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Abstract 

This paper considers the temporal dimension of data processing and use, and the 

ways in which it affects the production and interpretation of knowledge claims. I start 

by distinguishing the time at which data collection, dissemination and analysis occur 

(Data time, or Dt) from the time in which the phenomena for which data serve as 

evidence operate (Phenomena time, or Pt). Building on the analysis of two examples 

of data re-use from modelling and experimental practices in biology, I then argue that 

Dt affects how researchers (1) select and interpret data as evidence and (2) identify 

and understand phenomena. 

 

 

  



1. Introduction: Data Time, Phenomena Time and the Epistemic Role of 

Data Processing Efforts 

Existing analyses of the epistemic status and role of scientific data have focused on 

synchronous aspects of research, often without considering how the diverse time-

scales characterizing the handling of data affect processes of inference and knowledge 

generation. In this paper, I analyse the temporality of the data practices required to 

facilitate data-to-phenomena inferences, and its impact on researchers’ inferential 

reasoning and understanding of the phenomena under study. I argue that concerns 

around the temporality and historicity of data practices affect any research situation in 

which data are (re)used at a time and place other than those in which they are 

generated. This paper thus considers the epistemological concerns and challenges 

involved in processing data to facilitate their preservation and analysis in the long 

term; and in identifying the conditions under which data can be kept, shared and 

analyzed through time, thus enabling researchers to build on past efforts and boost 

future research. 

 

Many philosophical discussions of the temporality of data and its implications for 

research revolve around the credibility of the evidential strategies employed by the 

historical sciences – typically defined as sciences that attempt to reconstruct and 

explain long lost events and objects (such as extinct organisms, ecosystems, human 

cultures and climatic conditions), and which therefore contend with scarce, sporadic 

and partial data sources. The differential survival of evidence through time has been 

argued to provide relatively poor evidential ground for knowledge claims, making the 

historical sciences hostage to “lucky finds” in terms of what they can and cannot 



investigate and explain.1 In this paper, I argue that concerns around whether and how 

data maintain evidential value through time are not restricted to the historical 

sciences, but are common to any field where data acquired in previous periods can 

play a significant role as evidence for subsequent research, and/or in situations where 

investigators spend long periods of time investigating and revisiting the same datasets. 

These situations occur both in experimental and field-based research, and whether or 

not the data in question are quantitative or qualitative. Indeed, I shall argue that 

experimental data are particularly time-sensitive due to the ever-changing nature of 

the know-how and laboratory conditions under which they are produced, which makes 

these data difficult to preserve as meaningful and re-usable sources of evidence. This 

issue is often underestimated by philosophers who emphasize the degree of 

experimental control exercised by researchers at the moment of producing data, yet 

disregard the ease with which such control can be lost once the original experimental 

set-up changes or ceases to exist, or the data are retrieved and examined by 

researchers working in different laboratory conditions.2 

 

As a starting point for analysis, I propose to distinguish between two types of 

temporalities involved in knowledge production and interpretation: the temporal 

dimension of data practices used to prepare and manage data so that they can be 

subjected to inferential reasoning (which I shall refer to as Data time, or Dt) and that 

of the phenomena under investigation, for which data are meant to serve as evidence 

(Phenomena time, or Pt).3 Dt is closely associated to the ways in which researchers 

                                                
1 E.g. Sober 1988, 1-2; Currie and Turner (2016) and Currie (in press) provide a 
useful overview of these arguments. 
2 As is often the case in contemporary data-centric biology (Leonelli 2016).  
3 My position is thus sympathetic to the analysis of the relation between experimental 
and historical sciences provided by Carol Cleland (2002) and Derek Turner (2004), 



manage time in their work, and particularly to the constraints and opportunities posed 

by the time spent in the production, dissemination and analysis of data. Pt refers 

instead to the assumptions that researchers make about the temporal features of their 

research targets, and the ways in which such assumptions condition their 

understanding of the natural world as well as their investigative strategies.  

