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1 Introduction

Classical statistical inferences have been criticised for various reasons. To assess

the soundness of such criticisms is a very important task because they are widely

used in everyday scientific research. This is one of the reasons why the philosophy

of statistics is an exciting field of study.

In this paper, I focus on two such criticisms. The first one claims that the use

of the p-value violates (or can violate) the principle of total evidence (PTE). It is

a thesis that has been defended by Elliott Sober and Bengt Autzen. The second

one says that the result of classical tests does not only depend on the data but on

the sampling plan of the experimenter also. The underlying criticism of course is

that the sampling plan is not part of the evidence and that classical tests therefore

violate PTE. The intentions of the experimenter should not affect the result of an

inference. See (Howson and Urbach 2006; Romeijn 2017).

My aim is to show that both criticisms are unsound. Doing so, I hope to clarify

the concept of p-value and the nature of the evidence in classical statistical tests.

The point of my paper is to show that the identification of the evidence on which

those criticisms rest is inadequate.

This paper contains three main sections. In the first section, I define its focus

and provide a non-technical/basic explanation of frequentist tests with the help of

an analogy. In the second section, I dismiss Sober’s and Autzen’s views on PTE

and p-values. In order to make my point, I derive absurd conclusions by using the

notion of evidence on which they construct their criticisms. I shall conclude by

proposing a more adequate characterisation of evidence for frequentist tests.

In the final section, I rebut the criticism based on the sampling plan also known

as the ”stopping rule criticism”. I argue that the different conclusions that stem

from different stopping rules is explained by a difference in the evidence that has
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been used. The intentions of the experimenter have nothing to do with it.

2 Frequentist Tests: An Intuitive Guide

In this paper, I shall not discuss the PTE per se. My goal is to pinpoint three

mistakes about frequentist inferences from which the two criticisms mentionned in

the introduction stem:

• The aim of a significance test is to find out whether or not the observations

are sufficiently improbable under the null hypothesis.

• It is preferable to use tests such that the p-value is a sufficient statistic.

• The fact that different conclusions stem from different stopping rules is ex-

plained by a difference in the intentions of the experimenters.

Those mistakes have led some to conclude that frequentist inferences violate

(or can violate) PTE. By exposing those mistakes for what they are, I show that

those arguments are unsound.

In order to reach that goal, I do not need to analyse PTE nor do I need to take

issue with how it is used in the arguments I shall discuss in the following sections.

I rely on a very general definition of this principle according to which one should

use all evidence and only the evidence when making an inference (See (Neta 2008,

p.90) for such a general defintion).

I will however attempt to clarifying the procedure involved in classical infer-

ences and to identify the information required to make a frequentist inference. That

information is what I call ”the evidence”.

Frequentist tests function a little bit like we would evaluate an archer after

several trials. First, we will establish a region near the center of the target where
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most of A’s arrows should fall under the assumption that she is a good archer. If

most of her arrows do not fall within that region, then we shall no longer think

of her as a good archer. This kind of inference consists in making a prediction

as to where the arrow will fall under the supposition that A is a good archer and

a disposition to reject that assumption should A’s arrows mostly fall outside that

predicted region. The separation of the target into two regions is essential to the

inference because we cannot predict where most of the arrows will land exactly.

We can only predict the area where they will land.

Things are very similar with frequentist tests except that we do not test archers,

but values of (or constraints on) parameters and we do not observe arrows, but test

statistics. However, much like in the archer scenario, we predetermine a region

where a test statistic will fall with a high probability under the assumption H0 that

a certain parameter (it could be a vector) holds as opposed to some other. We shall

reject that assumption H0 should the test statistic fall outside that predicted region.

Again, we need to separate the space that the statistic can occupy into two

regions in order to be able to make a prediction. It is usually impossible to predict

the exact value of a statistic. Just think of a probability density like the normal

distribution. The probability of every state is 0. It that case it is impossible to

predict a single state but only a range of states.

