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In the context of superintelligent AI systems, the term “oracle” has two meanings. One
refers to modular systems queried for domain-specific tasks. Another usage, referring
to a class of systems which may be useful for addressing the value alignment and AI
control problems, is a superintelligent AI system that only answers questions. The
aim of this manuscript is to survey contemporary research problems related to oracles
which align with long-term research goals of AI safety. We examine existing question
answering systems and argue that their high degree of architectural heterogeneity makes
them poor candidates for rigorous analysis as oracles. On the other hand, we identify
computer algebra systems (CASs) as being primitive examples of domain-specific
oracles for mathematics and argue that efforts to integrate computer algebra systems
with theorem provers, systems which have largely been developed independent of one
another, provide a concrete set of problems related to the notion of provable safety
that has emerged in the AI safety community. We review approaches to interfacing
CASs with theorem provers, describe well-defined architectural deficiencies that have
been identified with CASs, and suggest possible lines of research and practical software
projects for scientists interested in AI safety.

1 Introduction

Recently, significant public attention has been
drawn to the consequences of achieving human-
level artificial intelligence. While there have
been small communities analyzing the long-term
impact of AI and related technologies for decades,
these forecasts were made before the many recent
breakthroughs that have dramatically acceler-
ated the pace of research in areas as diverse
as robotics, computer vision, and autonomous
vehicles, to name just a few [1–3].

Most researchers and industrialists view
advances in artificial intelligence as having
the potential to be overwhelmingly beneficial
to humanity. Medicine, transportation, and

fundamental scientific research are just some of
the areas that are actively being transformed
by advances in artificial intelligence. On the
other hand, issues of privacy and surveillance,
access and inequality, or economics and policy
are also of utmost importance and are distinct
from the specific technical challenges posed by
most cutting-edge research problems [4, 5].

In the context of AI forecasting, one set of
issues stands apart, namely, the consequences
of artificial intelligence whose capacities vastly
exceed that of human beings. Some researchers
have argued that such a “superintelligence”
poses distinct problems from the more modest
AI systems described above. In particular, the
emerging discipline of AI safety has focused on
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issues related to the potential consequences of
mis-specifying goal structures for AI systems
which have significant capacity to exert influence
on the world. From this vantage point, the
fundamental concern is that deviations from
“human-compatible values” in a superintelligent
agent could have significantly detrimental conse-
quences [1].

One strategy that has been advocated for
addressing safety concerns related to superin-
telligence is Oracle AI, that is, an AI system
that only answers questions. In other words,
an Oracle AI does not directly influence the
world in any capacity except via the user of the
system. Because an Oracle AI cannot directly
take physical action except by answering ques-
tions posed by the system’s operator, some have
argued that it may provide a way to bypass the
immediate need for solving the “value alignment
problem” and would itself be a powerful resource
in enabling the safe design of autonomous,
deliberative superintelligent agents [1, 6–9].

A weaker notion of the term oracle, what we
call a domain-specific oracle, refers to a mod-
ular component of a larger AI system that is
queried for domain-specific tasks. In this article,
we view computer algebra systems as primitive
domain-specific oracles for mathematical compu-
tation which are likely to become quite powerful
on the time horizons on which many expect su-
perintelligent AI systems to be developed [10,11].
Under the assumption that math oracles prove to
be useful in the long-term development of AI sys-
tems, addressing well-defined architectural prob-
lems with CASs and their integration with inter-
active theorem provers provides a concrete set of
research problems that align with long-term is-
sues in AI safety. In addition, such systems may
also be useful in proving the functional correct-
ness of other aspects of an AI architecture. In
Section 2, we briefly discuss the unique challenges
in allocating resources for AI safety research. In
Section 3, we briefly summarize the motivation
for developing oracles in the context of AI safety
and give an overview of safety risks and control
strategies which have been identified for superin-
telligent oracle AIs. In Section 4 we analyze con-
temporary question answering systems and argue

that in contrast to computer algebra systems, cur-
rent consumer-oriented, NLP-based systems are
poor candidates for rigorous analysis as oracles.
In Section 5, we review the differences between
theorem provers and computer algebra systems,
efforts at integrating the two, and known archi-
tectural problems with CASs. We close with a list
of additional research projects related to mathe-
matical computation which may be of interest to
scientists conducting research in AI safety.

2 Metascience of AI Safety
Research

From a resource allocation standpoint, AI safety
poses a unique set of challenges. Few areas of
academic research operate on such long and
potentially uncertain time horizons. This is not
to say that academia does not engage in long-
term research. Research in quantum gravity, for
example, is approaching nearly a century’s worth
of effort in theoretical physics [12]. However, the
key difference between open-ended, fundamental
research in the sciences or humanities and AI
safety is the possibility of negative consequences,
indeed significant ones, of key technological
breakthroughs taking place without correspond-
ing advances in frameworks for safety [1, 13] .

