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This paper considers states on the Weyl algebra of the canonical commutation rela-

tions over the phase space R2n. We show that a state is regular iff its classical limit

is a countably additive Borel probability measure on R2n. It follows that one can

“reduce” the state space of the Weyl algebra by altering the collection of quantum

mechanical observables so that all states are ones whose classical limit is physical.
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I. INTRODUCTION

In quantum theories we often restrict attention to regular states, thereby ruling out

non-regular states as unphysical or pathological.58 Although this restriction is often seen

as instrumental, this paper will propose a principled justification. We will show that the

regular states play a privileged role in explaining the success of classical physics.

We explain the success of classical physics through the classical limit. The classical

limit of a quantum state, in the sense discussed in this paper, is the result of looking at

approximations on larger and larger scales until the effects of quantum mechanics disappear.

The central result of this paper shows that we can recover all of the classical states of a

classical theory by taking the classical limits of only regular states. The classical limits of

non-regular states play no role in classical physics.

We will deal only with theories with finitely many degrees of freedom modeled by a phase

space R2n, in which case the physical states of the classical theory are countably additive

Borel probability measures on R2n. Quantum states are then positive, normalized linear

functionals on the C*-algebra of (bounded) physical magnitudes, or observables, satisfying

the canonical commutation relations. This algebra is known as the Weyl algebra over R2n.

The central purpose of this paper is thus to establish the following claim:

Theorem. A state on the Weyl algebra over R2n is regular iff its classical limit is a countably

additive Borel probability measure on R2n.

The intended interpretation is that one need only use the classical limits of regular quantum

states to explain the success of classical physics.

Moreover, this discussion has import for the construction of quantum theories. We con-

struct quantum theories, at least in the algebraic approach, by constructing their algebra of

observables. But in many cases there is no widespread consensus about precisely which al-

gebra we should use to represent the observables of a given quantum system.4,16,19 Although

the Weyl algebra over R2n is one commonly used tool, it always allows for non-regular states.

If one has the desire to restrict attention to regular states, then one might look for another

algebra that allows for only regular states. We demonstrate that such an algebra exists.

It is known that each C*-algebra uniquely determines its state space.1 And if this state

space is “too large” in the sense that it contains unphysical or pathological states, then there
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is a general procedure (established in previous work) for constructing a new C*-algebra whose

state space consists in precisely the collection of physical states:42

Theorem 1 (Feintzeig 19). Let A be a C*-algebra and let V ⊆ A∗. Then there exists a

unique C*-algebra B and a surjective *-homomorphism f : A→ B such that B∗ ∼= V with

the isomorphism given by ω ∈ B∗ 7→ (ω ◦ f) ∈ V iff the following conditions hold:

(i) for all A,B ∈ A,

sup
ω∈V ;‖ω‖=1

|ω(AB)| ≤ sup
ω∈V ;‖ω‖=1

|ω(A)| sup
ω∈V ;‖ω‖=1

|ω(B)|

(ii) V is maximal in the sense that

for all ω ∈ A∗, if
⋂
ρ∈V

Ker(ρ) ⊆ Ker(ω) , then ω ∈ V

To prove Thm. 1, one shows the C*-algebra B is *-isomorphic to A/N (V ), where N (V )

is the ideal given by N (V ) :=
⋂
ρ∈V Ker(ρ). This allows one to choose a subspace of A∗

satisfying (i) and (ii) and construct a unique C*-algebra with precisely the desired dual space.

Thus, we can use Thm. 1 to find a new algebra—constructed from the Weyl algebra—which

allows for only regular states. The quantum states on this new algebra suffice for explaining

the success of classical physics through the classical limit.

The structure of the paper is as follows. In §II, I define the Weyl algebra over R2n and the

notion of a regular state. In §III, I clarify the notion of the “classical limit” of a state on the

Weyl algebra using a continuous field of C*-algebras. In Section IV, I establish some small

lemmas to characterize the countably additive Borel measures on R2n in terms of algebraic

structure, and I apply Thm. 1 to the purely classical system with phase space R2n. Finally,

in Section V, I prove the main result and discuss its significance. The results of this paper

involve little, if any, mathematical novelty. I hope, however, that the perspective I provide

on the construction of new quantum theories is of interest.

