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PREFACE 

An old story about a great teacher of philosophy, Morris Raphael Cohen, goes like this. One 

year after the last lecture in Cohen’s introductory philosophy course, a student approached 

and protested, “Professor Cohen, you have destroyed everything I believed in, but you have 

given me nothing to replace it.” Cohen is said to have replied, “Sir, you will recall that one of 

the labors of Hercules was to clean the Augean stables. You will further recall that he was not 

required to refill them.” 

 I’m with the student. People who are curious about the subject may want a historical 

view of philosophy, but they also may want to know what, other than that very history, 

philosophy has left them. In fact, the history of philosophy has informed and even helped to 

create broad areas of contemporary intellectual life; it seems a disservice both to students and 

to the subject to keep those contributions secret. The aim of this text is to provide an 

introduction to philosophy that shows both the historical development and modern fruition of 

a few central questions. The issues I consider are these: 

 What is a demonstration, and why do proofs provide knowledge? 

 How can we use experience to gain knowledge or to alter our beliefs in a rational 

way? 

 What is the nature of minds and of mental events and mental states? 

In our century the tradition of philosophical reflection on these questions has helped to create 

the subjects of cognitive psychology, computer science, artificial intelligence, mathematical 

logic, and the Bayesian branch of statistics. The aim of this book is to make these connections 

accessible to qualified students and to give enough detail to challenge the very best of them. I 

have selected the topics because the philosophical issues seem especially central and 

enduring and because many of the contemporary fields they have given rise to are open-

ended and exciting. Other connections between the history of philosophy and contemporary 



subjects, for example the connection with modern physics, are treated much more briefly. 

Others are not treated at all for lack of space. I particularly regret the absence of chapters on 

ethics, economics, and law. 

 This book is meant to be used in conjunction with selections from the greats, and 

suggestions for both historical and contemporary readings accompany most chapters. The 

book is intended as an introduction, the whole of which can be read by a well-educated high 

school graduate who is willing to do some work. It is not, however, particularly easy. 

Philosophy is not easy. My experience is that much of this book can be read with profit by 

more advanced students interested in epistemology and metaphysics, and by those who come 

to philosophy after training in some other discipline. I have tried in every case to make the 

issues and views clear, simple, and coherent, even when that sometimes required ignoring 

real complexities in the philosophical tradition or ignoring alternative interpretations. I have 

avoided disingenuous defenses of arguments that I think unsound, even though this 

sometimes has the effect of slighting certain passages to which excellent scholars have 

devoted careers. A textbook is not the place to develop original views on contemporary 

issues. Nonetheless, parts of this book may interest professional philosophers for what those 

parts have to say about some contemporary topics. This is particularly true, I hope, of 

chapters 10, 11, and 13. 

 Especially challenging or difficult sections and chapters of the book are marked with 

an asterisk. They include material that I believe is essential to a real understanding of the 

problems, theories, and achievements that have issued from philosophical inquiry, but they 

require more tolerance for mathematical details than do the other parts of the book. 

Sometimes other chapters use concepts from sections with asterisks, and I leave it to 

instructors or readers to fill in any background that they omit. Each chapter is accompanied 

by a bibliography of suggested readings. The bibliographies are not meant to be exhaustive or 



even representative. Their purpose is only to provide the reader with a list of volumes that 

together offer an introduction to the literature on various topics. 

 I thank Kevin Kelly for a great deal of help in thinking about how to present the 

philosophical issues in historical context, for influencing my views about many topics, and 

for many of the illustrations. Andrea Woody read the entire manuscript in pieces and as a 

whole and suggested a great many improvements. She also helped to construct the 

bibliographies. Douglas Stalker gave me detailed and valuable comments on a first draft. 

Alison Kost read and commented on much of the manuscript. Martha Scheines read, revised, 

and proofread a preliminary draft. Alan Thwaits made especially valuable stylistic 

suggestions and corrected several errors. Versions of this hook were used in introductory 

philosophy courses for three years at Carnegie-Mellon University, and I am grateful to the 

students who endured them. 

 The third printing of this book has benefited from a reading of the first by Thomas 

Richardson, who pointed out a number of errors, and by Clifton McIntosh, who found still 

others. Michael Friedman’s work led me to revise the presentation of Kant, and a review 

essay by David Carrier prompted me to remove a note. 

 

  



Part I 

THE IDEA OF PROOF 



Chapter 1 

PROOFS 

INTRODUCTION 

Philosophy is concerned with very general questions about the structure of the world, with 

how we can best acquire knowledge about the world, and with how we should act in the 

world. The first topic, the structure of the world, is traditionally known as metaphysics. The 

second topic, how we can acquire knowledge of the world, is traditionally called 

epistemology. The third topic, what actions and dispositions are best, is the subject of ethics. 

The first two studies, metaphysics and epistemology, inevitably go together. What one thinks 

about the structure of the world has a lot to do with how one thinks inquiry should proceed, 

and vice versa. These topics in turn involve issues about the nature of the mind, for it is the 

mind that knows. Considerations of ethics depend in part on our metaphysical conception of 

the world and ourselves, on our conception of mind, and on how we believe knowledge to be 

acquired. 

 These traditional branches of philosophy no doubt seem very abstract and vague. 

They may seem superfluous as well: Isn’t the question of the structure of the world part of 

physics? Aren’t questions about how we acquire knowledge and about our minds part of 

psychology? Indeed they are. What, then, are metaphysics and epistemology, and what are the 

methods by which these subjects are supposed to be pursued? How are they different from 

physics and psychology and other scientific subjects? Questions such as these are often 

evaded in introductions to philosophy, but let me try to answer them. 

 First, there are a lot of questions that are usually not addressed in physics or 

psychology or other scientific subjects but that still seem to have something to do with them. 

Consider the following examples: 

• How can we know there are particles too small to observe? 



• What constitutes a scientific explanation? 

• How do we know that the process of science leads to the truth, whatever the truth may 

be? 

• What is meant by “truth”? 

• Does what is true depend on what is believed? 

• How can anyone know there are other minds? 

• What facts determine whether a person at one moment of time is the same person as a 

person at another moment of time? 

• What are the limits of knowledge? 

• How can anyone know whether she is following a rule? 

• What is a proof? 

• What does “impossible” mean? 

• What is required for beliefs to be rational? 

• What is the best way to conduct inquiry? 

• What is a computation? 

The questions have something to do with physics or psychology (or with mathematics or 

linguistics), but they aren’t questions you will find addressed in textbooks on these subjects. 

The questions seem somehow too fundamental to be answered in the sciences; they seem to 

be the kind of questions that we just do not know how to answer by a planned program of 

observations or experiments. And yet the questions don’t seem unimportant; how we answer 

them might lead us to conduct physics, psychology, mathematics or other scientific 

disciplines very differently. These are the sorts of questions particular scientific disciplines 

usually either ignore or else presume to answer more or less without argument. And they are 

a sample, a small sample, of the questions that concern philosophy. 



 If these questions are so vague and so general that we have no idea of how to conduct 

experiments or systematic observations to find their answers, what can philosophers possibly 

have done with them that is of any value? The philosophical tradition contains a wealth of 

proposed answers to fundamental questions about metaphysics and epistemology. Sometimes 

the answers are supported by arguments based on a variety of unsystematic observations, 

sometimes by reasons that ought to be quite unconvincing in themselves. The answers face 

the objections that they are either unclear or inconsistent, that the arguments produced for 

them are unsound, or that some other body of unsystematic observations conflict with them. 

Occasionally an answer or system of answers is worked out precisely and fully enough that it 

can deservedly be called a theory, and a variety of consequences of the theory can be 

rigorously drawn, sometimes by mathematical methods. What is the use of this sort of 

philosophical speculation? On occasion the tradition of attempts at philosophical answers has 

led to theories that seem so forceful and so fruitful that they become the foundation for entire 

scientific disciplines; enter our culture, our science, our politics; and guide our lives. That is 

the case, for example, with the discipline of computer science, created by the results of more 

than 2,000 years of attempts to answer one apparently trivial question: What is a 

demonstration, a proof? An entire branch of modern statistics, often called Bayesian 

statistics, arose through philosophical efforts to answer the question, What is rational belief? 

The theory of rational decision making, at the heart of modern economics, has the same 

ancestry. Contemporary cognitive science, which tries to study the human mind through 

computer models of human behavior and thought, is the result of joining a philosophical 

tradition of speculation about the structure of mind with the fruits of philosophical inquiry 

into the nature of proof. 

 So one answer to why philosophy was worth doing is simply that it was the most 

creative subject: rigorous philosophical speculation formed the basis for much of 



contemporary science; it literally created new sciences. Moreover, the role of philosophy in 

forming computer science, Bayesian statistics, the theory of rational decision making, and 

cognitive science isn’t ancient history. These subjects were all informed by developments in 

philosophy within the last 100 years. 

 But if that is why philosophy was worth doing, why is it still worth doing? Because 

not everything is settled and there may be fruitful alternatives even to what has been settled. 

In this chapter and those that follow we will see some of the history of speculation and 

argument that generated a number of contemporary scientific disciplines. We will also see 

that there can be reasonable doubts about the foundations of some of these disciplines. And 

we will see a vast space of further topics that require philosophical reflection, conjecture, and 

argument. 

FORMS OF REASONING AND SOME FUNDAMENTAL QUESTIONS 

Part of the process by which we acquire knowledge is the process of reasoning. There are 

many ways in which we reason, or argue for conclusions. Some ways seem more certain and 

convincing than others. Some forms of reasoning seem to show that if certain premises are 

assumed, then a conclusion necessarily follows. Such reasoning claims to be deductive. 

Correct deductive arguments show that if their premises are true, their conclusions are true. 

Such arguments are said to be valid. (If an argument tries to demonstrate that a conclusion 

follows necessarily from certain premises but fails to do so, the argument is said to be 

invalid.) If, in addition to being valid, an argument has premises that are true, then the 

argument is said to be sound. Valid deductive arguments guarantee that if their premises are 

true, their conclusions are true. So if one believes the premises of a valid deductive argument, 

one ought to believe the conclusion as well. The paradigm of deductive reasoning is 

mathematical proofs, but deductive reasoning is not confined to the discipline of 

mathematics. Deductive reasoning is used in every natural science, in every social science, 



and in all applied sciences. In all of these subjects, the kind of deductive reasoning 

characteristic of mathematics has an important role, but deductive reasoning can also be 

found entirely outside of mathematical contexts. Whatever the subject, some assumptions 

may necessitate the truth of other claims, and the reasoning that reveals such necessary 

connections is deductive. We also find attempts at such reasoning throughout the law and in 

theology, economics, and everyday life. 

 There are many forms of reasoning that are not deductive. Sometimes we argue that a 

conclusion ought to be believed because it provides the best explanation for phenomena; 

sometimes we argue that a conclusion ought to be believed because of some analogy with 

something already known to be true; sometimes we argue from statistical samples to larger 

populations. These forms of reasoning are called inductive. In inductive reasoning, the 

premises or assumptions do not necessitate the conclusions. 

 Of the many ways in which we reason, deductive reasoning, characteristic of 

mathematics, has historically seemed the most fundamental, the very first thing a philosopher 

should try to understand. It has seemed fundamental for two reasons. First, unlike other forms 

of reasoning, valid deductive reasoning provides a guarantee: we can be certain that if the 

premises of such an argument are true, the conclusion is also true. In contrast, various forms 

of inductive reasoning may provide useful knowledge, but they do not provide a comparable 

guarantee that if their premises are true, then so are their conclusions. Second, the very 

possibility of deductive reasoning must be somehow connected with the structure of the 

world. For deductive reasoning is reasoning in which the assumptions, or premises, 

necessitate the conclusions. But how can the world and language be so structured that some 

claims make others necessary? What is it about the postulates of arithmetic, for example, that 

makes 2 + 2 = 4 a necessary consequence of them? What is it about the world and the 



language in which we express the postulates of arithmetic that guarantees us that if we count 

2 things in one pile and 2 in another, then the count of all things in one pile or the other is 4? 

 Such questions may seem trivial or bizarre or just irritating, but we will see that 

efforts to answer them have led to the rich structure of modern logic and mathematics, and to 

the entire subject of computer science. If such questions could be answered, we might obtain 

a deeper understanding of the relations between our words and thoughts on the one hand and 

the world they are supposed to be about on the other. So some of the fundamental questions 

that philosophy has pursued for 2,500 years are these: 

• How can we determine whether or not a piece of reasoning from premises to a 

conclusion is a valid deductive argument? 

• How can we determine whether or not a conclusion is necessitated by a set of 

premises? If a conclusion is necessitated by a set of premises, how can we find a valid 

deductive argument that demonstrates that necessary connection? 

• What features of the structure of the world, the structure of language, and the relation 

between words and thoughts and things make deductive reasoning possible? 

To answer these questions is to provide a theory of deductive reasoning. Any such theory will 

be part metaphysics and part epistemology. It will tell us something about sorts of things 

there are in the world (objects? properties? relations? numbers? sets? propositions? relations 

of necessity? meanings?) and how we can know about them or use them to produce 

knowledge. 

 The next few chapters of this book are devoted to these questions. In the remainder of 

this chapter I will consider a variety of purported deductive arguments that have played an 

important role in one or another area of the history of thought. The examples are important 

for several reasons. They give us cases where want to be able to distinguish valid from 

invalid arguments. They also provide concepts that are important throughout the history of 



philosophy and that are essential to material presented later in this book. Finally, they start us 

on the way to analyzing the fundamental issues of how we learn about the structure of the 

world. 

 This chapter will present some examples of arguments that are good proofs, some 

examples of arguments that are defective but can be remedied, and some arguments that are 

not proofs at all. Part of what we are concerned with is to find conditions that separate valid 

deductive arguments from invalid deductive arguments. Any theory of deductive reasoning 

we construct should provide a way to distinguish the arguments that seem valid from the 

arguments that seem invalid. To get some practice for this part of the task of theory building, 

we will look at simple cases in which we want to form a theory that will include some 

examples and exclude a number of other examples. The cases we will consider first don’t 

have to do with the idea of deductive reasoning, but they do illustrate many aspects of what a 

theory of deductive reasoning ought to provide: they separate the correct instances, the 

positive examples, of a concept from the incorrect instances, the negative examples. 