 

The distinction builds heavily on James Bogen and James Woodward’s seminal work 

on the material conditions under which researchers make data-to-phenomena 

inferences (1988), which stand in striking contrast to the constraints that apply to the 

development of a priori, logical inferences (Woodward 2000). At the same time, my 

views on the categories of “data” and “phenomena” differ from Bogen and 

Woodward’s in two respects. First, I explicitly endorse a relational understanding of 

the epistemology of data, according to which data are identified and conceptualised in 

relation to their function within specific situations of inquiry (Leonelli 2015, 2016).4 

Second, I favour an interpretation of the ontological status of phenomena as human 

constructs rather than actual features of the world – though, contrary to McAllister’s 

anti-realist interpretation (2010), I view such constructs as highly constrained by the 

characteristics of processes and entities in the world, and thus reliably capturing 

aspects of reality as researchers experience it (Massimi 2009, Feest 2011). 

 

                                                                                                                                       
though their discussion of the role of the temporal asymmetry of underdetermination 
does not explicitly consider the distinction between Dt and Pt, thus underestimating 
the relevance of practical issues of data preservation and handling to the warrant 
available to claims about past and present events. 
4 Recent work by Woodward (2010) indicates affinities with this view, yet neither 
Bogen nor Woodward have so far devoted much attention to defining what they mean 
by data.  



These premises are salient to my proposed distinction between Dt and Pt. On the one 

hand, they are consistent with Dt and Pt being intertwined in scientific practice, with 

both dimensions typically affected by practical considerations such as the resources, 

materials, institutional frameworks and technologies available to researchers. As 

James Griesemer and Grant Yamashita (2002) argued in relation to research on 

biological model systems, “phenomena have no intrinsic time-scale”: the temporality 

that researchers ascribe to phenomena depends at least in part on the circumstances of 

inquiry – which often include issues of data access and data analysis. In a similar way, 

the temporality of data is defined largely by the research contexts in which they are 

used – which often include specific conceptualisations of phenomena. On the other 

hand, the interdependence of Dt and Pt does not make it any less useful to distinguish 

them analytically. Focusing specifically on Dt means paying attention to the efforts 

involved in data generation, processing, dissemination and analysis, and the large 

variability in the stages – and related time-scales - through which any given dataset is 

handled and interpreted. This temporal dimension can have a significant impact on 

how Pt is measured, but it is conceptually separate from Pt: Dt pertains to the realm of 

inquiry and research processes (the so-called “context of discovery”), rather than to 

the knowledge derived from such processes. 

 

In what follows, I use the distinction between Dt and Pt to examine two cases from 

contemporary biological practice in which researchers attempt to re-use data 

previously collected by others as evidence for novel claims about phenomena.5 The 

                                                
5 These examples have been researched through an analysis of scientific literature and 
online tools such as databases, as well as interviews with the scientists involved which 
I carried out in 2014 and 2015, and which helped me to reconstruct the activities and 
reasoning involved in data processing and analysis. Full transcripts of those 



first case involves the construction of models to track and predict the spread of plant 

pathogens, which is grounded on the retrieval and integration of data from a variety of 

sources, and is highly dependent on the accuracy with which Dt is preserved and 

managed. The second case is typical of experimental work on regulatory mechanisms 

within molecular and cell biology, and concerns the retrieval and comparison of data 

collected on two species of yeast to study the role of the cell cycle in regulating 

transcription in humans, potentially resulting in breakthroughs in the understanding of 

cancer onset and development. 

 

These examples illustrate how the distinction between Dt and Pt helps to highlight 

two important features of scientific knowledge production. First, the ways in which 

researchers acknowledge and document Dt affect the extent to which they can 

successfully preserve data, integrate them with other data, and (re-)use them as 

evidence for new claims. In other words, knowledge about Dt affects researchers’ 

ability to identify relevant data and assess their reliability and significance as evidence 

for a given hypothesis. Second, knowledge of Dt affects researchers’ understanding of 

the phenomena for which data are taken to serve as evidence, and thus the content of 

the knowledge claims derived from data analysis. 