II. PRELIMINARIES

The Weyl algebra over R2n is formed by deforming the product of the C*-algebra AP (R2n)

of complex-valued almost periodic functions on R2n. The C*-algebra AP (R2n) is generated

3



by functions W0(x) : R2n → C for each x ∈ R2n defined by

W0(x)(y) := eix·y

for all y ∈ R2n, where · is the standard inner product on R2n. Polynomials (with respect to

pointwise multiplication, addition, and complex conjugation) of functions of the form W0(x)

for x ∈ R2n are norm dense in AP (R2n) with respect to the standard supremum norm.45

The Weyl algebra over R2n, denoted Wh(R2n), for h ∈ (0, 1] is generated from the same

set of functions by defining a new multiplication operation. The symbol Wh(x) ∈ Wh(R2n)

is used now to denote the element W0(x) as it is considered in the new C*-algebra. Define

the non-commutative multiplication operation on Wh(R2n) by

Wh(x)Wh(y) := e
ih
2
σ(x,y)Wh(x+ y)

for all x, y ∈ R2n, where σ is the standard symplectic form on R2n given by

σ((a, b), (a′, b′)) := a′ · b− a · b′

for a, b, a′, b′ ∈ Rn and · is now the standard inner product on Rn. The Weyl algebra is the

norm completion in the minimal regular norm6,41,53 of polynomials of elements of the form

Wh(x) for x ∈ R2n with respect to the non-commutative multiplication operation.

It is this C*-algebra (sometimes known as the CCR algebra, or the Weyl form of the

CCRs) that is often used to model the physical magnitudes, or observables, of a quantum

mechanical system constructed from a classical system with phase space R2n. One can then

take the positive, normalized linear functionals, or states, on the C*-algebra of physical

magnitudes to model the physically realizable states of the quantum system.8,9,25,29

However, it is known that many of the states on Wh(R2n) are pathological, in the sense

that they violate continuity conditions some believe to be necessary for physics.3,26,27,58

Among the states one might consider pathological are the non-regular states. A bounded

linear functional ω on Wh(R2n) is called regular just in case for all x ∈ R2n, the mapping

t ∈ R 7→ ω(Wh(tx))

is continuous. The well known Stone-von Neumann theorem53,59 tells us that if (and only

if) a state is regular, its GNS representation is quasiequivalent to the ordinary Schrödinger

representation on the Hilbert space L2(Rn), and hence leads to a reconstruction of the
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orthodox formalism for quantum mechanics. In this case, one sees immediately that the

restriction to regular states is desirable for applications in physics.

When one moves, however, to the context of quantum field theory, the story so far breaks

down. The Stone-von Neumann theorem is no longer applicable to the phase space of a

field-theoretic system, which is infinite-dimensional, and hence, fails to be locally compact.

Instead, infinitely many (even regular) unitarily inequivalent irreducible representations of

the Weyl algebra appear, and one has no principled way of using any particular irreducible

representation to motivate a restriction to some subset of states.

The goal of this paper, however, is to provide a principled method for restricting the

state space of the Weyl algebra by looking at its purely algebraic structure, rather than

its Hilbert space representations. In particular, by understanding the algebra Wh(R2n) as

part of a strict and continuous deformation quantization of AP (R2n), one can use purely

algebraic tools to show that the regular states are already privileged. With this quantization,

for any state ω on Wh(R2n), one can construct the continuous field of states that form a

“constant” section of linear functionals. We will call the value of this section at h = 0 the

classical limit of the state ω. The privileged states on Wh(R2n) for our purposes will be the

ones whose classical limits can be used to explain the success of classical physics. We will

understand the classical limit of a quantum state to be useful for explaining the success of

classical physics just in case it is a physical state on AP (R2n).

A natural candidate for the collection of physical states of a classical theory with phase

space R2n is the collection of countably additive Borel probability measures on R2n. But

these states form a proper subset of the state space of AP (R2n). Hence we will think of the

countably additive Borel probability measures on R2n as privileged classical states for our

purposes. To explain the success of classical physics, we only need to find enough quantum

states to recover the privileged classical states in the classical limit. Our main result shows

that if one accepts that the countably additive Borel probability measures are the only

physical states of the classical theory with phase space R2n, then only the regular states on

Wh(R2n) are needed to explain the success of classical physics through the classical limit.
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III. CLASSICAL LIMITS

In this section, we make precise the notion of the classical limit of a quantum state.

