. Thus, Kolmogorov learning scenarios are only one type of 

learning scenario one might study. Still, they are very important. We also understand them 

relatively well, thanks in large part to Kolmogorov’s efforts. I henceforth focus exclusively on 

Kolmogorov learning scenarios. (Cf. Easwaran, 2013, pp. 122-123.) 

 

§4.2 Regular conditional distributions 

 We want to delineate probabilities conditional on information about whether  belongs to 

each GG. Intuitively, these conditional probabilities constitute a plan for updating credences 

after gaining full membership knowledge for G regarding . Formally, Kolmogorov isolates a 

function PG : F    . We write PG (A | ) to denote the value that this function assumes on 

inputs AF and . Think of PG (A | ) as the probability of A given  as filtered through G. 

Kolmogorov places three constraints on PG: 

 

Regularity: For each , PG induces a one-place function PG ( . | ): F  . Say that PG is 

regular just in case: 

PG ( . | ) is a probability measure   for each . 
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Intuitively: conditioning on new evidence should always carry you to a probability measure. 

Note that this is a totally different notion of regularity than the notion rejected in §2. It is an 

unfortunate fact that the literature associates these two completely different notions with the 

same word “regularity.” 

 

G-measurability: For each AF, PG induces a one-place function PG (A | . ):   . This function 

reflects a policy for updating the credence assigned to A upon receiving partial information about 

the true outcome. Kolmogorov requires that 

PG (A | . ) is G-measurable    for each AF. 

In other words, he requires that 

  PG (A | . )
-1

 (-, a]  G     for every AF, a . 

G-measurability reflects the assumption that credences are updated based solely upon 

membership information for G. Intuitively: the agent must learn whether the updated credence for 

A is  a, so one of the propositions she implicitly learns should be either the proposition that 

  PG (A |  )  a 

or else the proposition that 

  PG (A |  ) > a. 

If PG (A | . )
-1

 (-, a]  G, then someone who learns whether G for each GG can (at least in 

principle) determine whether PG (A |  )  a. She need simply examine whether   PG (A | . )
-1

 (-

, a]. In contrast, suppose that PG (A | . )
-1

 (-, a]  G. Then our agent’s newly acquired 

membership knowledge about G does not include knowledge whether   PG (A | . )
-1

 (-, a]. She 

does not acquire even implicit knowledge whether PG (A |  )  a. Thus, G-measurability captures 
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the intuitive idea that someone who gains full membership knowledge for G regarding  thereby 

gains implicit knowledge whether PG (A |  )  a. 

 

The integral formula: Conditional probabilities must be appropriately related to unconditional 

probabilities. When the conditioning event has non-zero probability, the ratio formula specifies 

this “appropriate relation.” To analyze probabilities conditional on events with probability 0, 

Kolmogorov offers a constraint called the integral formula: 

 )()|()( dPωAPGAP
G G

,   for any GG. 

The integral formula generalizes the law of total probability from elementary probability theory. 

 

A G-measurable function PG (A | . ):    that satisfies the integral formula is a conditional 

probability for A given G. A two-place function PG (. | . ) satisfying all three constraints is a 

regular conditional distribution (rcd) for P given G. One can prove that there always exists a 

conditional probability for A given G (Billingsley, 1995, p. 430). One can also prove that there 

exists an rcd for P given G in a wide variety of cases (Durrett, 1991, pp. 198-200), (Rao, 2005, 

pp. 125-182), including all or virtually all cases that arise in empirical applications. 

 In certain pathological cases, there is no rcd for P given G (Billingsley, 1995, p. 443). 

Some critics regard these cases as a serious problem for Kolmogorov’s theory (Seidenfeld, 

2001). However, I think that they should not worry any theorist who already accepts countable 

additivity. Vitali proved that certain -fields, such as the power set of the unit interval, do not 

admit probability measures. His proof uses the Axiom of Choice to define a nonmeasurable set. 

Standard examples where rcds do not exist likewise feature a nonmeasurable set (Seidenfeld, 

Schervish, and Kadane, 2001). Once we accept that countably additive unconditional 
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probabilities do not always exist, we should not feel particularly disturbed that countably 

additive conditional probabilities do not always exist. 

 Notably, Kolmogorov relativizes conditional probabilities to conditioning sub--fields. 

One never conditions upon an isolated probability zero event. Rather, one conditions upon an 

outcome as filtered through a sub--field G. Suppose random variables X and Y are such that 

 X() = x iff Y() = y    for all , 

where the event {X = x} (i.e. the event {Y = y}) has probability 0. In many such cases, there 

exists AF such that 

P(X)(A | )  P(Y)(A | ) 

for all {X = x}, where P(X)(A | .) is a conditional probability for A given (X) and P(Y)(A | .) 

is a conditional probability for A given (Y). According to Kolmogorov, there is no determinate 

answer as to the conditional probability of A given {X = x}. A determinate conditional 

probability arises only once one regards {X = x} as embedded in a surrounding sub--field.
3
 

Kolmogorov’s relativistic approach is controversial among philosophers. Many authors insist 

that we should instead strive to isolate unrelativized conditional probabilities (Hill, 1980), 

(Howson, 2014), (Kadane, Schervish, and Seidenfeld, 1986), (Myrvold, 2015). See (Gyenis, 

Hofer-Szabó, and Rédei, 2017) and (Rescorla, 2015) for defense of Kolmogorov’s relativistic 

approach. 

                                                 
3
 A famous example, nowadays called the Borel-Kolmogorov paradox, arises when a point is picked randomly on 

the earth’s surface. How should we condition on news that the point falls on some great circle C? One can motivate 

different intuitively compelling answers, depending on whether one regards C as the equator or as two meridians 

fused together. According to Kolmogorov, there is no single determinate answer. We must first settle upon a 

conditioning sub--field that contains C. We can pick a sub--field that corresponds to regarding C as the equator, 

or we can pick a different sub--field that corresponds to regarding C as two meridians fused together. The different 

conditioning sub--fields engender different rcds. Gyenis, Hofer-Szabó, and Rédei (2017) and Rescorla (2015) 

discuss the Borel-Kolmogorov paradox at length. 
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 Even when we hold the conditioning sub--field fixed, Kolmogorov’s theory determines 

PG (A | . ):    only up to measure 0. One can vary PG (A | ) arbitrarily on outcomes  

comprising a probability zero event, provided one takes care that for each  the results assemble 

into a probability measure PG ( . | ). This indeterminacy arises because the integral formula 

mentions PG (A | ) only inside an integral sign. Integration ignores differences of measure 0, so 

the integral formula does not pin down unique conditional probabilities. In the mathematical 

literature, candidate conditional probabilities PG (A | . ) equal up to measure 0 are sometimes 

called versions of the conditional probability, which is then regarded as an equivalence class of 

its versions. Using this terminology, Kolmogorov’s theory does not privilege any specific 

version of the conditional probability. Many authors find the resulting indeterminacy worrisome. 

