Quantum Correlations are Weaved by the Spinors of the Euclidean Primitives

Joy Christian*
Einstein Centre for Local-Realistic Physics, 15 Thackley End, Oxford OX2 6LB, United Kingdom
(Dated: 3 May 2017; Revised 19 January 2018)

The exceptional Lie group Es plays a prominent role both in mathematics and theoretical physics.
It is the largest symmetry group connected to the most general possible normed division algebra,
that of the non-associative real octonions, which — thanks to their non-associativity — form the
only possible closed set of spinors that can parallelize the 7-sphere. By contrast, here we show how a
similar 7-sphere also arises naturally from the algebraic interplay of the graded Euclidean primitives,
such as points, lines, planes, and volumes, characterizing the three-dimensional conformal geometry
of the physical space, set within its eight-dimensional Clifford-algebraic representation. Remarkably,
the resulting algebra remains associative, and allows us to understand the origins and strengths of
all quantum correlations locally, in terms of the geometry of the compactified physical space, namely
that of a quaternionic 3-sphere, S3, with S” being the corresponding algebraic representation space.
Every quantum correlation can thus be understood as a correlation among a set of points of this S7,
computed using manifestly local spinors within S3, thereby extending the stringent bounds of 42 set
by the Bell-CHSH inequalities to the bounds of +2v/2 on the strengths of all possible correlations, in
the same quantitatively precise manner as that predicted within quantum mechanics. The resulting
geometrical framework thus circumvents Bell’s theorem by producing a deterministic and realistic
framework that allows a locally causal understanding of all quantum correlations, without requiring
either remote contextuality or backward causation. We demonstrate this by first proving a general
theorem about the geometrical origins of the correlations predicted by arbitrarily entangled states,
and then explicitly reproducing the strong correlations predicted by the EPR-Bohm and GHZ states.
The raison d’étre of strong correlations turns out to be the twist in the Hopf bundle of S® within S7.

I. INTRODUCTION

The central source of intrinsic coherence, geometrical elegance, and empirical success of Einstein’s theory of gravity is
undoubtedly its strict adherence to local causality [1][2]. Indeed, despite the phenomenal empirical success of Newton’s
theory of gravity for over two centuries, its founding on the unexplained “action at a distance” was a reason enough for
Einstein to search for its locally causal generalization. Today we face a similar challenge in search of a theory that may
unify quantum theory with Einstein’s theory of gravity. But in sharp contrast to Einstein’s theory, quantum theory
seems to harbor a peculiar form of non-signalling non-locality, as noticed long ago by Einstein, Podolsky, and Rosen
(EPR) [3]. They hoped, however, that quantum theory can be completed into a locally causal theory with addition
of “hidden” parameters. Today such a hope of completing quantum theory into a realistic and local theory envisaged
by Einstein is widely believed to have been dashed by Bell’s theorem [4], its variants [5], and the related experimental
investigations [6]. Indeed, the claim of Bell’s theorem is remarkably comprehensive in scope: no physical theory which is
local and realistic as hoped for by EPR can reproduce all of the strong correlations predicted by quantum mechanics [7).

Bell’s theorem, however, is neither a theorem in the strict mathematical sense, nor a result within quantum theory
itself. Indeed, not a single concept from quantum theory is used in the derivation of the Bell- CHSH inequalities [4][8]. It
is, in fact, an argument that depends on a number of physical assumptions about what is and what is not possible within
any locally causal theory, and these assumptions can be, and have been questioned before [9][10]. Consequently, by
circumventing Bell’s argument, in this paper we set out to explain the origins and strengths of all quantum correlations
within a locally causal framework of octonion-like spinors, which are constructed using a geometric algebra [11][12] of
rudimentary Euclidean primitives, such as points, lines, planes, and volumes. This is accomplished by recognizing and
overcoming two neglected shortcomings of Bell’s argument [4][13]. The first of these shortcomings, which is discussed
in greater detail in subsection IV B below, amounts to averaging over measurement events in the derivation of the
experimentally violated upper bound of 2 on the CHSH string of expectation values that are impossible to occur in any
possible world, classical or quantum, stemming from a mistaken application of the criterion of reality propounded by
EPR [3][5]. The second shortcoming of Bell’s argument stems from the unjustified identification of the image {+1, —1}
of the measurement functions, which represents the actual measurement results in Bell’s prescription [4], with the
co-domain of these functions, which is neither specified by Bell explicitly nor observable directly in the experiments [6
An explicit specification of the latter, however, is a prerequisite of the very definition of a mathematical function [9].
By contrast, in our prescription (63) of measurement results discussed in subsection IIT A, the locally unobservable
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co-domain S7 of the measurement functions is explicitly specified with considerable detail, without compromising
Bell’s pristine bivalued prescription 41 for the actually observed measurement results, and incorporates the Clifford
algebraic properties of the physical space in which all such experiments are necessarily situated and performed [6][13].

Our primary focus in this paper, however, is not on Bell’s theorem but on understanding the origins and strengths
of all quantum correlations as a consequence of the geometry and topology of the physical space (or more generally
of spacetime). Since quantum correlations are necessarily observed within the confines of spacetime, it is natural to
view them as correlations among measurement events in spacetime — i.e., among the “clicks” of a set of detectors
configured within spacetime. On the other hand, what is actually recorded in the Bell-test experiments are coincidence
counts among bivalued measurement results, observed simultaneously within space at a given time [6][13]. Therefore,
without loss of generality, we will restrict our analysis to the physical space. With that in mind, in the next section we
extensively review the algebraic properties of the compactified physical space, captured in the definition (16), which
is a quaternionic 3-sphere, and construct its algebraic representation space (60), which is an octonion-like 7-sphere.
Our central theorem concerning the origins of all quantum correlations is then stated and proved in subsection IIIB.

The proof presented in subsection III B includes a local-realistic derivation of the simplest yet emblematic quantum
correlations — namely, those predicted by the rotationally invariant EPR-Bohm state — the strengths of which are
well known to violate the theoretical bounds of £2 set by the Bell-CHSH inequalities, in the Bell-test experiments [6].

Then, in subsection III C, we derive the closely related Tsirel’son’s bounds of +2+/2 on the strengths of all quantum
correlations within our framework. In the subsequent subsection, III D, we then explain the geometrical reasons for
the fragility of quantum correlations as a counterpart of that of quantum entanglement. This brings us to subsection
IITE in which we derive the strong correlations predicted by the rotationally non-invariant 4-particle GHSZ state [5].

In subsection IV A we then point out that the predictions of our local-realistic S” model is not in any conflict with
what is actually observed in the Bell-test experiments [6], since they simply reproduce the predictions of quantum
mechanics [4][5]. In the subsequent subsection, IV B, in the light of the widespread belief in Bell’s theorem, we discuss
a serious oversight in Bell’s argument in some detail, quite independently of our S” model for the strong correlations.
This brings us to subsection IV C in which we present an analytical disproof of the GHZ variant of Bell’s theorem
without inequalities. In section V we then present two event-by-event numerical simulations of the EPR-Bohm and
4-particle GHSZ correlations predicted by our local-realistic model. Finally, in section VI, we summarize our findings.

II. MODERN PERSPECTIVE ON THE EUCLIDEAN PRIMITIVES

In physical experiments — which are usually confined to the three-dimensional physical space by necessity — we
often measure relevant quantities by setting up a Cartesian coordinate system {z,y, z} in that space. Mathematically
this is equivalent to identifying the Euclidean space E3 with a three-fold product of the real line, IR®. In practice we
sometimes even think of IR as the Euclidean space. Euclid himself, however, did not think of E® in terms of such
a Cartesian triple of real numbers. He defined a representation of E? axiomatically, in terms of primitive geometric
objects such as points and lines, together with a list of their properties, from which his theorems of geometry follow.

It is, however, not always convenient to model the physical space in the spirit of Euclid. Therefore in practice we
tend to identify E® with IR® whenever possible. But there is no intrinsic way of identifying the two spaces in this
manner without introducing an unphysical element of arbitrarily chosen coordinate system. This difficulty is relevant
for understanding the origins of quantum correlations, for time and again we have learned that careless introduction
of unphysical ideas in physics could lead to distorted views of the physical reality [9][14]. An intrinsic, coordinate-free
representation of the Euclidean space is surely preferable, if what is at stake is the very nature of the physical reality.

Fortunately, precisely such a representation of E3 was proposed by Grassmann in 1844 [12]. In the Euclidean spirit,
the basic elements of this powerful algebraic representation are not coordinate systems, but points, lines, planes, and
volumes, all treated on equal footing. Given a set { e, e,, e, } of basis vectors representing lines in E2, the algebra of
corresponding vector space is constructed as follows. One begins by defining a volume element (or a trivector) in E3:

I3 := ezeye;, (1)
with {e;} being a set of anti-commuting orthonormal vectors in IR? such that eje; = —e;e; for any i, ==, y, or z.
More generally the unit vectors e; satisfy the fundamental geometric or Clifford product in this associative algebra,
e, e =¢€;-¢€ + e AN ej, (2)
with
1
e;- e; = 5 {eiej + ejei} (3)

being the symmetric inner product and

1
e; N\ €; = 5 {eiej - ejez-} (4)
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FIG. 1: Euclidean subspaces such as points (p), lines (a), areas (a A b) and volumes (a A b A c) are taken as primitives of the
Euclidean space E? within Clifford algebra Cls o, with each subspace specified by its magnitude, direction and orientation (i.e.,
handedness), providing a unified algebraic framework across dimensions, spanned by the geometric product ab =a-b +aAb.

being the anti-symmetric outer product, implying (e; A e;)*> = —1. Any vector x € E? is then a solution of the equation
13 Ax=0. (5)

The normalized volume element I3 thus represents an element of the highest grade in the corresponding algebra, namely
grade-3. It is also referred to as a pseudo-scalar, dual to the scalar, which is the lowest possible grade in the algebra:

1=1I311, (6)

where the conjugate I;: ‘= e,eye, = —I3 is the “reverse” of I3 implying (I3)? = —1, and the duality relation between
the elements € and 2 of arbitrary grades is defined as

Q:=QIi, (7)

with the norm || || of Q and scalar part { ) of the product of mixed-grade vectors X and Y of n-components defined as

Q] == VQ-Qf =./(QQt), and (XYT>S:zn:(XlYlT>S. (8)
=0

Thus, for example, the orthonormal vectors e of grade-1 can be easily recovered from the unit bivectors e; A e; of
grade-2 using the above duality relation:

ex = (e A e;) 1] = (eje;) I} . (9)

In three-dimensional Euclidean space there are thus basis elements of four different grades: An identity element e? = 1
of grade-0, three orthonormal vectors e; of grade-1, three orthonormal bivectors e ey, of grade-2, and a trivector e;e;e;,
of grade-3. Respectively, they represent points, lines, planes and volumes in E3, as shown in Fig. 1. Since in IR? there
are 23 = 8 ways to combine the vectors e; using the geometric product (2) such that no two products are linearly
dependent, the resulting algebra, Cl3 ¢, is a linear vector space of 23 = 8 dimensions, spanned by these graded bases:
Cls o = Span{ 1, e, ey, e, eze,, €,e,, e €., eze e, }. (10)

This algebra intrinsically characterizes the Euclidean space E? without requiring a coordinate system, by the bijection

F:R?:= Span{ ez, ey, .} — R® .= Span{ 1, ez, ey, e;, eey, e.e,, eye;, ezege, } =Clzy. (11)

A. One-point Compactification of the 3D Euclidean Space

The physical space represented by the above algebraic model is, however, not quite satisfactory. Stemming from an
arbitrarily chosen origin, its points run off to infinity along every radial direction [12]. Moreover, there is no reason



FIG. 2: One-point compactification of the Euclidean space E* by means of a stereographic projection onto a unit 3-sphere in IR*.

for these infinitely many infinities — which can be approached from infinitely many possible different directions — to
be distinct from one another. It is therefore natural to assume that one and the same infinity is encountered along
any radial direction, and identify it with a single point. One way to achieve this is by compactifying the space E? by
adding a single point to it at infinity. This well known procedure of one-point compactification is illustrated in Fig. 2.

Intuitively this procedure is not difficult to understand with a two-dimensional analogue of E3. Imagine a stretchable
balloon, which is topologically a two-dimensional surface, S? [cf. Fig. 3]. If we surgically remove a single point from this
surface and stretch the remainder out to infinity in every radial direction (like an infinite bed-sheet), then it provides
an intuitive model for the two-dimensional Euclidean space, E2. The one-point, or Alexandroff compactification of E2
is an inverse of this process whereby all points at infinity from all possible radial directions in E? are brought together
again and identified with the previously removed point, thereby reconstructing the S2-balloon from an E?-bed-sheet.

Similarly, Fig. 2 depicts an inverse stereographic projection of E2 onto a unit 3-sphere, S3, by the embedding map
¢ : B3 — S3, which is given by

L (2 2 Y .
Fixe )= () * (pes) & 12)

where two of the dimensions of E? are suppressed in the figure and £, represents the fourth dimension in the embedding
space IR?. The crucial observation here is that, as an arbitrary vector x € E3 from the origin approaches infinity, it is

mapped to the same point e, located at (0,2), thereby closing the non-compact space E? into the compact 3-sphere.
By shifting the origin to (0,1) the above set of points can be inscribed by a radial 4-vector originating from (0, 1) as

A A
Tt = (s )< (g 1) & 13)

The magnitude of this vector then confirms the unity of the radius of our conformally embedded 3-sphere within IR*:
1:H1/7(XG[E3)H:radius of §3 < R*. (14)

The embedding operator ¢(x) [or ¢(x)] thus transforms the entire space E3 into a unit 3-sphere within IR?, thereby
accomplishing a one-point compactification of E3:

SB — [E3 U {eoo} . (15)

Such a conformal mapping is angle-preserving in the sense that a small angle between two curves on S3 projects to
the same angle between the projected curves on E3, with a circle of any size on S® projecting to an exact circle on E3.