These issues have been controversial, largely
due to disagreement over the time-horizons for
achieving human-level AI and the subsequent
consequences [10, 11]. Specifically, the notion of
an “intelligence explosion,” whereby the intelli-
gence of software systems dramatically increases
due their capacity to model and re-write their
own source code, has yet to receive adequate
scientific scrutiny and analysis [14].

We affirm the importance of AI safety research
and also agree with those who have cautioned
against proceeding down speculative lines of
thinking that lack precision. Our perspective
in this article is that it is possible to fruitfully
discuss long-term issues related to AI safety while
maintaining a connection to practical research
problems. To some extent, our goal is similar
in spirit to the widely discussed manuscript
“Concrete Problems in AI Safety” [15]. However,
we aim to be a bit more bold. While the authors
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of “Concrete Problems” state at the outset that
their analysis will set aside questions related to
superintelligence, our goal is to explicitly tackle
superintelligence related safety concerns. We
believe that there are areas of contemporary re-
search that overlap with novel ideas and concepts
that have arisen among researchers who have
purely focused on analyzing the consequences of
AI systems whose capacities vastly exceed those
of human beings.

To be clear, we do not claim that the strategy
of searching for pre-existing research objectives
that align with the aims of superintelligence
theory is sufficient to cover the full spectrum of
issues identified by AI safety researchers. There
is no doubt that the prospect of superintelligence
raises entirely new issues that have no context
in contemporary research. However, considering
how young the field is, we believe that the per-
spective adopted in this article is a down-to-earth
and moderate stance to take while the field is
in a critical growth phase and a new culture is
being created.

This article focuses on one area of the AI safety
landscape, Oracle AI. We identify a set of concrete
software projects that relate to more abstract,
conceptual ideas from AI safety, to bridge the gap
between practical contemporary challenges and
longer term concerns which are of an uncertain
time horizon. In addition to providing concrete
problems for researchers and engineers to tackle,
we hope this discussion will be a useful introduc-
tion to the concept of Oracle AI for newcomers to
the subject. We state at the outset that within
the context of Oracle AI, our analysis is limited
in scope to systems which perform mathemati-
cal computation, and not to oracles in general.
Nonetheless, considering how little effort has been
directed at the superintelligence control problem,
we are confident that there is low-hanging fruit
in addressing these more general issues which are
awaiting discovery.

3 Brief Overview of Oracle AI

As described above, an Oracle AI is a system
which only answers questions. Although the term
has traditionally been used to denote fully general

AI systems, we can also imagine oracles whose
capabilities are more limited. The latter systems
are what we refer to as domain-specific oracles.
AI safety researchers have argued that superintel-
ligent oracles have the potential to help address
safety concerns of autonomous, deliberative su-
perintelligent AI systems, as an Oracle AI’s only
ability to influence the world is through the user
of the system. Consequently, an Oracle AI itself
may be in a position to assist researchers in solv-
ing difficult technical and conceptual problems re-
lated to the design of independent, deliberative
agents. Yet superintelligent oracle AIs pose their
own distinct set of safety concerns. The problems
identified in [6], for example, presume a super-
intelligent AI system, which while limited in its
ability to interact with the world, may nonethe-
less have the potential to negatively impact the
world by manipulating the user of the system. As
Armstrong, Bostrom, and Sandberg write:

We are all vulnerable to the OAI’s social en-

gineering. An advanced OAI can literally

offer us the world. Genuine altruism is no

defence against this; it can offer a world free

of poverty, hunger, war, disease or death, as

well as all personal trinkets we could want.

It could guess the weaknesses of each indi-

vidual, and find the right arguments to con-

vince us that granting it power or liberty

is the moral and profitable thing to do. It

will be able to play on rivalries, institutional

weaknesses and ethical dilemmas with more

virtuosity than any human could. [6]

Given the potential dangers of human manip-
ulation by an OAI, researchers have searched for
control strategies to mitigate such risks. A few
examples of control methods that have been pro-
posed are:

• Physical security- physically containing
the OAI system

• Limiting or eliminating external ma-
nipulators- like the previous security mea-
sure, precluding the OAI from physically ma-
nipulating the world in any direct manner

• Epistemic capability control- the OAIs
output could be restricted even further be-
yond question answering, for example, re-
stricting it to answer “yes / no ” questions
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• Virtual worlds- the OAI could be run in
a simulated world so that even if the sys-
tem’s capabilities were expanded, its behav-
ior could be observed and modeled.