 Here is a very simple case. Suppose you are given this sequence of numbers: 1, 2, 5, 

10, 17, 26, 37, 50, 65, 82. What is the general rule for continuing the sequence? In this case 

the numbers listed are positive examples to be included in a formula, and all the numbers 

between 1 and 

The Socratic method 

Socrates was Plato’s teacher. About 399 B.C., at the age of 70, he was put to death by the 

citizens of Athens, ostensibly for impiety and corrupting the youth of the city but probably in 

fact for his political views and for the political actions of some of his students. Plato authored 

a series of philosophical dialogues in which Socrates is always the major figure. Socrates, as 

Plato depicted him, was concerned with such questions as, What is knowledge? What is 

virtue? His procedure for inquiring into such questions was to collect positive cases, of virtue 



for example, and negative cases as well. He then attempted to formulate conditions that will 

include all of the positive examples and none of the negative examples. If further examples 

were found that conflict with a proposed condition (that is, positive examples the condition 

does not include or negative examples the condition does include), Socrates (or other 

characters in Plato’s dialogues) then tried a new condition. Plato’s Socrates applied the 

method to understanding natural objects and kinds and also moral kinds, such as virtue. 

 Plato held that true understanding of anything, of virtue for example, requires more 

than a theory that includes all the positive examples of virtue and excludes all the negative 

examples. One must also know why the positive examples of virtue are positive examples, 

i.e., what ties them together. 

82 not in the list are negative examples that should not be included. (The sequence can be 

generated by the formula n2 + i, for n = 0, 1, 2, 3, and so on.) 

 Let’s consider a very different kind of example, one where there are again a number 

of positive examples and a number of negative examples. Suppose you are given the positive 

and negative examples of arches shown in figure 1.1. How could you state conditions that 

include the positive examples but exclude the negative examples? You might try something 

like this: ‘X is an arch if and only if X consists of two series of blocks, and in each series each 

block except the first is supported by another block of that series, and no block in one series 

touches any block in the other series, and there is a block supported by a block in each 

series.” 

 Here is still another kind of example. Artificial languages, such as programming 

languages or simple codes, are constructed out of vocabulary elements. A statement in such a 

language is a finite sequence of vocabulary elements. But not every sequence of vocabulary 

elements will make sense in the language. In BASIC or Pascal you can’t just write down any 

sequence of symbols and have a well-formed statement. The same is true in natural 



languages, such as English. Not just any string of words in English makes an English 

sentence. Suppose you learned that the examples in table 1.1 are positive and negative 

examples of well-formed sequences in some unknown code, and suppose you also knew that 

there are an infinite number of other well-formed sequences in the code. What do you guess 

is the condition for a well-formed sequence in this code? Can you find a general condition 

that includes all of the positive examples and none of the negative examples? 

 For several reasons the philosophical problem with which we are concerned is more 

difficult than any of these examples. We want a theory that will separate valid deductive 

arguments from deductive arguments that are not valid. The problem is intrinsically difficult 

because the forms of deductive argument are very complex. It is also difficult because we are 

not always sure whether or not to count specific arguments as valid. And finally, this 

philosophical problem is intrinsically more difficult because we not only want a theory that 

will separate valid demonstrations from invalid ones, we also want to know why and how 

valid demonstrations ensure that if their premises are true then necessarily their conclusions 

are true. 

 In keeping with the Socratic method, the first thing to do in trying to understand the 

nature of demonstration is to collect a few examples. The histories of philosophy, science, 

mathematics, and religion are filled with arguments that claim to be proofs of their 

conclusions. Unfortunately, the arguments don’t come labeled “valid” or “invalid,” and we 

must decide for ourselves, after examination, whether an argument is good, bad, or good 

enough to be reformulated into a valid argument. We will next consider a series of examples 

of simple arguments from geometry, theology, metaphysics, and set theory. The point of the 

examples is always to move toward an understanding of the three questions above. 

GEOMETRY 



Euclid’s geometry is still studied in secondary schools, although not always in the form in 

which he developed it. Euclid developed geometry as an axiomatic system. After a sequence 

of definitions, Euclid’s Elements gives a sequence of assumptions. Some of these have 

nothing to do with geometry in particular. Euclid calls them “common notions.” Others have 

specifically geometrical content. Euclid calls them “postulates.” The theorems of geometry 

are deduced from the common notions and the postulates. Euclid’s aim is that his 

assumptions will be sufficient to necessitate, or as we now say, entail, all the truths of 

geometry. We aspire for completeness. This means that every question about geometry 

expressible in Euclid’s terms can be answered by his assumptions if only the proof of the 

answer can be found. Some of Euclid’s definitions, common notions, postulates, and the first 

proposition he proves from them are given below: 

Plato and Euclid 

Plato, who died about 347 B.C., is recognized as the first systematic Western philosopher. 

During the height of the Athenian empire Plato directed a school, the Academy, devoted to 

both mathematics and philosophy. No study of philosophy was possible in the Academy 

without a study of mathematics. The principal mathematical subject was geometry, although 

arithmetic and other mathematical subjects were also studied. It seems likely that textbooks 

on geometry were produced in Plato’s Academy and that these texts attempted to systematize 

the subject and derive geometrical theorems from simpler assumptions (the Greeks called the 

simple parts of a thing its elements). Euclid studied in the Academy around 300 B.C., and his 

book, The Elements, is thought to be derived from earlier texts of the school. Euclid later 

established his own mathematical school in Alexandria, Egypt. 

Definitions 

1. A point is that which has no part. 

2. A line is breadthless length. 



3. The extremities of a line are points. 

4. A straight line is a line that lies evenly with the points on itself. 

5. A surface is that which has length and breadth only. 

6. The extremities of a surface are lines. 

7. A plane surface is a surface that lies evenly with the straight lines on itself. 

8. A plane angle is the inclination to one another of two lines in a plane that meet one 

another and do not lie in a straight line. 

9. And when the lines containing the angle are straight, the angle is called rectilinear. 

10. When a straight line set up on a straight line makes the adjacent angles equal to one 

another, each of the equal angles is right, and the straight line standing on the other is called a 

perpendicular to that on which it stands. 

11. An obtuse angle is an angle greater than a right angle. 

12. An acute angle is an angle less than a right angle. 

13. A boundary is that which is an extremity of anything. 

14. A figure is that which is contained by any boundary or boundaries. 

15. A circle is a plane figure contained by one line such that all the straight lines falling 

upon it from one point among those lying within the figure are equal to one another. 

16. And the point is called the center of the circle. 

. 

. 

. 

19. Rectilinear figures are those contained by straight lines, trilateral figures being those 

contained by three. 

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal. 

. 



. 

. 

23. Parallel straight lines are straight lines that, being in the same plane and being 

produced indefinitely in both directions, do not meet one another in either direction. 

Common notions 

1. Things that are equal to the same thing are also equal to one another. 

2. If equals be added to equals, the wholes are equal. 

3. If equals be subtracted from equals, the remainders are equal. 

4. Things which coincide with one another are equal to one another. 

5. The whole is greater than the part. 

Postulates 

1. It is possible to draw a straight line from any point to any point. 

2. It is possible to produce a finite straight line continuously in a straight line. 

3. It is possible to describe a circle with any center and distance. 

4. All right angles are equal to one another. 

5. If a straight line falling on two straight lines make the interior angles on the same side 

less than two right angles, the two straight lines, if produced indefinitely, meet on the side of 

the angles less than the two right angles. 

Proposition 1 For every straight-line segment, there exists an equilateral triangle having 

that line segment as one side. 

Proof Let AB be the given finite straight line. Thus it is required to construct an equilateral 

triangle on the straight line AB. Let circle BCD be drawn with center A and distance AB 

(postulate 3). Again, let circle ACE be drawn with center B and distance BA (postulate 3). 

And from point C, at which the circles cut one another, to points A, B, let the straight lines 

CA, CB be joined (postulate 1). (see figure 1.2.) Now since point A is the center of the circle 



CDB, AC is equal to AB. Again, since point B is the center of circle CAE, BC is equal to BA. 

But CA was also proved equal to AB. Therefore, each of the straight lines CA, CB is equal to 

AB. And things that are equal to the same thing are also equal to one another (common notion 

1). Therefore, CA is also equal to CB. Therefore, the three straight lines CA, AB, BC are equal 

to one another. Therefore, triangle ABC is equilateral, and it has been constructed on the 

given straight line AB.1 Q.E.D. 

 Lest we forget, the central philosophical questions we have about Euclid’s proposition 

concern whether or not his assumptions do in fact necessitate that for any line segment there 

exists an equilateral triangle having that segment as a side, and if they do necessitate this 

proposition, why and how the necessitation occurs. We will not even begin to consider 

theories that attempt to answer this question until the next chapter. For the present, note some 

things about Euclid’s proof of his first proposition. 

• The proof is like a short essay in which one sentence follows another in sequence. 

• Each sentence of the proof is justified either by preceding sentences of the proof or by 

the definitions, postulates, or common notions. 

• The conclusion to be proved is stated in the last sentence of the proof. 

• The proposition proved is logically quite complex. It asserts that for every line 

segment L, there exists an object T that is an equilateral triangle, and that T and L stand in a 

particular relation, namely that the equilateral triangle T has line segment L as one side. 

• Euclid actually claims to prove something stronger. What he claims to prove is that if 

his postulates are understood to guarantee a method for finding a line segment connecting any 

two points (as with a ruler) and a method for constructing a circle of any specified radius (as 

with a compass), then there is a procedure that will actually construct an equilateral triangle 

having any given line segment as one side. Euclid’s proof that such triangles exist is 



constructive. It shows they exist by giving a general procedure, or algorithm, for constructing 

them. 

• The proof comes with a picture (figure 1.2). The picture illustrates the idea of the 

proof and makes the sentences in the proof easier to understand. Yet the picture itself does 

not seem to be part of the argument for the proposition, only a way of making the argument 

more easily understood. 

 Before we leave Euclid (although we will consider him and this very proof again in 

the later chapters), I should note some important features of his definitions. Some of the 

definitions define geometrical notions, such as “point” and “line,” that are used in the 

propositions of Euclid’s geometry. These notions are defined in terms of other notions that 

the reader is supposed to understand already. Definition 1 says, “A point is that which has no 

part.” Unless we have a prior understanding of “part” that is mathematically exact (which is 

not very likely), this definition can be of no use in Euclid’s proofs. Why is it there? 

Presumably to aid our intuitions in reading the subsequent propositions and proofs. Most of 

Euclid’s definitions are like this; they define a geometrical notion in terms of some other 

undefined notions. (In fact, there are quite a few undefined notions used in the definitions.) 

But some of Euclid’s definitions define geometric notions at least partly in terms of other 

geometric notions. Thus definition 15, the definition of a circle, defines circles in terms of the 

notions of figure, boundary, line, equality of straight lines, and incidence (“falling upon”) of a 

straight line and a line. 

 We have seen in Euclid’s system and his first proposition something that is almost a 

demonstration of a conclusion from premises. We have also seen that his argument has a 

special structure, different, for example, from the structure a poem might have, and that it 

contains features designed as psychological aids to the reader. We have also seen that it is 



hopeless to try to define every term but that it is not in the least pointless to try to give 

informal explanations of the meanings of technical terms used in an argument. 

Study Questions 

1. List the undefined terms that occur in Euclid’s definitions. 

2. The key idea in Euclid’s proof is to use point C, where the circle centered at A and the 

circle centered at B intersect, as the third vertex (besides A and B) of an equilateral triangle. 

Does anything in Euclid’s axioms guarantee that the circle centered on A and the circle 

centered on B intersect? 

3. Describe an imaginary world in which proposition 1 is false. (Hint: Imagine a space 

that has only one dimension.) Which of Euclid’s postulates, if any, are also false in this 

world? 

4. Are there contexts in which a proof consists of nothing more than a picture? Consider 

questions about whether or not a plane surface can be completely covered by tiles of a fixed 

shape, hexagons or pentagons, for example. 

5. One of the aims of Euclid’s formulation of geometry seems to have been to derive all 

of geometry from assumptions that are very simple and whose truth seems self-evident. Do 

any of Euclid’s five postulates seem less simple and less self-evident than the others? Why? 

GOD AND SAINT ANSELM 

From the first centuries after Christ until the seventeenth century, most civilized Europeans 

believed in nothing so firmly as the existence of God. Despite the scarcity of doubters, 

Christian intellectuals still sought proofs of God’s existence and wrote arguments against real 

or imagined atheists. Some of these attempts at demonstrations of the existence of God are 

still presented in religious schools nowadays, even though most logicians regard them as 

simple fallacies. However, at least one of the medieval proofs of the existence of God, Saint 

Anselm’s (1033–1109), is still of some logical interest. Let’s consider it. 



 Anselm gave his proof of the existence of God in several forms. Two versions of the 

argument are given in the following passage: 

And so, O Lord, since thou givest understanding to faith, give me to understand—as far as 

thou knowest it to be good for me—that thou dost exist, as we believe, and that thou art what 

we believe thee to be. Now we believe that thou art a being than which none greater can be 

thought. Or can it be that there is no such being since “the fool hath said in his heart, ‘there is 

no God’” [Psalms 14:1; 53:1]. But when this same fool hears what I am saying—“A being 

than which none greater can be thought”—he understands what he hears, and what he 

understands is in his understanding, even if he does not understand that it exists. For it is one 

thing for an object to be in the understanding, and another thing to understand that it exists. 

When a painter considers beforehand what he is going to paint, he has it in his understanding, 

but he does not suppose that what he has not yet painted already exists. But when he has 

painted it, he both has it in his understanding and understands that what he has now produced 

exists. Even the fool, then, must be convinced that a being than which none greater can be 

thought exists at least in his understanding, since when he hears this he understands it, and 

whatever is understood is in the understanding. But clearly that than which a greater cannot 

be thought cannot exist in the understanding alone. For if it is actually in the understanding 

alone, it can be thought of as existing also in reality, and this is greater. Therefore, if that than 

which a greater cannot be thought is in the understanding alone, this same thing than which a 

greater cannot be thought is that than which a greater can he thought. But obviously this is 

impossible. Without doubt, therefore, there exists, both in the understanding and in reality, 

something than which a greater cannot be thought. 