Pfanzagl (1979), Rao (2005), and Tjur (1980) try to mitigate the indeterminacy by 

supplementing Kolmogorov’s theory with additional constraints on conditional probabilities.
4
 

 Over the past century, researchers such as Popper (1959) and Rényi (1955) have 

proposed various alternatives to Kolmogorov’s theory of conditional probability. These 

alternative theories tend to receive better philosophical press than Kolmogorov’s theory. 

However, Kolmogorov’s approach is orthodox within contemporary mathematical practice. One 

of its main advantages is that the integral formula tightly constrains the relation between 

conditional and unconditional probabilities. Popper and Rényi supply no comparably substantive 

constraints. In practice, Kolmogorov offers far more guidance for computing conditional 

probabilities than either Popper and Rényi. Of course, one must assess whether Kolmogorov 

offers good guidance. The theorems proved below provide insight into that question. 

                                                 
4
 Another worry about Kolmogorov’s approach is that, when the conditioning sub--field is sufficiently odd, the 

resulting rcds have properties that conditional properties seemingly should not have (Hájek, 2009), (Seidenfeld, 

Schervish, and Kadane, 2001). See Easwaran (2011) for one response to this worry. 
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§5. A Dutch book theorem for Kolmogorov Conditionalization 

 Kolmogorov’s explicit concern is conditional probability rather than credal reallocation. 

Still, Kolmogorov’s theory naturally suggests a norm that governs credal reallocation in 

Kolmogorov learning scenarios. Suppose that (, F, P) is a probability space and GF is a sub-

-field. Kolmogorov Conditionalization requires that: 

If you begin with credences P over F, and there exists an rcd for P given G, then, for one 

such rcd PG, whenever you gain new evidence that is exhausted by full membership 

knowledge for G regarding the true outcome , you respond by adopting new credences 

PG ( . | ) over F. 

Kolmogorov Conditionalization requires you to update credences whenever possible using an 

rcd. If G is generated by a partition E1, …, En of events such that P(Ei) > 0, one can show that the 

ratio formula yields a unique rcd for P given G. In this special case, Kolmogorov 

Conditionalization reduces to Ratio Conditionalization. If there are infinitely many rcds for P 

given G, you can satisfy Kolmogorov Conditionalization by using any one of them as your credal 

reallocation policy. If there exists no rcd for P given G, Kolmogorov Conditionalization does not 

say how to proceed.
5
 

 I will now show that anyone who violates Kolmogorov Conditionalization is Dutch 

bookable. I assume the following setup. At time t1, (, F, P) models your credal allocation. At 

time t2, you and I will both gain full membership knowledge for GF. Let C(A | ) be the 

credence you would assign to AF upon gaining this knowledge for outcome . Given the 

argumentation of §4.2, we may assume that 

                                                 
5
 I do not assume that every probability space (, F, P) models a possible credal allocation or that every sub--field 

G models a possible learning scenario. In certain cases, (, F, P) or G may be so bizarre that no possible agent 

satisfies the antecedent of Kolmogorov Conditionalization (even though there exists an rcd for P given G). 
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C( . | ) is a probability measure     for each . 

C(A | . ) is G-measurable      for all AF 

These two assumptions echo the first two clauses in the definition of rcd. 

If C(A | . ) satisfies the integral formula for each AF, then C is an rcd and your credal 

reallocation policy conforms to Kolmogorov Conditionalization. Let us therefore assume that 

C(A | . ) violates the integral formula for some AF. It follows that 

P{: C(A | )  PG (A | )} > 0, 

where PG (A | .) is some conditional probability for A given G. Note that 

 {: C(A | )  PG (A | )} = {: C(A | ) < PG (A | )}  {: C(A | ) > PG (A | w)}. 

Both sets on the right-hand side belong to G. At least one of these two sets must have non-zero P-

measure. Without loss of generality, suppose the first does. Call this set G: 

 G =df {: C(A | ) < PG (A | )}. 

I now use G to rig a Dutch book containing sequential bets offered at times t1 and t2. 

At time t1, I offer you a conditional bet: if we learn at time t2 that G, then I will sell 

you for price PG (A | ) a wager that pays off as follows: 

A  payoff = 1 

A  payoff = 0.
6
 

We will be able in principle to determine PG (A | ) at time t2, because membership knowledge 

for G fixes PG (A | ). Call this bet 1. Table 1 summarizes net gain for bet 1 given any outcome 

. Bet 1 has payoff 1 when AG and payoff 0 otherwise, so its expected payoff is 

P(AG). You pay price PG (A | ) when G and price 0 otherwise, so the expected price is 

                                                 
6
 Here and elsewhere “” is the material conditional. 
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 )()|( G dPAPG
. 

By the integral formula, the expected price is P(AG). Since the expected payoff and the 

expected price are equal, the expected net gain is 0. You therefore accept bet 1 as fair. You 

commit to buying the specified wager for the specified price if it turns out that G. (Cf. 

Billingsley, 1995, p. 431.) 

 

INSERT TABLE 1 ABOUT HERE 

 

At time t2, we both learn whether G. If G, then no money changes hands. If G, 

then we enact the gambling transaction agreed upon at time t1. Furthermore, I now ask you to sell 

me for price C(A | ) a wager that pays off as follows: 

A  payoff = 1 

A  payoff = 0. 

Call this bet 2. Table 2 summarizes net gain for bet 2. Bet 2 has payoff 1 when A and payoff 

0 otherwise, so its expected payoff is your credence in A at time 2: namely, C(A | ). This is also 

bet 2’s price, so expected net gain from bet 2 is 0. You therefore accept bet 2 as fair. 

 

INSERT TABLE 2 ABOUT HERE 

 

Table 3 summarizes your net gain for the overall gambling scenario, given any outcome 

. Net gain is negative if G and 0 if G. Since P(G) > 0, the overall gambling scenario 

offers a positive probability of net loss and no compensating prospect of net gain. To quote 

Lewis: “I can inflict on you a risk of loss uncompensated by any chance of gain” (1999, p. 406). 
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When C(A | ) > PG (A | ) with positive probability, I can simply reverse the two bets: I buy bet 

1 and sell bet 2. Either way, you are vulnerable to fair bets that offer a positive probability of net 

loss and no compensating positive probability of net profit. 

 Here we may distinguish a weaker and stronger notion of Dutch bookability. A strong 

Dutch book is a set of acceptable bets with guaranteed net loss. A weak Dutch book is a set of 

acceptable bets with a positive probability of net loss and no compensating positive probability 

of net profit. In §1, I used the phrase “Dutch book” to mean strong Dutch book, as is typical in 

the literature. I have just shown that anyone who violates Kolmogorov Conditionalization is 

weakly Dutch bookable. A minor emendation in §6 will show that any such agent is strongly 

Dutch bookable. Clearly, weak Dutch bookability is already very undesirable. 