• Resetting the OAI after each question-
this would prevent the OAI from engaging in
long-term social engineering by manipulating
the answers to the users’ questions

Although the capacities of domain-specific or-
acles are more limited, they can nonetheless pose
safety risks. Architectural deficiencies in such
oracles might be exploited by a larger AI system
to manipulate the human user. It could give
answers which are difficult to verify and which
allow the OAI to execute complex and intricate
plans unbeknownst to the user. Therefore, while
flaws in domain-specific oracles are not inherently
risky if used solely in their domain of applicabil-
ity, they may very well be dangerous as part of
a larger system with more general capabilities.
Though not a “control strategy” in the narrowest
sense, creating “robust” domain-specific oracles
is an important objective in designing safe
OAIs. Furthermore, ensuring the robustness of
domain-specific subsystems might mitigate the
need for stronger control strategies, as the OAI
would have fewer weaknesses to exploit.

It should go without saying that the arguments
presented above are highly schematic and do not
dependent on specific technologies. To our knowl-
edge, there is very limited work on translating
analyses of superintelligent oracle AIs into the
concrete language of modern artificial intelligence
[8, 9, 16]. Our goal in this manuscript is in this
spirit, that is, to anchor schematic, philosophical
arguments in practical, contemporary research.
To do so, we will narrow our focus to the mathe-
matical domain. In the remainder of the article,
we will use the term oracle in the more limited
sense of a domain-specific subsystem, and in par-
ticular, oracles for performing mathematical com-
putations. We hope that the analysis presented
here will be of intrinsic value in developing robust
math oracles, as well as provide some intuition
and context for identifying concrete problems rel-
evant to developing safe, superintelligent oracle
AI systems.

4 Are there contemporary
systems which qualify as
oracles?

The obvious class of contemporary systems which
would seem to qualify as oracles are question
answering systems (QASs). As we stated above, a
basic criterion characterizing oracles is that their
fundamental mode of interaction is answering
questions posed by a user, or for domain-specific
queries as part of a larger AI system.

Contemporary QASs are largely aimed at using
natural language processing techniques to answer
questions pertaining to useful facts about the
world such as places, movies, historical figures,
and so on. An important point to make about
QASs is the highly variable nature of the under-
lying technology. For instance, IBM’s original
Watson system which competed in Jeopardy, was
developed prior to the recent advances in deep
learning which have fundamentally transformed
areas ranging from computer vision, to speech
recognition, to natural language processing [17].
In this particular task, the system was nonethe-
less able to perform at a level beyond that of
the most accomplished human participants. The
introduction of “info panes” into popular search
engines, on the other hand, have been based
on more recent machine learning technology,
and indeed, these advances are also what power
the latest iterations of the Watson system [18].
On the other end of the spectrum is Wolfram |
Alpha, which is also a question answering system,
but which is architecturally centered around a
large, curated repository of structured data,
rather than datasets of unstructured natural
language [19].

While these systems are currently useful for
humans in navigating the world, planning social
outings, and arriving at quick and useful answers
to ordinary questions, it is not clear that they will
remain useful in quite the same capacity many
years from now, or as standalone components
of superintelligent AI systems. Although the
underlying techniques of deep learning or NLP
are of fundamental interest in their own right,
the fact that these systems are QASs at all seems
to be more of an artifact of their utility for
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consumers.

Another important observation about contem-
porary QASs is that much of their underlying
NLP-based architecture can be replaced by tak-
ing advantage of structured data, as the exam-
ple of Wolfram — Alpha demonstrates. For the
other NLP or machine learning based systems,
the underlying technology can be used as part of
larger, semi-automated pipelines to turn unstruc-
tured data from textual sources into structured
data. Once again, this fact simply underscores
that contemporary QASs are not particularly ap-
pealing model systems to analyze from the Oracle
AI safety perspective.1

4.1 Computer Algebra and
Domain-Specific Oracles for
Mathematical Computation

The question answering systems described above
all rely on natural language processing to varying
degrees. In addition, their domain of applica-
bility has tended towards “ordinary” day-to-day
knowledge useful to a wide array of consumers.
Another type of question answering system is
a computer algebra system (CAS). Computer
algebra has traditionally referred to systems for
computing specific results to specific mathemati-
cal equations, for example, computing derivatives
and integrals, group theoretic quantities, etc. In
a sense, we can think of computer algebra as a