 

2. Data Re-Use Case 1: Modelling the Global Spread of Plant Pathogens 

My first example concerns contemporary attempts to track the global distribution and 

movements of plant pathogens (such as the fungus Hemileia vastatrix, responsible for 

the infamous coffee rust disease, or the various blights severely affecting the 

cultivation of major crops) over the last century, with the goal of identifying trends 

                                                                                                                                       
conversations which interviewees consented to make available online are available as 
Leonelli (2017). 



that may help to predict crop pathogen spread across the globe and its potential impact 

on agriculture. A key source of data underpinning such efforts are observational 

reports on pathogens. These reports are typically collected by field stations and plant 

clinics located on various sites around the world and later assembled into a unique 

body of evidence by initiatives such as the Plantwise database of the Centre for 

Agriculture and Bioscience International (CABI). CABI uses observational reports to 

produce maps tracking the geographical spread of different pathogens through several 

decades (e.g. figure 1).  

 

[Figure 1 here] 

 

These efforts are hampered by the lack of consistent observational data documenting 

pathogen movements across different parts of the world. Records for low-income 

regions such as sub-Saharan Africa and South America, for instance, are patchy at 

best, and significant time intervals are missing even for well-monitored countries. 

Furthermore, the ways in which different field stations assemble, store and 

disseminate pathogen observation data are highly variable, and not easily amenable to 

integration into global maps. To remedy this situation, researchers have devised 

modelling tools to infer plausible pathogen movements from environmental factors. 

These models build on available knowledge of the conditions under which fungi are 

likely to produce spores and infect their hosts, such as temperature and the availability 

of water on the leaf surface of the plants in question (i.e. when it is too dry, too hot or 

too cold, the spores die). This knowledge enables researchers to infer infection rates 

from the triangulation of observational data with measurements of air temperature, 



which are often available thanks to the ubiquity of meteorological stations, and 

estimates of the amount of water in the crop canopy.  

 

Such work can then be used to develop models to predict future trends and target 

measures to stop the spread of harmful pathogens. It is at this point that this example 

becomes relevant for an investigation of Dt. This attempt to put old observational data 

to a new use prompted some of the researchers involved to take a closer look at how 

the observational data from pathogen reports had been compiled and assembled in the 

first place, and the extent to which they could be reliably aligned with meteorological 

data. This brought to light two challenges that had not been apparent at the start of the 

modelling effort, and yet I found to underpin most cases of data re-use in biology, 

with significant implications for data analysis and subsequent interpretations.  

 

The first challenge lies in reconstructing Dt for the key dataset underpinning CABI 

maps, i.e. pathogen reports. This involves several distinct events, which in some cases 

are separated by one or two decades, including:  

• Dt1: data collection, e.g. the date on which a local farmer brought an affected 

plant specimen to a plant clinic for pathogen identification; 

• Dt2: compilation of observational datasets into a consistent report about pathogen 

spread in the region of interest;  

• Dt3: official publication of the compiled data, e.g. in a journal or a report; 

• Dt4: use of publications as sources for national maps of pathogen spread; 

• Dt5: incorporation of national maps into a global digital repository or online 

database, such as that run by CABI; 

• Dt6: retrieval of the data from the repository for further analysis.  



It turns out that published maps can be unreliable in their temporal location of data 

and subsequent data processing and interventions, and often conflate Dt2-Dt6 with 

Dt1. Particularly in the case of data older than ten years, extensive efforts are now 

required to date Dt1 and disentangle it from other Dts. In the absence of an accurate 

timeline for data processing, it is hard for researchers to construct reliable predictive 

models. The lack of certainty around Dt also decreases researchers’ ability to quantify 

under-reporting and thus the extent to which data may be missing for specific 

areas/periods/pathogens (Bebber 2014). 

 

The second challenge consists in aligning Dt across the diverse data sources at hand, 

including pathogen location reports, water estimates and climate data. Given the 

amount of processing required to prepare data for use in modelling, Dt is much longer 

and more complicated for pathogen distribution and water estimates than for air 

temperature – a difference made more dramatic by the recent introduction of direct 

temperature measurements via satellite. A consequence of this temporal mismatch is 

that integrating data sources requires considerable and expert judgement labor, with 

researchers needing to use their knowledge of the territory and the species in question 

to adjudicate specific cases. The ways in which researchers choose to temporally align 

these different datasets affect their characterization of the phenomena of interest (such 

as pathogen spread) and their temporal dimensions (e.g. the rate of spread) – which go 

on to affect the predictive ability of the models in which they are assumed. 