 God cannot be thought of as nonexistent. And certainly it exists so truly that it cannot 

be thought of as nonexistent. For something can be thought of as existing, which cannot be 

thought of as not existing, and this is greater than that which can be thought of as not 



existing. Thus if that than which a greater cannot be thought can be thought of as not existing, 

this very thing than which a greater cannot be thought is not that than which a greater cannot 

be thought. But this is contradictory. So, then, there truly is a being than which a greater 

cannot be thought—so truly that it cannot even be thought of as not existing.2 

 Anselm’s argument in the second paragraph just cited might be outlined in the 

following way: 

Premise 1: A being that cannot be thought of as not existing is greater than a being that can 

be thought of as not existing. 

Therefore, if God can be thought of as not existing, then a greater being that cannot be 

thought of as not existing can be thought of. 

Premise 2: God is the being than which nothing greater can be thought of. 

Conclusion: God cannot be thought of as not existing. 

The sentence in the reconstruction beginning with “Therefore” does not really follow from 

premise 1. It requires the further assumption, which Anselm clearly believed but did not state, 

that it is possible to think of a being than which nothing greater can be conceived or thought 

of. 

 The argument of the first paragraph seems slightly different, and more complicated. I 

outline it as follows: 

Premise 1: We can conceive of a being than which none greater can be conceived. 

Premise 2: Whatever is conceived exists in the understanding of the conceiver. 

Premise 3: That which exists in the understanding of a conceiver and also exists in reality is 

greater than an otherwise similar thing that exists only in the understanding of a conceiver. 

Therefore, a being conceived, than which none greater can be conceived, must exist in reality 

as well as in the understanding. 

Premise 4: God is a being than which none greater can be conceived. 



Conclusion: God exists in reality. 

The arguments seem very different from Euclid’s proof. Anselm’s presentation is not 

axiomatic. There is no system of definitions and postulates. In some other respects, however, 

Anselm’s arguments have similarities to Euclid’s geometric proof. Note the following about 

Anselm’s arguments: 

• Anselm’s arguments are meant to be demonstrations of their conclusions from 

perfectly uncontroversial premises. The arguments aim to show that the truth of the premises 

necessitates the truth of the conclusions. 

• In the first argument, the discussion of the painter and the painting is not essential to 

the proof. Anselm includes the discussion of a painter and painting to help the reader 

understand what he, Anselm, means by distinguishing between an object existing in the 

understanding and understanding that an object exists. The painter discussion therefore plays 

a role in Anselm’s proof much like the role played by the drawing in Euclid’s proof: it is 

there to help the reader see what is going on, but it is not essential to the argument. 

• Like Euclid’s proof, Anselm’s arguments can be viewed as little essays in which, if 

we discount explanatory remarks and digressions, each claim is intended to follow either 

from previous claims or from claims that every reader will accept. 

Study Questions 

I. Anselm seems to have thought that his arguments establish that there is one and only 

one being than which none greater can be conceived. But his premises do not appear to 

necessitate that conclusion; we could consistently suppose that there are many distinct beings 

each of which is such that none greater can be conceived. What plausible premises might 

Anselm add that would ensure that at most one being is such that none greater can be 

conceived? 



2. One famous objection to Anselm’s argument is this: If Anselm’s argument were valid, 

then by the same form of reasoning, we could prove that a perfect island exists. But the island 

than which none greater can be conceived does not exist in reality. Therefore, something 

must be wrong with Anselm’s proof of the existence of God. Give an explicit argument that 

follows the form of Anselm’s and leads to the conclusion that there exists an island than 

which none greater can be conceived. Is the objection a good one? Has Anselm any plausible 

reply? 

3. Giving a convincing counterexample to an argument shows that either the premises of 

the argument are false or the premises do not necessitate the truth of the conclusion. But the 

“perfect island” objection does not show specifically what is wrong with Anselm’s argument. 

Try to explain specifically what is wrong with your proof that there exists a perfect island. 

GOD AND SAINT THOMAS 

Let me add another example to our collection of demonstrations. The most famous proofs of 

the existence of God are due to Saint Thomas Aquinas (ca. 1225–1274). Aquinas gave five 

proofs, which are sometimes referred to as the “five ways.” They are presented in relatively 

concise form in his Summa Theologica. Four of the five arguments have essentially the same 

form, and the fifth is particularly obscure. I will consider only the first argument. In reading 

the argument, you must bear in mind that Aquinas had a very different picture of the physical 

universe than ours, and he assumed that his readers would fully share his picture. That picture 

derives from Aristotle. According to the picture Aquinas derived from Aristotelian physics, 

objects do not move unless acted on by another object. Further, Aristotle distinguished 

between the properties an object actually has and the properties it has the potential to have. 

Any change in an object consists in the object coming actually to have properties that it 

previously had only potentially. 

 In translation Aquinas’s argument is as follows: 



The existence of God can be proved in five ways. 

 The first and most manifest way is the argument from motion. It is certain, and 

evident to our senses, that in the world some things are in motion. Now whatever 

Aquinas and Aristotle 

Aristotle was a student of Plato’s. After Plato’s death, Aristotle left Athens and subsequently 

became tutor to Alexander of Macedonia, later Alexander the Great. When Alexander 

conquered Greece, Aristotle returned to Athens and opened his own school. With the collapse 

of the Macedonian empire, Aristotle had to flee Athens, and he died a year later. During his 

life he wrote extensively on logic, scientific method and philosophy of science, metaphysics, 

physics, biology, cosmology, rhetoric, ethics and other topics. Saint Thomas Aquinas helped 

to make Aristotle’s philosophy acceptable to Christian Europe in the late Middle Ages. 

Writing in the thirteenth century, Aquinas gave Christianized versions of Aristotle’s 

cosmology, physics, and metaphysics. The result of the efforts of Aquinas and others was to 

integrate Aristotelian thought into the doctrines of the Roman Catholic Church in the late 

Middle Ages. Aristotle’s doctrines also became central in the teachings of the first 

universities, which began in Europe during the thirteenth century. The tradition of Christian 

Aristotelian thought that extends from the Middle Ages to the seventeenth century is known 

as scholasticism. 

is moved is moved by another, for nothing can be moved except it is in potentiality to that 

towards which it is moved; whereas a thing moves inasmuch as it is in actuality. For motion 

is nothing else than the reduction of something from potentiality to actuality. But nothing can 

be reduced from potentiality to actuality, except by something in a state of actuality. Thus 

that which is actually hot, as fire, makes wood, which is potentially hot, to be actually hot, 

and thereby moves and changes it. Now it is not possible that the same thing should be at 

once in actuality and potentiality in the same respect, but only in different respects. For what 



is actually hot cannot simultaneously be potentially hot; but it is simultaneously potentially 

cold. It is therefore impossible that in the same respect and in the same way a thing should he 

both mover and moved, i.e., that it should move itself. Therefore, whatever is moved must be 

moved by another. If that by which it is moved be itself moved, then this also must needs be 

moved by another, and that by another again. But this cannot go to infinity, because then 

there would be no first mover, and, consequently, no other mover, seeing that subsequent 

movers move only inasmuch as they are moved by the first mover; as the staff moves only 

because it is moved by the hand. Therefore it is necessary to arrive at a first mover, moved by 

no other; and this everyone understands to be God.3 

 Aquinas’s attempted demonstration again shares many of the features of Euclid’s and 

Anselm’s arguments. From premises that are supposed, at the time, to be uncontroversial, a 

conclusion is intended to follow necessarily. The argument is again a little essay, with claims 

succeeding one another in a logical sequence. The example of heat is another illustration, like 

Anselm’s painter and Euclid’s diagram, intended to further the reader’s understanding, but it 

is not an essential part of the argument. 

 Aquinas’s argument illustrates that a proof (or attempted proof) may have another 

proof contained within it. Thus the remarks about potentiality and actuality are designed to 

serve as an argument for the conclusion that nothing moves itself, and that conclusion in turn 

serves as a premise in the argument for the existence of an unmoved mover. 

 Neglecting Aquinas’s remarks about potentiality, which serve as a sub-argument for 

premise 2, we can outline the argument in the following way: 

Premise 1: Some things move. 

Premise 2: Anything that moves does so because of something else. 

Therefore, if whatever moves something itself moves, it must be moved by a third thing. 



Therefore, if there were an infinite sequence of movers, there would be no first mover, and 

hence no movers at all. 

Therefore, there cannot be an infinite sequence of movers. 

Conclusion: There is a first, unmoved mover. 

 One way to show that the premises of the argument do not necessitate Aquinas’s 

conclusion is to imagine some way in which the premises of the argument could be true and 

the conclusion could at the same time be false. With this argument, that is easy to do. We can 

imagine that if object A moves object B, object B moves object A. In that case no third object 

would be required to explain the motion of B. We can also imagine an infinite chain of 

objects in which the first object is moved by the second, the second by the third, the third by 

the fourth, and so on forever. Neither of these imaginary circumstances is self-contradictory 

(although Aquinas would certainly have denied their possibility). So we can criticize 

Aquinas’s argument on at least two counts: 

• The first “therefore” doesn’t follow. The two premises are consistent with the 

assumption that if one thing moves another, then the second, and not any third thing, moves 

the first. 

• The second “therefore” doesn’t follow. We can consistently imagine an infinite 

sequence of movers without there being an endpoint, a “first mover,” just as we can 

consistently imagine the infinite sequence of positive and negative integers in which there is 

no first number. 

Study Questions 

I. If we ignore other difficulties with Aquinas’s argument, would it show that there is 

one and only one unmoved mover? 

2. Why should the fact that we can imagine circumstances in which the premises of the 

argument are true and the conclusion is false tell against the value of the proposed proof? 



Does the fact that we can imagine such circumstances show that the premises do not 

necessitate the conclusion? If we could not consistently imagine circumstances in which the 

premises were true and the conclusion false, would that show that the premises do necessitate 

the conclusion? Why or why not? 

3. Read the following argument, also from Saint Thomas. Outline the argument (follow 

the examples in this chapter). Explain why the premises do not necessitate the conclusion. 

(When Saint Thomas uses the term “efficient cause,” he is using an idea of Aristotle’s. You 

will not misunderstand the passage if you simply read the term as meaning “cause.” By 

“ultimate cause” of an effect, Aquinas means the cause that is nearest in time to the effect.) 

The second way [to prove the existence of God] is from the nature of efficient cause. In the 

world of sensible things we find there is an order of efficient causes. There is no case known 

(neither is it, indeed, possible) in which a thing is found to be the efficient cause of itself; for 

so it would be prior to itself, which is impossible. Now in efficient causes it is not possible to 

go on to infinity, because in all efficient causes following in order, the first is the cause of the 

intermediate cause, and the intermediate is the cause of the ultimate cause, whether 

intermediate cause be several, or one only. Now to take away the cause is to take away the 

effect. Therefore, if there be no first cause among efficient causes, there will be no ultimate 

nor any intermediate cause. But if in efficient causes it is possible to go on to infinity, there 

will be no first efficient cause, neither will there be an ultimate effect, nor any intermediate 

efficient causes; all of which is plainly false. Therefore it is necessary to admit a first efficient 

cause, to which everyone gives the name of God.4 

INFINITY 

Evidently, Aquinas had trouble thinking through the meaning of infinity. He wasn’t alone, 

and the history of reasoning about infinity offers other examples for our collection. Paradoxes 

and puzzles about the infinite are very ancient, predating even Plato’s writings. Some ancient 



puzzles about motion are attributed to Zeno of Elea, who lived in the fifth century before 

Christ. Some of Zeno’s paradoxes involve subtle difficulties about the notion of infinity that 

were only resolved by mathematicians in the nineteenth century. In each case the paradox 

appears to be a proof of something absurd. One of Zeno’s paradoxes, known as the Achilles 

paradox, is very simple. 

 Suppose Achilles races a tortoise. Let the tortoise travel with speed s. The tortoise is 

permitted to travel a certain distance d before Achilles begins the race. In order to catch the 

tortoise, Achilles must first travel distance d, which will require time t(d). In that time the 

tortoise will have moved a distance s × t(d). To catch the tortoise after reaching point d, 

Achilles must first reach point d + (s × t(d)) from point d. That will take Achilles an amount 

of time equal to t(s × t(d)). In that time the tortoise will have moved a further distances s × t(s 

× t(d)). If we continue in this way, it always requires a finite time for Achilles to move from 

where he is at a moment to where the tortoise is at that same moment. In that amount of time, 

while Achilles is catching up to where the tortoise was, the tortoise will have moved a further 

distance. The motions generate the sequence pictured in figure 1.3. So there is no moment at 

which Achilles will catch the tortoise. 

 Zeno’s argument looks like a deductive proof, but since the conclusion is false, we 

know that either some assumption of the argument must be false or there must be a fallacy 

hidden somewhere in the argument. Since the premises are apparently banal, it seems that 

there must be a fallacy: the premises don’t necessitate the conclusion. Zeno’s argument points 

out that corresponding to Achilles' motion and the motion of the tortoise, there is an infinite 

series of distances between Achilles and the tortoise. No distance in this series is zero, but as 

the series goes on, the distances between Achilles and the tortoise get smaller and smaller. 

There is a corresponding infinite sequence of temporal intervals in which each interval in the 

sequence represents the time it takes for Achilles to run from the place where he is at one 



moment to the place where the tortoise is at that same moment. Zeno concludes from this that 

Achilles cannot catch the tortoise, and this is where the fallacy lies. We are familiar with 

infinite sequences of positive quantities that add up to a finite quantity. The decimal 

expansion of the fraction 1/3, for example, is equal to 0.3 + 0.03 + 0.003 + 0.0003 +   , where 

the sequence continues forever. With the help of modern mathematics, we would say that the 

sequence of distances between Achilles and the tortoise converges to zero and the sum of the 

sequence of temporal intervals is some finite number. That sum, whatever it is, represents the 

time required for Achilles to catch the tortoise. 

 The concept of infinity also created problems for later philosophical writers interested 

in the properties of God. Benedict Spinoza was a seventeenth century pantheist; he held that 

God consists of everything there is. Individual minds and bodies are, in Spinoza’s terms, 

modes of God’s existence. 