1We emphasize that our argument that contemporary
QASs are not good candidates for analysis as Oracle AIs
is not an argument against the traditional formulation of
Oracle AI as a tool for AI safety. We fully expect signif-
icant breakthroughs to be made in advancing the theory
and practice of oracle-based techniques for AI safety and
we hope that this manuscript will provide some motivation
to pursue such research. Rather, our point is that when
viewing contemporary systems from the lens of superin-
telligence, there seems little reason to believe that current
NLP-based QASs will remain sufficiently architecturally
stable to be used as standalone components in AI systems
many years from now. On the other hand, there are cer-
tainly important present-day problems to examine when
evaluating the broader impact of QASs, such as bias in
NLP systems, overgeneralization, and privacy, to name just
a few. Some of these issues overlap with the set of prob-
lems identified in [15] as examples of concrete problems in
AI safety. In addition, we are beginning to see conferences
devoted to contemporary ethical issues raised by machine
learning. See, for example, the workshop Ethics in Natural
Language Processing.

set of algorithms for performing what an applied
mathematician or theoretical physicist might
work out on paper and pencil. Indeed, some of
the early work in computer algebra came from
quantum field theory—one of the first computer
algebra systems was Veltman’s Schoonschip for
performing field theoretic computations that led
to the theory of electroweak unification [20].

As computer algebra systems have grown in
popularity, their functionality has expanded
substantially to cover a wide range of standard
computations in mathematics and theoretical
physics, including differentiation, integration,
matrix operations, manipulation of symbolic
expressions, symbolic substitution, algebraic
equation solving, limit computation, and many
others. Computer algebra systems typically run
in a read, evaluate, print loop (repl), and
in the research and education context, their pop-
ularity has also grown as a result of the notebook
model pioneered by the Mathematica system,
allowing for computations in CASs to closely
mimic the sequential, paper and pencil work of
mathematicians and theoretical physicists.

In assessing the long-term utility of CASs, it
is important to note that there is little reason to
believe that computer algebra will be subsumed
by other branches of AI research such as machine
learning. Indeed, recent research has demon-
strated applications of machine learning to both
computer algebra and theorem proving (which we
discuss in more detail below), via algorithm selec-
tion in the former case [21] and proof assistance
in the latter [22, 23]. While certainly not as vis-
ible as machine learning, computer algebra and
theorem proving are very much active and deep
areas of research which are also likely to profit
from advances in other fields of artificial intelli-
gence, as opposed to being replaced by them [24].
On the time horizons on which we are likely to
see human-level artificial intelligence and beyond,
we can expect that these systems will become
quite powerful, and possess capabilities that may
be useful in the construction of more general AI
systems. Therefore, it is worth examining such
systems from the perspective of AI safety.

https://www.aclweb.org/portal/content/first-workshop-ethics-natural-language-processing
https://www.aclweb.org/portal/content/first-workshop-ethics-natural-language-processing
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4.2 Briefly Clarifying Nomenclature

Before proceeding, we want to explicitly describe
issues relating to nomenclature that have arisen
in the discussion thus far, and state our choices
for terminology. Given that the phrase “Oracle
AI” has become common usage in the AI safety
community, we will continue to use this phrase,
with the first word capitalized, as well as the
acronym OAI. Where clarification is needed, we
may also use the full phrase “superintelligent
oracle AI,” without capitalization.

For more modest use cases of the word oracle,
we will either refer to “domain-specific oracles,”
or state the domain of knowledge where the or-
acle is applicable. We can, at the very least in
the abstract, consider extending this terminology
to other domains such as “physics oracles,” “cell
biology oracles,” or “ethics oracles” and so on.
Therefore, the remainder of the article will be
concerned with safety and robustness issues in the
design of “math oracles.”

5 Robust Computer Algebra
and Integrated Theorem
Proving

Today we should consider as a standard fea-

ture much closer interaction between proof

assistance and computer algebra software.

Several areas can benefit from this, includ-

ing specification of interfaces among compo-

nents, certification of results and domains

of applicability, justification of optimizations

and, in the other direction, use of efficient

algebra in proofs.

- Stephen Watt in On the future

of computer algebra systems at the

threshold of 2010

As we described above, computer algebra
systems can be thought of as question answering
systems for a subset of mathematics. A related
set of systems are interactive proof assistants
or interactive theorem provers (ITPs). While
ITPs are also systems for computer-assisted
mathematics, it is for a different mathematical
context, for computations in which one wishes to
construct a proof of a general kind of statement.

In other words, rather than computing specific
answers to specific questions, ITPs are used to
show that candidate mathematical structures (or
software systems) possess certain properties.

In a sense, the distinction between theorem
proving and computer algebra should be viewed
as a historical anomaly. From the perspective
of philosophical and logical efforts in the early
20th century that led to the “mechanization of
mathematics” the distinction between computing
the nth Laguerre polynomial and constructing
a proof by induction might have been viewed
as rather artificial, although with the benefit of
hindsight we can see that the two types of tasks
are quite different in practice [25].