Define the “classical” Weyl algebra as W0(R2n) := AP (R2n). Consider the family of C*-

algebras {Wh(R2n)}h∈[0,1] with “quantization” maps, denoted Qh : W0(R2n) → Wh(R2n),

given by the unique linear norm continuous extension of

Qh(W0(x)) := Wh(x)

for all x ∈ R2n and each h ∈ [0, 1]. For each h ∈ [0, 1], the map Qh has a norm dense range

in Wh(R2n) and satisfies

Qh(A∗) = Qh(A)∗

for all A ∈ W0(R2n).

Moreover, it is known that:

(i) For all A,B ∈ W0(R2n),

lim
h→0
‖ i
h

[Qh(A),Qh(B)]−Qh({A,B})‖ = 0

where {·, ·} is the standard Poisson bracket on R2n corresponding to the symplectic

form σ and [·, ·] is the commutator (defined by [X, Y ] := XY − Y X).

(ii) For all A,B ∈ W0(R2n),

lim
h→0
‖Qh(A)Qh(B)−Qh(AB)‖ = 0

(iii) For all A ∈ W0(R2n), the mapping h 7→ ‖Qh(A)‖ is continuous.

Furthermore, for each h ∈ [0, 1], Qh is injective and Qh[W0(R2n)] is closed under the product

inWh(R2n). This structure (Wh,Qh)h∈[0,1] is thus a strict deformation quantization.7,12,37,39,40,56,46

In fact, this structure gives rise to a continuous bundle of C*-algebras ({Wh}h∈[0,1],K)

over the base space [0, 1].14,37,39 The C*-algebra of continuous sections K is given by the

unique C*-subalgebra of
∏

h∈[0,1]Wh(R2n) containing the elements of the form

h 7→ Qh(A)

for all A ∈ W0(R2n). Defining the global quantization map Q :W0(R2n)→ K by

Q(A) := [h 7→ Qh(A)]
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for allA ∈ W0(R2n), we have that ({Wh(R2n)}h∈[0,1],K;Q) is a continuous quantization.7,37,39,47

Now we can consider continuous fields of linear functionals39 as families {ωh}h∈[0,1], where

ωh ∈ Wh(R2n)∗ for each h ∈ [0, 1], and for each continuous section ϕ ∈ K,

lim
h→0

ωh(ϕ(h)) = ω0(ϕ(0))

In particular, for a fixed H ∈ [0, 1] and ω ∈ WH(R2n)∗, since QH is norm continuous we can

define ω̂ ∈ W0(R2n)∗ by

ω̂ := ω ◦ QH

And we then construct the “constant” continuous field of functionals {ωh}h∈[0,1] through

ω0 = ω̂ and ωH = ω by defining ωh : Wh(R2n) → C as the unique norm continuous

extension of

ωh(Qh(A)) := ω̂(A)

for all A ∈ W0(R2n). It is easy to see that {ωh}h∈[0,1] is indeed a continuous field of function-

als, so we will define ω̂ as the classical limit of ω. In particular, since for any h ∈ [0, 1], the

quantization map Qh is positive, we know that when ω ∈ Wh(R2n)∗ is a state, its classical

limit ω̂ is a state as well.48 We will use this notion of the classical limit in what follows.

Before proceeding, a caveat is in order: the ~ → 0 limit described in this section is of

course only one way, among many others, to make precise the classical limit of quantum

theories. Furthermore, when one uses the ~→ 0 limit as outlined above, the classical limit of

a state is understood only relative to the continuous quantization considered. Nevertheless,

we choose to investigate classical limits defined relative to the above continuous quantization.

The current paper demonstrates this notion of the classical limit is fruitful at least for

understanding the significance of regular and non-regular states.

IV. CLASSICAL STATES

In this section, we look in more detail at the structure of the state space of a classical

theory. This will help us understand the import of Thm. 1 for C*-algebras of physical

magnitudes, and it will lead to some lemmas required for the proof of the main result.

We focus on a classical theory whose phase space49 is given by a locally compact Hausdorff

topological spaceM. Although in the next section we restrict attention to finite-dimensional

symplectic vector spaces, for the moment we make no such restriction.
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Prima facie, it’s not clear which C*-algebra of functions on M we should take to model

the bounded physical magnitudes of the classical system. Candidates include:

• B(M), the algebra of bounded Borel measurable complex-valued functions on M.

• Cb(M), the algebra of bounded continuous complex-valued functions on M.

• C0(M), the algebra of continuous complex-valued functions onM vanishing at infinity.