 Spinoza was troubled by the following objection to his view: 

We showed that apart from God no substance can be or can be conceived; and hence we 

deduced that extended substance is one of God’s infinite attributes. 

 However, for a fuller explanation, I will refute my opponents’ arguments, which all 

come down to this. First, they think that corporeal substance, insofar as it is substance, is 

made up of of parts, and therefore they deny that it can be infinite, and consequently that it 

can pertain to God. This they illustrate with many examples, of which I will take one or two. 

They say that if corporeal substance is infinite, suppose it to be divided into two parts. Each 

of these parts will be either finite or infinite. If the former, then the infinite is made up of two 

finite parts, which 

Spinoza and Euclid 

Spinoza (1632–1677) was the child of Spanish Jews who had moved to Holland to avoid 

religious persecution. He himself was ostracized from the Jewish community for his opinions 



about God. Spinoza earned his living as a lens grinder, but he was well known to his 

intellectually prominent contemporaries and was offered university positions, which he 

refused. 

 Spinoza’s major work, The Ethics, develops a view of nature in which there is a single 

substance, God. Most remarkable to a modern reader, Spinoza’s Ethics is presented in the 

same format as Euclid’s Elements. There are definitions, postulates, propositions, and 

proof’s, or at least attempted proofs. In putting his theological views in this form, Spinoza 

exemplified the view, common among the great intellects of his time, that reasoning about 

metaphysical and epistemological questions should be rigorously scientific, and Euclid’s 

geometry represented, even then, the ideal deductive science. 

is absurd. If the latter, then there is than an infinite twice as great as another infinite, which is 

also absurd.5 

Spinoza was unsure whether or not this argument is valid. He responded, rather implausibly, 

that even though everything corporeal is an attribute of God, God does not have parts. 

 The argument Spinoza must address has a special form. It sets out to prove something, 

in this case that God is not corporeal. It proceeds by assuming the denial of what is to be 

proved. That is, it proceeds by assuming that God is corporeal. From that assumption, 

perhaps with the aid of other assumptions that are thought to be obvious, the argument then 

tries to establish something thought to be false. The idea is that if the denial of a claim 

necessitates something false, then the claim itself must be true. This form of argument is 

known as reductio ad ubsurdum (reduction to the absurd), or more briefly, as a reductio 

argument. 

 We can outline the argument of Spinoza’s opponents in the following way: 

Assumption: God is corporeal. 

Premise: Whatever is corporeal can be divided into two parts. 



Premise: God is infinite. 

Hence, an infinity can be divided into parts. 

Premise: Every part is either infinite or finite. 

Premise: The whole is the union of its parts. 

Hence, either an infinity is the union of two finite parts, which is impossible, or an infinity is 

the union of two lesser infinities, which is also impossible. 

Conclusion: the assumption is false, i.e., God is not corporeal. 

We can see that the argument is invalid, and for several different reasons, all having to do 

with the next to last sentence, beginning “Hence.” First and most simply, the last step before 

the conclusion omits a possible case: the infinity might be divided into two parts, one of 

which is finite and the other infinite. Second, an infinite collection of objects can be divided 

into two subcollections, each of which is infinite. The integers, for example, consist of all 

negative integers together with all nonnegative integers. The set of all negative integers is 

infinite, and the set of all nonnegative integers is also infinite. 

INFINITY AND CARDINALITY* 

Spinoza’s argument does raise an interesting and fundamental question about the infinite: 

Can one infinity be larger than another infinity? In the nineteenth century this question 

engendered a number of simple proofs that created a revolution in our understanding of 

infinity, and since the question touches on an issue that runs through the history of 

philosophy, it is worth considering some of the relevant ideas and arguments here. 

 What do we mean when we say that one set or collection is larger than another? 

Consider the two collections below: 

{A, B, C, D} 

{X, Y, Z, U, V} 



Clearly, the second set is bigger that the first set, but what makes it so? One answer is this: If 

we try to match each member of the first set with a unique member of the second set, we can 

do so. For example, we can match A with X, B with Y, C with Z, and D with U. But if we try 

to match each member of the second set with a unique member of the first set, we run out of 

distinct things. For example, we can match X with A, Y with B, Z with C, and U with D. But 

then we still have V left over; whatever member of the first set we choose to match with V, 

that member will already have been matched with X, Y, Z, or U. We say that there is a one-to-

one mapping from the first set into the second set, but there is no one-to-one mapping from 

the second set into the first. 

 I will take this as our definition of “larger than” for sets: 

Definition Set K is larger than set L if and only if there is a one-to-one mapping relating 

each member of L to a distinct member of K but there is no one-to-one mapping relating each 

member of K to a. distinct member of L. 

 Continuing with this idea, we can say what it means for two sets to be of the same 

size. Two sets are of the same size if the first is not larger than the second and also the second 

is not larger than the first. When neither of two sets is larger than the other in this sense, we 

say they have the same cardinality. 

Definition Any two sets K, L have the same cardinality if and only if there is a one-to-one 

mapping relating each member of K to a distinct member of L and there is a one-to-one 

mapping relating each member of L to a distinct member of K. 

For finite sets, the notion of cardinality is just our ordinary notion of the size of a set. All sets 

with 4 members have the same cardinality, all sets with 5 members have the same cardinality, 

sets with 5 members are larger than sets with 4 members, and so on. 

 An obvious property of finite sets is this: If K and L are finite sets and if K is a proper 

subset of L (that is, every member of K is a member of L but some member of L is not a 



member of K), then L is larger than K. The set {X, Y, Z}, for example, is larger than the set 

{X, Y}. Infinite sets behave differently. An infinite set can have the same cardinality as one of 

its proper subsets. Consider an example, the set of positive integers, and a proper subset of it, 

the set of even positive integers. There is a one-to-one correspondence that takes every 

positive integer to a distinct even positive integer, and the same correspondence viewed in the 

other direction takes every even positive integer to a distinct positive integer: 

1 2 3 4 5 6 7 8 9 10 ... 

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕  

2 4 6 8 10 12 14 16 18 20 ... 

The rule of correspondence is that each positive integer n is mapped to the even positive 

integer 2n. So the set of positive integers has the same cardinality as the set of even positive 

integers. You can also easily show that the set of positive integers has the same cardinality as 

the set of odd positive integers, and also the same cardinality as the set of all integers, 

whether positive, zero, or negative. All of these distinct infinite sets have the same size. 

 The property of having the same cardinality as a proper subset of itself neatly 

separates the finite from the infinite. Finite sets can’t have that property, whereas every 

infinite set will have it for some of its proper subsets. The distinction is sometimes used to 

define the notion of an infinite set: 

Definition A set is infinite if and only if it can be put into one-to-one correspondence with 

a proper subset of itself. 

 Now an obvious question raised by Spinoza’s argument is this: Are some infinities 

larger than other infinities? In view of the considerations we have just discussed, we can 

understand that question in the following way: Are there two infinite sets that cannot be put 

into one-to-one correspondence with one another? In the nineteenth century, Georg Cantor 

(1845–1918) proved that there are. I will consider simple versions of two of his proofs. One 



concerns the number of subsets of any set. It is easy to see that any finite set has more distinct 

subsets that it has members. The set {A}, for example, has only one member, but it has two 

distinct subsets, namely itself and the empty set. The set {A, B) has two members, but it has 

four distinct subsets. Given any finite set S with n members, we can count the distinct subsets 

of n in the following way. Imagine forming an arbitrary subset U of S. For any member of S 

there are two choices: either the member is in U or it isn’t in U. To determine U, we have to 

make that choice for each of the n members of S, so we have n choices, each with 2 options. 

Every distinct way of making the choices results in a distinct subset of S, so there are 2n 

distinct subsets. And for all n, 2n is greater than n. Cantor extends the conclusion to sets with 

infinite cardinality: 

Cantor’s first theorem For any set K, the set, denoted β(K), whose members are all 

subsets of K is larger than K. 

Proof Suppose the theorem is false. Then there is some set W such that the set β(W) of all 

subsets of W is not larger than W. So β(W) can be put into a one-to-one correspondence with 

W, i.e., for every member of β(W) there will be a corresponding distinct member of W. Let g 

denote such a correspondence or mapping. So g maps the set of all subsets of W, β(W), one-

to-one into W. Let g−1 denote the inverse of g. The inverse mapping g−1 maps members of W 

to subsets of W, and for all subsets S of W, g−1 (g(s)) = S. if K is any subset of W, then K is a 

member of β(W), and so g puts K into correspondence with some member of W, which I 

denote by g(K). Then the following subset of W, which I will call R, must exist: R = {x in W 

such that x  g−1(x)}. Remember that because g is a one-to-one correspondence, for each x 

there can be only one set S such that x = g(S). 

 Now consider R as defined. R is a subset of W, so R is a member of β(W). So g, which 

I have assumed to exist, puts R in correspondence with some member g(R) of W. Every 

member of W is either a member of R or not a member of R. Hence g(R) is either a member 



of R or not a member of R. Suppose that g(R) is a member of R. Then since R is the set of all 

members x of W such that x is not a member of g−1 (x), it must he the case that g(R) is a 

member of W, which is not a member of R. So if g(R) is a member of R, then g(R) is not a 

member of R, which is a contradiction. Hence g(R) cannot be a member of R. But if g(R) is 

not a member of R, then since R is the set of all members x of W such that x  g−1 (x), it 

follows that g(R) is a member of R (because g(R) satisfies the necessary and sufficient 

condition for being a member of R). 

 Hence the assumption entails that there exist a set whose existence implies a 

contradiction. Since a contradiction must be false, the assumption must be false. Q.E.D. 

 The proof of Cantor’s first theorem is more complex than any of those we have 

considered previously. It is a reductio argument; that is, the theorem is proved by assuming 

its denial and deducing a contradiction. It has as an immediate corollary the result that there 

are infinite sets of different size. 

 Cantor gave a particular example of two infinite sets one of which is larger than the 

other. His example does not consider a set and the corresponding set of all subsets of that set. 

Instead, it concerns the natural numbers 0, 1, 2, 3, ... and the set of all functions defined on 

the natural numbers. Cantor proved that the set of all functions taking natural numbers as 

arguments and having natural numbers as values is larger than the set of all natural numbers 

itself. To understand his argument we need a few definitions. 

Definition A function of one argument is any set of ordered pairs of objects such that for all 

a, b, c, if <a, b> and <a, c> are both in the set, then b = c. Equivalently, a function is a set of 

ordered pairs in which there arc no two ordered pairs with the same first member but different 

second members. 

Definition Two functions are one and the same if they arc the same set of ordered pairs. 

The set of first members of ordered pairs in a function is called the domain of the function, 



while the set of all second members of ordered pairs in a function is called the range of the 

function. 

Definition A function is one-to-one if and only if for all a, b, and c, if <a, b> and <c, b> are 

in the function, then a = c. 

Definition A function on the natural numbers is a set of ordered pairs whose domain is the 

natural numbers and whose range is contained in the set of natural numbers. 

Cantor’s second theorem The set F of all functions on the natural numbers is larger than 

the set N of all natural numbers. 

Proof Suppose that the proposition is false. Then we can form a one-to-one correspondence 

between the natural numbers and the functions in F so that each function in F is assigned a 

number and no two functions in F are assigned the same number. So let the functions in F be 

denoted by w1 (x), w2(x), .... Consider an infinite table in which each row is infinitely long 

and there are infinitely many rows. The ith row lists in order the values of the ith function for 

x = 1, x = 2, and so on. Such a table is illustrated in figure 1.4. 

 I will show that there is a function z on the natural numbers that is not in this table. I 

define z as follows: Make z(l), the value of z for the number 1, equal to any value different 

from w1 (l) (for example, z = w1(1) + 1). Make z(2) equal to any value different from w2(2). 

And for every number k, make z(k) equal to a value different from wk(k). I thereby alter the 

diagonal of the table in figure 1.4 to form a new counterdiagonal. 

 Then for every function w1 in the table, the value of z differs from that function for 

some argument. Hence z is a function on the natural numbers that is not in the table. But since 

the table contains the supposed enumeration of the functions in F, z is not in F, which is a 

contradiction. Since we cannot consistently suppose that the proposition is false, it is true. 

Q.E.D. 

Study Questions 



1. Prove that it follows from Cantor’s first theorem that there are two infinite sets of 

different size. 

2. Cantor’s second theorem is called a diagonalization argument because it can be 

depicted as involving a change in a diagonal. Can you picture what is going on in Cantor’s 

first theorem as also involving a diagonal? (Hint: Think of a table with a list of the members 

of W along the top and a list of the members of β(W) along the left-hand side. In each square, 

enter a I if the member of β(W) for that row has the member of W for that column as its value 

according to the assumed one-to-one correspondence g. Otherwise, enter 0 in the square. 

Now explain what the argument in the proof of Cantor’s first theorem amounts to in terms of 

this table.) 

3. What is the point of the picture in the proof of Cantor’s second theorem? 

4. Give a proof that there cannot exist a barber who shaves all and only those who do not 

shave themselves. (Hint: The argument is a simplified version of the proof strategy used for 

Cantor’s first theorem.) Can your proof be viewed as a diagonalization argument? 

CONCLUSION 

I began with a set of questions that I have not yet answered: 

1. How can we determine whether or not a piece of reasoning from premises to a 

conclusion is a valid deductive argument? 

2. How can we determine whether or not a conclusion is necessitated by a set of 

premises? If a conclusion is necessitated by a set of premises, how can we find a valid 

deductive argument that demonstrates that necessary connection? 

3. What features of the structure of the world, the structure of language, and the relation 

between words and thoughts and things make deductive reasoning possible? 

My initial approach to these questions has been Socratic: I have sought for examples of 

arguments that present valid demonstrations and arguments that fail to demonstrate their 



conclusions. In each example a set of assumptions, it is claimed, necessitate a conclusion. 