The role of ITPs in the research world is very
different from that of CASs. Whereas CASs allow
researchers to perform difficult computations
that would be impossible with paper and pencil,
constructing proofs using ITPs is often more
difficult than even the most rigorous methods of
pure mathematics. In broad terms, the overhead
of using ITPs to formalize theorems arises from
the fact that proofs in these systems must
proceed strictly from a set of formalized axioms
so that the system can verify each computation.
Consequently, ITPs (and related systems, such as
automatic theorem provers) are largely used for
verifying properties of mission-critical software
systems which require a high-degree of assurance,
or for hardware verification, where mistakes can
lead to costly recalls [26–30].

As the quotation above suggests, many
academic researchers view the integration of
interactive proof assistants and computer algebra
systems as desirable, and there have been numer-
ous efforts over the years at exploring possible
avenues for achieving this objective [31–34] (a
more complete list is given below). By inte-
grating theorem proving with computer algebra,
we would be opening up a wealth of potentially
interoperable algorithms that have to date
remained largely unintegrated. To cite one such
example, in [35], the authors have developed a
framework for exchange of information between
the Maple computer algebra system and the
Isabelle interactive theorem prover. They show
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a simple problem involving the proof of an
elementary polynomial identity that could be
solved with the combined system, but in neither
system alone (see Fig. 1).

We cite this example to demonstrate how
a simply stated elementary problem cannot
be solved in existing environments for either
computer algebra or proof assistance. The com-
puter algebra system does not have the capacity
for structural induction and theorem provers
generally have rather weak expression simplifiers.
There are numerous examples such as this one in
the academic literature.

Another key difference between CASs and ITPs
is the architectural soundness of the respective
systems. As we will discuss below, computer al-
gebra systems have well-defined architectural de-
ficiencies, which while not a practical issue for
the vast majority of use cases, pose problems for
their integration with theorem provers, which by
their nature, are designed to be architecturally
sound. In the context of superintelligent AI sys-
tems, the architectural problems of CASs are po-
tential points of weakness that could be exploited
for malicious purposes or simply lead to unin-
tended and detrimental consequences. Therefore,
we use the phrase “robust computer algebra” to
refer to CASs which lack the problems that have
been identified in the research literature. In the
section below, we combine the discussion of ro-
bust computer algebra and integration with in-
teractive theorem provers, as there is a spectrum
of approaches which address both of these issues
to varying degrees.

5.1 A Taxonomy of Approaches

There are many possible avenues to tackle the in-
tegration of theorem provers with computer alge-
bra systems. We give 4 broad categories charac-
terizing such integration efforts2:

1. Theorem provers built on top of com-
puter algebra systems: These include An-
alytica, Theorema, RedLog, and logical ex-
tensions to the Axiom system [34,36–39] .

2This classification was first described by Kaliszyk and
Wiedijk [32] in a paper arguing for an architecture which
we list as the fourth category given above.

2. Frameworks for mathematical ex-
change between the two systems:
This category includes MathML, Open-
Math, OMSCS, MathScheme, and Logic
Broker [40–44].

3. “Bridges” or “ad-hoc” information ex-
change solutions: The pairs of systems
in this category include bridges combining
PVS, HOL, or Isabelle with Maple, NuPRL
with Weyl, Omega with Maple/GAP, Is-
abelle with Summit, and most recently, Lean
with Mathematica [35, 45–51]. The example
given above, bridging Isabelle and Maple, is
an example of an approach from this cate-
gory.

4. Embedding a computer algebra system
inside a proof assistant: This is the ap-
proach taken by Kaliszyk and Wiedijk in the
HOLCAS system. In their system, all expres-
sions have precise semantics, and the proof
assistant proves the correctness of each sim-
plification made by the computer algebra sys-
tem [32].

One primary aspect of integration that differ-
entiates these approaches is the degree of trust
the theorem prover places in the computer al-
gebra system. Computer algebra systems give
the false impression of being monolithic systems
with globally well-defined semantics. In reality,
they are large collections of algorithms which are
neatly packaged into a unified interface. Conse-
quently, there are often corner cases where the
lack of precise semantics can lead to erroneous
solutions. Consider the following example:

The system incorrectly gives 1 as a solution,
even though the given polynomial has an inde-
terminate value for x = 1. However, because the
expression is treated as a fraction of polynomials,
it is first simplified before the solve operation
is applied. In other words, there is an unclear
semantics between the solver module and the
simplifier which leads to an incorrect result.

Another simple example is the following inte-
gral:

Making the substitution n = −1 gives an in-
determinate result, while it is clear by inspection
that the solution to the integral for n = −1 is
simply ln(x). This belongs to a class of problems
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Maple calls. In concrete, this is performed by simplification via the evalua-
tion rules.