Now the tangent bundle of S® happens to be trivial: TS® = S x IR*. This renders the tangent space at each point
of §3 to be isomorphic to IR®. Consequently, local experiences of the experimenters within S3 are no different from
those of their counterparts within E3. The global topology of S%, however, is clearly different from that of IR* [9][10]. In



FIG. 3: Stereographic projection of S? onto the plane of IR?. Both S? and IR? contain infinite number of points. Each point
p of S? can be mapped to a point p’ of IR?, except the north pole N, which has no meaningful finite image under this projection.

particular, the triviality of T.S® means that S° is parallelizable. As a result, a global anholonomic frame can be defined
on S? that fixes each of its points uniquely. Such a frame renders S* diffeomorphic to the group SU(2) — i.e., to the
set of all unit quaternions:

5% i~ {a(0,v) = cos  + e sy | a0, =1}, (16)

where £(r) is a bivector rotating about r € IR? with the rotation angle € in the range 0 < 6 < 47. In terms of the even
sub-algebra of (10), the bivector &(r) € S® can be parameterized by the dual vector r = 7, e, +r,e, + . e, € R® as

Er) = (Is-r) =ry(Izs-ep) +1y(Is-ey) + 1, (I3-€,) = ryege, + rye.e, + 1, €€y, (17)

with &2 (r) = —1. Each configuration of any rotating rigid body can thus be represented by a quaternion q(, r),
which in turn can always be decomposed into a product of two bivectors, say &€(u) and &(v), belonging to an S? C S2,

E(u)&(v) = cosg + &(r) sing7 (18)

in accordance with the bivector subalgebra [11]

3

Ea £b = - 6ab - Z €abe sc y (19)

c=1

with 6 being its rotation angle from q(0, r) = 1. Note also that q(f, r) reduces to 1 as § — 2k7w for k = 0, 1, or 2.

B. Conformal Completion of the Euclidean Primitives

Our interest now lies in the point e, which represents the multitude of infinities of E3. Within three dimensions we
continue to view it as a dimensionless point and take its algebraic counterpart to be a non-zero vector of zero norm:

€oo # 0, but |[ese]]® = €x - €0o = 0 < €2 = 0. (20)

oo T



Such a vector that is orthogonal to itself is called a null vector in Conformal Geometric Algebral [11]. It is introduced
to represent both finite points in space as well as points at infinity [12]. Since points thus defined are null-dimensional

or dimensionless, addition of e, into the algebraic structure of E? does not alter the latter’s dimensions but only its
point-set topology, rendering it diffeomorphic to a closed, compact, simply-connected 3-sphere, as we discussed above.

Equipped with ey, we are now ready to rebuild the compactified Euclidean space and its algebraic representation
as follows. We begin by identifying the set { e,e,, e,e,, e,e.} of bivectors as the orthonormal basis of the space E3:

E® = Span{e.e,, e.e., e,e.}. (21)

Using the orthonormality and anti-commutativity of the vectors e; the product of the basis bivectors works out to be
(ezey)(e.ez)(eye.) = ezee.eee, = —1. (22)

The associativity of geometric product then allows us to rediscover the volume form I3 for the Euclidean space (21):
(erey)(e.e;)(eye.) = (ese e.)(eepe.) = (eweyQZ)Q = (13)2 =-1L (23)

As it stands, this volume form is open and has the topology of IR®. But we can now close it with the null vector es:
I, = Iz3e, = ezep€ €4, (24)

where we have used the subscript ¢ on I, to indicate that it is a volume element of the compact 3-sphere, S3. As we
noted earlier, in the Euclidean space the reverse of I3 is I. ;[ = —1I3. Likewise in the conformal space the reverse of I. is

Il = Hew = —Iye0 = —I... (25)
As a result, in the conformal space the general duality operation between elements Q and Q of any grade is given by
Qe:=QIl = Qlle. (26)

This allows us, in particular, to work out the dual elements of all of the basis bivectors in (21) in the conformal space:

T _ _
eseylses = ezeje.e e e, = €€, (27)

T _ _
e.e;l;e., = e,ee.e e = €€, (28)
and eyezI;[eoo = g e.€e.€,€,6, = €,€6 . (29)

Moreover, analogous to how the dual of +1 in E? is —I3, the dual of +1 in the conformal space also works out to be
(+1) I = —Iseq = 1. (30)

We have thus worked out the conformal counterparts of all of the basis elements appearing in the algebraic vector
space (10). Putting them together we can now formalize the desired algebraic representation of our conformal space:

K~ = Span{1, egey, e,e,, eye,, €€, €€, €600, —I3€0 }. (31)

Evidently, not unlike (10), this vector space too is eight-dimensional. Unlike (10), however, it is closed and compact.
The three-dimensional physical space — 1.e., the 3-sphere discussed above — can now be viewed as embedded in the

four-dimensional ambient space, IR?, as depicted in Fig. 2. In this higher dimensional space e is then a unit vector,

les|]” = € - €00 = 1 = &2 1, (32)

2 =
and the corresponding algebraic representation space (31) is nothing but the eight-dimensional even sub-algebra of

the 2% = 16-dimensional Clifford algebra Clyo. Thus a one-dimensional subspace, represented by the unit vector e
in the ambient space IR*, represents a null-dimensional space — i.e., the infinite point of E3 — in the physical space S3.

I The conformal space we are considering is an in-homogeneous version of the space usually studied in Conformal Geometric Algebra [12].
It can be viewed as an 8-dimensional subspace of the 32-dimensional representation space postulated in Conformal Geometric Algebra.
The larger representation space results from a homogeneous freedom of the origin within E3, which is neither required nor useful here.



C. Orientation of the Representation Space as a Binary Degree of Freedom

Before we explore the properties of the above vector space, let us endow it with one more degree of freedom without
which it is unjustifiably restrictive. To that end, we first define what is meant by an orientation of a vector space [15]:

Definition of Orientation: An orientation of a finite dimensional vector space V,, is an equivalence class of ordered
basis, say {b1, ..., by}, which determines the same orientation of V), as the basis {b], ..., b}, } if b) = w;; b; holds
with det(w;;) > 0, and the opposite orientation of V,, as the basis {b], ..., b, } if b, = w;; b; holds with det(w;;) < 0.

Thus each positive dimensional real vector space has precisely two possible orientations, which we shall denote as
A= +1 or A= —1. More generally an oriented smooth manifold consists of that manifold together with a choice of
orientation for each of its tangent spaces. It is worth stressing that orientation is a relative concept. In particular, the
orientation of a tangent space V,, of a manifold defined by the equivalence class of ordered basis such as {by, ..., b, }
is meaningful only with respect to that defined by the equivalence class of ordered basis {b, ..., b}, }, and vice versa.

Now in geometric algebra the choice of the sign of the unit pseudoscalar amounts to choosing an orientation of the
space [11][12]. In our three-dimensional Euclidean space defined in (21) with an orthonormal set of unit bivector basis,
Is = e,eye, picks out the right-handed orientation for E2. The convention usually is to assume such a right-handed
set of basis bivectors (or vectors) ab initio. But the algebra itself does not fix the handedness of the basis. In our
presentation above we could have equally well started out with a left-handed set of bivectors in (21) by letting —I3
instead of +I3 select the basis. Instead of the representation space (31) we would have then ended up with the space

Kt = Span{ 1, +e,ey, +e.e,, teye,, +ee, +eye, +€.ex, +1ze, } (33)
On the other hand, in the light of the above definition of orientation, the representation space (31) can be written as

K™ = Span{ 1, —eze,, —e.e;, —e €., —€z€5, —€,€00, —€;€5, —I3e }. (34)

It is easy to verify that the bases of KT and K~ are indeed related by an 8 x 8 diagonal matrix whose determinant
is (—1)7 < 0. Consequently, KT and K~ indeed represent right-oriented and left-oriented vector spaces, respectively,
in accordance with our definition of orientation. We can therefore leave the orientation unspecified and write K* as

KA = Span{ 1, Xege,, Ae.e;, Aeye,, Aezes, Aeyes, Aeen, Azeq |, A =1 < \=41. (35)

D. Representation Space K is Closed Under Multiplication

As an eight-dimensional linear vector space, * has some remarkable properties. To begin with, K* is closed under
multiplication. Suppose X and Y are two unit vectors in K*. Then X and Y can be expanded in the basis of K* as

X = Xo+ X1 dege, + Xo deye, + X3 deye, + Xy deges, + X5 deyes + Xg deseq + X7 Aze (36)
and Y = Yy + Y7 dege, + Yo dere, + Yz deye, + Yidezeo + Y5 deyes + Yo deeno + Y7 Alzen, (37)

and using (8) they can be normalized as
7 7
IX[P=>" Xp =1 and [[Y[?P=) V=1, (38)
n=0 v=0

Now it is evident from the multiplication table below (Table I) that if X,Y € K*, then so is their product Z = XY:
Z = Zy+ Zy Aegey + Zr e ey + Z3 heye, + Zy Aeges + Zs Aeyes + Zg Aee + Z7 Azes = XY. (39)

More importantly, we shall soon see that for vectors X and Y in K* (not necessarily unit) the following relation holds:
XY = (X[ Y]] (40)

In particular, this means that for any two unit vectors X and Y in K* with the geometric product Z = XY we have

7
1z>P=> 22 =1. (41)
p=0



* 1 Aegey Ae.e, Aeye. | Aezes | Aeye | Aezew | Alzes

1 1 Aegey Ae.e, Aeye, | Aezes | Aeyer | Aezew | Alzes
Aezey | Aegzey -1 eye; —e.e; | —eyes | €ezec Isess | —€z€e00
Ae.e, Ae.e; —ey€e; —1 esey €.€x0 Izes —€€00 | —€y€oo
Aeye. Aeye, e.e; —ezey -1 Izes —e.ex €yeco —ezes
Aezer | Nezes €ey€s —€e,€ex Iseq -1 —ezey e.e, —eye,
Aeyes | Aeyes | —ezes Izes e.eq e,ey -1 —eye. —e.e,
de.ex | Ne.ex Izes €,€00 —eyes | —€e, ey€e; —1 —egey
Azes | A3es | —€.€600 | —€y€s0 | —€z€50 | —€ye. | —e.ep | —ezey 1

TABLE I: Multiplication Table for a “Conformal Geometric Algebra” of E3. Here I3 = eseye;, ego = 41, and \ = £1.

The important observation here is that, without loss of generality, we can restrict our representation space to a set of
unit vectors in K*. We are then dealing with a unit 7-sphere as an algebraic representation of the Euclidean space.
If, for convenience, we now identify the basis elements of X* (in order) with the ordered elements of the following set

{CO? C17 C27 CS? C47 C57 C67 C?}a (42)
then the algebra generated by them — which has been explicitly displayed in Table I — can be succinctly rewritten as

7
s s
Culo = I L= 0} + A [y + (-1 b | G v = 1,207, (43)
p=1
where f,., is a totally anti-symmetric permutation tensor with its only non-vanishing independent components being
fi2s = faae = faes = fus = +1, (44)
and similarly [,,, is a totally symmetric permutation tensor with only non-vanishing independent components being
lize = las7 = lgar = —1. (45)
The eight-dimensional multi-vectors X and Y within K* can now be expanded more conveniently in the basis (42) as
7 7
X => X.¢, and Y=Y Y, (46)
pn=0 v=0

E. Representation Space K* as a Set of Orthogonal Pairs of Quaternions

In his seminal works Clifford introduced the concept of dual numbers, z, analogous to complex numbers, as follows:

z=r+de, where e #0 but £ =0. (47)
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FIG. 4: An illustration of the 8D plane of K*, which may be interpreted as an Argand-type diagram for a pair of quaternions.

Here ¢ is the dual operator, r is the real part, and d is the dual part [12]. Similar to how the “imaginary” operator
1 is introduced in the complex number theory to distinguish the “real” and “imaginary” parts of a complex number,
Clifford introduced the dual operator ¢ to distinguish the “real” and “dual” parts of a dual number. The dual number
theory can be extended to numbers of higher grades, including to numbers of composite grades, such as quaternions:

Qz =qr+4aqc, (48)

where q, and qq are quaternions and Q, is a dual-quaternion (or in Clifford’s terminology, a bi-quaternion). Recall
that, as defined in (16), the set of all quaternions is a 3-sphere, which can be normalized to radius ¢ and rewritten as

53 = {qr = o+ @ Aesey+ @ re.e, + g3 hege, | |lay]| = Q}- (49)

Consider now a second, dual copy of the set of quaternions within IC*, corresponding to the fixed orientation A = 41:

§° = {Qd = —q7 + gs €s€y + g5 €€, + queye, | |[aql| = Q} : (50)

If we now identify ¢ with the duality operator IT = —\ I3e,, used in (26), then (in the reverse additive order) we have
e= —Alze, with e =41 (since e, is a unit vector within %) (51)

and qqe = —qaAlzes = qrrere + gs Aeyes + gs A€z + g7 A zenc (52)

which is a multi-vector “dual” to the quaternion qq at infinity. Note that we continue to write € as if it were a scalar
because it commutes with q4. Comparing (50) and (52) with (35) we can now rewrite K* as a set of paired quaternions:

I = {0 = ar +aae | [10:]] = V2o . (53)
Now the normalization of Q, in fact necessitates that every q, be orthogonal to its dual qg:
Q.|| =V20 = a. qL +qaql =0, or equivalently, (q, qz )s =0 (i.e., qr q:; is a pure quaternion).  (54)
We can see this by working out the product of Q. with Q! while using £ = +1, which gives
Q.Q! = (qr qf + qa qil) + (qr a); + da qi) €. (55)

Now, using the definition of q in (16), it is not difficult to see that q, qf. = qq qfi = 0%, reducing the above product to

T

Q. QL = 20" + (qr al, + aa qf.) €. (56)
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It is thus clear that for Q. Q! to be a scalar q, qji + qq qf must vanish, or equivalently q, must be orthogonal to qq.