 To rig a weak diachronic Dutch book against you, I must know your plan C(A | ) for 

updating credences. Only then can I decide whether to buy or sell the relevant bets. A similar 

situation prevails in Lewis’s Dutch book theorem for Ratio Conditionalization. As Lewis puts it, 

“I still have no safe strategy for exploiting you unless I know in advance what you will do instead 

of conditionalizing” (1999, p. 407). However, I think that we should not overemphasize 

“strategies” for exploiting non-conditionalizers. The core issue here does not concern 

competition between agents. The core issue concerns internal defects in a single agent’s credal 

allocation over time. The main worry here is not that you are vulnerable to exploitation but rather 

that your own credal allocation depicts your credal reallocation policy as promoting pointlessly 

risky behavior. By your own lights, your credal reallocation policy can lead you to incur a 
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positive probability of net loss with no compensating positive probability of net gain. Thus, your 

credal reallocation policy has highly undesirable pragmatic properties by your own lights.
7
 

 

§6. Dutch books formalized 

 I have shown that agents who violate Kolmogorov Conditionalization are vulnerable to a 

weak Dutch book. Might agents who obey Kolmogorov Conditionalization be just as badly off? 

Say that a Kolmogorov conditionalizer is someone who satisfies the antecedent of Kolmogorov 

Conditionalization and who conforms to Kolmogorov Conditionalization. A Kolmogorov 

conditionalizer has initial credences that admit a suitable rcd, and she reallocates credences using 

such an rcd. I will prove that one cannot rig a weak Dutch book against a Kolmogorov 

conditionalizer. To prove a negative result of this kind, I must first formalize the notions update 

rule, bet, bookie strategy, and weak Dutch book. 

 I assume an agent who at time t1 has initial credences P over events from (, F). At time 

t2, she gains membership knowledge for sub--field GF. I assume that she updates her 

credences in conformity to some update rule. Intuitively, an update rule is a policy for 

reallocating credence given membership information for G. One might therefore consider 

functions U:   M, where M is the space of probability measures over F. However, it will 

prove more convenient to focus instead on functions C: F     satisfying two constraints: 

C( . , ) is a probability measure    for all . 

C(A, . ) is G-measurable     for all AF. 

                                                 
7
 A common objection to Dutch book arguments is that you should see the losses coming and therefore opt out. Levi 

(1987) and Maher (1992) develop this objection with respect to diachronic Dutch books. See Skyrms (1993) for a 

response to Levi and Maher. 
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I say that any such C is an update rule for (, F, G). I will notate C(A, ) as C(A | ). If C(A | . ) 

satisfies the integral formula for each AF, then C is an rcd for P given G. Obviously, many 

update rules are possible that violate the integral formula. 

 The agent faces a bookie who can offer bets over F at both t1 and t2. Following standard 

practice in probability theory, I formalize a bet as a random variable. It is convenient to allow 

random variables that take values in the extended real line  = [-,]. Thus, a bet is a random 

variable X:   . Here X() is the net gain for outcome . Infinite gains - and  arise in 

scenarios such as Pascal’s Wager, but they have doubtful relevance to any realistic gambling 

scenario. I allow them anyway. A random variable X is F-measurable: 

X
-1

(-, a]  F   for each a   

X
-1

{-}  F 

X
-1

{}  F. 

F-measurability reflects the idea that bets concern events in F. Learning which events in F 

occurred must suffice at least in principle to determine the bet’s net gain. This constraint leads 

naturally to F-measurability, as in §4.2’s discussion of G-measurability. 

If X is a random variable and  is a probability measure, then the expectation of X with 

respect to  is written as  XE  and defined in the usual way: 

    XdXE df
. 

Depending on our choice of X,  XE  may or may not be well-defined. Standard decision theory 

only applies to scenarios where  XE  is well-defined, since only then does expected utility 

maximization offers any guidance. It is common in probability theory and Bayesian decision 
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theory to restrict attention to such scenarios by demanding that bets have well-defined 

expectations. I impose no such restriction here. If the bookie wishes to offer bets without well-

defined expected values, then I raise no objection. 

 Potential bets are evaluated for acceptability with respect to the agent’s current 

credences. A bet X is fair relative to  iff its expected value with respect to  is 0:  

   0XE , 

favorable relative to  iff its expected value with respect to  is positive: 

   0XE , 

and acceptable relative to  iff it is fair or favorable relative to . Thus, a bet is unacceptable if it 

has a negative expectation or it does not have a well-defined expectation. I assume that our agent 

adopts a policy of accepting all acceptable bets that are offered and rejecting all unacceptable 

bets. The assumed policy may not be rationally obligatory, but it is rationally permissible. We 

may legitimately consider an agent who adopts this policy. 

 I assume that the bookie can offer only finitely many bets at a given time.
8
 All such bets 

are summable into a single random variable, so we may assume that the bookie offers at most a 

single bet at t1 and a single bet at t2.
9
 At t1, the agent evaluates whether the proposed bet is 

                                                 
8
 McGee (1999) shows that, if payoffs are unbounded and infinitely many bets are allowed, then an agent satisfying 

very weak assumptions faces an infinite Dutch book: an infinite collection of acceptable (indeed, favorable) bets that 

inflict a sure loss. McGee concludes that any rational agent must have bounded utilities. Following Arntzenius, Elga, 

and Hawthorne (2003), I draw a different conclusion: infinite Dutch books do not reveal any pragmatic or epistemic 

defect. A basic mathematical fact is that the expected value of the sum of infinitely many random variables need not 

equal the sum of their expected values. In betting terms: a book containing infinitely many bets need not be 

acceptable even though each individual bet is acceptable (indeed, favorable). That an agent would regard each bet as 

acceptable when presented individually does not entail that the agent should accept the overall package of infinitely 

many bets. I therefore ignore books that contain infinitely many bets. 
9
 The sum of two well-defined bets may not itself be well-defined for certain . For example, we may have X1() = 

 and X2() = -. However, we may assume that all bets offered at a given time have a well-defined sum for each 

. If a book violates this assumption, then it is indeterminate what net gain an agent who accepts the book receives 

in certain outcomes. This book does not seem to me to constitute a well-defined gambling scenario. In any event, 

such books raise many problems that are orthogonal to our main concerns. We may legitimately ignore these books. 

(Alternatively, we could allow books where all bets offered at a given time have a well-defined sum except for 
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acceptable relative to her initial credences P. At t2, she evaluates acceptability using updated 

credences that incorporate membership knowledge for G. More precisely, she computes 

expectations relative to her new credences C( . | ), where  is the true outcome. In this spirit, let 

( . ) = C( . | ), and say that bet X is acceptable given  iff 

     0 


XdXE . 