Sometimes this claim is not correct, but it still seems plausible that the argument could be 

revised so that the premises do necessitate the conclusion. Thus Euclid’s proof of his first 

proposition fails to show that the two circles he constructs intersect, and for that reason his 

postulates and common notions do not necessitate the first proposition. But it seems plausible 

that we could add axioms to Euclid’s postulates so that the resulting system would permit us 

to deduce proposition 1. Modern reformulations of Euclid’s theory do just that. On the other 

hand, some attempts at proof just seem to involve fundamental mistakes of reasoning. Other 

attempts at proof may leave us uncertain. Thus after reading and thinking about Anselm’s 

proof of the existence of God, many people are left uncertain as to whether or not the proof is 

valid. (Of course, the proof could be valid—which means that if the premises of the argument 

are true, then necessarily the conclusion is true—even though the premises of the argument 

are in fact false.) 

 I have yet to formulate a theory that will agree with, and in some sense explain, our 

judgment about which demonstrations are valid and which are not. In the next chapter we will 

consider the first such theory ever formulated, Aristotle’s theory of the syllogism. 

Review Questions 

l. Why is deductive reasoning often thought to be the first kind of reasoning that 

philosophy should try to understand? 

2. What are three fundamental questions about deductive reasoning? 

3. Explain what we want a theory of deductive reasoning to accomplish. 

4. Why is finding a good theory of deductive reasoning more difficult than finding 

conditions that will include the positive and exclude the negative examples in the coding 

problem, the series problem, and the arch problem? 

5. What is the Socratic method? 



6. What features are common to the good deductive arguments considered in this 

chapter? 

7. What is the role of the illustrations that accompany some of the arguments given in 

this chapter? 

8. What was Aquinas’s relation to Aristotle? 
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Figure 1.1 

Positive and negative examples of arches 

Figure 1.2 

Figure 1.3 

Achilles and the tortoise. A = Achilles, T = the tortoise, and the lines = the distance 

remaining between Achilles and the tortoise. 

Figure 1.4 

Cantor’s diagonalization argument 

Table 1.1 

Sequences in a code 

Positive examples (well formed) Negative examples (not well formed) 

AA AAAA 

BB BBBB 

AABB BBBBAA 

AAABB AABBBB 

BBAA AAAAAA 

BBAAA BBBBBB 

BBAAABB AAAAAAAAABB 

BBAAABBB BBAAAAAAAAA 

AABBB AAAAAAAAA 



AABBAAA BBBBBBBBB 

AAABBAAA  

AAABBBAAA  

AAA  

BBB  

AAAAA  

BBBBB  

A  

B  

 

  



Chapter 2 

ARISTOTLE’S THEORY OF DEMONSTRATION AND PROOF 

ARISTOTLE AND GREEK SCIENCE 

In the fourth century before Christ the entire human population consisted of perhaps 130 

million people. Mediterranean civilization was spread around the coast of Greece and the 

Greek islands and in areas of modern Italy, Turkey, Syria, Lebanon, Israel, and northern 

Egypt. Most travel of any distance was by open boat with one or two square rigged sails and 

oarsmen. Such ships carried the produce of one region to another; they also carried soldiers 

for the almost perpetual wars of the area. 

 What was known around 400 B.C.? A wide variety of practical arts, including metal 

production and metal working sophisticated enough to make good hand tools, weapons, and 

armor; carpentry sophisticated enough to make sea-going boats; the principles of navigation, 

architectural engineering, quarrying, and stone work; methods of manufacturing cloth and 

paper; methods of animal husbandry, fishing, and peasant agriculture. 

 And what about science? In mathematics, knowledge consisted principally of 

geometry and the theory of numbers. Many physical laws of mechanics and hydraulics were 

understood and used, but astronomy was the most developed subject in the physical sciences. 

Ancient astronomy was based on naked-eye observations of the positions of the stars and on 

observations using simple instruments. Astronomy developed because it was easy to make a 

large number of relevant observations, because the motions of the planets, moon, and sun 

could be studied as applications of geometry, and because astronomy was of practical use in 

navigation. Other scientific subjects like biology and medicine were also studied, and broad 

speculations about the structure of the universe and the structure of matter were common. 

 In this setting Aristotle developed a science of biology, a theory of cosmology, a 

theory of motion, and a theory of the constitution of matter. Aristotle also produced 



something that proved to be far more important than his scientific contributions: a theory of 

how to conduct inquiry. He provided answers to questions such as these: What is chance? 

What is causality? What is a scientific explanation? What is a demonstration? How can 

experience be used to provide knowledge? What is a proof? 

 Aristotle’s scientific contributions were surpassed in many areas. By about A.D. 100 

Ptolemy had developed a theory of the motion of the planets that was more detailed and 

precise than anything Aristotle suggested. Ptolemy also contributed to optics, and Arab 

scientists of the Middle Ages extended optical studies. Archimedes made more enduring 

contributions to physics than did Aristotle, and medieval Christian thinkers developed a 

theory of motion that improved on Aristotle’s. But in contrast, Aristotle’s general conception 

of how science is to he conducted influenced Western civilization almost until the eighteenth 

century. For roughly 2,300 years Aristotle’s writings set the standards for scientific 

explanation and for deductive arguments. Aristotle’s theory of scientific method deserves our 

attention, for it is the first fully developed account of human knowledge, and it contains the 

first substantial theory of proof we know of. 

 At the very core of Aristotle’s understanding of how inquiry should be conducted is a 

theory of proof or deductive argument. Aristotle’s logical theory, which endured until late in 

the nineteenth century, is still worth studying because it is comparatively easy to understand 

and, from a modern point of view, it is correct in special cases. (For similar reasons, 

introductory physics courses present Newton’s dynamics, even though that theory has been 

superseded.) But before we turn to Aristotle’s logical theory, we should consider his general 

conception of how science should be constructed and justified. That conception is in many 

ways very different from our own understanding, but in other ways it is quite modern. It is 

not only interesting in itself; it may also help us to understand why Aristotle thought that his 

theory of proof was correct and complete. 



THE PLATONIC CONCEPTION OF KNOWLEDGE 

Aristotle was Plato’s pupil, and it is not surprising that these two great thinkers shared certain 

views. In particular, Plato and Aristotle shared a view about the logical structure of 

knowledge. 

 For Plato, the paradigmatic scientific question is of the form, “What is x?” Here x 

might be filled by some important moral characteristic, such as virtue or courage or justice, or 

by some description of a kind of thing found in nature, such as a human or earth or water, or 

even some mathematical object, such as a triangle. Plato wrote a series of dialogues in which 

questions of this kind are pursued. The Meno, for example, considers the question, What is 

virtue? 

 Plato believed that acceptable answers to such questions must have a particular form. 

Any acceptable answer must give a combination of features shared by all things that are x and 

by no things that are not x. In Plato’s conception, it is quite unsatisfactory to answer the 

question, What is virtue? by giving a list of virtues. A proper answer to the question must 

specify what it is that all things in any such list share and that makes them, and nothing else, 

virtues. 

 How are we to answer such questions? How are we to come to know what is virtue, 

what is water, what is justice? Plato held that knowledge requires certainty. By “certainty” he 

did not mean simply an unalterable conviction. Someone can have an unalterable conviction 

whether or not what they believe is the truth. They might simply be dogmatic or stubborn or 

stupid. Certainty, as Plato understood it, requires not only that one have a belief hut also that 

the belief he true and that it have been acquired by an infallible method. An infallible method 

is one that never leads to a false conclusion: whenever anyone comes to a conclusion by such 

a method, that conclusion is true. 



 Plato rightly concluded that experience can never provide us with the kind of certainty 

that he required for knowledge. No matter how carefully or thoroughly we observe or 

experiment, conclusions drawn from experience are not infallible. Both in science and in 

everyday life we sometimes drawn erroneous conclusions from our experience. Experience, 

Plato held, can form the basis of opinion, but not the basis of knowledge. 

 If we know anything, then, we cannot come to know it through experience. Plato held 

that we really don’t ever come to know anything. Anything we know, we always knew. The 

psychological process by which someone seems to come to know something, the process that 

we sometimes mistake for learning from experience, is really a process of recollection, 

according to Plato. Examples provided by experience stimulate us to remember truths that 

were stamped on our souls before our birth. Recollection is infallible because nothing but 

truth was stamped on our souls. 

 That is how we know, according to Plato. But what is it that. we know? We tend to 

think that knowledge is about the world, about the things and events and processes and 

relationships and causal powers in the world. Plato thought otherwise. The clearest examples 

of knowledge available to Plato were geometry and relations among numbers. According to 

Euclidean geometry, two points determine a straight-line segment, a triangle is a figure with 

three straight-line segments as sides, and the sum of the internal angles of a triangle equal 

two right angles. But any physical triangle we try to construct will be imperfect. Lines in 

nature aren’t perfectly straight; the sum of the internal angles of the figures we make or draw 

aren’t exactly the sum of two right angles. Plato in effect argued as follows: Since geometry 

is known, it must he true. Accordingly, whatever geometry is about, it must be true of its 

subject. But since geometry is not true of the objects of the physical world, it is not about 

them. So it is about something else. 



 Plato called the objects of knowledge forms. In Plato’s conception, the forms aren’t in 

the world, and they certainty are not parts, aspects, or properties of things in the world. They 

are quite literally not of the world. Of course, the objects and properties of this world have 

some relation to the forms, but the relation is obscure. Plato says that worldly things 

participate in forms. The idea, very roughly, is that earthly things are crude models of forms, 

the way a chalk drawing of a triangle is a crude model of a Euclidean triangle. 

 Aristotle shared with Plato the view that knowledge requires certainty, and also the 

view that what we seek to know are combinations of properties or features that make a thing 

an x—a man or a triangle or whatever may be the topic of inquiry. But Aristotle brought the 

forms down to earth, and the result was a conception of nature and of scientific inquiry that is 

rather different from Plato’s. 

ARISTOTLE’S CONCEPTION OF NATURE 

In Aristotle’s conception, if a thing changes, it acquires some new property or loses some old 

property. For change to be possible, there must exist something that can be identified as one 

and the same thing before and after the change. So what is the same before and after the 

change must itself be unchanged. Aristotle calls substance whatever endures through change 

and has properties attached to it. Attributes or properties are features that can attach to a 

substance at one time and not attach to it at other times. Substance that has no properties and 

is completely unformed, Aristotle calls prime matter. Aristotle’s conception of the 

fundamental stuff of the universe can be very roughly pictured as gobs of stuff enduring 

through time but having various attributes stuck to it at any moment. Of course, Aristotle 

didn’t think of properties as literally stuck to substance, like notices on a bulletin board. 

 It is tempting to think that the world is put together in the same way that our 

descriptions of it are assembled. In English, as in Greek, we assemble sentences from noun 

phrases and verb phrases. Noun phrases typically occur as subjects in sentences. They include 



common nouns such as “cat,” “dog,” “noon,” “eclipse,” “tree.” Verb phrases typically occur 

as predicates that are applied to subjects; they include verbs and verbs together with 

adjectives or adverbs, such as “is black,” “is mean,” “occurs rarely,” “is deciduous.” If we put 

subject terms together with predicate terms in the appropriate way and introduce extra 

grammatical words (such as “the”) in the appropriate places, we get sentences: 

The cat is black. 

The dog is mean. 

Eclipses occur rarely. 

Vines are deciduous. 

 Aristotle thought that the fundamental distinctions in the world are indeed reflected in 

fundamental distinctions in language. He held, for example, that the particular objects, such 

as a mean dog, are constituted by matter and by form. A mean dog is matter formed into a 

dog that is mean. 

 We have devices in our language for turning a sentence into a new subject for a new 

predicate. We can say, for example: 

The animal that is a cat is trained. 

The mean dog is four-legged. 

The deciduous vines are broad leafed. 

According to Aristotle, the world has the same feature. When form is applied to matter, the 

combination becomes the matter or substance for the application of still other forms. When 

we have a black cat, for example, we have a particular object constituted by matter and form. 

That object can then be the matter that we cause another form to obtain. So if we train the 

black cat, the black cat is caused to acquire a further form; in other words, the black cat is 

formed into a trained black cat. 



 Aristotle thought of nature in terms of hierarchies. In particular, he thought of 

complex entities as built up by the application of a sequence of forms to bare, unformed 

matter. Suppose that there is bare matter with no form of any sort. If that bare matter is 

formed into something living, the result is living matter. If living matter is formed into an 

animal, the result is something animate. If animate matter is given canine form, the result is a 

dog. If instead animate matter is formed into something with a rational soul, the result is a 

human. We can picture the process by means of a kind of diagram. 

 

(Diagrams consisting of nodes connected by directed lines are now called directed graphs. If 

the connections are just lines and not arrows, so that the order does not matter, the diagram is 

simply called a graph.) 

 Another fundamental idea in Aristotle’s conception of nature is the distinction 

between the properties that a thing has accidentally and the properties that a thing has 

essentially. A thing has a property accidentally if it could possibly not have had that property. 

It is an accidental property of a dog that it is a trained dog. Fido, the trained dog, would still 

be Fido if it had not been trained. In Aristotle’s terms, it is an accidental feature of Ronald 

Reagan that he was elected president. Ronald Reagan would still be Ronald Reagan if he had 

not been elected president. Essential attributes of a thing are those features without which the 

thing would lose its identity. Fido is essentially a dog. Anything that is not a dog could not be 

Fido. Any creature that is by nature not furred, not four-legged, or not born of a bitch is not a 

dog, and hence is not Fido. These are essential properties of Fido. Similarly, Ronald Reagan 

is essentially a man, and anything that is not a man could not be Ronald Reagan. 

 For each part of nature, there is a hierarchy that includes only the essential attributes 

or forms of objects and ignores accidental attributes. According to Aristotle, the goal of 



science is to find the structure of the appropriate hierarchy for any subject, whether it is 

astronomy, biology, or cosmology. 

 Aristotle thought that natural processes have natural ends or purposes. An acorn does 

not have leaves or roots or bark, but it has the potential to acquire leaves and roots and bark, 

and in the natural course of things, it will come to be an oak tree that actually has those 

features. A human infant does not have language or reason, but it has the potential to acquire 

both, and in the natural course of things, it will do so. Aristotle thought of all natural 

processes in the same way; each has an end, and in the natural course of things, that end will 

be achieved. 