Notice here how there is an important distinction to be made between the prob-

ability of falling within a certain region and the probability of a particular test

statistic. The first one is needed to make an inference. The second one is relatively

uninformative by itself. Every possible test statistic can be very improbable. What

matters is whether or not it falls within a certain region. This will determine the

outcome of the inference.

Furthermore, notice how we do not define a probability density or mass on

the hypotheses that we are testing. We define probability densities or masses on
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statistics. This means that our inferences will not attribute probabilities on the

hypothesis. For example, there is no such thing as the probability of H0 given the

test statistic within a frequentist framework. One might want to analyse frequentist

tests in those terms but this is a no a path I will attempt to follow in this paper.

The main focus of this paper is to shine a light on the evidence used in a fre-

quentist inference. The information that we need to use in order to reach a con-

clusion in a classical context is quite rich. We need to determined the correct

distribution of the test statistic. We also need to know how to establish the correct

regions on which to define the test. This requires a certain knowledge of the al-

ternative hypotheses. We also need to know where the test statistic lies in order to

give a final verdict. This is all part of the evidence that we need in order to make

a sound frequentist inference. The p-value is simply an indicator as to whether or

not the test statistic has landed into the rejection region. Informally speaking, the

p-value is the probability of obtaining a test statistic that is at least as extreme as

the one that we have observed, i.e., at least as close to the rejection region or at

least as deep inside the rejection region.

If we were to schematise a frequentist inference we could say that the conclu-

sions is whether or not to reject H0. The premise is whether or not the test statistic

belongs to the critical region, and the background knowledge consists of all the

information necessary to establish the appropriate critical region. Both the premise

and the background knowledge are part of the evidence.

Of course, this kind of inference is not without shortcomings and there are

also other types of statistical inferences. For instance, there are likelihoodist and

Bayesian inferences. But in this paper I will not compare frequentist inferences

with other types of inferences. I only dismiss some arguments that aim to show

that frequentist inferences are internally problematic (without any comparison with

other types of inference). Many philosophers have been dismissive of such infer-
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ences and yet they misunderstand the basics.

3 The Principle of Total Evidence and P-values

In this section, I show how not to criticise frequentist inferences. I present a para-

dox and underscore the mistake from which it stems. This groundwork allows for

a fruitful assessment of Sober’s and Autzen’s critical appraisal of p-value based

inferences.

3.1 How not to Criticise Frequentist Inferences

Consider two one-sided frequentist tests as defined in Table 1 (See (Wagenmakers

2007, p.782) for a similar example).

Table 1: Two Mass Functions Under H0

distrbution x=1 x=2 x=3 x=4 x=5

f(x|H0) 0.5 0.46 0.03 0.006 0.004

g(x|H0) 0.5 0.44 0.03 0.02 0.01

The first test involves the mass function f (x) under the assumption that a null

hypothesis H0 is true, the observed outcome x=3, and a p-value of 0.04. The

second test involves the mass function g(x) under the assumption that a H0 is true,

the observed outcome x=3, and a p-value of 0.06. Assuming that the significance

level for both tests is 0.05, then we will reject H0 in the first case, but not in the

second.

Now this looks paradoxical. Surely, if the probability of x=3 is not low enough

to reject H0 when we conduct the second test, then it should not be low enough to

reject H0 when we do the first one. After all, that probability under H0 is the same

for both tests. Yet, we claim to have evidence against H0 in the first case but not in
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the second. It certainly looks as if the frequentist approach to testing hypotheses is

incoherent.

This kind of paradox, however, rests on the incorrect assumption that the evi-

dence is the same in both scenarios because the probability of the observation under

H0 is the same in both. To understand why this is a mistake, we must analyse both

inferences more meticulously.

In order to make an inference concerning H0 in both cases, we must first be

able to predict a precise and probable range of possible outcomes for a very small

probability of error under H0. This allows us to make falsifiable predictions under

the assumption that H0 is true.

For the first test, the most precise and probable range of possible outcomes for

an upper bound probability of error of 0.05 under H0 can only be x=1 and x=2.