The agent accepts bet X at t2 just in case X is acceptable given the true outcome. 

 A diachronic Dutch book has two elements: a bet X offered at t1; and a strategy used by 

the bookie when deciding which bet to offer at t2. The Dutch book from §5 features the strategy: 

Offer bet 2 if G; offer no bet if G. 

Of course, we can imagine more complex bookie strategies. We would like a framework for 

modeling all such strategies. 

A bookie strategy maps information received at t2 into a bet offered at t2. In the general 

case, a bookie might receive information about events drawn from space (1, F1) and offer a bet 

concerning events in a different space (2, F2). For present purposes, we need not proceed so 

generally. We are focused exclusively on Kolmogorov learning scenarios, where the agent 

updates credences for (, F) based on membership knowledge for GF. Moreover, we only 

consider scenarios where the bookie and the agent receive the same information at t2. So the only 

relevant bookie strategies are those that map membership information about G into bets over F. 

We use (, G) to model the information that the bookie consults when selecting which bet to 

offer, and we use (, F) to model the information that an observer consults when evaluating the 

net gain from whatever bet the bookie selects. 

                                                                                                                                                             
outcomes  contained in a probability zero event. This generalization would not appreciably impact the definitions 

or proofs offered below.) 
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In this setting, it is natural to define a bookie strategy as a mapping from  to random 

variables over (, F). However, it will prove convenient to proceed more circuitously. Let 

GF =df (GF ) 

be the -field generated by the rectangles 

GF        GG, FF. 

Consider the measurable space (  , GF ). A bookie strategy is a GF–measurable function 

Y:     . For fixed , Y( , . ):    is the bet that the bookie offers upon learning 

whether G for each GG. Since Y is GF–measurable, one can easily show that 

 Y( , . ):   is F–measurable    for every , 

so that Y( , . ) is indeed a bet according to our official definition. I will commonly abbreviate 

Y( , . ) as Y. To model scenarios where the bookie offers no bet upon learning full membership 

information for G regarding , I set Y () = 0 for all inputs . 

The GF-measurability requirement may look a bit mysterious, so let me elucidate it.  

Suppose for purposes of this paragraph that “information” received by the bookie may be non-

veridical. We use GF to model the implicit knowledge of an observer who learns what 

information was transmitted to the bookie and learns which events in F occurred. Any such 

observer should be able in principle to determine whether the bookie’s selected bet has gain  a. 

She should acquire implicit knowledge whether the proposition The bet selected by the bookie 

has net gain  a is true. This proposition corresponds to the event 

 {(, ): Y ()  a} = Y
-1

 (-, a]. 
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GF-measurability requires that each such event belong to GF. Thus, GF–measurability 

requires that an observer who knows what information the bookie received and which events in 

F occurred is able to decide whether the bet selected by the bookie has net gain  or > a. 

 For any bookie strategy Y, there is a very important “diagonal function” Y*:    

defined by 

Y*() =df Y (). 

See Figure 1. Y*() is net gain in outcome  for the bet dictated by bookie strategy Y in outcome 

. So Y* specifies the agent’s net gain if she accepts whatever bet the bookie offers at t2. 

 

INSERT FIGURE 1 ABOUT HERE 

  

We can now formalize Dutch bookability. A strong Dutch book for probability space 

(, F, P), sub--field G  F, and update rule C is a pair (X, Y) such that 

(a) X is a bet that is acceptable relative to P. 

(b) Y is a bookie strategy. 

(c) Y is acceptable given   X() + Y () < 0. 

(d) Y is not acceptable given   X() < 0. 

(a) requires that X have a nonnegative expectation at t1. This condition ensures that the agent will 

accept bet X at t1. Collectively, (a)-(d) ensure that a bookie who offers bet X and pursues bookie 

strategy Y will inflict a net loss in all outcomes. Note that (d) constrains net gain from X rather 

than net gain from X + Y. Our betting agent will reject bet Y in outcomes  where Y is 

unacceptable, so only X matters for computing net gain in such outcomes. See Figure 2. 
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A weak Dutch book for probability space (, F, P), sub--field G  F, and update rule 

C is a pair (X, Y) such that 

(a) X is a bet that is acceptable relative to P. 

(b) Y is a bookie strategy. 

(c) P{: Y is acceptable given  & X() + Y () < 0} > 0. 

(d) P{: Y is acceptable given  & X() + Y () > 0} = 0. 

(e) P{: Y is not acceptable given  & X() > 0} = 0. 

(a) ensures that the agent will happily accept bet X at t1. (c) ensures a positive probability that the 

agent accepts bet Y at t2 and thereby incurs a net loss. (d) ensures that there is no compensating 

positive probability of net profit in outcomes  where the agent accepts bet Y. (e) ensures that 

there is no compensating positive probability of net profit in outcomes  where the agent rejects 

bet Y as unacceptable. (e) is very important, because without it (X, Y) need not comprise 

anything like a strategy for exploiting the agent. A strategy for exploiting an agent must have 

zero probability of rewarding the agent with net profit. 

 §10 will show that a strong Dutch book is a weak Dutch book. When there exists a strong 

(weak) Dutch book for (, F, P), G, and C, say that C is strongly (weakly) Dutch bookable. 

 A weaker notion that sometimes figures in the literature is semi-Dutch book. A semi-

Dutch book is a set of acceptable bets with a possibility of net loss and no possibility of net gain. 

This is less demanding than the notion weak Dutch book, because the probability of net loss from 

a semi-Dutch book may be 0. A weak Dutch book offers a positive probability of net loss, not 

just a possibility of net loss. To illustrate, suppose that your credences violate regularity in the 

sense of §2, i.e. you assign credence 0 to a metaphysically possible proposition. Then you should 
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happily pay price 1 for a wager that returns payoff 1 just in case the proposition is false. The 

resulting bet is a semi-Dutch book but not a weak Dutch book. 

 Shimony deploys semi-Dutch bookability to defend regularity. I agree with Hájek (2009, 

2012) that Shimony’s argument is not compelling. As Hájek (2009, pp. 188-189) urges, the mere 

possibility of net loss need not be worrisome if you are 100% confident that the possibility will 

not materialize. From your viewpoint, a semi-Dutch book that is not a weak Dutch book carries 

no risk of net loss. It seems rationally permissible for you to regard such a book as perfectly 

agreeable. You may be worried by a probability 0 possibility of net loss, but rationality does not 

require you to be worried. Thus, semi-Dutch bookability does not in itself suggest that any 

serious pragmatic or epistemic defect afflicts your credal reallocations. 