 

3. Data Re-Use Case 2: Identifying Conserved Regulatory Mechanisms 

Across Species  



Shifting now from modelling to experimental practices, my second example concerns 

the use of experimental data to study the regulatory mechanisms at work in the cell 

cycle, and assessing potential links between defects in protein regulation and the 

proliferation of tumor cells.6 To identify and study regulatory pathways that may be 

conserved in humans, researchers often resort to analyzing data coming from much 

simpler forms of life, which are more tractable and easier to study. In the case of 

regulatory pathways involved in the cell cycle, a successful investigative strategy 

involves the comparative use of data collected from two types of fungi: fission yeast 

(Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). I shall 

now focus on the management of Dt in relation to the collection and dissemination of 

data from these two organisms, and particularly the role played by databases in 

making them available for comparative analysis.  

 

S. cerevisiae has long been a favourite model in biology, with a vast repertoire of 

knowledge, databases and tools available to researchers interested in studying the cell 

cycle. It thus constitutes an obvious starting point to identify new regulatory functions 

associated to cell replication. However, cerevisiae spends a lot of time in the G1 

phase of the cell cycle, which is problematic for researchers interested in investigating 

the S and G2 phases of the cycle (see figure 2). S. pombe, a much simpler form of life 

with 3 chromosomes to cerevisiae’s 16, turns out to work as an ideal complement: its 

S and G2 phases are longer, enabling researchers to scrutinize their potential 

regulatory functions, and the shared evolutionary history of the two organisms makes 

it plausible to expect that regulatory mechanisms found in pombe may be conserved 

in cerevisiae. The systematic comparison of data produced in cerevisiae and pombe 

                                                
6 This line of research was made famous by the work of Paul Nurse, Tim Hunt and 
Leland H. Hartwell, earning them a Nobel prize in 2001. 



produced findings that turned out to be conserved in humans, making this approach 

useful to understanding the emergence of cancer (e.g. Caetano et al 2014).  

 

[insert figure 2] 

 

What makes this investigative strategy possible is the opportunity to retrieve, 

visualize and compare yeast data through PomBase and SGD, the main databases for 

pombe and cerevisiae. Robert de Bruin, a leading scientists involved in this work, 

describes the strategy as follows:  

“we used PomBase to find whether that [mechanism] was conserved in fission 

yeast. We could really easily establish it in fission yeast, and then we could go 

back to budding yeast now we knew exactly what we're looking at, and then 

found that also in budding yeast. [..] Now my work in my lab is all focused on 

that. Without going into fission yeast and having it accessible that easily, I 

would have never gone in, and I would have completely missed it. And people 

in budding yeast completely missed even that regulation, let alone the 

mechanism, and the same in mammalian cells, people have been studying that 

for decades and completely missed it.” (transcript PI_8_A)  

 

Without the quick and accurate comparative tools provided by PomBase and SGD, it 

would have been much harder for researchers to compare data across the two species, 

potentially hindering the discovery of significant connections between their regulatory 

systems. As it turns out, making it “really easy” to explore data in this way requires 

labor-intensive practices of data annotation and curation, which largely determine 

which datasets are found online, what information about the data is captured and 



made available within databases, and how the data are presented and retrieved for 

inferential reasoning. Database curators pay particular attention to the selection and 

inclusion of information about the provenance of data, such as the time at which data 

were produced and further processed. This often means consulting directly with the 

original data producers, who are not always accurate when publishing their data as 

part of research articles, and may quickly lose memory and/or interest in these details 

after the end of their project. This information enhances researchers’ ability to assess 

the quality of the data and the extent to which each source is comparable to others.  

 

Database curators also participate in the development and application of standard 

labels identifying the phenomena for which data may serve as evidence, a task made 

difficult by the diversity of terms used by different biological communities to denote 

the same genes, gene functions and phenotypes (most often in the case of groups 

working on different species; Leonelli and Ankeny 2012). The developers of both 

PomBase and SGD are deeply engaged in the construction of classification systems, 

such as the Gene Ontology and the Fission Yeast Phenotype Ontology, that make it 

possible for researchers to look for data of potential relevance to the phenomena they 

are interested in. This work requires regular updates of data formats and labels to 

reflect shifts in knowledge base and in the technologies used to produce and 

disseminate data. Much effort is devoted to providing an accurate record of Dt, i.e. a 

timeline for the ways in which data are manipulated to remain accessible and usable. 