When our observation falls outside that range (when it falls inside the so-called

critical region), then we reject H0 and we can claim to have evidence that the

distribution is inadequately described under H0. That is why we end up rejecting

H0 in the first test.

For the second test, the most precise and probable range of possible outcomes

for an upper bound probability of error of 0.05 under H0 is x=1, x=2, and x=3.

That is why we cannot claim to have evidence against H0 even if the probability of

x=3 is also 0.03.

As we can see the evidence is very different in both scenarios. In one case

we observe that the outcome of the experiment does not belong to the range of

predicted outcomes, whereas it belongs to it in the second case. This is so, even if

the probability of the observation is the same under both null hypotheses.

Of course, this difference between the two tests should not come as a surprise

because the distributions are different in both cases. Our predictions cannot always

be the same when we consider different distributions. That would be absurd.
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The take away lesson here is to realise that the premise on which we rely in

order to make a frequentist inference in this case is whether or not our observation

falls within the most precise and probable range of possible outcomes for a small

upper bound probability of error under H0. This is exactly the information that a

p-value gives us and that is why it is such a central concept within the frequentist

approach.

If we claim that the evidence of a frequentist test is the probability of the test

statistic under H0, then we can derive absurd conclusions such as ”the evidence is

the same when we conduct test 1 and test 2, yet we reject H0 in one test but not the

other”. Unfortunately, we can still find criticisms of the frequentist approach that

rest on the idea that the evidence for a frequentist test is the probability of the test

statistic under H0, such as Elliot Sober’s criticism of the p-value.

3.2 Sober on the P-value and the principle of Total Evidence

Sober’s relatively recent criticism of the p-value can be presented in two simple

steps. The first step consists in saying that the frequentist approach to theory testing

(FA) dictates that we should reject the hypothesis that we are testing (or claim

that we have evidence against it) if our observations are too improbable under that

hypothesis.

[A significance] test has the additional defect that it violates the prin-

ciple of total evidence. In a significance test, the hypothesis you are

testing is called the null hypothesis, and your question is whether the

observations are sufficiently improbable according to the null hypoth-

esis (Sober 2008, p.53, emphasis added).

The second step consists in pointing out that the p-value is not reporting the

probability of the observations under the null-hypothesis, but the probability of

8



obtaining a result within a certain region.

However, you don’t consider the observations in all their detail but

rather the fact that they fall in a certain region. You use a logically

weaker rather than a logically stronger description of the data. Here’s

an example [...] that illustrates the point. You want to test the hypoth-

esis that a coin is fair [...] by tossing the coin twenty times. Assume

that the tosses are independent of each other. Suppose you obtain four

heads. You then compute the probability of a disjunction in which

”four heads” is one of the disjuncts.[...] The probability of this dis-

junction, conditional on the null hypothesis, is called the p-value for

the test outcome (Sober 2008, p.53-54).

Therefore, we are not using all the information that is provided by the data

when we use the p-value in order to make an inference about H0. Hence, frequen-

tist inferences violate the principal of total evidence.

The problem with this argument obviously lies in the first step. The frequentist

theory of statistical inference does not imply that we should reject the hypothesis

that we are testing (or that we have evidence against it) if our observations are

too improbable under that hypothesis. This is a misconception at the root of the

paradox that I have presented in the first section.

The fact is that no matter how you define ”improbable” (≤ 0.05, ≤ 0.001,

or ≤ 0.0001), we can always construct a probability distribution such that every

possible experimental result will be even less probable. It would thus be absurd

to suggest that such distributions are inadequate given that our observations are al-

ways improbable under such distributions. If that kind of inference was sanctioned

by FA, then we would have to reject (or claim that we have evidence against) every

possible density function since the probability of an observation under any density
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function is 0. This is preposterous.

To make a frequentist inference adequately, we must first be able to make a

prediction with the probability distribution that we are testing. As I said before, we

usually cannot predict any particular observations because each of them can be very

improbable (their probability is actually 0 if we are dealing with a density). But

what we can always do with a probability distribution is to establish a likely and

an unlikely range of observations according to a predefined degree of probability

that we judge to be ”too improbable”. This will allow us to make a prediction as to

where our observations will lie.