But there is more to the normalization condition q; q:[i + g4 ql = 0 then meets the eye. It also leads to the crucial
norm relation (40), which is at the very heart of the only possible four normed division algebras associated with the
four parallelizable spheres S°, S', S3 and S7. To verify it, consider a product of two different members of the set ?*,

Q:1Q.2 = (dr1 A2 + 941 9a2) + (Qr1 Qa2 + a1 9r2) €, (57)
together with their individual definitions
Q:1=9gr1+aae and Q.2 = qr2 +qgec. (58)
If we now work out the products Qleil, QZQQLQ and (Q.; Q.2)(Q.1 Q.2)T, then, thanks to the orthogonality condition
qr q]; 4+ qqql = 0, the norm relation is not difficult to verify:

1Q21 Qezll = [|Quall [|Qz2ll - (59)

Without loss of generality we can now restrict our algebraic representation space to a unit 7-sphere by simply setting
the radius o of S® to % In what follows S7 will provide the conformal counterpart of the algebra Cls o given in (10):

KA D ST = {Qz = qr+qae | [|Q:|| =1 and q, q}) + quqf = 0}7 (60)
where ¢ = —\ e, €2 = €2, = +1,
qr = qo + q1 )‘emey + q2 /\ezew + qs3 )\eyez ) and qQad = —qr7 + g6 €€y + g5 €;€y + qs€y€;, (61)
so that
QZ = 4o + q1 Aexey + q2 )\ezez + qs )\eyez + 44 )\ea:eoo + g5 )\eyeoo + g6 >\ezeoo + qr >\Ideoo . (62)

Thus, to summarize this section, we started out with the observation that the correct model of the physical space is
provided by the algebra of Euclidean primitives, such as points, lines, planes and volumes, as discovered by Grassmann
and Clifford in the 19 century. We then recognized the need to “close” the Euclidean space with a non-zero null vector
e, representing its infinities, thereby compactifying £? to a 3-sphere, S3. The corresponding algebraic representation
space of E3 then turned out to be a unit 7-sphere, S”. It is quite remarkable that S and S7, which are the two spheres
associated with the only two non-trivially possible normed division algebras, namely the quaternionic and octonionic
algebras [9][16], emerge in this manner from the elementary algebraic properties of the Euclidean primitives. Unlike
the non-associative octonionic algebra, however, the 7-sphere we have arrived at corresponds to an associative Clifford
(or geometric) algebra [14][12]. And yet, as we shall see, it is sufficient to explain the origins of all quantum correlations.

ITII. DERIVATION OF QUANTUM CORRELATIONS FROM EUCLIDEAN PRIMITIVES
A. Constructing Measurement Functions in the Manner of Bell

In order to derive quantum correlations predicted by arbitrary quantum states, our first task is to construct a set
of measurement functions of the form:

+1 =4 (n, \):R*x A — S” — R (63)
These functions describe local detections of binary measurement results, .4 (n, A\) = £1, by some analyzers fixed along
freely chosen directions n. They are of the same deterministic form as that considered by Bell? [4][5], except for their

co-domain, which we have taken to be the algebraic representation space S7 constructed above, embedded in IR®. For
an explicit construction of the functions .4 (n, \), let us consider the following multi-vector in IR® analogous to (62):

N, = no + {n1 Aezey +no Aese; +ngdeye, } + {ng Aeges + ns Aeyes + ng Aezeq b + ny Alseq (64)
=no+A€(n,) + N€(ng)er — Anrey (65)
= ng+ AD(n,, ng, —n7), (66)

2 Readers not familiar with Bell’s locally causal framework are urged to review it from the appendix of Ref. [17] before proceeding further.
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where

D(n,, ng, —n7) := &€m,) + &Mng)ey — nreyq, (67)
S35 bivector €(n,) = niezey + naee; + nzege, = Iz -n,, (68)
S 5 bivector &€(ny) = ng e,e, + nse,e; + nygege, = I3-ny, (69)
pseudoscalar ey = — Izeq, (70)

1
3D vector n, := nze, + noe, + nie,, with ||n.||=y/n?+nd+n3 = 75 (71)

1
and 3D vector ng := nse; + nse, + nge,, with |[ng||=/n3+ni+ni = (72)

=%
Next, consider the non-scalar part N(n,, ng, —n7, A) of the above S7-vector N, = ng + N(n,, ng, —nz, ), so that
N(n,, ng, —n7, \) = AD(n,, ng, —n;) <= D(n,, ng, —n7) = AN(n,, ng, —n7, \), since \2= 1. (73)
For our purposes it is suffice to represent the detectors with the special case of this non-scalar part for which n; = 0:
N(n,, ng4, 0, A\) = AD(n,, ng, 0) <= D(n,, n4, 0) = AN(n,, ng, 0, \), (74)

where

D(n,, ng, 0) := &(n,) + €&mg)er = (Is-n,) + (Is - ng)ey = Is-{n, + nge,}. (75)

Next recall that, although global topology of S? is different from that of IR?, local experiences of experimenters
within S are no different from those of their counterparts within IR®, not the least because the tangent space at any
point of $? is isomorphic to IR®. With this in mind, we identify the counterparts of measurement directions n within
E? with the dual vectors n, + nge, within its algebraic representation space S7. Then n relates to D(n,., ng, 0) as

5358235 €(n) = Is-n +— D(n,, ng, 0) € S°c 5. (76)

This allows us to identity the anti-symmetric part D(n,, ng, 0) in (64) as a detector of the physical system represented
by N(n,, ng, 0, ), originating in the initial state A and producing the measurement results .4 (n, A\) = £1 along freely

chosen unit directions n <— n,. + ng e, within IR®. Indeed, using the definitions (66) to (75) it is easy to verify that
N?(n,, ng, 0, \) = A*D?*(n,, ng, 0) = D?*(n,, ng, 0) = —1. (77)

In general, for two vectors a and b the product N(a,, a4, 0, A\)N(b,, bg, 0, A) is highly non-trivial, as we saw in (43):
N(a,, aq, 0, \) N(b,, bg, 0, \) = —a,-b, —ay-by — N(a, xb,.+a4Xxby, a, xbg+agxb,, a.-bg+as-b,, \). (78)

Unlike the general case, however, since we wish to identify the external vectors a <» a, +aze4+ and b <> b, +bge
with the measurement directions within E3, the following constraints induced by their scalar product naturally hold:

1 ar-bd:ad-br:O
a-b:= §{ab+ba} = (a, b, +a4-by) + (a,-bg + a;-b,)e; = and (79)
a, b, = a;-by = %cos@ab,
which are consistent with a-b = 1 for the special case a = b and the normalization conditions for a, and by, giving
N(aT, ay, 0, )\) N(br, by, 0, /\) = —a,-b, —ag-by — N(a,« X b, +ag X by, a, X bg +ayg x b, 0, )\) (80)
Labeling the experimental trials with index k, we can now define the measurement functions (63) as maps of the form
ST+l = A (n, )R { \F} — 57— R (81)

These maps can be realized for the freely chosen measurement directions, specified by the vectors such as a and b, as

Sr1— ar +1 if MNe= -1

Sd1 — aqg

: ko
ST> o/ (a, \F):= lim {:I:D(ahad,O)N(srl,sdl,O,)\k)}:{:Fl it A _+1}and <@%(a,)\’f)>:0

(82)

+1 if A= 41
7 kN 1 kY1 _ Ey\ _
ST %M, \) = srzhinbr{$D(br’bd’O)N(sT2’sd2’0’)\)}_{:Fl ¢ /\k:_l}and <%(b,)\)>—0.
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Here we have assumed that orientation A = 41 of S7 is a fair coin. Evidently, the functions .«7(a, A\*) and (b, \F)
define local, realistic, and deterministically determined measurement outcomes [10][17]. Apart from the common cause

AF originating in the overlap of the backward lightcones of &7 (a, A\¥) and Z(b, \¥), the event ./ = +1 depends only on
a freely chosen measurement direction a. And likewise, apart from the common cause A\*, the event % = 41 depends
only on a freely chosen measurement direction b. In particular, the function .7 (a, A\¥) does not depend on either b or
2, and the function (b, A\¥) does not depend on either a or &/. This leads us to the following remarkable theorem.

B. Quantum Correlations from the Algebra of Euclidean Primitives

Theorem: Every quantum mechanical correlation can be understood as a classical, local, realistic, and deterministic
correlation among a set of points of S7 constructed above, represented by maps of the form defined in (82) and (83).

Proof: Recall that — as von Neumann recognized in his classic analysis [18] — regardless of the model of physics one is
concerned with — whether it is the quantum mechanical model or a hidden variable model — it is sufficient to consider
expectation values of the observables measured in possible states of the physical systems, since probabilities are but
expectation values of the indicator random variables. Thus, probability P(E) of event E is expectation value £(1g),

P(E) = &(1g), (84)

of the indicator random variable 1g defined as

1 if F occurs
1g := 85
E { 0 otherwise. (85)

Conversely, the expectation value of 1y is

1 x P(E) + 0x {1 — P(E)}
P(E) + {1 - P(E)}

E(1p) = = P(E). (86)

Thus every statement involving probabilities can be translated into a statement involving expectation values, and vice
versa. In what follows we shall therefore work exclusively with expectation values, because our primary goal here is to
trace the origins of the quantum correlations to the algebraic and geometrical properties of the Euclidean primitives.

To that end, consider an arbitrary quantum state |¥) € H of a system, where H is a Hilbert space of arbitrary
dimensions — not necessarily finite. Apart from their usual quantum mechanical meanings, we impose no restrictions
on either |¥) or H. In particular, the state |¥) can be as entangled as one may wish [9]. Next, consider a self-adjoint

operator @(nl, n? n3 n* n® ...) on this Hilbert space, parameterized by arbitrary number of local contexts n?,

n% n? n* n® ete. The quantum mechanical expectation value of this observable in the state |¥) is then defined by:

&

Q.M.

(n', n% n® n? n® ...) = (7| (5(n17 n%, n® nt n® .. ) |U). (87)
More generally, if the system is in a mixed state, then its quantum mechanical expectation value can be expressed as

&

Q.M.

(n', n? n® n* n° ...) = Tr{w\ @(nl, n% n? n? n’ )}, (88)

where W is a statistical operator of unit trace representing the state of the system. Setting n! =a +— a, +age,,
n? =b +— b, +bye,, etc., the corresponding local-realistic expectation value for the same system can be written as

& n(abyed,...) = / Ag(a, \) Bb, ) E(c, ) 2(d, A) ... p(A)dX, (89)

A
where the binary measurement functions .#(n , \¥) are defined in Eq. (81) and the overall probability distribution p(\),
with /p()\) d\ =1 forall AeA, (90)

A

is in general a continuous function of A. Since in our framework A = +1 is a fair coin, the above integral simplifies to

E .(a,byc,d, ...) = lim [1 i o (a, \F) Bb, \F)E(c, \F) 2(d, \F) ... |. (91)

m—oo | m
k=1
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We shall soon prove, however, that — thanks to the definitions like (82) — this average is geometrically equivalent to

1 m
(a,b,c,d,...) = lim |— Y N(a,, ag, 0, \*)N(by, by, 0, \¥) N(c,, cq, 0, N*)N(d,, dg, 0, A¥) ... | .
m
k=1
(92)
Moreover, since as we saw in subsection IT D the representation space K* defined in (60), with or without the constraints
in (79), remains closed under multiplication, the product appearing in the expectation (92) is equivalent to the product

N(Xr; Xd, 07 A)N(yra Ya, Oa )‘) = X' Yr — Xd'Yd — N(Xr Xyr+xd X¥Yd, Xr X yd+xd XYr, 0’ )\)a (93)

for some vectors x and y, depending in general on the measurement directions a, b, c, d, etc. Consequently we have

_1 m
£.n(ab e d . ..)= lim |— > (a, \F) B(b, \F) €(c, \F) 2(d, ) ] (94)
L k=1
= hm | Z N(a,, ag, 0, \*) N(b,, bg, 0, \*) N(c,, cg, 0, \*)N(d,, dg, 0, \¥) 1 (95)
m—0o0 | m b1
. 1 « k k
= lim _ E;N(xr,xd, 0, N)N(y, ya, 0, A )1 (96)

RS
= —X, yr — Xq-yq — lim lmZN(XT><yr—|—xd><yd,xr><yd+xd><yr,0,/\)] (97)

m — oo
k=1

m — 00

. 1 &
= —Xqyr — Xg-yq — lim lm Z )\k] D (X, X yr +Xda X Yd, Xp X Ya +Xg X yr, 0) (98)
k=1
= — cosfxy(a, b, c,d,...) — 0, (99)
because A\*, as in (74), is a fair coin. We can now identify this local-realistic expectation with its quantum counterpart:

(U] O(a, b, ¢, d,...)[0) = & ,(abcd ...) = —cosbyy(a, b, c,d,...). (100)
This identification proves our main theorem: Every quantum mechanical correlation can be understood as a classical,
local, deterministic and realistic correlation among a set of points of the representation space S7 C K> described above.

It is instructive to evaluate the sum in Eq. (96) somewhat differently to bring out the fundamental role played by
the orientation A\ in the derivation of the strong correlations (99). Instead of assuming A\*¥ = £1 to be an orientation
of ST as our starting point, we may view it as specifying the ordering relation between N(x,, x4, 0, \¥ = £1) and
N(y,, ya, 0, A¥ = £1) and the corresponding detectors D(x,., X4, 0) and D(y,, y4, 0) with 50/50 chance of occurring,
and only subsequently identify it with the orientation of S7. Then, using the relations (74) and (93), the sum in Eq. (96)
can be evaluated directly by recognizing that in the right and left oriented S” the following geometrical relations hold:

N(xy, x4, 0, \* = +1) N(y,, ya, 0, A" = +1)
= =X ¥r — Xa-Ya — N (Xp X y; + X4 X Ya, Xp X Ya + Xq X yp, 0, \¥ = +1)
= =X Y —Xq4-Yd — D (X, X ¥y +Xa X Yd, Xp X Yd +Xg X Yr, 0)
= D(x,, X4, 0) D(y, ¥4, 0) (101)
and
N(X’I‘7 Xd;s 07 /\k = _1) N(YTa Yad, 07 Ak = _1)
= =X ¥r — Xa-¥a — N (Xp Xy, + X4 X Ya, Xp X Ya + Xq X yp, 0, \F = —1)
= —XYr — Xq¢-Yd + D (X, X ¥y +Xag X Ya, Xp X Yd +Xag X Yr, 0)

= —Yr X —Yi-Xd — D(yr XX, +yq X Xg, Yr X Xg +Ya X X, 0)
= D(yr, ya, 0) D(x;, X4, 0). (102)
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Changes in the orientation A\* thus alternates the algebraic order of N(x;, x4, 0, Ao = +1) and N(y., y4, O, \= +1)
relative to the algebraic order of the detectors D(x;, x4, 0) and D(y,, yq, 0). Consequently, the sum (96) reduces to

. 1 &
£ nlab ed . .)= lim |— > N(xy, Xa, 0, N*)N(yr, ya, 0, \F)

m — 00
k=1
1 1
= SN, x4, 0, A = +1) N(yr, ya, 0, A = +1)} + S{N(xp, xa, 0, ' = =1) N(yy, ya, 0, A* = —1)}
1 1
= 5{D(XT, x4, 0) D(y,, ya, 0)} + §{D(yr, va, 0) D(x,, x4, 0)}

1 1
= _§{XTYT + yiXr} — §{Xd}’d + YaXd} = —Xp Yr — X4 Ya = —Xy
= — cosbxy(a, b, c,d,...), (103)

because the orientation A\¥ of S7 is a fair coin. Here x -y = %{xy + yx} is the standard definition of the inner product.