Of course, we have the following inclusion relations:

C0(M) ⊆ Cb(M) ⊆ B(M)

The states on C0(M) are precisely the countably additive Borel probability measures on

M.22,39 So if we think the physical classical states consist in precisely the countably additive

Borel probability measures, then this gives us reason to use C0(M) to model the physical

observables of the classical system. If we choose a larger C*-algebra, then we will in general

allow for more states. However, we know that B(M) is the bidual, or universal enveloping

W*-algebra, of C0(M).21 This means that elements of B(M) can be approximated as weak

(pointwise) limits of nets of physical magnitudes in C0(M). And furthermore, the normal

states of B(M) are precisely the states on C0(M). So we can also use B(M), understood as

a W*-algebra, to model possibly idealized (even discontinuous) physical magnitudes, where

we understand elements of the normal state space of B(M) to model physical states.

However, in the quantization procedure of §III we focused on a different algebra, the

algebra of almost periodic functions.50 When M is a locally compact abelian group, we

know that AP (M) ⊆ Cb(M), but AP (M) and C0(M) are in general not identical. As

such, the state space of AP (M) will in general not be equal to that of C0(M).28,57 In this

section, we will characterize the countably additive Borel measures as a subspace of the

bounded linear functionals on AP (M).

In fact, we will work with a more general collection of algebras of functions. For the

remainder of this section, let C ⊆ Cb(M) be an abelian C*-subalgebra of the bounded

continuous complex-valued functions onM satisfying the constraints: (i) C separates points

of M; and (ii) C contains the constants. So C may be the almost periodic functions, or it

may be another algebra altogether. We characterize the countably additive Borel measures

as a subset V of C∗, and we show that applying Thm. 1 with this choice of V transforms C

into B(M).
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To perform this procedure, we need to notice that C is both “too small” and “too large”.

It is “too small” in the sense that it does not contain discontinuous functions like projections,

which are needed for the spectral theory that allows us to interpret physical magnitudes. It

is “too large” in the sense that it allows for “states at infinity”, which may be considered

pathological for physical applications. Thus, we will enlarge the algebra C by completing it

in its weak topology to form C∗∗. Then we will reduce the algebra by restricting ourselves

to a priveleged collection of states on C∗∗.

Recall that C is *-isomorphic to C(P(C)), the continuous functions on the pure state

space of C with the weak* topology, which is a compact Hausdorff space. Furthermore,

there is a continuous injection k :M→ P(C), called a compactification,51 such that for any

f ∈ C and its surrogate f̂ ∈ C(P(C)), f̂ ◦ k = f . The map k sends each point in M to the

pure state it determines; k is defined for all p ∈M by

k(p)(f) := f(p)

for all f ∈ C. Similarly, all states (even mixed states) can be represented as Borel measures

on P(C). The Riesz-Markov theorem54 implies that each ω ∈ C∗ corresponds to a unique

positive normalized Borel measure µω such that52

ω(f) =

∫
P(C)

f̂dµω

The weak completion of C is then C∗∗ ∼= B(P(C)), the bounded Borel functions on the pure

state space of C, where the Borel structure is determined from the weak* topology on P(C).

First, we need to establish that C∗∗ is indeed “large enough” to contain all of the discon-

tinuous functions on M we desire.

Lemma 1. If S ⊆ M is a Borel set in M, then k[S] is a Borel set in the weak* topology

on P(C).

Proof. Since the Borel sets are generated by the open and closed sets, it suffices to prove

the claim for the case where S is an open or closed set. So suppose S ⊆M is either an open

set or a closed set. Since k is a homeomorphism fromM to k[M] in the subspace topology,

k[S] is either an open set or a closed set in k[M] in the subspace topology. Hence, there is

either an open set or a closed set S ′ ⊆ P(C) such that S ′ ∩ k[M] = k[S]. But Thm. 3.5.8

of Engelking(p. 169)17 shows that k[M] is open, so k[S] must be a Borel set.
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Lemma 2. Suppose f : P(C) → C has support contained in k[M]. Then f is Borel

measurable on P(C) iff f ◦ k is Borel measurable on M.

Proof. (⇒) Suppose f is Borel measurable on P(C). Let S be a Borel set in C. Then f−1[S]

is Borel measurable in P(C). It follows that (f ◦ k)−1[S] = k−1[f−1[S]] is Borel measurable

in M since k is continuous.