 Aristotle’s conception of nature involves a conception of causality different from our 

own. Consider questions such as “Why does the sun give warmth?” or “Why does water boil 

when heated?” or “Why do stars twinkle?” or “Why are vines deciduous?” These questions 

are requests for causal explanations. Often causal questions are about how something came to 

be or how it came to be a certain way. In Aristotle’s view, there is not just one sort of answer 

to be given to these questions; there are four different sorts, corresponding to four different 

senses of “cause.” Each question asks about an object or kind of object and about an attribute 

of that object or objects of that kind. 

 An object has a specific attribute just in case the object is obtained by imposing a 

specific form on an appropriate substance. So one sort of cause is the form of the object 

responsible for the attribute, and another sort of cause is the matter on which the form is 

imposed. The first is called the formal cause, and the second is called the material cause. 

Aristotle tended to think of formal causes as internal principles of development in natural 

objects, as whatever it is, aside from matter, that determines that acorns grow up to be oak 

trees rather than hemlock trees, for example. 



 For an attribute to be acquired by a thing, some action must take place to impose a 

further form on matter. An acorn doesn’t become a oak tree unless it is covered with earth in 

a place where rain and sun fall. A block of marble does not become a statue of Venus without 

the action of a chisel. For Aristotle, the efficient cause of a thing possessing a certain attribute 

is the process by which the matter of the thing acquires the appropriate form. Efficient causes 

are the kinds of events or processes that we nowadays think of as causes. 

 According to Aristotle, natural processes have purposes or ends, just as human 

activities have purposes. The qualities and attributes that things take on in the normal course 

of events are attributes they have so that these purposes or ends will be achieved. One aspect 

of the explanation of why the sun gives warmth, for example, is the purpose or goal of that 

state of affairs. One might hold, for example, that the sun gives warmth so that life can 

endure on earth. Aristotle did not mean, of course, that the sun deliberately intends or plans to 

make life prosper on earth. The plan is nature’s, not the sun’s. Whatever it is for the purpose 

of which an object has an attribute, Aristotle calls the final cause of the thing’s having the 

attribute. 

 The doctrine of four causes forms one of the centerpieces of Aristotle’s conception of 

science. Scientific inquiry is an attempt to answer “why” questions. When such questions are 

about why something comes to be, they are ambiguous, according to Aristotle: their meaning 

depends on whether one is asking for the material, efficient, final, or formal cause. 

 Aristotle’s conception of causality and his conception of scientific explanation as the 

statement and demonstration of causes formed a framework for understanding scientific 

inquiry that lasted until the eighteenth century. Together with his theory of proof, these 

conceptions make up an important part of the background against which modern philosophy 

was formed. I will return to them again in the next chapter when I describe seventeenth-



century approaches to the idea of a proof, and I will consider them yet again in later chapters 

when I take .up the subject of inductive inference. 

Study Questions 

1. Does the sentence “Sam and Suzy love one another” consist of a predicate applied to 

a subject? What about the sentence “Equals added to equals are equal”? 

2. Biological taxonomy describes hierarchies of species, genera, and so on. Do such 

classifications exemplify Aristotle’s conception of nature? 

3. Use your own judgement to determine which of the following attributes of water are 

essential properties of water and which are accidental properties of water. 

 It covers most of the surface of the earth. 

 It is composed of molecules having two atoms of hydrogen and one atom of oxygen. 

 It can be obtained from wells. 

 It boils at 100 degrees centigrade at one atmosphere pressure. 

 It is sold in bottles by Perrier. 

 It is sometimes drunk with scotch. 

 It is of two kinds, salt and fresh. 

4. What do you suppose are the four Aristotelian causes that explain why mammals give 

milk? 

ARISTOTLE’S CONCEPTION OF SCIENCE 

Aristotle thought that the science of any subject should constitute a system of knowledge 

claims. Fundamental claims, or axioms, could be used to deduce less fundamental claims. 

The scientific explanation of a general fact about the world consists in a valid deductive 

argument that has a description of that general fact as its conclusion and has true, 

fundamental claims as its premises. Different sciences might have quite different axiomatic 

systems; there is one theory for biology, another for the constitution of matter, another for 



astronomy, and so on. These diverse theories may share certain fundamental assumptions, but 

they will also have postulates that are peculiar to their respective subject matters. Aristotle 

supposed that the axioms of a scientific subject would be divided more or less as Euclid 

divided his axioms into common notions and postulates of a peculiarly geometric character. 

 Aristotle’s conception of scientific explanation can be illustrated with a simple 

example. 

 

Each link in this picture corresponds to a general truth about the generation of humans: 

 All humans are animals. 

 All animals are living things. 

 All living things are composed of matter. 

Further, each of these sentences predicates- something essential of its subject. It is not an 

accidental feature of humans that they arc animals, nor is it an accidental feature of animals 

that they are living things, nor is it an accidental feature of living things that they are 

material. Next observe that each point in the illustration represents a kind of thing obtained 

by imposing additional form on the matter that is the kind of thing at the point above it. Thus, 

in Aristotle’s terms, living things result from imposing a nutritive soul upon elemental matter. 

Imposing an animate soul upon a living thing results in an animal, and so on. Finally, the 

imposition of a form upon matter is brought about by a characteristic kind of efficient cause. 

Thus the form of a nutritive soul is imposed upon matter by mixing the elements (for 

Aristotle, these were earth, air, fire, and water) in the proper proportions. 

 What can be demonstrated from this simple theory? An Aristotelian demonstration 

might go like the following: 

All humans are animals. 

All animals arc living things. 



Therefore, all humans are living things. 

All humans are living things. 

All living things are composed of matter. 

Therefore, all humans are composed of matter. 

This is not a very subtle or elaborate deduction, and Aristotle clearly intended that scientific 

demonstration should include more intricate arguments, such as those we find in Euclid’s 

geometry. A central philosophical problem for Aristotle was therefore to give an account of 

the inferences that make for a valid deduction. 

The axiomatic method 

The idea that a good scientific theory should constitute a system in which less fundamental 

claims can be deduced from more fundamental claims is not so foreign to modern science. 

We still have something of that conception in modern physics. Newton’s dynamics was 

originally formulated by Newton as an axiomatic system. The theory of relativity and the 

theory of quantum mechanics have been formulated as axiomatic systems. Non-Euclidean 

geometries have been developed as axiomatic theories. In contemporary psychology, theories 

about how to measure psychological properties have been formulated as axiomatic systems. 

In economics and statistics, theories of rational decision making are often expressed 

axiomatically. 

 Theories are sometimes first formulated as axiomatic systems. More often, axiomatic 

presentations are given when there is an understanding of the theory but that understanding 

needs to be clarified and made rigorous. Axiomatic presentations may enable one to see 

clearly the fundamental claims of a theory and to examine how other claims of the system can 

be validly deduced from them. 

ARISTOTLE’S LOGIC 



Aristotle’s logic concerns sentences that have a simple structure consisting of a quantifier 

such as “all” or “some” or “no” (as in “none”), a subject term such as “humans” or 

“Socrates,” and a predicate term such as “are animals” or “is not snub-nosed” or “are mortal.” 

For example, “All humans are mortal” or “Socrates is not snub-nosed” are the kind of 

sentences whose logic Aristotle described. 

 The characteristic form of inference in Aristotle’s logic is the syllogism, which 

consists of a pair of sentences that serve as premises and a sentence that serves as the 

conclusion. You have seen an example of syllogistic argument in the previous section. Here 

is another: 

Syllogism 1 

All humans are animals. 

All animals are mortal. 

Therefore, all humans are mortal. 

This is a valid syllogism. What makes it valid is that if the premises are true, then it follows 

necessarily that the conclusion is also true. If the premises happen to be false in a valid 

syllogism, then the conclusion may he either true or false. What matters is that in every 

conceivable case in which the premises could he true, the conclusion would also be true. 

 You can see why this syllogism counts as valid by drawing some circles. (This is not 

a device that Aristotle used. It was first developed during the Renaissance). Suppose you 

introduce a circle H to represent the set of all humans, another circle A to represent the set of 

all animals, and a third circle M to represent the set of all mortal things. The first premise 

says that the set of all men is contained in the set of all animals. So put circle H inside circle 

A to represent the state of affairs required for the first premise to be true (figure 2.1). The 

second premise says that the set of all animals is contained in the set of all mortal things. So 

put circle M around circle A to represent the state of affairs required for the second premise to 



be true (figure 2.2). Now consider the figure drawn (2.2). To represent the state of affairs 

required to make both premises true, you had to put H inside A and A inside M. So 

necessarily H is inside M, which is what the conclusion asserts. What makes a syllogism 

valid is that in any way you represent circumstances so that both of the premises are true, the 

conclusion is true as well. 

 Here is another valid syllogism: 

Syllogism 2 

All humans are animals. 

Some humans are quiet. 

Therefore, some quiet things are animals. 

Represent the class of all humans by the circle H, and the class all animals by the circle A, 

and the class of all quiet things by the circle Q. The first premise, as before, says that H is 

contained in A. The second premise is different. It says that there are things that are both 

human and quiet. This can only be represented by having circle Q, representing the set of all 

quiet things, intersect circle H, representing the set of all humans. So every representation 

that makes the first two premises of the syllogism both true has Q intersecting H and H 

contained in A (figure 2.3). But then Q must necessarily intersect A, which is what the 

conclusion asserts. 

 By contrast the following syllogism is not valid, even though all its premises and its 

conclusion are true: 

Syllogism 3 

All humans are animals. 

Some animals are mortal. 

Therefore, all humans are mortal. 



To see that the syllogism is not valid, remember that for validity there must be no possible 

way of arranging the circles representing the sets of things that are human, H, animals, A, and 

mortal, M, so that in that representation of possible circumstances the premises are both true 

but the conclusion of the syllogism is false. The first premise says, as before, that H is 

included in A. The second premise says that circles A and M intersect. One way in which the 

two premises could imaginably be true is given in figure 2.4. In this figure M intersects A, 

and H is included in A, but M does not include any of H. The figure represents an imaginable 

circumstance in which all humans are animals, some animals are mortal, but some humans (in 

fact, all humans) are immortal. The circumstances represented are not those that obtain in our 

world, where in fact all humans are mortal, but they are consistently imaginable 

circumstances, and they show that the truth of the premises of the syllogism do not by 

themselves necessitate the truth of the conclusion of the syllogism. 

 That a syllogism is valid does not imply that its premises are true or that its 

conclusion is true. A valid syllogism may have false premises and a true conclusion, false 

premises and a false conclusion, or true premises and a true conclusion. What it may not have 

is true premises and a false conclusion. What it means for a syllogism to be valid is that if its 

premises were true, its conclusion would of necessity be true. So if the premises are actually 

true and the syllogism is valid, then the conclusion must actually be true. 

 Here is an example of a valid syllogism in which the premises are in fact false but the 

conclusion is true: 

All humans are apes. 

All apes have opposing thumbs. 

Therefore, all humans have opposing thumbs. 

Here is an example of a valid syllogism in which the premises are false and the conclusion is 

false: 



All humans are apes. 

All apes are stockbrokers. 

Therefore, all humans are stockbrokers. 

 Aristotle realized that the validity of a syllogism has nothing to do with what the 

predicate terms and the subject terms mean, but has everything to do with what quantifiers 

occur in the premises and the conclusion and with where one and the same term occurs in 

both the premises and the conclusion. The first syllogism we considered has the following 

form: 

All A are B. 

All B are C. 

Therefore, all A are C. 

Any syllogism of this form will be valid, no matter what classes A, B, and C denote. A could 

be stars, B olives, C dragons. The following syllogism is silly, but valid. 

All stars are dragons. 

All dragons are olives. 

Therefore, all stars arc olives. 

By contrast, the following form is not valid. 

All A are B. 

Some B are C. 

Therefore, some A are C. 

It is easy to see that this form of syllogistic argument is not valid by considering an example 

of that form in which the premises are true but the conclusion is false: 

All men are mammals. 

Some mammals are female. 

Therefore, some men are female. 



Study Questions 

1. Give new examples of valid syllogisms with the following properties: (a) The 

premises are false and the conclusion is true. (b) The premises are false and the conclusion is 

false. (c) One premise is false, one premise is true, and the conclusion is false. 

2. Give examples of invalid syllogisms with the following properties: (a) The premises 

are true and the conclusion is true. (b) The premises are false and the conclusion is true. 

THE THEORY OF THE SYLLOGISM 

Aristotle described fourteen valid forms of syllogistic argument. Medieval logicians gave 

each of them names, such as Barbara and Celerant. In Aristotle’s logical theory there are 

four expressions, now called quantifiers, that can be prefixed to a subject-predicate phrase. 

The quantifiers are “all,” “no,” “some,” and “not all.” The traditional abbreviations for these 

quantifiers are respectively A, E, I, and O. By prefixing one of the quantifiers to a subject-

predicate phrase, we obtain a sentence. An Aristotelian syllogism consists of three such 

sentences: two premises and a conclusion. (The names of the syllogisms contain a code for 

the quantifiers in the sentences in syllogisms of that form. The vowels in the names indicate 

the kind of quantifier in the second premise, the first premise, and the conclusion. Thus 

Darapti is a syllogism with two premises having “all” as their quantifier and a conclusion 

having “some” as its quantifier.) 

 These syllogisms are written so that the conclusion is always “(Quantifier) A are C.” 

The term that occurs in the subject place in the conclusion (A in the examples below) is called 

the minor term. The term that occurs in the predicate place in the conclusion (C in the 

examples below) is called the major term. The term that occurs in the premises but not in the 

conclusion (B in the examples) is called the middle term. 

 The form of a syllogistic argument is determined entirely by the quantifiers attached 

to each sentence and by the positions of the terms in the premises. If we ignore the quantifiers 



for the moment, it is easy to see that there are four different patterns or figures (as they are 

called) in which the major, middle, and minor terms can be distributed (table 2.1 ). The valid 

Aristotelian syllogisms, with their medieval names, are listed in table 2.2. You may notice 

that the table of valid syllogisms contains no syllogisms having the pattern of figure 4. 

Aristotle did not include a study of syllogisms of this figure. 

 There are four possible quantifiers, any of which can attach to any sentence in a 

syllogism of any figure. Each syllogism has three sentences, and there are four choices of 

quantifier for the first sentence, four choices for the second sentence, and four choices for the 

third sentence, and thus there are 4 × 4 × 4 = 64 distinct syllogistic forms in each figure. And 

since there are four figures, there are 256 distinct forms of syllogistic arguments altogether. 