Such record is indispensable to the comparison of data acquired on different species, 

especially when – as in our example – researchers are not sure about the relation 

between the phenomena under investigation in the two types of organisms. In such 

cases, precise notations about the temporality and provenance of data are crucial to 



interpretation: researchers need to know when and why a certain dataset has come to 

be associated to a given phenomenon, and how such inference may be triangulated 

with findings coming from complementary approaches (such as the functional and 

evolutionary data required to establish a mechanism as conserved).  

 

Remarkably, the better database curators accomplish these tasks, the more their work 

remains invisible to database users and research funders. The epistemic significance 

of these practices becomes visible whenever a lack of information about Dt affects the 

ability of database users to interpret the data. Due to the strong collaborative ethos 

and relatively small size characterizing the community of pombe researchers, 

PomBase curators are highly successful in eliciting accurate and updated information 

from data producers. This does not work as well in larger research communities, 

where database curators are confronted with much larger datasets and data producers 

have little incentives to participate in data curation. It also fails within the increasingly 

nested landscape of data infrastructures characterising contemporary biomedical 

research, where information about Dt is easily lost when data are passed from one 

platform to another – leading to a situation of high uncertainty around Dt, similar to 

what we encountered in the first example. Indeed, the yeast researchers I interviewed 

reacted strongly against the suggestion that it may be efficient to integrate all data 

relating to yeast species in one single database, which in their view may entail 

significant loss of information about data provenance. 

 

 

4. The Epistemic Significance of Data Time  



In the cases described above, Dt may span several different events over an extended 

period, ranging from the moment in which data are originally collected to the times at 

which they are modified to make them widely accessible and re-usable. Ideally, given 

the significance of knowledge about Dt for data analysis and interpretation, the 

researchers and curators involved in data processing (including the compilation and 

visualisation of data in publications, databases, maps and models) should ensure that 

information about Dt accompanies the relevant data points in all stages of their 

travels. This is what happened in my second example, where attentive data curation 

and a well-constructed database enable researchers to easily find information about Dt 

and use it for data analysis. However, and particularly in situations where Dt is 

recorded under diverse working conditions by individuals with different skills and 

goals, Dt can be remarkably difficult to track and retrieve. Our first example 

illustrates the problems that can emerge when researchers have limited access to the 

history of the data that they are analysing. 

 

Knowledge or ignorance of Dt can thus affect research processes and outcomes in (at 

least) two ways. First, it can alter researchers’ perception of which datasets are most 

reliable as sources of evidence, thus affecting the evidential value attributed to data in 

any given inquiry. Without access to accurate information about Dt, researchers may 

need to reject whole datasets or modify the ways in which they analyse them (e.g. by 

shifting their evidential weight in relation to other sources, or seeking to triangulate 

them with other types of findings). This is clear in the case of pathogen spread, where 

researchers found it problematic to deal with datasets where they could not distinguish 

between Dt1 and other Dts, thus throwing doubt on the reliability of existing data 

maps and related modelling tools. Though less overtly, this also happens in the case of 



cross-species study of transcriptional regulation, where researchers needing to re-use 

data available online need to be able to trace when the data were collected, with which 

technology and by whom. These examples show that preserving data is not enough to 

facilitate their future re-use. Equally relevant is the preservation of information about 

the temporality of the interventions through which data have been assembled, 

circulated and visualized. 

 

Second, knowledge or ignorance of Dt can determine the frame and resolution at 

which phenomena are studied, thus affecting researchers’ understanding of 

phenomena – including their perception of what can be known, and what aspects of a 

given target system are worth focusing on. Consider for instance the epistemic risk 

posed by the integration of data acquired on various aspects of a phenomenon of 

interest by a variety of sources, such as for instance when bringing together genomic, 

metabolic, environmental and physiological data collected by different research teams 

in order to study gene-environment interactions.7 Such integration is crucial to 

providing novel insights into complex processes (particularly in the emerging 

landscape of “big data” analysis), yet both examples show that it carries the risk of 

loss of information about Dt, since not all existing information about data is preserved 

when bringing large and diverse datasets together. This carries significant 

implications for data analysis and the reliability of subsequent inferential processes. 