 Kolmogorov conditionalizers are often semi-Dutch bookable. Suppose you plan to update 

credal assignment P(A) using C(A | . ), a conditional probability for A given G. Suppose that there 

exists PG (A | . ), a conditional probability for A given G, such that C(A | . ) and PG (A | . ) disagree 

on outcomes belonging to some set G. Then I can employ the strategy from §5. I can construct 

sequential fair bets that inflict upon you a net loss for outcomes in G and net gain 0 on outcomes 

outside G. The catch is that G itself must have probability 0, so that your net loss only occurs 

with probability 0. In that case, my strategy is a semi-Dutch book but not a weak Dutch book. As 

argued in the previous paragraph, vulnerability to semi-Dutch books does not suggest that 

Kolmogorov Conditionalization is pragmatically or epistemically problematic. 

 

Dutch Book Theorem for Kolmogorov Conditionalization: Let (, F, P) be a probability space, 

let GF be a sub--field, and let C be an update rule for (, F, G). If C is not an rcd for P given 

G, then there exists a strong Dutch book for (, F, P), G, and C. 
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Proof: C(A | . ) must violate the integral formula for some AF. Let PG (A |  . ) be a conditional 

probability for A given G. As in §5, we may assume without loss of generality that G =df {: C(A 

| ) < PG (A | )} has non-zero P-measure. We formalize the procedure from §5, supplemented 

with a sidebet on G at t1 to ensure a net loss when G. Define random variable X by 
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For G, define random variable Y by  
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and for G define random variable Y by 

  0)( vY . 

These definitions determine a bookie strategy Y(,) =df Y(). X formalizes bet 1 from §5. Y 

formalizes the strategy: offer bet 2 if G; offer no bet if G. Let

  
G

df dPAPACL )()|()|(  G  if this integral is finite. If the integral is infinite, then let L be 

any finite negative number. Either way, we have 

    LdPAPAC
G

 )()|()|(  G . 

Define random variable Z: 
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We show that (X + Z, Y) is a strong Dutch book for (, F, P), G, and C. 
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 §5 already showed that X is fair relative to P, but we now offer a somewhat more formal 

proof. For any set S, let IS be the indicator function for S: 
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For G, we have 

   )|()()()|()()|(1)(  APIIAPIAPX AAA C GGG  . 

For any , we have 

  )|()()()(  APIIX AG G , 

so that 

      
 

 )()|()()()|()()(  dPAPIdPIIdPAPIIXE GAGAGP GG  

 0)()()()|()()()|(   


 GAPGAPdPAPGAPdPAPdPI
G

G

GA  GG , 

where the penultimate identity follows by the integral formula. To confirm that Z is acceptable 

relative to P, note that 

  LIAPACGPIZ cGG )()|()|()1)()(()(   G , 

so that 

      )()|()|()1)()((  dPLIAPACGPIZE cGGP 


 G  

   


 )()()|()|()1)()((  LdPIdPAPACGPI cGG G  

   )()()|()|()1)(( c

G

GLPdPAPACGP    G  

 0)11()1)()(()()1)((  LGPGPLGLPLGP cc
. 

As for Y, we may write 
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Y = C( A | ) – IA 

for any G. Formalizing the reasoning from §5, we check that Y is fair given  for any G:

     


  


dIdACdIACYE AA )|()|(  

 = 0)|()|()()|( 


  ACACAdAC , 

where  in these equations is held fixed and is not an integration variable. Clearly, Y is also fair 

given  for any G. 

To complete the proof, we must show that X() + Z() + Y () < 0 for all . If 

G, then routine calculation confirms that 

 X() + Z() + Y () = P(G) [ C( A | ) – PG (A | )] < 0. 

If G, then 

 X() + Z() + Y () = L < 0.  

Hence, (X + Z, Y) is a strong Dutch book for (, F, P), G, and C.  

 

Skyrms (1992) suggests that a genuine Dutch book should contain bets that are favorable, 

not just acceptable. We can strengthen the foregoing theorem to accommodate Skyrms’s 

viewpoint. In particular, we can supplement all bets with a “sweetener” as follows. Define 
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Define a bookie strategy W(,): 

  )()()()(),(),(  CGGG ISIIYvW   . 

Consider the sweetened pair ((X + IGS) + (Z + IGS), W ). One can show that X + IGS and Z + IGS 

are each favorable at t1 and that W is favorable given  for every G. One can also check that 
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W = 0 for any G, corresponding to a situation where no bet is offered at t2. So ((X + IGS) + 

(Z + IGS), W ) models a gambling scenario where all proffered bets are favorable. Nevertheless, 

net payoff from the overall scenario is always < 0. Hence, agents who violate Kolmogorov 

Conditionalization are vulnerable to a set of favorable bets that inflict a sure loss. 

  

§7. A converse Dutch book theorem for Kolmogorov Conditionalization 

 This section proves that Kolmogorov conditionalizers are not Dutch bookable. The proof 

resembles Skyrms’s proof of the converse Dutch book theorem for Ratio Conditionalization. In 

both proofs, the basic idea is that a diachronic Dutch book for a conditionalizer could be 

converted into a synchronic book with impossible properties. Developing this idea requires much 

more mathematical machinery for the general case of Kolmogorov Conditionalization than for 

the special case of Ratio Conditionalization. I will first offer some heuristic remarks and then 

present a rigorous proof. 

 Suppose for reductio that you are a Kolmogorov conditionalizer and that there exists a 

weak diachronic Dutch book (X, Y) for your update rule. Let 

  =df {: Y is acceptable given }. 

Now consider a bet Z* defined as follows: 

  Z*() = Y () 

  Z*() = 0. 

Think of Z* as a conditional bet offered at t1: 

You accept the bet Y offered at t2 if that bet is acceptable; otherwise you decline. 
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See Figure 3. This conditional bet should be acceptable at t1, since it only commits you to betting 

in situations where you find the bet offered at t2 acceptable. Given that X and Z* are individually 

acceptable at t1, the combined bet X + Z* is also acceptable at t1. In other words: 

(1) EP [ X + Z*]  0. 

Since (X, Y) is a weak Dutch book, X() + Y () < 0 with positive probability inside . Thus: 

(2) X + Z* < 0 with positive probability inside . 

Since (X, Y) is a weak Dutch book, X() + Y () > 0 with probability 0 inside . Thus: 

(3) X + Z* > 0 with probability 0 inside . 

Since (X, Y) is a weak Dutch book, X > 0 with probability 0 outside . Thus: 

(4) X + Z* > 0 with probability 0 outside . 

(1)-(4) are mutually inconsistent: the negative values ensured by (2) find no counterbalancing 

positive values to generate the nonnegative expected value promised by (1). By contradiction, 

Kolmogorov conditionalizers are not weakly Dutch bookable. 

 This reasoning hinges upon the presupposition that Z* is acceptable at t1. The 

presupposition is plausible, but why should we believe it? In fact, the presupposition is not true 

for agents who violate Kolmogorov Conditionalization. Take the bookie strategy Y from the 

Dutch book theorem: 

 Offer bet 2 if G; offer no bet if G. 