Evidently the above method of calculating suggests that a given initial state A\ of the physical system can indeed
be viewed as specifying an ordering relation between N(n,, ng, 0, A) and the detectors D(n,, ng, 0) that measure it:

N(x,, X4, 0, \* = +1) N(y,, yq, 0, \* = +1) = D(x,, x4, 0) D(yr, ya, 0) (104)

or
N(x;, X, 0, \¥ = —1) N(y,, ya, 0, \* = —=1) = D(y,, ya, 0) D(x,, X4, 0). (105)
Then, using the right-hand sides of the Egs. (101) and (102), the above pair can be reduced to the combined relation
N (X X¥r +Xg X Ydy Xr XYd +Xg X Yry, 0, A) = AD (X X ¥ +Xg X Yd, Xr X Yd + Xg X yr, 0), (106)

which is identical to the relation (74) for normalized vectors. We have thus proved that the ordering relations (104)
and (105) between N(n,, ng, 0, \) and D(n,, ng4, 0) are equivalent to the alternatively possible orientations of S”.

1. Special Case of a Two-level System Entangled in a Singlet State

Now, to complete the above proof we must prove the step from Eq. (91) to Eq. (92). To that end, let us first consider
observations of the spins of only two spin—% particles produced in a decay of a single spinless particle as shown in Fig. 5.
After the decay the two emerging spin—% particles move freely in opposite directions, subject to spin measurements

along freely chosen unit directions a and b, which may be located at a spacelike distance from one another [17]. Since
initially the emerging pair has zero net spin, its quantum mechanical state is described by the entangled singlet state

I
V2

with o -z |z, £) = %z, £) describing the eigenstates of the Pauli spin “vector” o in which the particles have spin
“up” or “down” along z-axis, in the units of 4 = 2. Our interest lies in comparing the quantum mechanical predictions,

|\IIZ> {‘Z7 +>1 ® |Z7 _>2 - |Z7 _>1 ® |Za +>2}a (107)

SQ‘?L_ (a,b) = (V,|lo1-a® 02-b|V,) = — cosbap, (108)
together with
£z (a) = (Uylo1-a@1|W,) =0 and &% (b) = (V,[1®65-b|T,) =0, (109)

of spin correlations between the two subsystems, with those derived within our locally causal framework, regardless of
the relative distance between the two remote locations represented by the unit detection vectors a and b. Here 1 is the
identity matrix. The corresponding locally causal description of this system within our framework thus involves only
two contexts, n! =a «+— a, +age, and n? = b <— b, +bge, , with measurement results defined by the functions

Sr1 — a _ : k _ _
S an 1 if M= -1

: k
S7 9%(3, )\k) =_lim {_D(aT’7 ad, O)N(S’r‘17 Sd1, 07 )\k)}: {+1 A= 1 } with <%(a, )\k>> =0

(110)
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and

-1 if A =41
7 kY ._ _ ; k —
S Bﬂ(b,)\)‘—Sr2hmb{+NsT2,sd2,O )\)D(b,p,bd,O)}—{_’_1 " )\k:_l}\mth <95’(b,)\)>—0,

(111)
where 81 «— S;1 +Sq1 €4+ and Sg <— S;9 + g2 €4 represent the directions of the two spins emerging from the source.

Next, recalling that physically all bivectors £(n) € S? C S® represent spins [9][10], we require that the total spin-zero
angular momentum for the initial or “complete” state associated with the above measurement functions is conserved,

total real spin := — A€(s;1) + A€(sp2) = 0 <= sp1 = S;2 = 8, (112)

and
total dual spin := —A&(sq1) + A€(Sg2) = 0 <= s41 = Sq2 = sS4, (113)
just as it is in the EPR-Bell type experiment depicted in Fig. 5. For N(s,., s4, 0, AF) this is equivalent to the condition
—N(s,1, Sa1, 0, \*) + N(s,2, 842, 0, \¥) = 0 <= N(s,1, 841, 0, \¥) = N(s,2, sa2, 0, AF). (114)
In the light of the product rule (80) for anti-symmetric elements, the above condition is also equivalent to the condition
N(sy1, Sa1, 0, A*) N(s,2, 842, 0, ) = {N(s;, sy, 0, )\”f)}2 = N2%(s,, sq, 0, \F) = —1. (115)

In the next subsection we will derive this condition geometrically as a natural consequence of the twist in the Hopf
bundle of S3. Here it leads to the following statistical equivalence, which can be viewed also as a geometrical identity:

lim [ Z o (a B(b, /\’“)] = lim [12"’: N(a,, ag, 0, \*) N(b,, by, 0, )\’“)]. (116)

Given the definitions (110) and (111), there are more than one ways to prove this identity. In the following we will use

one such way. But it can also be proved by simply taking the limits in (110) and (111) while maintaining (114), and
then using Eq. (74). Then the computation of correlations between o7 (a, A¥) = +1 and %(b, \¥) = £1 works out as

SEPR(a b) = lim

Z o (a B(b Ak)] (117)

m—)oo
k_l
= lim ii lim [—D(a ag, 0) N(s,1, s OA’C)] lim [N(s S42, 0, \*) D(b,, b }
m— oo | m Se1 -5 a, ry Ad)y rly Odl, Y, Sia— by, r2y Od2y Y, T (i7
L k=1 \Sd1 —~aq Sg2 — by
(118)
L 1 & . . 5 k
7777,hl>noo E Z {57-1h£>nar sr2h£>nbr |: - D(ar; aq, O) { N(Srla Sdi1, Oa A )N(Sr27 Sd2, 07 A )}D(bra bda
L k=1\8d17ad g0 sp,
(119)
—1; 1 - : : k k k k
= Tim | Z{Sﬂhglar lim {f)\ N(a,, ag, 0, \*) {1} M*N(b,, b, 0, A )} (120)
L k=1\8d17ad g0 sp,
_ RS . . k)2 k k
= Tim | Z{Srlhglar lim [+ (\)? N(ay, a4, 0, \*) N(b,, ba, 0, A )]} (121)
L k=1\8d17ad g0 sp,
S F _1 - k k
= lim _ E};N(ar, ag, 0, \*)N(b,, bg, 0, \¥) (122)
1 & X
= —a,-b,—as-bg — lim_|— Y N(a, x b, +ag x by, a, x by +ag x by, 0, \¥) (123)
m — 00 mk:l
1 m
= —a,-b,— a; by — lim [ Z Ak] D (a, x b, + a4 X by, a, X by +ag x b,., 0) (124)
m — o0 mk:l

= —cosbap — 0. (125)
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FIG. 5: A spin-less neutral pion decays into an electron-positron pair. Measurements of spin components on each separated
fermion are performed at remote stations 1 and 2, providing binary outcomes (respectively) along arbitrary directions a and b.

Here Eq. (118) follows from Eq. (117) by substituting the functions <7 (a, A¥) and % (b, A\¥) from their definitions (110)
and (111); Eq. (119) follows from Eq. (118) by using the “product of limits equal to limits of product” rule [which
can be verified by noting that the same multivector results from the limits in Eqs. (118) and (119)]; Eq. (120) follows
from Eq. (119) by using (i) the relations (74) [thus rewriting all anti-symmetric elements in the same bases], (ii) the
associativity of the geometric product, and (iii) the consequence (115) of the conservation of the spin angular momenta

in S3; Eq. (121) follows from Eq. (120) by recalling that scalars A\* commute with the elements of all grades; Eq. (122)

follows from Eq.(121) because A2 = +1, and by removing the superfluous limit operations; Eq. (123) follows from
Eq. (122) by using the geometric product (80); Eq. (124) follows from Eq. (123) by using the relations (74); and finally
Eq. (125) follows from Eq. (124) by using Eq. (79) and because the scalar coefficient of D vanishes in the m — oo limit

since A¥ is a fair coin. This proves that singlet correlations are correlations among the scalar points of a quaternionic S®.
As we did above for the general case, let us again evaluate the sum in Eq. (122) somewhat differently to bring out the
crucial role played by A\* in the derivation of the correlations (125). Using the relations (74) and (80), the sum (122)
can be evaluated directly by recognizing that in the right and left oriented S” the following geometrical relations hold:
N(a,, ag, 0, \* = +1) N(b,, by, 0, \* = +1)
= —a, b, —a;z-by — N(a, x b, +ag x by, a, x by +ay4 x by, 0, \F =+1)
= —a,-b, —ag-bg — D(ar X b, +ayg X by, a, X by +ayg x b,, O)
D(a,, a4, 0) D(b,, by, 0) (126)

and
N(a,, ag, 0, \* = —1) N(b,, by, 0, \* = —1)
= —a, b, —a;-by — N(a, xb, +a4 x by, a, x bg+a, x b,, 0, \* = —1)
= —a,-b, —ag-bg + D(a, xb, +a4 x by, a, x bg+ a4 x b, 0)
= —b,-a, — bg-ag — D(b, xa, +by x ay, b, xas+ by x a,, 0)
)

= D(b,, by, 0) D(a,, ag, 0). (127)

Changes in A* thus alternates the relative order of D(a,, ag, 0) D(b,, by, 0). As a result, the sum (122) reduces to

g8 (a,b) = lim > N(ar, ag, 0, \¥)N(b,, ba, 0, \F)

1
m — 00 E
k=1
1 1 .
= §{N(ar, ag, 0, \* = 41) N(b,, by, 0, \* = +1)} + §{N(a,«, ag, 0, \* = —1) N(b,,, by, 0, \* = —1)}

1 1
= §{D(ar, ag, 0) ]:)(br7 by, 0)} + 5{]:)(br7 by, 0) D(ar, aqy, 0)}

1 1
—§{aTbT + brar} — §{adbd + bdad} = —a,-b, —a;-b;g=—a-b=—cosbp, (128)

because the orientation A* of S is a fair coin. Here a- b = 2{ab + ba} is the standard definition of the inner product.
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The above method of calculating the correlations suggests that a given initial state A of the physical system can be
viewed also as specifying an ordering relation between N(n,., ng, 0, A) and the detectors D(n,., ng, 0) that measure it:

N(a,, a4, 0, \¥ = +1) N(b,, by, 0, \¥ = +1) = D(a,, ag, 0) D(b,, by, 0) (129)

or
N(a,, ag, 0, \* = —1) N(b,, by, 0, \* = —1) = D(b,, by, 0) D(a,, ag, 0). (130)
Then, using the right-hand sides of the Egs. (126) and (127), the above pair can be reduced to the combined relation
N (a, x b, +a4 X by, a, Xxbg+ a4 xb,, 0, \) = AD(a, x b, +a4 X by, a, Xx by +ay x b,., 0), (131)

which is equivalent to the relation (74) for normalized vectors. We have thus proved that the ordering relations (129)
and (130) between N(n,, ng, 0, \) and D(n,, ng, 0) are equivalent to the alternatively possible orientations of S7.

2. Conservation of Spin-0 from the Twist in the Hopf Bundle of S*

Note that, apart from the initial state \¥, the only other assumption used in this derivation is that of the conservation
of spin angular momentum (115). These two assumptions are necessary and sufficient to dictate the singlet correlations:

1
EPR 3 & & N 132
& "(a,b) = lim —kgl,sz%(a,)\),%’(b,)\) = — cosbap (132)

m — 00

The conservation of spin, however, can be understood in terms of the twist in the Hopf bundle of S% 2 SU(2). Recall
that locally (in the topological sense) S® can be written as a product S? x S*, but globally it has no cross-section [19)].
It can be viewed also as a principal U(1) bundle over S2, with the points of its base space S? being the elements of the
Lie algebra su(2), which are pure quaternions, or bivectors [9][17][20]. The product of two such bivectors are in general
non-pure quaternions of the form (18), and are elements of the group SU(2) itself. That is to say, they are points of

the bundle space S3, whose elements are the preimages of the points of the base space S? [19]. These preimages are

1-spheres, S, called Hopf circles, or Clifford parallels [21]. Since these 1-spheres are the fibers of the bundle, they do
not share a single point in common. Each circle threads through every other circle in the bundle, making them linked
together in a highly non-trivial configuration, which can be quantified by the following relation among the fibers [20]:

elV- = el | (133)

where €'Y~ and e+, respectively, are the U(1) fiber coordinates above the two hemispheres H_ and H, of the base
space S2, with spherical coordinates (0 < 6 <, 0 < ¢ < 27); ¢ is the angle parameterizing a thin strip H_ N H,
around the equator of S [0 ~ 7); and €'® is the transition function that glues the two sections H_ and H together,
thus constituting the 3-sphere. It is evident from Eq. (133) that the fibers match perfectly at the angle ¢ = 0 (modulo

27), but differ from each other at all intermediate angles ¢. For example, e®¥~ and e+ differ by a minus sign at the
angle ¢ = m. Now to derive the conservation of spin (115), we rewrite the exponential relation (133) in our notation as

{_E(ar) £(Sr1)} = {ﬁ(ar) S(br)} {ﬁ(STQ)g(bT)} (134)

by identifying the angles 7,,s,, and 7s,,b, between a, and s,; and s, and b, with the fibers ¢)_ and 1 , and the angle
Na,b, between a, and b, with the generator of the transition function €' on the equator of S2. Here we have used
the sign conventions to match the sign conventions in our definitions (110) and (111) and the correlations (125). The
above representation of Eq.(133) is not as unusual as it may appear at first sight once we recall that geometric products
of the bivectors appearing in it are all non-pure quaternions, which can be parameterized to take the exponential form

u/Av

CEWEW) = — (AL ) (A V) = cos(7uy) T Sin(y) = exp{‘”"| n} (135)

+ -
[lunv [laAv
Multiplying both sides of Eq. (134) from the left with £(a,) and noting that all unit bivectors square to —1, we obtain

&(sr1) = —&(by) &(sr2) €(br) . (136)

Multiplying the numerator and denominator on the RHS of this similarity relation with — &(b,) from the right and
&(b,) from the left then leads to the conservation of the spin angular momentum, just as we have specified in Eq. (112):

Aﬁ(srl) = )\E(ST‘Q) < Sr1 = Sr2. (137)
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Similarly, we can derive analogous conservation law for the zero spin within the dual 3-sphere, as specified in Eq. (113):
)\E(sdl) = Aﬁ(sdg) < Sd1 = S42- (138)

Given the conservation laws derived in Egs. (137) and (138), we can combine them to arrive at the net condition (115):

N(S’rh Sd1, Oa )\k) N(STQa Sd2, 07 )‘k) = _17 (139)

which was used in Eq. (120) to derive the strong correlations (125). We have thus shown that the conservation of spin
angular momentum is not an additional assumption, but follows from the very geometry and topology of the 3-sphere.