Of the 192 syllogistic forms in the first three figures, Aristotle held that only the 14 illustrated 

are valid. All others are invalid. How did Aristotle come to this conclusion? 

 Aristotle held that the valid syllogisms of the first figure are perfect, by which he 

meant that their validity is obvious and self-evident and requires no proof. Assuming this is 

true, it remains to show that the other syllogistic forms he gives are also valid and that other 

syllogistic forms in the first three figures are invalid. To show the first, Aristotle assumed 

certain rules of conversion, which are really logical rules for inferring one sentence from 

another. Aristotle’s rules of conversion include the following: 

Rule 1 From “No X are Y,” infer “No Y are X.” 

Rule 2 From “All X are Y,” infer “Some Y are X.” 

Rule 3 From “Some X are Y,” infer “Some Y are X.” 

 With these three rules, some of the valid syllogisms of the second and third figures 

can be derived from the valid syllogisms of the first figure. Aristotle’s strategy is to start with 

the premises of a second- or third-figure syllogism and to use the rules of conversion to 

derive the premises of a first-figure perfect syllogism. If the perfect syllogism shares its 



conclusion with the original second- or third-figure syllogism, it follows that the original 

syllogism is valid (assuming the first-figure perfect syllogisms are valid and that the rules of 

conversion preserve truth). 

 For example, Cesare can be transformed into Celarent by using the first rule of 

conversion on the second premise. That is, from “No C are B” we infer “No B are C” by rule 

I to obtain. Celarent. 

Cesare Celarent 

All A are B All A are B 

No C are B No B are C 

No A are C No A are C 

In the same way, other valid syllogisms of the second and third figure can be converted into a 

syllogism of the first figure (with the same conclusion) with the rules of conversion. 

 How did Aristotle show that the many syllogistic forms of the second and third 

figures that do not occur in the table above are not valid? To answer that, we have to be 

clearer about what it means for an argument form to be valid. The syllogistic forms in the 

table above are not sentences, they are abstract schemes that would become sentences if 

genuine terms were substituted for A, B, and C. An argument is valid if and only if it is not 

possible for its premises to be true and its conclusion false. A syllogistic argument form is 

valid provided that, however we substitute real terms for the abstract A, B, and C in the 

syllogistic form, if the result is a syllogism with true premises, then the resulting conclusion is 

also true. So in order to show that a syllogistic form is not valid, Aristotle needed only to find 

examples of syllogisms of that form in which the premises are both true and the conclusion is 

false. 

 Consider the following form of syllogistic argument: 

No A are B 



All B are C 

No A are C 

Aristotle shows that this form is not valid by considering the following example: 

No horse is a man. 

All men are animals. 

No horses are animals. 

In this case it is obvious that both of the premises are true but the conclusion is false. Hence 

the syllogistic form is not valid. 

Study Questions 

1.  By providing an example in which the premises are clearly true and the conclusion is 

clearly false, show that each of the following syllogistic forms is invalid: 

No A are B No A are B No A are B 

All B are C All B are C All B are C 

No A are C Some A are C No all A are C 

2. Use the valid syllogistic forms of the first figure and the rules of conversion to show 

the validity of the form Camestres and the form Felapton. 

3. Do the rules of conversion given in the text suffice to show the validity of the forms 

Baroco and Bocardo? Why or why not? 

4. Find the valid syllogistic forms in the fourth figure.* 

LIMITATIONS OF ARISTOTLE’S SYLLOGISTIC THEORY OF DEDUCTIVE 

ARGUMENT 

Although the theory of the syllogism is an interesting and impressive theory of deductive 

inference, it is not comprehensive. It does not include arguments that we and Aristotle’s 

contemporaries recognize as valid. In other respects it is too comprehensive: Aristotle counts 

as valid some arguments that we would not count as valid. 



 Aristotle developed his theory of the syllogism as part of a theory of scientific 

demonstration. One of the great ironies of intellectual history is that while geometry was the 

paradigmatic Greek science and Euclid lived only a generation after Aristotle, the theory of 

the syllogism cannot account for even the simplest demonstrations in Euclid’s Elements. 

There are several reasons why. 

 First, the propositions of geometry are not all of a simple subject-predicate form. In 

fact, rather few of them are. Instead, geometrical propositions deal with relations among 

objects. Second, the propositions of geometry do not all have just one quantifier; they may 

essentially involve repeated uses of “all” and “there exists.” Third, proofs require devices for 

referring to the same object in different ways within the same sentence. Recall from chapter 1 

the content of Euclid’s first proposition: 

Proposition 1 For every straight line segment, there exists an equilateral triangle having 

that line segment as one side. 

To treat this claim as the conclusion of a syllogism, Aristotle would have to treat this 

sentence as having a single quantifier, “all”; a subject, “straight line segment”; and a 

predicate, “thing for which there exists an equilateral triangle having that thing as one side.” 

Aristotle would therefore have to interpret the conclusion of Euclid’s first proof as of the 

form 

All A are C. 

That is, 

All straight line segments are things for which there exists an equilateral triangle having that 

thing as one side. 

If we look at the table of valid syllogistic forms, we see that a conclusion of this form can 

only be obtained from a syllogism of the form Barbara. So for Aristotle’s theory of deductive 



argument to apply, Euclid’s proof would have to provide some middle term B and axioms or 

subconclusions of the following forms: 

All A are B 

All B are C 

Or more concretely, 

All straight line segments are B. 

All B are things for which there exists an equilateral triangle having that thing as one side. 

 But that is not how Euclid’s proof works. Recall that if the line segment has endpoints 

P and Q, Euclid constructs a circle centered on P and another circle centered on Q, each 

having the line segment as a radius. One of his postulates says that for every point and every 

length, a circle centered on that point having that length as radius exists (or can be 

constructed). Then Euclid assumes that there is a point at which the circle centered on Q and 

the circle centered on P intersect one another. This point, call it S, must be the same distance 

from P as P is from Q, and also the same distance from Q as Q is from P. By the construction 

and the definition of circle, the distance from Q to P is the same as the distance from P to Q, 

so point S must be the same distance from Q as P is from Q. Then Euclid uses the axiom that 

things equal to the same thing are equal to one another to infer that the distance from S to P is 

the distance from P to Q. So the distances PQ, PS, and QS are all equal. Another axiom 

guarantees that for all pairs of points there is a line segment connecting the points, and the 

definition of a triangle shows that the figure thus shown to exist is a triangle. 

 Aristotle might let B stand for “thing with endpoints that are the centers of circles 

with radii equal to the distance between the points.” Then Aristotle would need to show that 

Euclid’s proof contains a syllogistic demonstration of each of the following: 

All straight line segments are things with endpoints that are centers of circles with radii equal 

to the distance between the points. 



All things for which there exists an equilateral triangle having that thing as one side are 

things with endpoints that are the centers of circles with radii equal to the distance between 

the points. 

Each of these will again have to be established by means of a syllogism of the form Barbara. 

But however many times we compound syllogisms of the Barbara form, we will never obtain 

a proof that looks at all like the argument that Euclid provided. 

 Aristotle’s theory also fails to cover several other types of arguments. Recall that 

Aristotle proves that the syllogistic forms of the second and third figures shown in table 2.2 

are valid forms. What is the form of those proofs? The proof I illustrated has the following 

form: 

If Celarent is valid, then Cesare is valid. 

Celarent is valid. 

Therefore, Cesare is valid. 

This is a perfectly valid deductive argument. It has the following form: 

If P then Q 

P 

Therefore Q 

Here P and Q stand for any complete sentences that are either true or false. This argument is 

not one of Aristotle’s valid syllogistic forms. So Aristotle’s own proof of the properties of his 

logical system uses logical principles that his system can neither represent nor account for. 

The argument just sketched depends on the logical properties of “If ... then___,” where the 

ellipsis and the blank are filled by sentences. This form of argument is sometimes called a 

“hypothetical syllogism.” 

 There is a third difficulty with Aristotle’s theory of the syllogism. Look at the first 

four valid syllogisms of the third figure: Darapti, Felapton, Disamis, and Datisi. Each of them 



has an existential conclusion; that is, in each case the conclusion says that something exists 

having specified properties. So, for example, in Darapti we have the following inference: 

All B are A 

All B are C 

Some A are C 

Aristotle meant “Some A are C” to be read as “There exist some things that are A and C.” So 

understood, it is not clear that Darapti is a valid form of inference. Consider the following 

example: 

All unicorns are animals with hoofs. 

All unicorns are horses with one horn. 

Therefore, some animals with hoofs are horses with one horn. 

This looks like an argument in which the premises are true but the conclusion is false. The 

problem is with the second rule of conversion: 

From “All X are Y,” infer “Some Y are X.” 

We don’t think it is legitimate to infer “Some little people are leprechauns” from “All 

leprechauns are little people.” We don’t think it is legitimate to infer “Some numbers that are 

divisible by two are both even and odd” from “All numbers that are both even and odd are 

divisible by two.” We reason all the time (both in fairy tales and in mathematics) about all 

things of a certain kind, even when we don’t believe or mean to imply that things of that kind 

exist. In fact, in mathematics we often reason about such things just to prove that they don’t 

exist! Aristotle would have agreed with our practice, but his theory seems not to agree. 

AFTER ARISTOTLE 

Aristotle’s theory of deductive reasoning may have had many flaws. Yet despite minor 

improvements in the theory of syllogistic reasoning and some other developments in logical 

theory, no fundamental advances appeared for the next 2,400 years. Aristotle’s successors at 



the Lyceum and after them the Stoic philosophers developed some of the principles of the 

logic of propositions. Their principles were understood by medieval logicians. For example, 

it was recognized that for any propositions P and Q, one could infer Q from premises 

consisting of the assertion of P and the assertion of “If P then Q.” Medieval logicians even 

gave this form of inference a name, modus ponens: 

Modus ponens From “P” and “If P then Q,” infer “Q.” 

Other related logical principles were also understood, for example, the principle modus 

tollens: 

Modus tollens From “Not Q” and “If P then Q,” infer “Not P.” 

 Theophrastus, who succeeded Aristotle as the head of the Lyceum, gave conditions 

for the truth of sentences compounded of simpler sentences. He proposed that any sentence of 

the form “If P then Q” is false only when P is true and Q is false. In any other circumstance, 

“If P then Q” is true. So in Theophrastus’ view, “If P then Q” is true if P and Q are both 

false, if P is false and Q is true, and if both P and Q are true. In Theophrastus’ conception, 

therefore, the truth or falsity of “If P then Q” is a function of the truth values (true or false) of 

P and Q. In other words, the truth value (true or false) of “If P then Q” is uniquely 

determined by the truth values of P and Q, just as the numerical value of the sum X + Y is 

uniquely determined by the numerical values of X and Y. Sentences of the form “If ... 

then___” are now known as conditional sentences or simply conditionals. The account of 

conditionals as truth functions of the simpler sentences from which they are composed was 

not widely accepted by logicians of the Middle Ages. They held instead that “If P then Q” is 

true only if the truth of P necessitates the truth of Q. With that understanding, the truth value 

of “If P then Q” is not a function of the truth values of P and Q. It isn’t the truth or falsity of 

P and Q alone that determines the truth or falsity of “If P then Q,” but whether the truth of P 

necessitates the truth of Q. 



 Further principles about inference with quantifiers were also recognized by Aristotle’s 

successors. For example, they recognized the principle that from a universal claim one may 

infer any instance of it. From “Everything is such that if it is human, then it is mortal” one 

may infer “If Socrates is human, then Socrates is mortal.” 

 Logic was extensively studied in the late Middle Ages from the twelfth through the 

fourteenth centuries. The theory of the syllogism was understood and extended in minor 

ways, and tracts were written on various sorts of quantifiers. Medieval logicians were 

especially interested in what we call modal logic, which is the study of deductive inferences 

that involve notions of necessity, possibility, and ability. Aristotle himself had written on the 

subject. Aristotle had maintained the following logical principles (which he did not clearly 

distinguish): 

For any proposition P, “Necessarily P” is true if and only if “Not possibly not P” is true. 

“A is necessarily B” is true if and only if “A is not possibly not B” is true. 

Modal reasoning was of special concern to logicians of the Middle Ages because the 

motivation for their studies of logic was as much religious as it was scientific. They were 

concerned with features of God and with humanity’s relations with God. These subjects 

involved complicated uses of claims about necessity and possibility. For example, Saint 

Anselm’s proof of God’s existence seems to turn on the idea that God is an entity that could 

not possibly not exist, an entity that necessarily exists. Notions of possibility and necessity 

can easily lead to paradoxes, which require a logical theory to untangle. 

 These and other logical investigations amounted to some limited progress in 

understanding valid reasoning. But at the end of the fourteenth century, Western civilization 

was not substantially closer to understanding deductive inference than it had been in the 

fourth century B.C. It was still not possible, for example, to give a systematic theory of proof 

that would include the proofs of geometry and exclude fallacies. Although additional logical 



principles had been developed after Aristotle, they had not been formed into a powerful 

systematic theory. The three central questions posed in chapter 1 were not much closer to 

being answered. 

ARISTOTELIAN REASONING IN ARTIFICIAL INTELLIGENCE* 

Although Aristotle’s theory of demonstrative reasoning is inadequate to represent most 

proofs in mathematics and the sciences, a lot of simple reasoning can be represented as 

syllogistic. 

Two puzzles 

Here are two very old puzzles about the properties of God 

and God’s relation to humans. Both involve modal 

reasoning. The first is concerns a claim about God that 

some Christians thinkers of the Middle Ages and 

Renaissance seem to have held: 

(1) God is necessarily omnipotent; that is, necessarily 

God can do anything. 

Consider now the question, Can God make a rock he 

cannot lift? Suppose God cannot make such a rock. Then 

(1) is false. Suppose, on the other hand, that God can make 

such a rock. Since God is able to make such a rock, the 

circumstance in which such a rock exists is possible. But in 

the possible circumstance in which God makes a rock he 

cannot lift, there is something God cannot do, namely to lift 

that rock. Hence there is a possible circumstance in which 

there is something God cannot do. So it is not the case that 

necessarily God can do anything. So (1) is false again. But 

either God can make a rock he cannot lift, or he cannot. 