4. Finally, by a repeated use of the laws which governate disequalities between
products and sums, the induction step is proved. In this phase, additional
Maple calls are used to verify disequalities between ground values, e.g. 2  5.

The compound OMSCS tactic that originates the proof in our formalization
closely resembles the series of Isabelle’s tactics invocations used in [10] to achieve
the result. Its execution results in a (flat) symbolic mathematical structure which
represents the proof of the conjecture. The following picture provides a simplified
presentation of the structure.

2 3

5

INDUCT

4

SIMPLIFY

MAPLE SIMPLIFY

6

7 8

MAPLE

REST

1

ASSUMEREFL

1 : TH `I n5  5n

2 : TH `I 55  55

3 : TH `I n  5

4 : TH `I 8x : [x 2 N ^ 5  x ^ x5  5x] =) (x + 1)5  5(x+1)

5 : x 2 N `M (x + 1)5 ⌘ x5 + 5x4 + 10x3 + 10x2 + 5x + 1
6 : TH `I 8x : [x 2 N ^ 5  x ^ x5  5x] =)

x5 + 5x4 + 10x3 + 10x2 + 5x + 1  5(x+1)

7 : x 2 N `M 5(x+1) ⌘ 5 ⇤ 5x

8 : TH `I 8x : [x 2 N ^ 5  x ^ x5  5x] =)
x5 + 5x4 + 10x3 + 10x2 + 5x + 1  5 ⇤ 5x

Circles represent object nodes, whose labels are reported in the table; rectangles
represent link nodes, and contain their labels. The complex series of steps cor-
responding to the final phase of the proof are folded within the triangular REST
node. Link nodes labelled with SIMPLIFY identify the points where the systems
cooperate to the solution of the problem; namely, where Maple is invoked to ex-
pand some polynomial power. Note that the REST folded node hides away several
additional Maple calls, meant to perform evaluations of disequalitites.

Figure 1: Example of a polynomial identity proven by integrating the Maple computer algebra system
with Isabelle. Maple’s simplifier is used for expanding polynomials—a powerful complement to the
theorem proving architecture of Isabelle which allows for the setup of a proof by induction.

Figure 2: Example of an incorrect solution to a
simple polynomial equation by a computer alge-
bra system.

Figure 3: A problem arising in symbolic integra-
tion due to the non-commutativity of evaluation
and substitution.

known as the specialization problem, namely that
expression evaluation and variable substitution do
not commute [31]. So while we have seen above
that theorem proving can benefit tremendously
from the wealth of algorithms for expression sim-
plification and mathematical knowledge in com-
puter algebra, there is the potential cost of com-
promising the reliability of the combined system.
As a possible application to current research in

AI safety, consider the decision-theoretic research
agenda for the development of safe, superintelli-
gent AI systems outlined in [52–56]. If we require
formal guarantees of correctness at any point in a
sequence of computations in which computer al-
gebra is used, current systems would be unable to
provide the necessary framework for constructing
such a proof.

5.1.1 Qualitatively Certified
Computations

In our taxonomy of approaches to bridging
theorem provers with computer algebra, we
described how a key distinction was the degree of
trust that the theorem prover places in the com-
puter algebra system. For instance, approaches
which build theorem provers on top of computer
algebra systems do not address the architectural
issues with CASs. They are integrative, but not
more sound. On the other extreme, building a
computer algebra system on top of a theorem
prover allows for a degree of trust that is on par
with that of the theorem prover itself. However,
this approach has the distinct disadvantage
that computer algebra systems represent many
hundred man-years worth of effort.

The more intermediate approaches involving
common languages for symbolic exchange or ad-
hoc bridges, bring to light an important notion
in the spectrum of provable safety, namely the
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ability to assign probabilities for the correctness
of computations. In [57], the authors present an
algorithm for assigning probabilities to any state-
ment in a formal language. We might ask what
strategies might look like that have a similar goal
in mind, but are significantly weaker. Interfaces
between theorem provers and computer algebra
systems provide a concrete example where we
can ask a question along these lines. Fundamen-
tally, in such an interface, the computer algebra
system is the weaker link and should decrease
our confidence in the final result. But by how
much? For instance, in the example given in
Figure 1, how should we revise our confidence in
the result knowing that polynomial simplification
was conducted within a computer algebra system?

It is worth asking for simple answers to this
question that do not require major theoretical
advances to be made. For instance, we might
imagine curating information from computer
algebra experts about known weaknesses, and
use this information to simply give a qualitative
degree of confidence in a given result. Or, for
example, in a repository of formal proofs gener-
ated using integrated systems, steps of the proof
that require computer algebra can be flagged and
also assigned a qualitative measure of uncertainty.