In fact it is not difficult to see from the twist in the Hopf bundle of S?, captured in Eq. (134), that if we set a, = b,
(or equivalently 7,1, = 0) for all fibers, then S reduces to the trivial bundle S? x S*, since then the fiber coordinates
Na,s,, and ns b, would match up exactly on the equator of S? [# ~ Z]. In general, however, for a, # b,., 5% # S% x S1.

For example, when a, = —b,. (or equivalently when 7, 1, = ) there will be a sign difference between the fibers at
that point of the equator [19][20]. That in turn would produce a twist in the bundle analogous to the twist in a Mdbius

strip. It is this non-trivial twist in the S® bundle that is responsible for the observed sign flips in the product &7 % of
measurement results, from &/ % = —1 for a,, = b,. to &% = +1 for a, = —b,., as evident from the correlations (125).
In the appendix of the first chapter of Ref. [9] this is illustrated in a toy model of Alice and Bob in a Mébius world.

8. The General Case of Arbitrarily Entangled Quantum State

We now proceed to generalize the above two-particle case to the general case of arbitrary quantum state considered
in (87). To this end, let us consider arbitrary number of measurement results corresponding to those in (87) and (88):

o (a, \F) B(b, \F) €(c, \F) 2(d, \F) (e, \¥) Z(F, \F) D(g, \¥) ..., (140)
with each pair such as (¢, 2) defined for the contexts such as n® = c +— ¢, +cge; and n* =d +—d, +dgey:

+1 if Ne= 41
-1 if M =-1

tr1 —cp
tiy1 — cq

S"3%(c, \*):= lim {-D(c,, cg, 0)N(t,1, tar, 0, \¥) } = { } with (€(c, A\¥)) =0

(141)
and

—1 if M= 41

S"3 2(d, \F) = i N(t,9, tge, 0, \*)D(d,, dg, 0) ) =
> ( ’ ) lmd{+ ( 2, Ld2, Y, ) ( » Ud, )} +1 if Ak):_l

tro — dy
tae — dg

} with (2(d, A\¥)) = 0.
(142)

If the number of measurement results happens to be odd instead of even, then the product of an even number of
results can be first evaluated, and then that factor can be paired with the remaining result, as done in Eq. (180) below.

It is important to recall here the elementary fact that any experiment of any kind in physics can always be reduced to
a series of questions with “yes” / “no” answers, represented by binary measurement outcomes of the form (140) to (142).
Therefore the measurement framework we have developed here is completely general and applicable to any experiment.

Now, as in the EPR-Bohm type experiment with a singlet state discussed above [cf. Fig. 5 and Egs. (114), (115) and
(139)], for each pair of measurement outcomes such as (142) the twist in the Hopf bundle of S dictates the condition

— N(tr1, tar, 0, A) + N(tyo, taz, 0, \) = 0 <= N(t;1, tar, 0, \¥) = N(t,2, tae, 0, A¥), (143)
or equivalently the condition
N(ty1, tar, 0, X) N(tra, taz, 0, M) = {N(t,, ta, 0, M)} = N2(t,, tg, 0, AF) = —1. (144)

Consequently, by following the steps analogous to those in Egs. (110) to (122), we arrive at the geometrical equivalence

L& 1 e
lim | — " €(c, \¥) 2(d, )\k)] = lim lm > N(e,, €q, 0, A)N(d,, dg, 0, AF) (145)

m—oco | m m — 0o
k=1 k=1
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for each pair (¢, &) of measurement outcomes. As a result, the correlations among the outcomes (140) take the form

& .(abycd, ...)=lim el > d(a, N) B(b, \)E(c, \) 2(d, \) ] (146)
m — 00 -m P
L 1 & k k k k
= lim E;Mar, aq, 0, \*) N(br, ba, 0, \*) N(ey, ¢, 0, A*)N(dy, dg, 0, A) ...
) (147)
o
= lim |— N(x,, x4, 0, \*) N(y,, ya, 0, \F) (148)
m — 00 _m P

m — o0

— X, Y, — Xq-yq — lim [ (Xerr+Xd><Yd,Xr><}’d+Xd><yT»0»)\)] (149)

m — o0

1 m

— N

>

k=1

: 1~ &
— X, Yy — Xq+yq — lim | — Z A D (X, Xy, +Xg X ¥d, Xp X ya+Xaq Xyr, 0) (150)
m
k=1

= — cosbxy(a, b,c,d,...) — 0, (151)
because A* is a fair coin. We can now identify this locally causal expectation with its quantum mechanical counterpart:
(| O(a, b, c,d,...)[¥) =& ,(ab,cd ...) = —cosbyy(a b, c,d,...). (152)
This completes the proof of the theorem for the general quantum state stated at the beginning of the subsection III B.

C. Derivation of Tsirel’son’s Bounds on the Strengths of the Correlations

Let us now investigate the bounds on the strengths of the correlations (151) by deriving Tsirel’son’s bounds [10] for
arbitrary quantum states [9]. To this end, instead of (140) consider an alternative set of measurement results such as

@, N\ B, AN E(c, N 2(d, \¥) &, \F) F(F, ) g(g', A ... (153)

with each pair such as (¢, &) defined for contexts such as nd=c «—c,+cy ¢4 and nt=d > d,+dy €4 .
The correlation between these results can then be derived following steps analogous to those in the previous subsection:

) 1 m
E.n (@, b d, ) = lim | S @, N BB, N E(, N) 2(d, N ] (154)
k=1
_ 13 _l - l / k l U k / ! k / ! k
= lim_ mkz_:lN(ar,ad, 0, \')N(b/,., bly, 0, \F)N(c/,, /g, 0, NO)N(d',, d'y, 0, AF) ...
(155)
T -1 - / / k / / k
_mh_r)noo Ek_lN(xT,xd7 0, \*)N(y',., ¥4, 0, \¥) (156)

m — o0

o
=Xy = Xay'g - lim | Y ONE, <y, +xaxy s X xy g+ xaxy,, 0, A)]

L k=1
(157)
. M 1 m
= _X/r . y/r _ X/d . yld _mhinoo E l;l Ak] D(X/7- % y/r +X/d % yld7 X/r % y/d + X/d > y/r’ 0)
(158)
= — cosbyy (a’, b, c/,d,...) — 0. (159)

In particular, in Eq. (156) we then have the relation

1 m
E @, p,cd,d,...)=¢ . *,y) = lim |fn Z N(x',, X'q, 0, \F)N(y',., ¥4, 0, \F) | . (160)

m — 0o
k=1
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Needless to say, we are free to choose the contexts different from the primed and unprimed ones chosen in (153) and
(140), as well as any combinations and/or mixtures of them, such as (a, b’, ¢”, d"”, ", ...). Consequently, we may
consider the following four relations corresponding to some alternative combinations of measurement contexts so that

. 1 «
gL.R.(XV y) :mh_r}loo % ];: N(XT7 Xd;s 0» /\k) N(yTv Ya, 07 )‘k) ) (161)
L =1
_1 m _
AN T - k ! / k
EL.R. (Xv Y) _mhinoo m kZ:lN(XT? Xd, 07 A )N(y r Y d 07 A ) ’ (162)

m

. 1
gL.R. (Xl7 y) :m,hl}loo E Z N(XIT'a X/d7 07 )\k) N(YTv Yd, 07 Ak) ) (163)
L k=1 i
and & . (x,y') = lim 1 zm: N(x'r, x'g, 0, \O)N(y',., ¥4, 0, AF) (164)
L.R. Y " oo mk . i) ds Y, Yo~ Ya U .

Using the above four expressions the corresponding Bell-CHSH string of expectation values [10], namely the coefficient

gL.R. (Xv }’) + ELR (Xv y,) + 5L.R.(X/’ Y) - gL.R. (le y/) (165)

corresponding to this fully general case of arbitrary number of contexts and measurement results, can be written as

S
Enxy)+ &, (xy)+E K y) &, &, y) = lim . Z{N(xr, x4, 0, \*)N(y,, ya, 0, \F)

m — 0o
k=1

+ N(XT7 Xd, 07 Ak)N(y/ra y/da 07 Ak)

+ Ny, X'g, 0, \*)N(y,, ya, 0, A")
- N(X/r; X/d7 Oa )‘k) N(y/m y/dv 07 /\k) } .
(166)

But since N(x;, xg4, 0, )\k) and N(y,, ya4, 0, M) represent two independent equatorial points of an S® within S7, we
take them to belong to two disconnected “sections” of the bundle S® x S* (i.e., two disconnected S° C S%), satisfying

[N(xr, x4, 0, \F), N(y,, ya, 0, )\k)] =0 Vx,and yq4 € R?, (167)
which is equivalent to anticipating null outcomes along the directions x, X y4 exclusive to both x,. and y4. If we now

square the integrand of equation (166), use the above commutation relations, and use the fact that all N(n,, ng, 0, )\k)
square to —1, then the absolute value of the above Bell-CHSH string (165) leads to the following variance inequality:

: 1 &
‘5L.R.(X7 Y) + 5L.R.(X7 y/) + EL.R. (X/, Y) - EL.R.(X/’ y/)| < lim E Z {4 + 4‘7XX'(>‘]€) yy/}’()‘k)} ) (168)

m — 00
k=1
where the classical commutators

1
Tt (NF) i = = [N(x,, x4, 0, M), N(x ), x4, 0, )\k)] = — N (x, x X'; +xq X X'q, X, X X'g +%q x X', 0, )\k)

2
(169)
and

<?y’y()‘k:) = [N(ylra y/d, 07 )‘k)v N(yrv Yad, 07 Ak)] = -N (y/r Xyr+ y/d XYd, y/r XYd +yld XYr, 07 Ak)

(170)

N
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are the geometric measures of the torsion within S7 [9][10]. Thus, it is the non-vanishing torsion .7 within S7 — the
parallelizing torsion which makes the Riemann curvature of this representation space vanish — that is responsible for
the stronger-than-linear correlations. We can see this from Eq. (168) by setting .7 = 0, and in more detail as follows.

Using the above expressions for the intrinsic torsions Jy x (AF) and 7y (A\*) and defining the unnormalized vectors

u, = (x, X X' + x4 Xxx'g) and uy = (x, x X'g +xq X X'}.) (171)
and
vei= (Y, xyr+yaxya) and va:=( xyaty'axy), (172)
together with u- v :=u, - v, + ug- vy analogoustoa-b:=a, b, + ag- by given in Eq. (79), we have the product
ﬂxx,()\k) ﬂy/y()\k) = —-u,+v, —ug-vqg — N (uT X Vi +Ug X Vg, Up X Vg +ug X v, 0, )\k)
=—u-v — N(u X v, +uy X Vg, u, X vg+ug x v, 0, A\F). (173)

As a result, we have

. 1 & k k . IS k
A@w[m;yx}d(}\)ﬂy/y()\ )]:_u.v_mhinoo[m];lN(urXVT+UdXVd’urXVd+udxvr7O7/\)
1 m
=—u-v — lim [Z)\klD(ur><v,«+ud><vd,ur><vd+ud><vr70)
=—u-v—-0=—-u.-v, —uy-vy, (174)

where u and v are unnormalized vectors. Using the constraints analogous to those expressed in Eq. (79), we then have

, 1 & :
Jim lng- w(xk)ﬂyfyu’”] = —upve - v = - () (v xy), (175)
upon using a vector identity. Consequently, substituting the above value in the variance inequality (168), it simplifies to
|5L.R. (Xv Y) + EL.R, (Xv yl) + gL.R. (X/7 y) - EL.R.(X/’ yl) ‘ < 2 \/1 - (X X X/) ' (y/ X Y) : (176)
Finally, since trigonometry dictates the geometrical bounds —1 < (x X x') - (y’ X y) < +1, this inequality reduces to
|5L,R. (X’ y) + EL.R. (X’ y/) + 5L.R.()(/7 y) - gL,R, (X/7 y/) | < 2\/57 (177)
exhibiting the bounds on all possible correlations. This result can also be derived directly from the correlations (151):
|5L.R. (xv Y) + EL.R. (X, yl) + EL.R.(X/’ y) - EL.R. (le y,)| = |_ €os axy — COoS axy/ — COS Qx’y + cos QX’y' | < 2\@
(178)

Let us stress again that these bounds are completely general, valid for any quantum state, such as the one in Eq. (88).

D. Fragility of the Strong Correlations Increases with the Number of Contexts

As we saw in Eq. (125), in the case of two contexts the scalar part of the product N(a,., a4, 0, )\k) N(b,, bg, 0, )\k) is
—cosbxy(a,b) = —a,-b, —as-bg = —a-b = — cosbap . (179)

And it is this scalar part that captures the pattern of strong correlations exhibited by the singlet system. Analogously,
for three contexts the scalar part of the product N(a,, ag, 0, \¥) N(b,, by, 0, A*) N(c,, ¢4, 0, A\¥) works out to give

— cosbxy(a, b, c) = a, - {(b, xc;) + (bg xcqg)} + ag-{(b, xcg) + (bg xc,)}, (180)
with the geometric complexity of the scalar part now increased considerably. And for four contexts the scalar part of
the product N(a,, ag, 0, \¥) N(b,, by, 0, \*) N(c,, cg4, 0, \¥) N(d,, dg, 0, \*) works out to be even more intricate:

— cosbxy(a, b, c,d) = (a,-b,)(c, -d;) + (ag-bg)(c, -d;) + (a,-by)(cq-dg) + (ag - bg)(cq - dqg)

—(a, xbr+a; xbg) (¢, xdr +cqgxdyg) — (ar xbg+agxb;) (¢, xdg+cqg xd,),
(181)
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because

N(a,, a4, 0, \) N(b,, by, 0, \) = —a, -b, — az-bs — N(a, x b, +a4 X by, a, X by + a4 x b,, 0, \) (182)
and

N(cy, €q, 0, A)N(d,, dg, 0, A) = —¢,-d — ¢4-dg — N(c, xd, +cgxdg,c, xdg+cqgxd,, 0,\). (183)

Needless to say, this pattern of increased geometrical complexity continues with the addition of each new context. As
a result, the fragility of the strong correlations also increases rapidly with the number of contexts. This is easy to see
already from the above scalar part for just four contexts. It is easy to see that even a slight change, such as a,, £ Aa,, in
only one of the four contexts a,. + ag € would lead to a dramatic change in the pattern of the corresponding correlation.