For example, suppose that we do not have any knowledge about the nature of

the alternative hypothesis and that we agree that 0.0027 is improbable. Then we can

predict that an instantiation of random variable that follows a normal distribution

will lie within 3 standard deviations from the mean of a normal distribution 99.73%

of the time. Therefore, if our actual observation lies outside that range, then we

have evidence that the probability distribution that we are testing does not correctly

describe the random variable that we are studying.

The idea that we have to be able to make predictions with the hypothesis that

we are testing is at the heart of FA. By itself, the probability of the observations is

totally meaningless in that context. It is simply not a sufficient piece of evidence

for a frequentist inference. Only the probability of falling within a certain range

of possible values is important. This is because it is the only type of prediction

that we can always make with every possible probability distribution. Therefore,

it is false to suggest that the probability of the observations that we make under

the hypothesis that we are testing is a logically stronger description of the evidence

than the p-value. The p-value determines if our test statistic (our observations)

lies within the unlikely range of possible observations that we can make. That is

what we need in order to make an inference and that is all we need to make that
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inference.1

Hence, we can conclude that Sober’s criticism is unsound. It rests on the mis-

taken idea that the probability of the observations that we make is (or should be)

sufficient evidence when we are making a frequentist statistical test. It is not.

3.3 Autzen on the p-value and the principle of total evidence

Having thus put aside one of Sober’s criticism of the p-value and clarified the nature

of classical inferences in statistics, I believe it is also important to correct another

mistake about frequentist tests and the nature of the p-value. The latter appears in

Autzen’s critical assessment the p-value.

Autzen claims that a p-value obtained by performing a one-sided test respects

PTE because it is a sufficient statistic. This is not the case for a p-value obtained

with a two-sided test. Therefore, we must prefer a one-sided test in order to comply

with PTE. 2

Summing up, I have established a one-to-one function between the

1Although the probability of the test statistic given H0 is null when it follows a density, the density

evaluated on the test statistic is not. One might then argue that we can at least compare the densities

evaluated on the test statistic under H0 and under H1 in order to evaluate the evidence for or against

H0 and make an inference accordingly.

This would be another inferential paradigm (likelihoodist) in which the inference does not depend

on the need to establish a critical region in order to make a prediction under H0. One simply reaches

a conclusion by examining the likelihood function evaluated under H0 and H1. The outcome of

the inference does not depend on our capacties to make predictions under H0 or H1 within this

framework. In fact, the test statistics could land in an unexpected region under H0 and we will still

be able to compare the likelihood ratios and make an inference in favor of H0. Since I am concerned

here with defending the internal coherence of frequentist inferences, I shall not elaborate further on

this topic.
2A sufficient statistic is a function of the observed sample such that the distribution of the sample

is independent of the unknown parameter(s) of the distribution given that particular statistic.
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value of the sufficient statistic X̄ and the p-value. This implies that the

one-sided p-value constitutes a sufficient statistic for the mean of the

normal distribution. While Sober (2008, 45) stresses the importance of

sufficiency in the context of PTE, he does not mention that for a large

class of significance tests the p-value constitutes a sufficient statistic.

[...] I conclude that [the p-value] does not violate [PTE] (Autzen 2016,

p.289).

But this is false. Inferences based on a two-sided test are not epistemically

subpar. In fact, they can be preferable to one-sided tests. We can fail to have

enough knowledge in order to use a one-sided test such that a two-sided test and a

p-value that is not a sufficient statistic will provide the best inference.

Here is a simple example. Suppose that we have a sample of independent

and identically distributed variables (X1, X2, ..., Xn). They all follow a normal

distribution with a variance equal to 1 and an unknown mean θ. Suppose also that

we wish to test whether or not θ = 1. This is our null-hypothesis H0. We decide

to use X̄ as our test statistic (it is sufficient).

Suppose further that we do not know anything about the alternative hypothesis.