(⇐) Suppose f ◦k is Borel measurable onM. Let S be a Borel set in C. Then (f ◦k)−1[S]

is Borel measurable in M. Let k[M]C denote P(C) \ k[M]. Since k is an injection and

supp f ⊆ k[M], we know that f−1[S] = k[(f ◦ k)−1[S]] ∪ k[M]C if 0 ∈ S. On the other

hand, if 0 /∈ S, then f−1[S] = k[(f ◦ k)−1[S]]. The set k[(f ◦ k)−1[S]] is Borel measurable by

Lemma 1, and k[M]C is Borel measurable because k[M] is measurable by Lemma 1. Hence

f−1[S] is Borel measurable.

Now that we know C∗∗ contains surrogates for all of the Borel functions onM and hence

is “large enough”, we can apply Thm. 1 to obtain the algebra B(M) by restricting attention

to an appropriate state space.

We define

V C
0 := {ω ∈ C∗| µω(P(C) \ k[M]) = 0}

where µω is the measure on P(C) determined by ω through the Riesz-Markov theorem.

Furthermore, we define

V C := {ω ∈ C∗∗∗|
⋂
ρ∈V C

0

Ker(ρ) ⊆ Ker(ω)}

It follows that V C is maximal in the sense of Thm. 1. We will show in Prop. 2 that V C
0

is the collection of linear functionals that can be represented by countably additive Borel

measures on M. But first we show that V C is precisely the collection of functionals that

reduce the algebra C∗∗ to B(M).

Proposition 1. The C*-algebra B = C∗∗/N (V C) of Thm. 1 is *-isomorphic to B(M).

Proof. Define j : (C∗∗/N (V C))→ B(M) by

j(f +N (V C)) = f ◦ k

for any f ∈ C∗∗. This is well-defined because N (V C) consists only of functions with support

on P(C)\k[M]. So for any f, g ∈ C∗∗, f+N (V C) = g+N (V C) iff f ◦k = g◦k. Furthermore,

this already establishes that j is one-to-one.
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j is onto: for every f̂ ∈ B(M), f̂ = f ◦ k for

f(x) =

f̂ ◦ k
−1(x) if x ∈ k[M]

0 if x /∈ k[M]

and it follows from Lemmas 1 and 2 that f ∈ C∗∗, i.e. f is Borel measurable on P(C).

Since j obviously preserves pointwise algebraic operations, it follows that j is a *-

isomorphism.

Thus, we can use the countably additive Borel measures on M to reduce the state space

of an algebra of continuous bounded functions on M and in doing so recover the algebra

B(M). In particular, when we use the algebra C = AP (R2n), we can use the countably

additive Borel measures on R2n to reduce the state space of AP (R2n)∗∗ and recover the

algebra B(R2n).

The vector space V C
0 has an intuitive physical significance. We now show that V C

0 can

indeed be characterized as the collection of countably additive Borel measures onM, which

we will use in what follows.

Proposition 2. Let ω ∈ C∗. Then ω ∈ V C
0 iff ω is continuous in the topology of pointwise

convergence of functions on M.

Proof. This follows as a special case of Prop. 10.1.14 of Kadison and Ringrose (p. 722)32 ,

where we let the representation π : C→ B(HU) be defined by π(f) := πU(f) · χk[M], where

(πU ,HU) is the universal representation of C and χk[M] is (pointwise multiplication by) the

characteristic function of (all copies of) k[M], considered as a projection operator in the

universal Hilbert space HU =
⊕

ω∈S(A) L
2(P(C), dµω). It is easy to see that the condition

ω = χk[M]ω from Prop. 10.1.14 of Kadison and Ringrose (p. 722)32 is equivalent to the

condition ω ∈ V C
0 , and that ultraweak continuity in π(C) is continuity in the topology of

pointwise convergence of functions on M.

This establishes that the elements of V C
0 are precisely the countably additive Borel measures

on M. In particular, when C = AP (R2n), this shows that V C
0 is the collection of countably

additive Borel measures on R2n. We will use this fact to prove our main result.
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V. MAIN RESULT

Now we restrict attention to the finite-dimensional phase spaceM = R2n. We know from

previous results that if we consider the Weyl algebra over R2n and reduce its state space

to the regular states by applying Thm. 1, then we are left with the algebra B(H) of all

bounded linear operators on a separable Hilbert space H. More precisely, we define

V Q
0 := {ω ∈ Wh(R2n)∗| ω is regular}

Just as in §IV, we first need to enlarge the algebraWh(R2n) toWh(R2n)∗∗ so that it is “large

enough”. Then we consider the maximal set of functionals generated by V Q
0 ; we define

V Q := {ω ∈ Wh(R2n)∗∗∗|
⋂
ρ∈V Q

0

Ker(ρ) ⊆ Ker(ω)}

Proposition 3 (Feintzeig 19). The C*-algebra B =Wh(R2n)∗∗/N (V Q) (for h 6= 0) of Thm.