Wrong information about Dt or difficulties in aligning different Dt can result in 

predictive failure of models or misleading cross-species inference.  

 

                                                
7 See also O’Malley and Soyer 2012, Leonelli 2016 (chapter 6). 



5. Conclusion: Time-Scales of Data Processing and the Limits of 

Experimental Control  

I proposed to focus on the temporal dimensions involved in practices of data 

processing, and distinguish between Dt and Pt to shed light on the extent to which the 

diverse time-scales of data and phenomena affect processes of inference and 

knowledge production. Though the analysis of two examples from biological practice, 

I have emphasised the complex set of conditions required to preserve data and related 

meta-data in the long term, and argued that data processing and related temporalities 

are crucial to inferential processes and (re)interpretation. I thus hope to have 

illustrated how tracing the movements of data through processes of inquiry, and 

particularly the conditions under which data do or do not function as evidence, can 

help to foster philosophical understanding of how data processing affects the content 

of knowledge claims. Data are defined by their temporal characteristics as much as by 

their spatial and morphological ones, and underestimating the challenges and time-

scales involved in data processing can disrupt inferential reasoning and invalidate the 

use of data as evidence. 

 

In closing, I briefly examine one implication of this argument, which is that 

experimental control over data production is not enough to guarantee good, (re)usable 

data. This is significant when considering philosophical accounts that portray 

historical and experimental sciences as exemplifying two opposed epistemic 

situations: one in which researchers have complete control over the range, type and 

quantity of data that they can obtain on the phenomena of interest, thus providing 

strong warrant for inferential claims made on the basis of those data; and one where 

researchers cannot control what data are available and are thus “at the mercy of the 



processes by which time covers her tracks” (Currie in press), which seems to threaten 

the epistemic reliability of their claims.8  

 

Both Currie and Alison Wylie have critiqued facile dismissals of the epistemic 

reliability and scope of claims made within the historical sciences, by pointing to the 

variety of evidence and methods that researchers in those fields can use (e.g. 

modelling, analogies, various new technologies to study the composition of material 

traces) as well as the importance of triangulation and consilience in warranting 

inferences in other fields (Wylie 2017; Chapman and Wylie 2016; Currie in press). 

My analysis in this paper corroborates their arguments through the following 

observation: not only the pessimism about the epistemic status of the historical 

sciences is based on lack of recognition of their methodological sophistication in 

processing data, but it is also linked to an exaggerated optimism with respect to the 

potential and warrants of experimental methods in contemporary science, and the 

extent to which they can really guarantee control over phenomena.  

 

The cases of data handling that I analysed above, and particularly my second 

example, point to the fact that experimental results are difficult to control – not only at 

the point at which they are produced, but most significantly at the point of 

dissemination, storage, and re-use. Data can disappear or become unusable very 

quickly if not properly curated: it only takes a destroyed hard disk, a misleading 

annotation or a postdoc changing jobs. Worries about differential survival of evidence 

and informational destruction are thus arguably as alive with contemporary data 

                                                
8 A similar distinction is frequently made between hermeneutic and quantitative 
approaches to data re-use (as championed by the social and natural sciences, 
respectively), and is convincingly challenged by James McAllister in his contribution 
to the PSA Symposium where this paper was also presented (McAllister 2018). 



collection in the life sciences as they are for historical sciences and observational data 

therein. And because experimentalists today operate in what are often characterised as 

ideal conditions (particularly in the case of molecular biology, where they can avail 

themselves of ready-made samples, high-throughput instruments for data production, 

high computational power and myriads of modelling tools), they themselves tend to 

underestimate the challenges involved in processing data and related information, 

which can cause real trouble with data interpretation and inferential reasoning down 

the line. Both scientists and philosophers can learn from the strategies elaborated 

within the historical sciences to record and update information about Dt and thus 

maximise the evidential value of existing data collections. 
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Figures 

Figure 1. CABI Map of the global spread of tomato pathogen Oidium neolycopersici 

in 2007.   



 

 

Figure 2 – A simple representation of the different phases of the cell cycle in S. 

cerevisiae. Image produced by Michel Durinx.

 