The real θ could be greater or less that 1. Yet, we decide to perform a one-sided test

as if we knew that the real θ was greater than or equal to 1. Now let’s assume that

we obtain X̄ = 0.001. Naturally we will fail to reject H0. We will not consider that

we have evidence against H0 because we have conducted our test as if we knew that

H1: θ < 1 is not a genuine alternative. But we do not have such knowledge. As

such we have made an inadequate inference. We acted as if we had more evidence

than what we actually have even if we used a sufficient statistic.

The point is that our knowledge (or lack of knowledge) about the alternative

hypothesis is an integral part of the evidence as we make a frequentist test. This is

12



because it allows us to determine a likely range of possible outcomes under H0 that

we can predict for a small probabiliy of error. Look back at the archer’s analogy.

We need to have an idea of what a good and a bad archer would do in order to

identify the relevant regions on the target.

The only way we can make an adequate inference in this case is to conduct

a two-sided test and reject H0. Unfortunately, our knowledge about the alterna-

tive hypothesis is not considered as evidence by Autzen. As soon as we consider

adequately the evidence used in a frequentist test, we realise the importance of

two-sided tests.

Autzen misrepresents the epistemological foundations of a frequentist test and

fails to recognise the importance of two-sided tests when he claims that ”using

one-sided tests with a sufficient test statistic is in accordance with PTE” (Autzen

2016, p.292) and that ”this supports the view of choosing a one-sided test over

a two-sided test”(Autzen 2016, p.292). Two-sided tests are not only used in a

wide variety of contexts (just think of the tests being made on the parameters of a

regression model), but they are also essential to make sound inferences.

In sum, Autzen’s criticism of the p-value and of two-sided tests must be re-

jected because it fails to adequately define the evidence that is used when we per-

form a frequentist test. The crucial piece of information that we are looking for

is whether or not our test statistic lies within a predicted range of possible out-

comes. This piece of evidence rests on our knowledge (or lack of knowledge) of

the alternative hypothesis.

Over all, both Sober’s and Autzen’s criticisms do not provide good reasons to

believe that the p-value violates PTE. The reason for this does not reside in their

definition of PTE. In the case of Sober’s criticism, I have shown that the probability

of the test statistic is not and should not be the information on which we rely in

order to make a classical test. In the case of Autzen’s criticism, I have shown why
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we should not always use sufficient statistics when we perform a classical test.

4 The Principle of Total Evidence and the Stopping Rule

In this section, I discuss a similar problem in the sense that it implies the result

of classical tests depends on information that should not be a part of the evidence.

It is another way of saying that such inferences violate PTE. It is a criticism that

we can find in many publications. The interested reader and consult (Howson and

Urbach 2006; Romeijn 2017; Wagenmakers 2007; Kadane et al. 1996; Mayo 1996;

Robbins 1985; Roberts 1967) for examples.

The structure of this criticism is always the same. Choose two different ex-

periments that yield the exact same observations and where the same parameter is

under test. Both experiments will yield different test statistics such that one pro-

duces a significant result but not the other. Since the difference between the two

experiments is not the evidence but the experimental set up, which is determined by

the personal preferences of the experimenter, then we must conclude that classical

inferences do not totally rest on evidence.

Here is how Colin Howson and Peter Urbach put it:

We suggest that such information about experimenters’ subjective in-

tentions, their physical strengths and their personal qualities has no

inductive relevance whatever in this context, and that in practice it is

never sought or even contemplated (Howson and Urbach 2006, p.158).

To understand where this is coming from, consider the following experiments.

Both aim at testing whether or not a coin is fair, i.e., whether the probability of

landing head is 0.5 or greater. In other words, the parameters that are being tested

are the same under both experiments.
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In the first experiment, statistician S decides that he will throw the coin six

times and record how many heads he obtains. He obtains five heads in a row and

then a tail. The fact that S obtained five heads in 6 trial is a statistic that follows

a binomial distribution and under the assumption that the probability of success is

0.5 (H0), S cannot reject H0 with a significance level of 0.05 because the p-value

is 0.109.