1 is *-isomorphic to B(H), where H is a separable Hilbert space.

This should be unsurprising because the well known Stone-von Neumann theorem already

shows that the regular states form the folium of the Schrödinger representation, which is

irreducible. But notice that there is a striking resemblance between the situation in Props.

1 and 3. In both cases, we alter the algebra of observables by choosing an appropriate

state space—V C or V Q—and applying Thm. 1. We will clarify the relationship between

these propositions by characterizing the relationship between V Q
0 , the collection of regular

functionals on the Weyl algebra, and V C
0 , the collection of countably additive Borel measures

on R2n. To do so, we now prove the main result.

Theorem 2. Let ω ∈ Wh(R2n)∗ (for h 6= 0). Then ω is regular iff ω ◦ Qh is a countably

additive Borel measure on R2n (i.e., ω ∈ V Q
0 iff ω ◦ Qh ∈ V C

0 ).

Proof. Some preliminaries. Notice that since the Stone-von Neumann theorem implies the

regular functionals are isomorphic to the predual of B(L2(Rn)), we know from Thm. 7.4.7

of Kadison and Ringrose (p. 485)32 that each regular functional can be decomposed into a

linear combination of regular states. Hence, it suffices to prove the claim for the case where

ω is a state, which we will assume in what follows.

(⇒) Suppose ω is a regular state. Consider the GNS representation (πω◦Qh
,Hω◦Qh

) for

the state ω ◦ Qh on W0(R2n) ∼= C(P(W0(R2n))). Thm. 5.2.6 of Kadison and Ringrose (p.
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315)32 implies there is a projection-valued measure E on P(W0(R2n)) with the following

property. For any ϕ ∈ Hω◦Qh
, define the Borel measure µϕ on P(W0(R2n)) by

µϕ(S) := 〈ϕ,E(S)ϕ〉

for any Borel set S ⊆ P(W0(R2n)). Then we have

〈ϕ, πω◦Qh
(W0(x))ϕ〉 =

∫
P(W0(R2n))

Ŵ0(x)dµϕ

for any x ∈ R2n (where Ŵ0(x) is here the surrogate of the function W0(x) on the space

P(W0(R2n)) of pure states). In particular, for the choice ϕ = Ωω◦Q, the cyclic vector

representing the state ω ◦ Q from the GNS construction, it follows that µϕ is the Riesz-

Markov measure µω◦Qh
on P(W0(R2n)) corresponding to ω ◦ Qh.

Now, since ω is regular, the mapping

x 7→ πω◦Qh
(W0(x))

for all x ∈ R2n is a weak operator continuous unitary representation of the topological

group R2n, the SNAG theorem (Bratteli and Robinson 8, p. 243) implies that we have a

projection-valued measure on R2n:

S 7→ E(k[S])

for any Borel set S ⊆ R2n (Recall R2n is self-dual as a topological group). Here, the map

k : R2n → P(W0(R2n)) is the compactification associated to W0(R2n). The justification is

as follows: for any ϕ ∈ Hω◦Qh
, define the Borel measure µ̂ϕ on R2n by

µ̂ϕ(S) := µϕ(k[S])

for any Borel set S ⊆ R2n. We know µ̂ϕ satisfies

〈ϕ, πω◦Qh
(W0(x))ϕ〉 =

∫
R2n

W0(x)dµ̂ϕ

for any x ∈ R2n (where W0(x) is now considered as a function on R2n).

Hence, since E ◦ k is a projection valued measure, it must be the case that

µϕ(k[R2n]) = µ̂ϕ(R2n) = 1

and thus

µϕ(P(W0(R2n)) \ k[R2n]) = 0
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This implies that for the choice ϕ = Ωω◦Qh
,

µω◦Qh
(P(W0(R2n)) \ k[R2n]) = 0

Prop. 2 now implies ω ◦ Qh is a countably additive Borel measure on R2n.

(⇐) Suppose ω ◦Qh is a countably additive Borel probability measure on R2n. By Prop.