Y is acceptable given  for every , yet one can easily check that the corresponding bet Z*: 

 You accept bet 2 if G; you do not bet if G. 

is unacceptable at t1. However, I prove below that the presupposition is true for Kolmogorov 

conditionalizers. 
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 The proof requires a crucial lemma. Suppose that PG is an rcd for P given G. Let ( . ) = 

PG ( . , ). For any bookie strategy Z, consider the function EZ:    defined by 

   


 )(),()(  
dZdZZEdfZE . 

EZ () is the expected value a Kolmogorov conditionalizer computes at t2 for the bet dictated by 

bookie strategy Z. Thus, EZ maps each outcome to the net gain that a Kolmogorov 

conditionalizer would expect at t2 if she accepted the bet offered at t2. The lemma basically says 

that averaging together these expected net gains yields the same result as computing the net gain 

our agent would expect at t1 if she resolved to accept the bet offered at t2. More carefully: if the 

diagonal function Z* has an expectation with respect to initial credences P, then that expectation 

equals the expectation of EZ with respect to P. 

 

Lemma: Let (, F, P) be a probability space and GF a sub--field. Suppose there exists PG , an 

rcd for P given G, and let ( . ) = PG ( . , ). Let Z:      be GF-measurable. Define 

 
 ZE)( dfz E , which may be infinite or undefined for certain  . Then EZ is G-measurable. 

Let Z* be the diagonal function defined by Z*() = Z (). If  *ZEP  exists, then EZ is defined 

for P-almost all values and    ZPP E*ZE E . 

 

I prove the lemma in a mathematical appendix (§10). 

The Dutch book theorem generates a conflict between present and future computations of 

expected value. The bookie strategy Y: 

 Offer bet 2 if G; offer no bet if G. 
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yields a bet with nonnegative expectation as computed at t2 or else yields a non-bet with net gain 

0 for all outcomes. So   0
YE  for every , where we have set ( . ) = C( . | ). The 

expected value at t1 of those nonnegative expectations ---   
YEEP  --- is nonnegative as well. 

Nevertheless, the conditional bet Z*: 

 You accept bet 2 if G; you do not bet if G. 

has negative expectation when computed at t1. Our lemma shows that no such conflict can arise 

for Kolmogorov conditionalizers. If EP [Z*] exists, then it must equal  ZPE E . If Z is a bookie 

strategy that always yields acceptable bets at t2, and if EP [Z*] exists, then Z* must already be 

acceptable at t1. As I now show, this harmony between present and future expectations 

immunizes Kolmogorov conditionalizers from diachronic Dutch books. 

 

Converse Dutch Book Theorem for Kolmogorov Conditionalization: Let (, F, P) be a 

probability space, let GF be a sub--field, and let C be an update rule for (, F, G). If C is an 

rcd for P given G, then there does not exist a weak Dutch book for (, F, P), G, and C. 

 

Proof: Suppose for reductio that there is a weak Dutch book (X, Y) for (, F, P), G, and C. Let 

( . ) =df  C( . |  ), and let 

  =df {: Y is acceptable given } = {: 0)( YE }. 

The lemma shows that YE  is G-measurable, from which it follows that G. Define bookie 

strategy Z by 

 














if

ifY
Z df

0

).,(
).,(  
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Since G, Z is GF–measurable. Partition  as follows: 

- =df   {: X() + Z*() < 0} =   {: X() + Y () < 0} 

0 =df   {: X() + Z*() = 0} =   {: X() + Y () = 0} 

+ =df   {: X() + Z*() > 0} =   {: X() + Y () > 0}. 

Since (X, Y) is a weak Dutch book, P(-) > 0 and P(+) = 0. We therefore have 

 000*)(*)(*)()*(*)(

0

 
 

dPZXdPZXdPZXdPZXdPZX  

By similar reasoning, 

0*)( 
c

dPZX . 

Thus, 

 0*)()*()*(  
 c

dPZXdPZXdPZX , 

so that EP [ X + Z*] < 0. 

 We now apply the lemma to Z* so as to derive a conflicting value for EP [ X + Z*]. We 

must first check that  *ZEP  exists. For any random variables V and W, define 

 









0)(0

0)()(
)(






Vif

VifV
V df  

 









0)(0

0)()(
)(






Wif

WifW
W df  

and note that 

 W
+ 
 ( V + W )

+ 
+ V 

-
. 

All these functions are nonnegative, so 

        VEWVEWE PPP )(0 . 
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In particular, 

        XEZXEZE PPP *)(*)(0 . 

We have assumed that X is acceptable, so that   0XEP
. Thus,  XEP  must certainly be finite. 

We have also just shown that   0* ZXEP
, so that   *)( ZXEP  must likewise be finite. It 

follows that  *)(ZEP  is finite. Hence,  *ZEP  exists. Applying the lemma, 

   ZPP EZE E* . 

We have chosen Z so that 

 0)(     dZZE    for all . 

The integral of a nonnegative function is nonnegative, so 

     0*  ZPP EZE E . 

Since   0XEP , we conclude that 

       0**  ZEXEZXE PPP  

which contradicts our earlier finding that   0* ZXEP . By reductio, there is no weak Dutch 

book for (, F, P), G, and C.   

 

§8. Significance of the two theorems 

 The Dutch book theorem and converse Dutch book theorem show that Kolmogorov’s 

theory delineates conditional probabilities with uniquely desirable pragmatic properties. It is 

good to avoid Dutch books. Thus, it is good when credal reallocation is invulnerable to Dutch 

books. The theorems establish Kolmogorov Conditionalization as the sole credal reallocation 

policy that achieves the desired invulnerability in Kolmogorov learning scenarios where rcds 

exist. The forbidding mathematics of Kolmogorov’s theory should not distract us from the fact 
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that it codifies fundamental ties between conditional probability, credal reallocation, and 

decision-making under uncertainty. 

 To explore the significance of the theorems, let us revisit two worries about 

Kolmogorov’s approach raised in §4: non-existence of rcds and residual indeterminacy after 

specifying a conditioning sub--field. 

 

§8.1 Non-existence of rcds 

 Let (, F, P) be a probability space and GF a sub--field such that there exists no rcd 

for P given G. Suppose that you have initial credences P over F and then gain new evidence 

exhausted by full membership knowledge for G.
10

 How should you update your credences over 

events in F? Kolmogorov Conditionalization does not say. It remains silent about learning 

scenarios where rcds do not exist. We can now identify a good reason for this silence: the Dutch 

book theorem shows that all options are problematic. 

 Suppose that C(A | ) is the credence you would assign to AF upon gaining full 

membership knowledge for G regarding outcome . As in §5, we may assume that 

C(A | . ) is G-measurable      for all AF. 