The relationship that this highly informal
method of giving qualitative certification to
computations has with the formal algorithm
developed in [57] can be compared to existing
techniques in the software industry for ensuring
correctness. On the one hand, unit testing is a
theoretically trivial, yet quite powerful practice,
something along the lines of automated check-
lists for software. The complexities of modern
software would be impossible to handle without
extensive software testing frameworks [58–62].
On the other hand, formal verification can
provide substantially stronger guarantees, yet
is a major undertaking, and the correctness
proofs are often significantly more demanding to
construct than the software itself. Consequently,
as discussed in Section 5, formal verification is
much less frequently used in industry, typically
only in exceptional circumstances where high
guarantees of correctness are required, or for
hardware verification [26–30].

Integrated systems for computer algebra and
theorem proving give rise to a quite interesting
(and perhaps ironic) opportunity to pursue simple
strategies for giving qualitative estimates for the
correctness of a computation.

5.1.2 Logical Failures and Error
Propagation

As the examples described above demonstrate,
errors in initial calculations may very well prop-
agate and give rise to non-sensical results. As
AI systems capable of performing mathematical
computation become increasingly sophisticated
and embedded as part of design workflows for
science and engineering (beyond what we see
today), we could imagine such errors being quite
costly and difficult to debug. In the case of
a superintelligent AI system, more concerning
scenarios would be if systematic errors in com-
puter algebra could be exploited for adversarial
purposes or if they led to unintentional accidents
on a large scale.

The issue of error propagation is another ex-
ample of a concrete context for pursuing sim-
ple strategies for assigning qualitative measures
of certainty to computations performed by inte-
grated theorem proving / computer algebra sys-
tems. For instance, we may be less inclined to
trust a result in which the computer algebra sys-
tem was invoked early on in a computation as
opposed to later. With curated data from com-
puter algebra experts on the reliability or fail-
ure modes of various algorithms, we might also
chain together these informal estimates to arrive
at a single global qualitative estimate. If multi-
ple systems were to be developed independently,
or which were based on fundamentally different
architectures, we might also be significantly more
confident in a result which could be verified by
two separate systems.

5.1.3 Additional Topics

Some related ideas merit investigation in the
broader context of mathematical computation:

• Integrating SMT solvers with inter-
active theorem provers: Satisfiability
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modulo theories (SMT) solvers are an im-
portant element of automated reasoning and
there have been efforts analogous to those
described above to bridge SMT solvers with
interactive theorem provers [63,64].

• Identifying the most important /
widely used algorithms in computer
algebra: Computer algebra systems have
grown to become massive collections of
algorithms extending into domains well
outside of the realm of mathematics. If
the purely mathematical capacities of CASs
prove to be useful in future AI systems, it
would be valuable to rank order algorithms
by their popularity or importance.

One approach would be to do basic textual
analysis of the source code from GitHub or
StackExchange. This would also allow for
more targeted efforts to directly address the
issues with soundness in core algorithms
such as expression simplification or integra-
tion. In the context of the HOLCAS system
described above, for example, it would be
valuable to have rough estimates for the
number of man-hours required to implement
a minimal CAS with the most widely used
functionality on top of a theorem prover.

• Proof checkers for integrated systems:
Proof checkers are important tools in the
landscape of formal verification and theorem
proving. Indeed, as it is often much less
computationally expensive to verify the cor-
rectness of a proof than to generate it from
scratch, the availability of proof checkers for
the widely used interactive theorem provers
is one reason we can be confident in the
correctness of formal proofs [65,66].

As we described above, strategies for in-
tegrating computer algebra with theorem
provers can potentially result in a combined
system which is less trustworthy than
the theorem prover alone. Therefore, the
availability of proof checkers for combined
systems would be a valuable resource in
verifying proof correctness, and in certain

mathematical domains, potentially provide
an avenue for surmounting the need to
directly make the CAS itself more architec-
turally robust.

The development of integrated proof checkers
is likely to be a substantial undertaking and
require novel architectures for integrating
the core CAS and ITP systems distinct from
what has been described above. However,
it is a largely unexplored topic that merits
further investigation.

• Analyzing scaling properties of al-
gorithms for computer algebra and
theorem proving as a function of
hardware resources: The premise of the
analysis presented above is that CASs (and
integrated theorem proving) are likely to
remain sufficiently architecturally stable
and useful on a several decade time-horizon
in the construction of AI systems. On
the other hand, as we argued earlier, it is
much less clear that the same will be true
of the most visible, NLP-based, consumer-
oriented question answering systems. To
make these arguments more rigorous, it
would be valuable to develop quantitative
predictions of what the capabilities will be
of existing algorithms for computer algebra
and theorem proving when provided with
substantially expanded hardware resources.
For instance, we might examine problems in
mathematics or theoretical physics for which
näıve solutions in CASs are intractable with
current resources, but which may be feasible
with future hardware.