In the second experiment, statistician S* decides that he shall throw the coin

six times at most until he obtains a tail. His observations are exactly the same as

S but the test statistic this times follows a geometric distribution such that the p-

value is 0.016. Thus, S* can reject H0 with a significance level of 0.05. How is

this possible? The observations are the same and if the only difference between

the two scenarios is how the experimenters subjectively decided to conduct their

experiments (choose their sampling plan), then something is seriously wrong with

this kind of inference.

Of course, the difference between the sampling plan is not the only difference

between the two scenarios. The fact is that both experiments generated two test

statistics and both S and S* were in a position to realise this. Both knew about the

order of the sequence of heads and tails and both knew about the number of heads

and tails.

Unfortunately, both S and S* arbitrarily chose one over the other in order to

make their respective inference. They both neglected crucial information con-

cerning the different observations generated by the experiment and their respective

probability distribution.

When we are in a position to realise multiple tests in order to make an infer-

ence, we cannot simply chose one of those tests without any reason. That would be

tantamount to making an arbitrary inference based on arbitrary evidence and I be-

lieve that an epistemic principle such as PTE has been invoked in the philosophical
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literature in order to rule out such arbitrariness from adequate epistemic practices.

In other words, the kind of example mentioned above does not show that classi-

cal tests are defective, they stress the importance of an epistemic principle such as

PTE.

Now, which of the two inferences mentioned above is the best is a question that

we can only answer with a confirmation theory. By determining which inference

provides the most justified conclusion, one can settle on one test over the other.

One such theory that is prevalent in the philosophical literature and that applies

to frequentist test is the severity measure which asserts that data x0 provide good

evidence for hypothesis H to the extent that test T has severely passed H with x0

(Mayo and Spanos 2010). Given all the information available in order to make

frequentist tests one can then determine which is the best one with a measure of

support such as the severity measure. But a full analyses of such theories is beyond

the scope of this paper.

In sum, the stopping rule criticism is unsound since the different results in-

volved in that argument can be explained by the fact that both experimenters do

not consider all the evidence that should be used to make an adequate inference.

In every variation of this criticism there is always an experimenter that ignores the

fact that her experiment generated more than one test statistic, i.e., that ignores part

of the evidence.

5 Conclusion

The p-value is an essential component of every frequentist inference. In this paper,

I have focused on a common criticism of this concept. It is meant to show that its

use violates (or can violate) the principle of total evidence. This claim has been

made by Sober and Autzen.
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Both versions of this criticism rest on a notion of evidence that leads to absurd

conclusions. Sober’s criticism assumes that the evidence used in a frequentist test

is the probability of the test statistic under H0. This is false and it is at the root of

the paradox presented in the first section.

Autzen’s criticism assumes that the evidence used in a frequentist test should

be a sufficient statistic. I have shown that we would make awful inferences if this

was a requirement. No competent statistician would make such mistakes. Under

minimal information about the alternative hypothesis, we need to use a two-sided

test and thus a p-value that is not a sufficient statistic.

The purpose of a frequentist inference is to be able to make a falsifiable predic-

tion by defining a critical region. In order to define such a critical region, we need

to rely on our knowledge (or lack of knowledge) about the alternative hypothesis.

Ultimately, the p-value informs us about whether or not our observation fell into

the critical region.

Once we make those steps clear, both Sober and Autzen’s criticisms can be

dismissed. The crucial point to remember is that a density or a mass function

usually only allows us to predict ranges of possible outcome, as opposed to one

single outcome. Therefore, any criticism of a frequentist inference that defines the

evidence without any reference to a range of outcomes to which the observation

belongs misses the point completely.

In the last part of this paper, I have also debunked the stopping rule criticism,

which also implies that frequentist inferences fail PTE. It claims to show that two

experimenters can arrive at different conclusions with the same evidence. That

criticism is unsound because in all of its variations there is always an experimenter

that ignores a test statistic that has been generated by the experiment, i.e., that

ignores part of the evidence.
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