Suppose that C(A | . ) violates the integral formula for some AF. Then the Dutch book theorem 

shows that I can rig a strong Dutch book against you. Thus, you are strongly Dutch bookable if 

you do not employ some conditional probability PG (A | . ) as your policy for reassigning 

credence to A. The problem is that, if you do adopt such a policy for each AF, then your 

                                                 
10

 I assume for the sake of argument that (, F, P) models a possible credal allocation. It is not obvious that this 

assumption is correct, because the usual examples where rcds do not exist involve a -field F defined non-

constructively through the Axiom of Choice. 
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credences at t2 will not always constitute a probability measure. You will violate countable 

additivity for certain outcomes . 

 It is controversial whether credences should be countably additive. As mentioned in §1, I 

wish to side-step these controversies. I assume that credences should be countably additive, at 

least for idealized agents who figure in Kolmogorov learning scenarios. Under that assumption, 

the Dutch book theorem shows that a learning scenario modeled by (, F, P) and G is 

problematic. Anyone in such a learning scenario must either succumb to a strong Dutch book or 

else violate countable additivity. 

 In my opinion, the most important moral here is that you should avoid these problematic 

learning scenarios. By choosing a sufficiently inauspicious probability space as your starting 

point, you set yourself a rational dilemma between strong Dutch bookability and countable 

additivity violations. To avoid the dilemma, you should refrain from having credences modeled 

by a pathological probability space that does not admit rcds. You should adopt a policy of 

maintaining a well-behaved credal allocation that admits rcds. This policy implicitly guides all 

serious empirical applications of Bayesian modeling within statistics, economics, robotics, 

cognitive science, and so on. The policy is easy to implement, because naturally arising 

probability spaces always admit rcds.  

 

§8.2 Residual indeterminacy 

 Kolmogorov does not delineate unique conditional probabilities even after one fixes a 

conditioning sub--field. When G contains a non-empty probability zero event, PG (A | . ) is 

uniquely determined only up to measure 0. Nor can Dutch books help pin down conditional 

probabilities more determinately: the converse Dutch book theorem shows that updating in 
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accord with any rcd PG avoids a diachronic Dutch book. That is why I formulated Kolmogorov 

Conditionalization as an indeterministic constraint on credal reallocation rather than a 

deterministic instruction that yields unique reallocated credences. 

 We see here a foundational basis for the indeterminacy in Kolmogorov’s theory. 

Kolmogorov specifies conditional probabilities as uniquely as Dutch book considerations allow. 

If the only constraint on rational credal reallocation is that one avoid Dutch books, then 

Kolmogorov Conditionalization is the most determinate norm we can expect. If the only 

constraint on conditional probability is that it subserve credal reallocations that avoid Dutch 

books, then Kolmogorov pins down conditional probabilities as determinately as possible. 

 Would you like more determinate conditional probabilities than Kolmogorov provides? 

Then you must look beyond Dutch books. You must examine the broader role that conditional 

probability plays within our cognitive lives. In principle, one might try to motivate more 

determinate conditional probabilities through either pragmatic or epistemic considerations. 

However, I doubt that pragmatic factors can pin down conditional probabilities more 

determinately than Kolmogorov’s theory. Rational decision-making compares expected values, 

and expected values obliterate differences among alternative rcds for P given G. Thus, I doubt 

that we can render Kolmogorov’s theory any more determinate by examining how conditional 

probability figures in rational decision-making. Whether epistemic factors can generate more 

determinacy is a question worth further exploration. 

  

§9. Conclusion 

 Kolmogorov’s theory of conditional probability is acclaimed by mathematicians and 

neglected by philosophers. The mathematicians are right. Kolmogorov’s theory brilliantly 
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exemplifies how formal mathematics can elucidate core philosophical concepts. It deserves 

mention in the same breath with Turing’s analysis of computability and Tarski’s analyses of truth 

and logical consequence. At the very least, Kolmogorov articulates a systematic framework that 

codifies how conditional probability, credal allocation, and decision-making interact in numerous 

important learning scenarios. I hope that the theorems proved above will promote wider 

appreciation of rcds as invaluable analytical tools. 

 

§10. Mathematical appendix 

 This appendix proves the lemma from §7. The lemma follows from the conditional 

Fubini theorem (Fristedt and Gray, 1997, p. 431). I have thought it best to prove the lemma 

directly, partly because doing so takes only a little more space than proving that the conditional 

Fubini theorem entails the lemma, partly because a self-contained proof of the conditional Fubini 

theorem does not seem to be readily accessible anywhere in the literature. Throughout my 

discussion, I employ the conventions of (Fristedt and Gray, 1997, p. 48, p. 445) regarding 

partially defined functions and almost surely defined random variables. 

 

Proof of the lemma: We will first prove the lemma for the special case where Z is everywhere 

nonnegative, then prove it for general Z. Let us begin by transforming  dPZ * into a more useful 

form. Let T:      be the “diagonal embedding” 

 T() = (, ), 

which is a measurable function from (, F ) to (  , GF ). T induces a measure P* on GF: 

 P* =df PT 
-1

. 

For any EGF, 
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 P*(E) = PT 
-1

 (E) = P{: (,)  E}. 

For any nonnegative Z, 

 






 ** 1 ZdPZdPTZTdPdPZ , 

where the second identity follows by change of variable (Billingsley, 1995, p. 216). We will 

prove that 

(5) )(*  dPduZdPZdP Z  
 











 E  

for nonnegative Z, which entails that for all such Z 

)(**  dPduZdPZdPdPZ Z  
 











 E . 

Following a common strategy from probability theory, we first prove (5) for indicator functions 

and then build our way up to arbitrary nonnegative Z. 

Take any measurable rectangle GF with GG and FF, and let IGF be the 

corresponding indicator function. For this special case, (5) becomes 

)()(*  dPduIdPI FGFG  





















 . 

For the left-hand side, note that by change of variable 

 )(* 1 FGPdPIITdPIdPTIdPI FGFGFGFG  












 . 

For the right-hand side, note that )( FGI   is IF for all G and is 0 otherwise. Thus, the right-

hand side reduces to 

 )()()()()()( FGPdPFdPduIdPduI
GG

FFG 





























  


   , 
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where the last identity follows by the integral formula. Our analysis also shows that 










 Gif

GifF
FGI








0

)(
)(E , 

which is a well-defined G-measurable function of . Thus, the lemma is established for the 

special case of IGF. 

 Now consider any arbitrary indicator variable IE , with EGF. Take the class M 

containing all EGF such that 

  dIE )( is a G-measurable function of . 

)()(*  dPduIdPI EE  
 













 . 