• The cognitive science of computer
algebra: What role has computer algebra
played in theoretical physics and mathe-
matics? How has it influenced the thinking
process of researchers? Has computer
algebra simply been a convenience that has
shifted the way problems are solved, or has
it fundamentally enabled new problems to
be solved that would have been completely
intractable otherwise?
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The cognitive science of mathematical
thought is a substantial topic which overlaps
with many established areas of research [67–
71]. However, a systematic review of research
in mathematics and theoretical physics since
the advent of computer algebra and its role
in the mathematical thought process is an
underexplored topic. It would be an inter-
esting avenue to pursue in understanding the
role that CASs, ITPs, and integrated systems
may come to play in superintelligence, partic-
ularly in the case of neuromorphic systems
that have been modeled after human cogni-
tion. These questions also relate to under-
standing the scaling properties of CAS and
theorem proving algorithms as well as cata-
loguing the most widely used algorithms in
computer algebra.

6 Conclusion

The aim of this article has been to examine pre-
existing research objectives in computer science
and related disciplines which align with problems
relevant to AI safety, thereby providing concrete,
practical context for problems which are other-
wise of a longer time horizon than most research.
In particular, we focused on the notion of “Oracle
AI” as used in the AI safety community, and
observed that the word oracle has two meanings
in the context of superintelligent AI systems.
One usage refers to a subsystem of a larger AI
system queried for domain-specific tasks, and the
other to superintelligent AI systems restricted to
only answer questions.

We examined contemporary question answer-
ing systems (QASs) and argued that due to their
architectural heterogeneity, consumer-oriented,
NLP-based systems do not readily lend them-
selves to rigorous analysis from an AI safety
perspective. On the other hand, we identified
computer algebra systems (CASs) as concrete, if
primitive, examples of domain-specific oracles.
We examined well-known architectural deficien-
cies with CASs identified by the theorem proving
community and argued that the integration of
interactive theorem provers (ITPs) with CASs,
an objective that has been an area of research in
the respective communities for several decades,

provides a set of research problems and practical
software projects related to the development of
powerful and robust math oracles on a multi-
decade time horizon. Independent of their role as
domain-specific oracles, such systems may also
prove to be useful tools for AI safety researchers
in proving the functional correctness of other
components of an AI architecture. Natural
choices of systems to use would be interfaces
for the Wolfram Language, the most widely
used computer algebra system, with one of the
HOL family of theorem provers or Coq, both of
which have substantial repositories of formalized
proofs [72–75], or a more modern ITP such as
Lean [51,76].

Rather than representing a bold and profound
new agenda, we view these projects as being
concrete and achievable goals that may pave
the way to more substantial research directions.
Because the topics we have discussed have a
long and rich academic history, there are a
number of “shovel-ready” projects appropriate
for students anywhere from undergraduates to
PhD students and beyond. Good undergraduate
research projects would probably start with some
basic data science to catalogue core computer
algebra algorithms by their usage and popularity.
From there, it would be useful to have an
estimate of what certified implementations of
these algorithms would entail, whether formally
verified implementations, or along the lines of
Kaliszyk and Wiedijk’s HOLCAS system where
the CAS is built on top of a theorem prover.
Also useful would be a systematic study of role
that computer algebra has played in mathematics
and theoretical physics. This would have some
interesting overlap with cognitive psychology, and
these three projects together would make for an
approachable undergraduate thesis, or a begin-
ning project for a graduate student. A solid PhD
thesis devoted to the topic of Oracle AI might
involve tackling approaches to oracles stemming
from reinforcement learning (RL) [8, 16], as
well as more advanced theorem proving and
CAS related topics such as investigating the
development of a hybrid architecture that would
allow for proof-checking. A student who worked
on these projects for several years would develop
a unique skill set spanning philosophy, machine
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learning, theorem proving, and computer algebra.

In the context of superintelligent oracle AIs
which may possess the ability to manipulate a
human user, we differentiate between addressing
architectural or algorithmic deficiencies in subsys-
tems versus general control methods or contain-
ment strategies. Given that strong mathematical
capabilities are likely to be useful in the construc-
tion of more general AI systems, designing robust
CASs (and any other domain-specific oracle) is an
important counterpart to general control strate-
gies, as the top-level AI system will have fewer
loopholes to exploit. Controlling OAIs poses
a distinct set of challenges for which concrete
mathematical analysis is in its infancy [8, 9, 16].
Nonetheless, considering how little attention has
been given to the superintelligence control prob-
lem in general, we are optimistic about the poten-
tial to translate the high-level analyses of OAIs
that have arisen in the AI safety community
into the mathematical and software frameworks
of modern artificial intelligence.
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