2, we know that the Riesz-Markov measure µω◦Qh
corresponding to ω ◦ Qh satisfies

µω◦Qh
(P(W0(R2n))) \ k[R2n]) = 0

Now we know that for any x ∈ R2n,

ω ◦ Qh(W0(tx)) =

∫
P(W0(R2n))

W0(tx)dµω◦Qh

=

∫
k[R2n]

W0(tx)dµω◦Qh

for all t ∈ R. Since the functions W0(tx) are uniformly bounded by 1 on the domain k[R2n],

the dominated convergence theorem (Reed and Simon 54, p. 17, Thm. I.11) implies that

t 7→ ω ◦ Qh(W0(tx))

is a continuous function, which shows that ω is regular.

Recall that the state ω determines a constant continuous field of states {ωh}h∈[0,1] on the

deformation quantization discussed in §III with classical limit ω̂ = ω ◦ Qh. Thus, Thm. 2

establishes the central claim of this paper: a state ω on Wh(R2n) is regular iff its classical

limit ω ◦ Qh is a countably additive Borel probability measure on R2n.

VI. DISCUSSION

Thm. 2 shows that we only need the regular quantum states to explain the success of

classical physics. As such, this result bears on the question of which quantum states we

ought to take to be physically significant in quantum theories. For example, some have been

interested in constructing quantum theories using non-regular states and their corresponding

representations.13,27 But these non-regular states are not needed for the explanation of the

success of classical physics. I do not claim that this rules out approaches to physics involving

non-regular states, but it does demonstrate some of their counterintuitive features.
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Furthermore, this result shows that one can use the classical limit of quantum theories,

or more specifically quantum states, to guide the construction of quantum theories. Prop.

3 shows that we can transform the Weyl algebra to an algebra whose state space consists

precisely of the states whose classical limits are manifestly physically significant. This may

be desirable if one believes that the only quantum states that are physical are the ones whose

classical limit is physical. The result of this process is precisely the orthodox formulation of

non-relativistic quantum mechanics for systems whose phase space is R2n.

The main result of this paper thus suggests a possible methodology for choosing an algebra

of observables to use in the construction of new quantum theories. As one will notice from

a survey of the literature, there are many different approaches to constructing algebras of

quantum observables. One needs to make a choice about what type of algebra to use, e.g.,

*-algebras or C*-algebras (See, e.g., Rejzner 55). And even once one has made this choice,

one has to choose which algebra of a given type is appropriate for modeling a given physical

system (See, e.g., Ashtekar and Isham 4). The methodology the result of this paper suggests

is that we look for an algebra that has an appropriate state space—in the sense that the

classical limits of the allowed quantum states are physical states in the classical theory. I

do not claim that this methodology is guaranteed to work in the quantization of all classical

theories, but merely that it works in the simplest case. Since this approach is motivated

by the desired explanations of the success of previous theories, I suggest that it might be

fruitful to apply the same methodology in the quantization of other classical theories.

I hope that the result of this procedure provides some further understanding of quan-

tization and the classical limit, and that this procedure can be extended to illuminate the

quantization of other classical theories. In this vein, I’d like to outline a number of further

questions for investigation.

1. Do the algebras Wh(R2n)∗∗/N (V Q) ∼= B(H) with the natural composition of quotient

maps with quantization maps provide a strict or continuous quantization43 of the

algebra W0(R2n)∗∗/N (V C) ∼= B(R2n)? If so, is this quantization equivalent to the

weakly continuous extension of the Berezin quantization of C0(R2n) ⊆ B(R2n) to the

compact operators K(H) ⊆ B(H)?

2. Can one extend the results of §IV for field systems whose phase space is not locally

compact? In particular, should we understand the countably additive Borel probability

15



measures on a non-locally compact phase space as modeling the physically significant

states? Should we understand the algebra of bounded Borel functions on a non-locally

compact phase space as modeling the physically significant observables?44

3. Can one apply the methodology of §V to recover the quantization of a system whose

phase space is not simply connected? There are known procedures for arriving at

the quantization of a theory whose phase space has the form G/H for some locally

compact abelian group G and closed subgroup H.35,36,38 Is it possible to arrive at

the same quantum theory by quantizing a system with phase space G and restricting

attention to only states with the appropriate classical limit?

I hope that answers to these (or similar) questions might aid both our understanding of the

classical limit and the development of tools for constructing strict and continuous deforma-

tion quantizations for further systems of physical interest.
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