One can show that M is closed under complementation and countable disjoint union. I address 

countable disjoint union, leaving complementation to the reader. Suppose that E is the union of 

countably many sets En, where these sets are pairwise disjoint and where (5) holds of each 

indicator function 
nEI . Then  

**
1

PdIdPI
n

EE n 






 =   


 



  
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





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E dPduIdPI
nn

  

 )()(
1

 dPduI
n

En 




 












 = )()(  dPduIE 

 












, 

where we have repeatedly used an infinite series version of the monotone convergence theorem 

(Billingsley, 1995, p. 211). Thus, (5) holds of IE. To establish G-measurability, one may write  

 









11

)()()(
n

E

n

EE duIduIduI
nn   
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and use that the limit of G-measurable functions is itself G-measurable if that limit exists 

everywhere (Billingsley, 1995, p. 184). Since M contains all measurable rectangles GF with 

GG and FF and is closed under complementation and countable disjoint union, it follows that 

M contains all members of GF (Billingsley, 1995, pp. 41-42). This proves the lemma for 

arbitrary indicator variables IE. 

Using the linearity of integration, one can extend the lemma to any nonnegative 

measurable simple function, i.e. any finite linear combination 

 
iE

n

i

i Ic
1

    

such that EiGF, ci ≥ 0, and the sets Ei form a partition of   . Given a nonnegative GF-

measurable Z, there is a sequence { Zn } of nonnegative measurable simple functions such that 

 ),(lim),(  n
n

ZZ


 , 

and such that the sequence )},({ nZ  is non-decreasing, for each ,   (Billingsley, 1995, p. 

185). By the monotone convergence theorem (Billingsley, 1995, p. 208), 




*dPZ )()(),(lim*lim*lim   dPduZdPZdPZ n
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n
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n
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)()(),(   dPduZ 
 









, 

which proves the lemma for arbitrary nonnegative GF-measurable Z. 

 Now fix an arbitrary GF–measurable function Z such that  *ZEP  exists. We have 

already established that Z
E and Z

E are G-measurable functions.  We may write 

 )()()(),()(),()(),()(     










ZZZ dZdZdZ EEE . 
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As the difference of G-measurable functions,  
ZZZ EEE  is G-measurable. We compute 

  *ZEP
 = 










dPZdPZdPZdPZdPZ *)(*)(*)(*)(*  

    



 


ZPZP EEdPZdPZ EE** . 

The final identity uses (5), which is legitimate because Z 
+
 and Z 

-
 are both nonnegative. The 

expectation on the left-hand side exists, so at least one of the expectations on the right-hand side 

must be finite. Suppose without loss of generality that  ZPE E  is finite. 

 Choose any random variables V and W such that  VEP  is finite and  WEP  exists 

(possibly with infinite value). Since  VEP  is finite, V must have finite value except possibly 

inside a set A of P-measure 0. Define random variable V


by  










Aif

AifV
V df






0

)(
)(


 

Random variables that agree almost everywhere have the same expectation, so 

   VEVE PP


 . 

WV 


is well-defined everywhere and agrees with WV  except possibly inside A. Since 

   WEVE PP 


 exists, the linearity of expectations entails that 

      WEVEWVE PPP 


. 

WV   is well-defined everywhere except possibly inside A, so it is an almost surely defined 

random variable. Its expectation is 

            WEVEWEVEWVEWVE PPPPPdfP 


. 

Taking Z
E for V and Z

E for W, we conclude that  
ZZZ EEE  is an almost surely defined 

random variable and that 



45 

 

      
ZPZPZZP EEE EEEE . 

Thus, 

          ZPZZPZPZPP EEEEZE EEEEE  * ,  

which completes the proof.   

 

 Inspecting the proof, we see that the integral formula is used only once and is not used in 

showing G-measurability. Let C be an update rule and Y a bookie strategy. Define 

 ( . ) =df  C( . |  ) 

  
 YEdfY )(E . 

Our proof shows that EY is G-measurable, whether or not C satisfies the integral formula. If we 

define 

  =df {: Y is acceptable given } = {: 0)( YE }, 

then the G-measurability of YE  entails that G. 

 We can now show that strong Dutch books are weak Dutch books. Let (X, Y) be a strong 

Dutch book for (, F, P), G, and C. Conditions (a) and (b) in the definition of weak Dutch book 

are immediate. Defining  as in the previous paragraph, note that 

(6)   X() + Y () < 0 

(7)   X() < 0 

Condition (d) in the definition of weak Dutch book follows from (6), while condition (e) follows 

from (7). For condition (c), note that P() is well-defined since G. If P() = 0, then 

 0 
 c

XdPXdP , 
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contradicting our assumption that X is acceptable. We must therefore have P() > 0, which 

together with (6) entails condition (c). 
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Outcome Price Payoff Net gain 

AG PG (A | ) 1 1- PG (A | ) 

A
c
G PG (A | ) 0 - PG (A | ) 

G 0 0 0 

 

Table 1. Net gain for bet 1. 

 

 

 

 

 

Outcome Price Payoff Net gain 

A C(A | ) 1 C(A | )-1 

A
c
 C(A | ) 0 C(A | ) 

 

Table 2. Net gain for bet 2. Note that we subtract the payoff from the price, since you sell rather 

than buy the bet. 

 

 

 

 

 

Outcome Net gain 

AG C(A | ) - PG (A | ) 

A
c
G C(A | ) - PG (A | ) 

G 0 

 

Table 3. Net gain for the entire gambling scenario, found by adding net gains for bet 1 and bet 2. 

Bear in mind that bet 2 is only offered when G.  
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Figure 1. A visualization of   . There may not be a natural linear ordering of , but the 

visualization is still a useful heuristic. The horizontal axis corresponds to (, G). Points on this 

axis determine which bet the bookie selects. The vertical axis corresponds to (, F). Points on 

this axis determine net gain from whatever bet the bookie selects. When the bookie acquires 

information about outcome , he offers bet Y. For any outcome , this bet has a well-defined 

net gain Y(), i.e. Y’s value on the point where the vertical line intersects the lower horizontal 

line. In actuality, the outcome  that determines the bookie’s bet is the same outcome  that 

determines net gain for that bet. Someone who accepts the bet receives net gain Y*() =df Y (), 

which is Y’s value at the point where the vertical line intersects the diagonal line. 
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Figure 2. Think of X and Y* as bets on events over the vertical axis. Let  =df {: Y is 

acceptable given }. The grey column contains points (, ) with . If (X, Y) is a strong 

Dutch book, then X + Y* < 0 inside  and X < 0 outside . If (X, Y) is a weak Dutch book, then X 

+ Y* < 0 with positive probability inside , X + Y* > 0 with probability 0 inside , and X > 0 

with probability 0 outside . Thus, the only values of Y that affect whether (X, Y) is a strong (or 

weak) Dutch book are its values on points where the diagonal line intersects the grey column. 

This reflects the fact that our betting agent rejects Y if . 
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Figure 3. Think of Z* as a bet on events over the vertical axis. If , then Z*() is Y’s value 

on the corresponding point of the diagonal line. If , then Z*() = 0. Informally, Z* converts 

bookie strategy Y into a single bet that prunes away all possibilities for expected net loss. 
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