E. Reproducing the Strong Correlations Exhibited by the Four-Particle GHZ State

Now, as a second example of strong correlations, consider the four-particle Greenberger-Horne-Zeilinger state [5]:

) = <= {lz 01 @ ln Ha @l @lm )i = [z N Olm a@lz N lm ). (184

Unlike the singlet state, this entangled state is not rotationally invariant [5]. There is a privileged direction, and it is
taken to be the z-direction of the experimental setup [5]. The z-direction thus represents the axis of anisotropy of the
system. The quantum mechanical expectation value of the product of the four outcomes of the spin components in this
state — namely, the products of finding the spin of particle 1 along a, the spin of particle 2 along b, etc.— is given by

¥ (a,b,c,d) = (V,]c-a®@c-b®ao-c®o-d|T,). (185)

Q.M.

This expectation value has been calculated in the Appendix F of Ref. [5]. In the spherical coordinates — with angles such
as 0, and ¢, representing the polar and azimuthal angles, respectively, of the direction a, b, etc.— it works out to be

EQ‘?L_(a, b, ¢, d) = cosf, cosbp cosb. cosly — sinb, sin by sin b, sinfq cos (da + db — e — ¢a) - (186)

Our goal now is to reproduce this result within our locally causal framework described above. To this end, we note
that the state (184) represents, not a two-level, but a four-level system. Each of the two pairs of the spin-1/2 particles
it represents has four alternatives available to it. These alternatives can be represented by a state-vector of the form
W) =ml++)+22l+ =)+l —+)+nul--), (187)

where 71, 72, 73, and 4 are complex numbers satisfying the normalization | vy |2 + [v2 |? + |73 |2 + |74 |?> = 1, which

is equivalent to defining a unit 7-sphere, with |1 |2, |72 ]?%, |73 |2, and |74 |? being the probabilities of actualizing the
states | + +), | + —),| — +), and | — —), respectively. Therefore we may begin with four local maps of the form

: ko
ST3 /(a, \) :=_lim {_D(amade)N(srlasdla07)\k)}:{+1 A Jrl}With <,;a7(a7)\k)>:0,

1 a, _ 1 E_ _
::mjad 1 if A 1
(188)
S”> B(b, \¥):= lim {+N(s;2, sa, 0, \*)D(b,, by, 0) } = -1 A=l with <%(b A’“)> =0
) . STQHbT T4 ) K T ) +1 if )\k:—l ) k)
Sd2—>bd
(189)
; . B R B B DL | , o\
S'3%€(c, \¥) = tr}lglcr{ D(c;, €4, 0)N(t,1, ta1, 0, \¥) } = {1 ok — 1 with <‘€(c, A )> =0,
tq1 — cq
(190)
and

S5 2(d, \*) = lim {+N(two, taz, 0, ") D(d,, dgy 0)} = 4 - 1 A= 41 with (9. \)) = 0
T beds e T +1 i A= 1 ’ ’

tio — dg

(191)
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together with their product
(o B, Ce Da)(N¥) = o (a, \F) B(b, N)€(c, \F)2(d, \F) = £1 € §7, (192)

and the corresponding conservation laws

N(Srla Sd1, 0, )\k)N(Sr% Sq2, 0, )‘k) = {N(Srv sS4, 0, )‘k)}z = N2(Srv sd4, 0, )‘k) = -1 (193)

and
N(ty1, tar, 0, M) N(tra, taz, 0, M) = {N(t,, ta, 0, \)} = N2(t,, tg, 0, AF) = —1. (194)

As we saw above, the expected value of the product of the outcomes o7 (a, \¥), (b, A\¥), €(c, A\¥) and 2(d, \*) then
works out to be the scalar part of the product N(a,, ag, 0, \*) N(b,., by, 0, \*) N(c,, cq, 0, \¥) N(d,, dg, 0, \¥), as
spelled out in Eq.(181). Using a simple vector identity this expected value can be further simplified to take the form

EM%(a, b, c,d) = (a, b,)(c,-d,) + (ag-ba)(c, -d,) + (a,-b,)(ca-da) + (aq-ba)(cq - da)

— (ar-¢;)(br-d;) + (b -c;)(ar-d;) — (ar-cq)(br-dg) + (b, ca)(a - da)
— (ag-cr)(bg-d;) + (bg-c.)(ag-d;) — (ag-cq)(ba-da) + (bg-ca)(aq-da)
— (ar - ¢;)(ba-da) + (ba-cr)(ar-da) — (ar - cq)(ba-dr) + (ba-cq)(a; - dy)
— (ag-¢.)(br-dg) + (br-c)(ag-dg) — (ag-cq)(by-d;) + (by-cq)(ag-d;). (195)

Upon using the constraints in Eq. (79) to set the terms involving a,. - ¢4 etc. to zero, this expected value reduces to
SL(_}E_Z(a, b,c,d) = (a,-b.)(c,-d,) + (ag-bg)(c,-d;) + (a,-b.)(cqg-dg) + (ag-bag)(cq - dg)
- (ay - ¢;)(by - d;) + (by - ¢;)(ar - dr) — (ag - ca)(ba-da) + (ba-ca)(aq - da)
— (a,-¢;)(bg-dg) + (bg-cq)(ar-d,) + (br-c,)(ag-dg) — (ag - cq)(by - d;). (196)
Then, again using the constraints in Eq. (79) to identify a, - b, with ag - by, etc., the expected value takes the form
ELC_;;I_Z(a, b,c,d) = 2(a,-b;)(c,.-d;) + 2(aq-bg)(cs-dg) — 2(a, - c.)(b, - d;)
+ 2(br - ¢;)(ay - d;) + 2(bg - ca)(aq - da) — 2(aq - ca)(ba - da). (197)

Next, in order to satisfy the above constraints, we relate the external measurement directions a, b, ¢ and d € R3,
chosen freely by the experimenters, with the directions a,, ag, etc. within our representation space S7 C IC’\7 as follows:

a
A (ag, ay, a,, \F) = £1 € S7 to be detected by D(a,; ag; 0) = D( = ” ,0; 0,0, ; 0), (198)
b b b
B(by, by, b, \¥) = £1 € S7 to be detected by D(b,; bg; 0) = D ( — —0 0,0, +——:; 0), 199
( Y ) y ( d ) \[ \4/5 ( )
C(ca, ¢y 2y A¥) = £1 € 87 to be detected by D(c,; cq; 0) = D (+Cg”, + 0, 0,0, 2. o), 200
(. Y ) y ( d ) {1/5 \475 \475 ( )

dy  dy d. )

—,——=,0; 0,0, ———=; 0. (201
oA v 0 e
Here the 4'" roots of 2 in the denominators of D [instead of v/2 as in Eq. (71) ] arise because the product of four factors,
N(a,, ag, 0, A*) N(b,., by, 0, \*) N(c,, c4, 0, \¥) N(d,, dg, 0, \¥), instead of two, N(a,, ag, 0, \¥*) N(b,, by, 0, \F),
is involved in the calculation (147) of the correlation, while maintaining the unity of the radius of S”. Note also that
components of only external vectors are involved in the definitions of the four detectors. And they do not mix with

each other, so that Bell’s condition of local causality, or parameter independence [4], is strictly respected throughout.
Substituting these coordinate values into the remaining vectors in the expected value (197) then reduces that value to

D(dy, dy, d., \F) = £1 € S7 to be detected by D(d,; dg; 0) = D (+

SLC_;IEI_Z(a, b,c,d) = +a.b.c.d, — aybycydy, — azbycydy — aybycydy — azbycydy
+ azbyeydy, — agbycydy — aybycpdy + aybycydy. (202)
In the spherical coordinates — with angles 6, and ¢, representing respectively the polar and azimuthal angles of the
direction a, etc., for all four measurement directions — this expression of the expected value can be further simplified to
ngz(a, b, ¢, d) = cosf, cosbp cosf. cosfgq — sinby sinby, sinb sinfyq cos(da + P — P — Pd ). (203)

This is exactly the quantum mechanical prediction (186) for the four-particle GHZ state (184). We have derived this
prediction, however, as purely geometric effects within our locally causal framework. The GHZ correlations thus simply
exhibit the classical, deterministic, local, and realistic correlations among four points of our representation space S”.
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IV. BELL’S THEOREM, EXPERIMENTAL TESTS, AND GHZ VARIANT WITHOUT INEQUALITIES

A. Bell-Test Experiments: From their Inception to the Latest Loophole-Free Variants

Contrary to what we have demonstrated above, it is widely believed that the so-called Bell-test experiments — from
their initial conceptions summarized in the classic review paper by Clauser and Shimony [13] to their state-of-the-art
“loophole-free” variants [6] — undermine any prospects of a locally causal understanding of quantum correlations. It
is important to appreciate, however, that all such experiments simply confirm the predictions of quantum mechanics.
They neither contradict the quantum mechanical predictions, nor go beyond them in any sense. Moreover, since in the
subsection III B 1 above we have reproduced all of the quantum mechanical predictions for the singlet state ezactly, the
Bell-test experiments [6] do not contradict the predictions of our model either. Rather, they simply corroborate them.

More precisely, all such experiments average over “coincidence counts” to calculate expectation values in the form

1 [C++(a, b) + C__(a,b) — Cy_(a,b) — C_,(a, b)}
Cii(ab) + C__(a,b) + Ci(a,b) + Ci(a, b)]
= —co8bup, (204)

E(a, b) = lim [711 f: o (a, \F) B(b, \¥)
k=1

where C;_(a, b) etc. represent the number of simultaneous occurrences of detections + 1 along a and — 1 along b,
etc. In addition, they observe individual results .7 (a, \¥) and (b, AF) at each remote station to find that on average

<,@/(a, A’“)> — 0 and <%’(b, A’f)> = 0. (205)
Finally, they observe that Bell-CHSH inequalities [8] with the absolute bound of 2 are exceeded by a factor of v/2:

—2vV2 < E(a, b) + E(a, b') + £(@, b) — £(@’, b)) < +2V2. (206)

The relations (204), (205), and (206) are precisely the predictions of quantum mechanics for the singlet state (107).
In practice, however, it is often difficult to perform EPR type experiments with a pair of spin-1/2 particles considered
in Fig.5. For this reason the usual preference for preforming the Bell-test experiments is to measure correlations in
a pair of linearly polarized photons instead of in a pair of spin-1/2 particles. But the predictions (204), (205), and
(206) of quantum mechanics do not change for either choice, apart from a factor of 2 in the angular-dependence of
the correlations (cf. Egs. (1) and (33) of Ref. [22]). In this paper, however, we are not concerned about the practical
difficulties in performing the experiments, and therefore the original reformulation of the EPR argument by Bohm
in terms of a pair of spin-1/2 particles, such as the electron-positron pair considered in Fig.5, is sufficient for our
purposes. What is more important to appreciate is the fact that our S7 model predicts precisely the relations (204),
(205), and (206) for the entangled state (107), as can be verified from our predictions (125), (110), (111), and (177).

Thus the crucial difference between the predictions of our S7 model and those of quantum mechanics is not in the
observational content, but in the interpretation of the latter in terms of non-locality. And this interpretation depends
entirely on the argument put forward by Bell [4][13]. This argument, however, is fatally flawed, as we now demonstrate.

B. A Surprising Oversight in the Derivation of the Bell-CHSH Inequalities

From the outset let us stress that Bell’s so-called theorem is by no means a “theorem” in the sense that word is
used by mathematicians but rather a word-statement, which claims that no physical theory which is realistic as well
as local in the strict senses espoused by Einstein [3] and later formulated by Bell? [4] can reproduce all of the statistical
predictions of quantum theory [7]. This word-statement is based on “violations” of certain mathematical inequalities,
which are derived by considering four incompatible EPR-Bohm type experiments, and without using a single concept
from quantum theory. While the bounds thus derived on the inequalities are exceeded by the predictions of quantum
theory and “violated” in actual experiments, their derivation happens to be marred by a serious conceptual oversight.

To appreciate this, consider the standard EPR type spin-1/2 experiment, as proposed by Bohm and later used by Bell
to prove his theorem. Alice is free to choose a detector direction a or a’ and Bob is free to choose a detector direction
b or b’ to detect spins of the fermions they receive from a common source, at a space-like distance from each other.
The objects of interest then are the bounds on the sum of possible averages put together in the manner of CHSH [§],

E(a, b) + E(a, b)) + £(a’, b) — (@, V), (207)
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with each average defined as
&(a, b) = lim [1 3 (a, AF) B(b, Ak)] = <.safk(a) %k(b)>, (208)
"=

where o/ (a, \¥) = #,(a) = £1 and #(b, \¥) = %, (b) = £1 are the respective measurement results of Alice and Bob.
Now, since @ (a) = £1 and Hi(b) = £1, the average of their product is —1 < <4a7k(a) Pr.(b) > < +1. As a result,

we can immediately read off the upper and lower bounds on the string of the four averages considered above in (207):
—4 < ( (@) Zub) ) + (Al@) 2 ) + (@) Zub) ) = (@) BL(b) ) < +4. (209)

This should have been Bell’s final conclusion. However, by continuing, Bell overlooked something that is physically
unjustifiable. He replaced the above sum of four separate averages of real numbers with the following single average:

E(a,b) + E(a, b) + E(@, b) — £@, b) — (Fh(a) Bi(b) + Fh(a) Br(D) + (@) Zu(b) — F(a) Zu(b) ).

(210)
As innocuous as this step may seem mathematically, it is in fact an illegitimate step physically, because what is being
averaged on its RHS are unobservable and unphysical quantities. But it allows us to reduce the sum of four averages to

( h(a) { Zi(b) + Ze(D) } + cA(a) { Zu(b) — Z,(b) } ). (211)

And since %y (b) = £1, if | By (b) + Bi(b')| = 2, then | LBy (b) — Bi(b')| = 0, and vice versa [10]. Consequently, using
. (a) = 1, it is easy to conclude that the absolute value of the above average cannot exceed 2, just as Bell concluded:

—2 < <.52/k(a) %k(b) + %]@(a) e@k(b/) + dk(a') ¢%k(b) — dk(a’) %k(b/)> < +2. (212)

Let us now try to understand why the replacement in (210) above is illegitimate. To begin with, Einstein’s (or even
Bell’s own) notion of local-realism does not, by itself, demand this replacement. Since this notion is captured already
in the very definition? of the functions <7 (a, A\¥), the LHS of (210) satisfies the demand of local-realism perfectly well.
Nor can a possible statistical independence of the four separate averages on the LHS of (210) justify their replacement
with the single average on its RHS, at the expense of what is physically possible in the actual experiments. To be sure,
mathematically there is nothing wrong with a replacement of four separate averages with a single average. Indeed,
every school child knows that the sum of averages is equal to the average of the sum. But this rule of thumb is not valid
in the above case, because (a, b), (a, b’), (a’, b), and (a’, b’) are mutually exclusive pairs of measurement directions,
corresponding to four incompatible experiments. Each pair can be used by Alice and Bob for a given experiment, for
all runs 1 to n, but no two of the four pairs can be used by them simultaneously. This is because Alice and Bob do not
have the ability to make measurements along counterfactually possible pairs of directions such as (a, b) and (a, b’)
simultaneously. Alice, for example, can make measurements along a or a’, but not along a and a’ at the same time.

But this fact is rather devastating for Bell’s argument, because it means that his replacement (210) is illegitimate.
Consider a specific run of the EPR-Bohm type experiment and the corresponding quantity being averaged in (210):

. (a) Br(b) + .(a) Br(b') + F(a') Br(b) — o (a’) Br(b'). (213)

Here the index & = 1 now represents a specific run of the experiment. But since Alice and Bob have only two particles
at their disposal for each run, only one of the four terms of the above sum is physically meaningful. In other words,
the above quantity is physically meaningless, because Alice, for example, cannot align her detector along a and a’ at
the same time. And likewise, Bob cannot align his detector along b and b’ at the same time. What is more, this will
be true for all possible runs of the experiment, or equivalently for all possible pairs of particles. Which implies that all
of the quantities listed below, as they appear in the average (212), are unobservable, and hence physically meaningless:

a(a) B1(b) + o (a) (D) + o1 (') Bi(b) — o1 (') B (D),
s (a) Ba(b) + h(a) Ba(b') + dh(a') Ba(b) — ah(a’) Ba(b'),
a3(a) B3 (b) + i(a) Bs(b') + os(a’) Bs(b) — 5(a') Bs(b'),
dy(a) Ba(b) + i(a) By(b') + y(a’) Bu(b) — u(a') Ba(b'),

Ay(2) B (b) + p(a) Bp(b) + dp(a) Bu(b) — dp(a’) Bu(b').
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But since each of the quantities above is physically meaningless, their average appearing on the RHS of (210), namely
( (@) Br(b) + F(a) Zu(b) + (@) Zu(b) — (@) Bi(b) ), (214)

is also physically meaningless®. That is to say, no physical experiment can ever be performed — even in principle — that
can meaningfully allow to measure or evaluate the above average, since none of the above list of quantities could have
experimentally observable values. Therefore the innocuous looking replacement (210) made by Bell is, in fact, illegal.

On the other hand, it is important to note that each of the averages appearing on the LHS of replacement (210),

E(a,b) = lim lekil o (a, \F) B(b, \F)| = <ssz(a) %k(b)>, (215)
E(a b)) = lim ikznjl o (a, \F) BB, \F)| = <,ka(a) %k(b’)>, (216)
£, b) = lim, iﬂi (&l X) B(b, N | = (h(al) By(b) ). (217)
and E(a,B) = lim 711 i: o (al, \F) B, )| = <sa7k(a’)%k(b')>, (218)

L k=1
is a perfectly well defined and observable physical quantity. Therefore the bounds (209) on their sum are harmless.
These bounds of {—4, +4}, however, have never been violated in any experiment. Indeed, nothing can violate them.

In summary, Bell and his followers derive the upper bound of 2 on the CHSH string of averages by an illegal move.
In the middle of their derivation they unjustifiably replace an observable, and hence physically meaningful quantity,

(@) b)) + ( (@) Br(D) ) + ( (@) Zu(b) ) — (S(@) BV ), (219)
with an experimentally unobservable, and hence physically entirely meaningless quantity (regardless of the method):
( h(2) Bi(b) + i(a) By(b) + (&) Br(b) — (@) Br(b) ). (220)

If they do not make this illegitimate replacement, then the absolute upper bound on the CHSH string of averages is 4,
not 2. And the absolute upper bound of 4 has never been exceeded — and can never exceed — in any experiment [10].

One may suspect that the above conclusion is perhaps an artifact of the discrete version, (208), of the expectation
values £(a, b). Perhaps it can be ameliorated if we considered the CHSH sum (207) in the following continuous form:

/ o (a, \) B(b, X)dp(\) + / of(a, \) B, N)dp(\) + / (&', \) B(b, \) dp()\) — / o (a', \) BB, \)dp(\),
A A A A (221)

3 The possible space-like separated events being averaged in (211) cannot possibly occur in any possible world, classical or quantum. To
appreciate this elementary fact, consider the following homely analogy: Imagine a couple, say Jack and Jill, who decide to separate
while in Kansas City, and travel to the West and East Coasts respectively. Jack decides to travel to Los Angeles, while Jill can’t make
up her mind and might travel to either New York or Miami. So while Jack reaches Los Angeles, Jill might reach either New York or
Miami. Thus there are two possible destinations for the couple. Either Jack reaches Los Angeles and Jill reaches New York, or Jack
reaches Los Angeles and Jill reaches Miami. Now suppose that, upon reaching New York, Jill decides to buy either apple juice or orange
juice. And likewise, upon reaching Miami, Jill decides to buy either apple juice or orange juice. Consequently, there are following four
counterfactually possible events that can realistically occur, at least in our familiar world: (1) While Jack reaches Los Angeles and buys
apple juice, Jill reaches New York and buys apple juice; Or, (2) while Jack reaches Los Angeles and buys apple juice, Jill reaches New
York and buys orange juice; Or, (3) while Jack reaches Los Angeles and buys apple juice, Jill reaches Miami and buys apple juice; Or,
(4) while Jack reaches Los Angeles and buys apple juice, Jill reaches Miami and buys orange juice. So far so good. But what is being
averaged in (211) are impossible events of the following kind: (5) While Jack reaches Los Angeles and buys apple juice, Jill reaches New
York and buys apple juice and Jill reaches Miami and buys orange juice at exactly the same time! Needless to say, no such events can
possibly occur in any possible world, even counterfactually. In particular, Einstein’s conception of local realism by no means demands
such absurd or impossible events in any possible world [3]. It is therefore not at all surprising why the unphysical bounds of +2 on the
CHSH sum of expectation values obtained by averaging over the absurd events like (213) are not respected in the actual experiments [6].
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where A is the space of all hidden variables A and p(\) is the probability measure of A [4][5]. Written in this form, it
is now easy to see that the above CHSH sum of expectation values is both mathematically and physically identical to

/A [;zf/(a, N {B(b, \) + BB, N} + o(a, \){ B(b, \) — B, N }} dp(N) . (222)

But since the above two integral expressions are identical to each other, we can use the second expression without loss
of generality to prove that the criterion of reality used by Bell is unreasonably restrictive compared to that of EPR.

To begin with, expression (222) involves an integration over fictitious quantities® like <7 (a, ) {Z(b, \) £ B(b’, \)}.
These quantities are not parts of the space of all possible measurement outcomes such as o7 (a, \), & (a’, \), B(b, \),
AB(b', \), etc.; because that space — although evidently closed under multiplication — is not closed under addition.
Since each function #(b, A) is by definition either +1 or —1, their sum such as B(b, \) + Z(b’, A\) can only take
values from the set {—2, 0, +2}, and therefore it is not a part of the unit 2-sphere representing the space of all possible
measurement results. Consequently, the quantities o7 (a, ) {Z(b, \) £ B(b’, A\)} appearing in the integrand of (222)
do not themselves exist, despite the fact that &7 (a, A), &7(a’, A), Z(b, \) and B(b’, \) exist, at least counterfactually,
in accordance with the hypothesis of local realism. This is analogous to the fact that the set O := {1,2,3,4,5,6} of all
possible outcomes of a die throw is not closed under addition. For example, the sum 3 4 6 is not a part of the set O.

But there is also a much more serious physical problem with Bell’s version of reality. As noted above, the quantities
o (a, \) {#A(b, \) £ B(b’, \)} are not physically meaningful in any possible physical world, classical or quantum.
That is because #(b, A\) and #(b’, \) can coexist with o/ (a, A) only counterfactually, since b and b’ are mutually
exclusive directions. If #(b, \) coexists with 7 (a, A), then Z(b’, \) cannot coexist with o (a, A), and vice versa.
But in the proof of his theorem Bell assumes that both (b, ) and Z(b’, \) can coexist with &7 (a, ) simultaneously.
That is analogous to being in New York and Miami at exactly the same time3. But no reasonable criterion of reality
can justify such an unphysical demand. The EPR criterion of reality most certainly does not demand any such thing.

In conclusion, since the two integrands of (222) are physically meaningless, the bounds of £2 on (221) are also
physically meaningless [17]. They are mathematical curiosities, without any relevance for the question of local realism.

Corollary: It is not possible to be in two places at once.

It is instructive to consider the converse of the above argument. Consider the following hypothesis3: It is possible — at
least momentarily — to be in two places at once — for example, in New York and Miami — at exactly the same time.

From this hypothesis it follows that in a world in which it is possible to be in two places at once, it would be
possible for Bob to detect a component of spin along two mutually exclusive directions, say b and b’, at exactly the
same time as Alice detects a component of spin along the direction a, or a’. If we denote the measurement functions
of Alice and Bob by 7 (a, \) and Z(b, \), respectively, then we can posit that in such a world it would be possible
for the measurement event like o (a, A) observed by Alice to coexist with both the measurement events #(b, \) and
Z(b’, \) that are otherwise only counterfactually observable by Bob, where A is the initial state of the singlet system.
Therefore, hypothetically, we can represent such a simultaneous event observed by Alice and Bob by a random variable

X(a, b, b, A) == (a, \) {#(b, \) + B(b', \)} = +2, or 0, or —2, (223)

notwithstanding the fact that there are in fact only two localized particles available to Alice and Bob for each run of
their EPR-Bohm type experiment. It is also worth stressing here that in our familiar macroscopic world (after all a and
b are macroscopic directions) such a bizarre spacetime event is never observed, because the measurement directions
a and b freely chosen by Alice and Bob are mutually exclusive macroscopic measurement directions in physical space.

Likewise, nothing prevents Alice and Bob in such a bizarre world to simultaneously observe an event represented by
Y(a', b, b, \) := &(a', \){%B(b, \) — B(b',\)} = +2, or 0, or —2. (224)

And of course nothing prevents Alice and Bob in such a bizarre world to simultaneously observe the sum of the above
two events as a single event (i.e., four simultaneous clicks of their four detectors), represented by the random variable

Z(a,a’,b,b';\) == X(a,b,b';\) + Y(a', b, b, \) = +2 or —2. (225)

Consider now a large number of such initial states A and corresponding simultaneous events like Z(a, a’, b, b’, \).
We can then calculate the expected value of such an event occurring in this bizarre world, by means of the integral

/A Z@a a’, b, b, \) dp(\) = /

A [ﬂ(a, N {B(b, \) + BB, N} + (@, \){ B, \) — Bb, N }} dp(N)

(226)
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where A is the space of all hidden variables A and p(\) is the corresponding normalized probability measure of A € A.

Note that we are assuming nothing about the hidden variables A. They can be as non-local as we do not like. They
can be functions of & and 4, as well as of a and b. In which case we would be dealing with a highly non-local model:

A>X=f(a,a,b, b, o B). (227)

Next we ask: What are the upper and lower bounds on the expected value (226)? The answer is given by (225).
Since Z(a, a’, b, b’, A) can only take two values, —2 and +2, the bounds on its integration over p(\) are necessarily

-2 < / [d(a, A) B(b, \) + (a, \) B(b', \) + (a’, \) B(b, \) — (a’, \) B(b, )\)} dp(\) <+2. (228)
A
But using the addition property of anti-derivatives this expected value can be written as a sum of four expected values,

/ (a, \) B(b, \)dp(A) + / o (a, \) B, N dp(N) + / (@, \) B(b, \)dp(\) — / (@, N) B, N dp(\),
A A A A

(229)
despite our allowing of A (a, a’, b, b’ &, B) to be non-local. As a result (228) can be written in a familiar form as

—-2< &(a,b) + &(a, b)) + £(@, b) — E(@', b)) < +2. (230)

Note that the only hypothesis used to derive these stringent bounds of + 2 is the one stated above: It is possible — at
least momentarily — to be in two places at once. Locality was never assumed; nor was the realism of EPR compromised.

Now we perform the experiments and find that our results exceed the bounds of & 2 we found in (230) theoretically:

—2v2 < &(a, b) + E(a, b') + £(a, b) — £(a’, b') < +2V2. (231)

Consequently, we conclude that the hypothesis we started out with must be false: We do not actually live in a bizarre
world in which it is possible — even momentarily — to be in New York and Miami at exactly the same time. This is what
Bell proved. He proved that we do not live in such a bizarre world. But EPR never demanded, nor hoped that we do.

To summarize our Corollary, Bell inequalities are usually derived by assuming locality and realism, and therefore
violations of the Bell-CHSH inequality are usually taken to imply violations of either locality or realism, or both. But
we have derived the Bell-CHSH inequality above by assuming only that Bob can measure along the directions b and b’
simultaneously while Alice measures along either a or a’, and likewise Alice can measure along the directions a and a’
simultaneously while Bob measures along either b or b’, without assuming locality. The violations of the Bell-CHSH
inequality therefore simply confirm the impossibility of measuring along b and b’ (or along a and a’) simultaneously.

C. GHZ Variant of Bell’s Theorem without Involving Inequalities

Apart from Bell’s original argument discussed above there is also an argument by Greenberger, Horne, and Zeilinger
(GHZ) purporting to prove the impossibility of a local-realistic understanding of quantum correlations. A remarkable
feature of their argument is that, unlike Bell’s argument, it does not involve either inequalities or statistics [5]. Instead,
they consider the quantum mechanical expectation value (186) for a restricted case in which the measurement settings
a, b, ¢, and d are confined to the x-y plane. In that case the expectation value (186) for the state (184) simplifies to

ESMZ(a b, c,d)| = —cos(¢a + b — P — ba ). (232)

Q.M. Xy

Then, for ¢4 + ¢p — ¢ — ¢a = 0, the above expectation value reduces to —1 for all runs, and thus even for a single
run of the experiment. Similarly, for ¢, + ¢p — ¢c — ¢pa = 7 the above expectation value reduces to +1 for all runs,
and thus even for a single run of the experiment. This is quite similar to the condition 531;43 (a, b) = —1 or +1 for the

2-particle state (107) for the specific settings a = b and a = —b, respectively, for all runs, and thus even for a single
run [5]. These are the conditions of perfect anti-correlations and perfect correlations predicted by quantum mechanics.
The claim of Greenberger, Horne, and Zeilinger is that the corresponding conditions &/ €% = —1 and 4 BE€ Y = +1
for respective settings are impossible to reproduce for a single run of the experiment within any locally causal theory.
In what follows we disprove this claim, first analytically, and then by a complete event-by-event numerical simulation.
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FIG. 6: Plot of an event-by-event numerical simulation of the local-realistic EPR-Bohm correlations predicted by the S7 model.
The setting vectors a and b in this simulation were confined to the x-y plane as is usually done in the Bell-test experiments [6].

1. Analytical Disproof of the GHZ Argument

What we wish to prove is & B¢ 2 = —1 for a, b, ¢, and d confined to the x-y plane with ¢4 + ¢p — ¢c — Ppa =0
(cf. Egs.(8) and (11a) of the GHSZ paper [5]). Since the case o BE D = +1 for ¢pa + ¢b — P — Ppa = 7 follows
similarly, it will suffice to prove only the &/ 8¢ 2 = —1 case. We start with our equations (188) to (191), which define
the functions & = +/-1, & = +/-1, ¢ = +/-1, and 2 = +/-1. Now, as derived in subection III E, the expectation
value (203) follows from the very construction of these functions as a geometrical identity within our model. Therefore

we can use this geometrical identity to demonstrate that o/ 8¢ % = —1 for the chosen settings, for which it reduces to
1 m
GHZ . Z k k 2 E
gLAR. (a7 b7 C, d)’x-y :mhinoo Ek—l %(a) A )@(b, A )cf(c7 A ) @(d, A ) = - COS((ba + ¢b - ¢c - ¢d)

(233)
In fact, for the chosen settings this identity reduces simply to E1%(a, b, ¢, d) = (FBEP) = —1 (see Eq. (10a) of
GHSZ for details). This tells us that the average of the number &/ B%€ 7 is a constant, and it is equal to —1. But that
is mathematically possible only if .o/ 8¢ 2 = —1 for all runs, for the chosen settings. But if &/ 8¢ % = —1 for all runs,
then &7 B¢ 2 = —1 holds also for any given run. Therefore o7 B¢ 2 = —1 for any run, for the chosen settings. QED.

V. NUMERICAL SIMULATIONS OF THE EPR-BOHM AND GHZ CORRELATIONS

While our analytical result (203) for the general 4-particle GHZ correlations stands on its own, we have nevertheless
verified the correlations (233) in an event-by-event numerical simulation of our S7 model using the settings prescribed
by GHSZ discussed above, but without the restrictions they imposed on the azimuthal ¢n-angles [5]. The code for this
simulation is reproduced below in the subsection V B, and the graph generated by it is depicted in Fig. 7. It is evident
from this graph that the predictions of the S” model match exactly with the predictions of quantum mechanics (i.e.,
with the negative cosine curve), despite the S” model being manifestly local-realistic. In particular, it is evident from
the graph that the product &/ 2% 2 takes both positive and negative values for the settings chosen by GHSZ, contrary
to their impossibility claim [5]. What is more, the graph has been generated by 200,000 runs of the simulated 4-particle
experiment. Thus statistically our simulation is far more robust compared to the mere 250 or so events observed in the
so-called loophole-free experiments [6]. Since some familiarity with the languages of Geometric Algebra [11] and the
GAViewer program [23] is a prerequisite for understanding our simulation, we first present a simpler simulation of the
2-particle singlet correlations (125), which, as we discussed in previous sections, are also predicted by our S model:

A. Event-by-Event Numerical Simulation of the 2-Particle EPR-Bohm Correlations

The following code (as well as the one in subsection V B) was written in collaboration with Carl F. Diether I1I.

//Adaptation of A-J. Wonnink’s code in GAViewer for the S°7 model of the EPRB correlations [24]:
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function getRandomLambda()

{
if( rand()>0.5) {return 1;} else {return -1;}
}
function getRandomUnitVector() //http://mathworld.wolfram.com/SpherePointPicking.html
{
v=randGaussStd()*el + randGaussStd()*e2 + 0.00%e3; //vectors are confined to the x-y plane
// as done in the Bell-test experiments
return normalize(v);
}
batch test()
{
set_window_title("Test of Local-Realistic S°7 Model for the 2-particle EPRB correlations");
default_model (p3ga) ; //choice of the model in GAViewer
m=200000; //number of iterations, or trials
I=el”e2"e3; //the fundamental trivector of GA
s=0;
t=0;
u=0;
for (nn=0;nn<m;nn=nn+1) //performs the experiment m times
{
a_r=getRandomUnitVector()/(sqrt(2)); //a vector a_r, as defined in eq.(71)
a_d=normalize(a_r.(elxe2))/(sqrt(2)); //select vector a_d orthogonal to a_r
D_a=((I a_r) + (a_d €0)); //as defined in eqn.(75) of the paper
b_r=getRandomUnitVector () /(sqrt(2));
b_d=normalize(b_r. (el*e2))/(sqrt(2)); //select vector b_d orthogonal to b_r
D_b=((I b_r) + (b_d e0));
lambda=getRandomLambda () ; //lambda is a fair coin, giving a +1 or -1 choice
A=(-D_a).(lambda*D_a) ; //eq.(110); manifestly local measurement function
B=(lambda*D_b) . (D_b); //eq.(111); manifestly local measurement function
NA=A/-D_a;
NB=B/D_b; //implements the twist (115) in the Hopf bundle of S73
q=0;
if (lambda==1) {q=(NA NB);} else {gq=(NB NA);}//calculates correlations bet’n A and B
s=s+q;
print(corrs=scalar(q), "f"); //outputs the correlations shown in Fig. 6
phi_a=atan2(scalar(D_a/(e3"el)), scalar(D_a/(e2"e3)))*180/pi; //angle bet’n x and a
phi_b=atan2(scalar(D_b/(e3"el)), scalar(D_b/(e27e3)))*180/pi; //angle bet’n x and b
angle=abs(phi_b - phi_a);
print (angle) ; //outputs azimuthal angles between a and b
t=t+A;
u=u+B;
}
mean=s/m;
print(mean, "f"); //shows the vanishing of the non-scalar part
aveA=t/m;
print(aveA, "f"); //verifies that individual average < A > =0
aveB=u/m;
print(aveB, "f"); //verifies that individual average < B > = 0
prompt () ;
}

The graph generated by this simulation is shown in Fig. 6. It is evident from it that the predictions of S7 model match
exactly with those of quantum mechanics (i.e., with the negative cosine curve), despite the model being local-realistic.

B. Event-by-Event Numerical Simulation of the 4-Particle GHZ Correlations

It is now straightforward to generalize the above code to simulate the 4-particle GHZ correlations (233) as follows:

//Adaptation of A-J. Wonnink’s code in GAViewer for the S°7 model of the GHSZ correlations [24]:

function getRandomLambda()
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FIG. 7: Plot of an event-by-event numerical simulation of the 4-particle GHZ correlations predicted local-realistically by the
S7 model. The settings in this simulation were confined to the x-y plane, with the azimuthal angle ¢abed = ¢Pa + b — P — Pa-

{
if( rand()>0.5) {return 1;} else {return -1;}
}
function getRandomUnitVector() //http://mathworld.wolfram.com/SpherePointPicking.html
{
v=randGaussStd()*el + randGaussStd()*e2 + 0.00%e3; //vectors are restricted to x-y plane
// as in eq.(9) of the GHSZ paper [5]
return normalize(v);
}
batch test()
{
set_window_title("Test of Local-Realistic S°7 Model for the 4-particle GHZ correlations");
default_model (p3ga) ; //choice of the model in GAViewer
m=200000; //number of iterations, or trials
I=el”e2"e3; //the fundamental trivector of GA
s=0;
t=0;
u=0;
x=0;
y=0;
for (nn=0;nn<m;nn=nn+1) //performs the experiment m times
{
a_r=getRandomUnitVector()/(sqrt(2)); //a random vector a_r, as defined in eqn. (71)
a_d=normalize(a_r.(elxe2))/(sqrt(2));//makes a_d orthogonal to a_r in the x-y plane
D_a=((I a_r) + (a_d €0)); //as defined in the equation (75) of the paper
b_r=getRandomUnitVector () /(sqrt(2));
b_d=normalize(b_r. (el*e2))/(sqrt(2));//makes b_d orthogonal to b_r in the x-y plane
D_b=((I b_r) + (b_d €0)); //as defined in the equation (75) of the paper
c_r=getRandomUnitVector()/(sqrt(2));
c_d=normalize(c_r. (el*e2))/(sqrt(2));//makes c_d orthogonal to c_r in the x-y plane
D_c=((I c_r) + (c_d e0)); //as defined in the equation (75) of the paper
d_r=getRandomUnitVector()/(sqrt(2));
d_d=normalize(d_r.(el*e2))/(sqrt(2));//makes d_d orthogonal to d_r in the x-y plane
D_d=((I d_r) + (d_d €0)); //as defined in the equation (75) of the paper
lambda=getRandomLambda () ; //lambda is a fair coin, giving a +1 or -1 choice
A=(-D_a) . (lambdax*D_a) ; //eq.(188); manifestly local measurement function
B=(lambda*D_b) . (D_b); //eq.(189); manifestly local measurement function
NA=A/-D_a;
NB=B/D_b; //implements the twist (193) in the Hopf bundle of S73
C=(-D_c).(lambda*D_c); //eq.(190); manifestly local measurement function
D=(lambda*D_d) . (D_d); //eq.(191); manifestly local measurement function
NC=C/-D_c;
ND=D/D_d; //implements the twist (194) in the Hopf bundle of S73
9=0;

if (lambda==1) {q=(NA NB NC ND);} else {q=(ND NC NB NA);} //calculates correlations
s=s+q;
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print(corrs=scalar(q), "f"); //outputs the correlations among A, B, C, and D
phi_a=atan2(scalar(-D_a/(e3"el)), scalar(D_a/(e27e3)))*180/pi;//angle bet’n x and a
phi_b=atan2(scalar(D_b/(e3"el)), scalar(D_b/(e27e3)))*180/pi; //angle bet’n x and b
phi_c=atan2(scalar(D_c/(e3"el)), scalar(D_c/(e27e3)))*180/pi; //angle bet’n x and c
phi_d=atan2(scalar(D_d/(e3"el)), scalar(-D_d/(e27e3)))*180/pi;//angle bet’n x and d
angle=abs(phi_a + phi_b - phi_c - phi_d);//GHZ combination of four azimuthal angles
print(angle) ; //outputs the combination of four azimuthal angles
t=t+A;
u=u+B;
x=x+C;
y=y+D;

}

mean=s/m;

print(mean, "f"); //shows the vanishing of the non-scalar part

aveA=t/m;

print(aveA, "f"); //verifies that individual average < A > = 0

aveB=u/m;

print(aveB, "f"); //verifies that individual average < B >

aveC=x/m;

print(aveC, "f"); //verifies that individual average < C >

aveD=y/m;

print(aveD, "f"); //verifies that individual average < D >

prompt () ;

0

I
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I
o

In addition to the above two-dimensional simulations, we have also built complete three-dimensional simulations for
both the 2-particle EPR-Bohm state and the 4-particle Greenberger-Horne-Zeilinger state using arbitrary settings [25].

VI. CONCLUDING REMARKS

Any experiment in physics can be reduced to a series of elementary questions with possible “yes” or “no” answers.
These answers in turn may be observed as “clicks” of event-detectors, as is usually done in the EPR-Bohm type
correlation experiments [18]. When we compare such answers — possibly recorded by remotely located observers — we
find that they are correlated in a remarkably disciplined manner, with the strength of the correlations exceeding the
expectations based on Bell’s theorem [4][5][7]. The natural question then is: Why are these answers correlated in such a
disciplined manner when in quantum mechanics there appears to be no predetermined cause dictating the correlations?
In this paper we have shown that the discipline and strength exhibited in the correlation experiments are natural
consequences of the fact that the three-dimensional physical space in which all experiments are conducted respects
the symmetries of a Clifford-algebraic 7-sphere, which arises from an associative interplay of the graded Euclidean
primitives, such as points, lines, planes and volumes. These primitives provide the basis for the conformal geometry
of the physical space, namely that of a quaternionic 3-sphere, S2, embedded in an eight-dimensional Clifford-algebraic
manifold, K*. They allow us to understand the origins and strengths of all quantum correlations locally, as aspects of
the geometry of the compactified physical space S2, with S7 C K* being its algebraic representation space. Thus every
quantum correlation can be understood as a correlation among a set of points of this S7. We have demonstrated this by
proving a comprehensive theorem about the geometric origins of the correlations predicted by arbitrary quantum states:

1 m

& r(abcd, ...) = lim l > d(a, M) B(b, \) €(c, \F) 2(d, AF) .. ] = —cosbyy(a, b, c,d,...).

m
k=1

(234)

We have also proved within our framework that the strengths of these correlations are bounded by Tsirel’son’s bounds:

16 a5 Y) + & (YY) + & (X, y) — & (X, ¥)| <21 - (xxxX) (¥ xy) < 2V2. (235)

We have then explicitly reproduced the strong correlations predicted by the EPR-Bohm state within our framework,

m — 00 m — o0

1 m 1 m
EPR — k N b with EFPR(m) = i ky|
£ "(a, b) im [ kEZI o (a, \*) Bb, A )] cosfap with &7 "(n) im l 321 A (A )] 0,

(236)
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as well as explicitly reproduced the strong correlations predicted by the 4-particle Greenberger-Horne-Zeilinger state:

ECT(a, b, ¢, d) = lim |~ Z o(a, \¥) B(b, \¥) €(c, \') 2(d, )\’“)] (together with <</V(n, /\’“)> - 0)
M
= o8, cosby cosb. cosfy — sinb, sinby, sinf. sinfy cos (Pa + db — e — Pa) - (237)

We have also presented event-by-event simulations of the correlations (236) and (237) predicted within our framework.
The comprehensive theorem we have proved dictates that — at least in principle — it is always possible to locally
reproduce the strong correlations predicted by any arbitrary quantum state. The raison d’étre for the strength of the
correlations turns out to be the non-trivial twist in the Hopf bundle of S [9][10], or in its algebraic representation space
S7. Given the fact that we started out our analysis with the most primitive elements of the physical space in the spirit
of Euclid’s elements for geometry, our demonstration suggests that the quantum correlations observed in Nature are
best viewed as consequences of spacetime, rather than spacetime as an emergent property of quantum entanglement.
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