Hence (1) is false. 

The second puzzle involves two other claims that were 

 Recently, Aristotelian modes of reasoning have been applied in the study of artificial 

intelligence. Research in artificial intelligence attempts to devise programs that will enable 

computers to solve problems that require intelligence in human problem solvers. Most AI 

work is not committed to making computers solve problems in exactly the same way in 

which humans solve them, but the way in which humans proceed sometimes gives the 

program designer useful hints about how to make a computer solve the same kind of problem. 

Humans reason in solving problems, even the most elementary kinds of problems. Computers 

should reason as well, or at least they should do something that looks like reasoning. 



 Human reasoning involves the use of an enormous amount of knowledge. If you are 

told that Dumbo is an elephant, you can immediately answer such questions as “Is Dumbo a 

mammal?” “Does Dumbo have a long nose?” “Does Dumbo have a tail?” “Is Dumbo a 

herbivore?” You can answer these questions because you know a great many things about 

elephants. If we want to design a computer program that will have the same capacities as you 

have, we will have to provide the computer with the same kind of knowledge. Equally 

important, we will have to find a way to organize the knowledge so that the computer can 

find relevant parts of it rapidly. 

 One of the earliest methods developed for organizing knowledge in a computer 

program is called an is-a hierarchy. An is-a hierarchy is a graph of just the kind I used to 

illustrate Aristotle’s conception of scientific knowledge. If the subject is elephants, a simple 

is-a hierarchy might look like this: 

 

Of course, the computer does not have this picture. What it has is a set of instructions that 

link terms such as “Dumbo” and “elephant” to one another, and the links are exactly as in the 

graph. Each connection in the graph represents a general statement. For example, 

Dumbo is an elephant. 

All elephants are mammals. 

All elephants are long-nosed. 

All mammals are animals. 

 Suppose the computer is asked, Is Dumbo an animal? To answer the question, the 

computer searches for a path from “Dumbo” to “animal.” It might, for example, go from 

“Dumbo” to “elephant,” to “mammal,” to “animal.” Upon reaching “animal,” it would 

answer that yes, Dumbo is an animal. In this sort of procedure the computer is carrying out 

the simplest sort of syllogistic inference. 



 One interesting thing about trying to simulate human reasoning using a computer is 

that we are forced to consider logical features that might otherwise be ignored. Suppose that 

instead of reasoning about elephants, the computer is to reason about birds. From the 

information that Tweety is a bird, the computer should he able to answer such questions as, 

“Does Tweety have feathers?” “Does Tweety have wings?” “Can Tweety fly?” “Is Tweety a 

mammal?” “Is Tweety an animal?” The relevant information about birds needed to answer 

these questions can be represented by a graph, just as the information about elephants is 

represented. The graph would encode such information as that birds have feathers, that birds 

have wings, that winged things can fly, and so on. The computer can then carry out simple 

syllogistic inferences to answer these questions. Given the information that Tweety is a bird, 

a person will generally answer the question, Can Tweety fly? with a yes. The computer will 

answer in the same way. But if you give a person a further piece of information about 

Tweety, you get a different answer. If a person is given the further information that Tweety is 

an ostrich, the person will not infer that Tweety can fly. People, in other words, make the 

following inference: 

Tweety is a bird. 

Birds can fly. 

Therefore, Tweety can fly. 

And they also make this inference: 

Tweety is a bird. 

Birds can fly. 

Tweety is an ostrich. 

Ostriches cannot fly. 

Therefore, Tweety cannot fly. 



“Tweety can fly” may look at first like the conclusion of a syllogistic inference, but actually 

something much more complicated is going on. Syllogistic inference, as Aristotle and his 

successors understood it, is monotonic, meaning that if a conclusion C can be validly inferred 

from a set of premises, then it can also he validly inferred from any set of premises that 

include the original premises. The Tweety example shows that the kind of reasoning humans 

do is sometimes (in fact quite often) nonmonotonic: adding information to the premises 

prevents us from drawing conclusions we would otherwise draw. One mark of the difference 

is that we are inclined to agree that birds can fly, but not that all birds can fly. In the same 

way, we are inclined to agree that whales give milk, but not that all whales give milk (male 

whales don’t). Sentences such as “Birds can fly” are sometimes said to be generalized, 

whereas sentences such as “All birds can fly” are said to be universal. While universal and 

generalized sentences are sometimes synonymous, they aren’t always. When they aren’t, 

reasoning that looks syllogistic may actually be nonmonotonic. To make a computer reason 

as humans do in contexts where knowledge consists of generalized but not universal 

sentences, the computer must make inferences according to principles of nonmonotonic logic. 

The principles of nonmonotonic logic and their efficient implementation in computer 

programs are major areas of contemporary research. 

Study Questions 

1. Write out a graph for reasoning about birds that is like the graph shown for elephants. 

2. Suppose that someone reconstructed a particular deduction as a syllogism and you 

wished to show that the inference principles used actually involved nonmonotonic reasoning. 

How could you argue for your view? Give an example. 

3. Knowledge of causes is often used to reason nonmonotonically. Give an example. 

4. What is the name of the syllogistic form used in the reasoning that Dumbo is an 

animal? 



5. Explain why the theory of the syllogism cannot fully account for everyday reasoning 

about properties of things. 

Review Questions 

1. What questions should a theory of deductive argument address? How well does 

Aristotle’s theory of deductive arguments succeed in answering these questions? 

2. What are three major difficulties with Aristotle’s theory of deductive argument? 

3. What are the four senses of “cause” in Aristotle’s philosophy? 

4. Do you think that syllogistic reasoning could be used to account for proofs in 

arithmetic or the theory of numbers? 

5. Explain Aristotle’s strategy for. justifying his theory of syllogisms. 

6. Which of Aristotle’s syllogistic forms of the second and third figures can be 

converted into a first-figure form without using Aristotle’s second rule of conversion? 

7. What role does the theory of syllogisms play in Aristotle’s understanding of scientific 

demonstration? 
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Figure 2.1 

Premise 1 of syllogism 1 

Figure 2.2 

Syllogism 1 

Figure 2.3 

Two possibilities for syllogism 2 

Figure 2.4 

A counterexample to syllogism 3 

Table 2.1 

The four figures of syllogistic arguments 

Figure 1 Figure 2 Figure 3 Figure 4 

A are B 

B are C 

A are C 

A are B 

C are B 

A are C 

B are A 

B are C 

A are C 

B are A 

C are B 

A are C 

Table 2.2 

Valid Aristotelian syllogisms in the first three figures 



1st figure Barbara Celarent Darii Ferio 

A are B 

B are C 

A are C 

All A are B 

All B are C 

All A are C 

All A are B 

No B are C 

No A are C 

Some A are B 

All B are C 

Some A are C 

Some A are B 

No B are C 

Not all A are C 

2nd figure Cesare Camestres Festino Baroco 

A are B 

C are B 

A are C 

All A are B 

No C are B 

No A are C 

No A are B 

All C are B 

No A are C 

Some A are B 

No C are B 

Not all A are C 

Not all A are B 

All C are B 

Not all A are C 

3rd figure Darapti Felapton Disamis Datisi 

B are A 

B are C 

A are C 

All B are A 

All B are C 

Some A are C 

All B are A 

No B are C 

Not all A are C 

All B are A 

Some B are C 

Some A are C 

Some B are A 

All B are C 

Some A are C 

 Bocardo Ferison   

 All B are A 

Not all B are C 

Not all A are C 

Some B are A 

No B are C 

Not all A are C 

  

 

  



Chapter 3 

IDEAS, COMBINATIONS, AND THE MATHEMATICS OF THOUGHT 

INTRODUCTION 

From the fifteenth through the seventeenth centuries, literature, art, and science flourished in 

Europe, but logic did not prosper. The careful study of the problems of deductive inference 

and of the relations between words and things that make reliable inference possible came to 

be replaced by rhetoric, the study of persuasive speech. Aristotle had written on rhetoric, and 

logic texts in the Renaissance increasingly gave their attention to that subject rather than to 

studies of valid argument. But in the seventeenth century there occurred such a revolution in 

thought, and such an explosion in knowledge, that every subject, including logic, was 

affected. The seventeenth century brought into vivid contrast two different ideals of reason: 

on the one hand, the ideal of certainty best exemplified by Euclid’s geometry and Aristotelian 

syllogistics; on the other hand, the ideal of rational belief with uncertainty, exemplified in 

quantitative form by the laws of probability and the laws of nature, such as Boyle’s law of 

gases and Newton’s law of gravitation, newly discovered in the seventeenth century. One 

effect of this clash was to move intellectual interest away from a theory of demonstration 

toward theories of rational belief and rational inference. But the new mathematics of 

rationality also helped to unite the theory of deductive demonstration with the new 

quantitative theories of nature. The theory of deductive proof became the quantitative theory 

of ideas and of how they may be combined. 

 The seventeenth century saw the establishment of modern philosophy in the work of 

Galileo Galilei (1564–1642), Francis Bacon (1561–1626), René Descartes (1596–1650), 

Thomas Hobbes (1588–1679), Blaise Pascal (1623–1662), Gottfried Leibniz (1646–1716), 

Isaac Newton (1642–1727), and John Locke (1632–1704). The creation of modern 

philosophy went hand in hand with the creation of modern science and modern mathematics. 



For the most original and powerful minds of the time, science, mathematics, and philosophy 

were simply different aspects of a common enterprise of knowledge. Indeed, they would have 

found our separation of the subjects somewhat artificial. Galileo provided some of the most 

powerful arguments for the heliocentric conception of the solar system, and he wrote 

systematic attacks on the adequacy of Aristotelian physics. At the same time, his writings 

contain the beginnings of new conceptions of how the mind works and how knowledge is 

acquired. Francis Bacon not only articulated a new, empirically based conception of how 

knowledge is acquired; he also developed the theory of heat and conducted a number of 

experiments to support that theory. Descartes, except for Newton perhaps the most eminent 

and influential intellect of the century, invented the study of the geometrical properties of 

solutions to algebraic equations, the subject we now call analytic geometry, and also 

developed an extensive (but largely erroneous) anti-Aristotelian physical theory. Hobbes, 

despite many attempts, left no mathematical or scientific achievements of value, but he left 

something else: the idea that the study of society can be part of natural science, and the idea 

that moral conceptions can be explained and justified by scientific considerations of human 

nature and of the conditions under which humans live. Pascal invented and sold a mechanical 

calculator, conducted a famous experiment to demonstrate the pressure of the atmosphere, 

and introduced many of the fundamental ideas in the theory of probability and the theory of 

rational decision making. Leibniz invented the differential and integral calculus and promoted 

a variety of social projects in the second half of the century. He too designed and built 

mechanical calculators. Newton we know as the source of modern physics; his Principia and 

Optics revolutionized that subject. His scientific writings, especially the Principia, also 

contain a new and sophisticated philosophy of science. Locke is known for his writings on 

the structure of the mind, for his theory of how knowledge is acquired, and for his account of 



just government. His writings were heavily influenced by the new sciences emerging all 

around him. 

 Except for Leibniz, seventeenth-century philosophers did not succeed in developing a 

better logical theory than Aristotle’s. Of Descartes, Hobbes, Pascal, Leibniz, Newton, and 

Locke, only Leibniz wrote extensively on logic, and most of what he wrote was not 

published. But the seventeenth century did establish two important ideas about deductive 

reasoning. 

 The theory of deductive reasoning and demonstration is part of psychology. It should 

provide part of the laws of thought, just as physics provides the laws of motion. 

 The laws of thought have an algebraic structure, just as do the laws of arithmetic or 

the laws of motion. 

The first of these ideas turned out to be fundamentally in error—only when it was abandoned 

did the modern understanding of deductive inference emerge—but its very falsity creates a 

puzzle that we will consider at several points in this book. The second idea turned out to be 

correct and profound, and two centuries later, in the middle of the nineteenth century, it 

formed the basis for the first fundamental advance in logic since Aristotle. In the rest of this 

chapter we will consider how these two ideas emerged from metaphysics, mathematics, and 

theology in the seventeenth century. 

 To understand how seventeenth-century thinkers brought these views of logic and 

demonstration to prominence and why they were widely thought to he true, we must consider 

a little of the tradition of thought about mathematics and knowledge that the century inherited 

and drew upon. 

COMBINATIONS 

According to both Plato and Aristotle, the objects of knowledge have a special formal 

structure. The sort of thing a person may know is that one thing or kind or property is a finite 



combination of other things or kinds or properties. Human is a combination of rational and 

animal. Triangle is a combination of closed, rectilinear, figure, and three-sided. Plato and 

Aristotle differed about the metaphysics, of course. For Plato, the elements of these 

combinations are ideal objects or forms; for Aristotle, they are essential attributes of concrete 

objects. For both philosophers, however, all knowledge consists of knowing such 

combinations of forms or essential attributes of a thing or kind. For example, according to 

Plato, knowledge of virtue is knowledge of which simple forms are combined in the form of 

virtue. 

 This simple conjunctive view of the objects of knowledge suggests questions about 

combinations of properties. Ultimately, on either the Platonic or Aristotelian view, any kind 

or property that can be the object of scientific knowledge can be analyzed into a combination 

of simple properties that cannot be further analyzed. The number of distinct kinds that can be 

the object of knowledge then consists of the number of distinct combinations of these simple 

properties, whatever they are. What is the number of pairs of distinct simple properties if 

there are n simple properties altogether? What is the number of triples of distinct simple 

properties if there are n simple properties altogether? What is the number of distinct 

combinations of any particular number m of simple properties drawn from n simple 

properties? How can these distinct combinations be enumerated and surveyed? If one has the 

Platonic and Aristotelian conception of the form of knowledge, these are fundamental 

questions. 

 In Europe just such questions gave rise to the mathematical subject of combinatorics, 

the study of the numbers of possible combinations satisfying given conditions. The first 

mathematical results of this kind in Europe seem to occur in a commentary en Aristotle by 

Porphyry (ca. 234–ca. 305) written in the third century. Porphyry wished to comment on all 

of the similarities and differences among five Aristotelian categories, and so he posed the 



problem of enumerating all the distinct pairs of things that can be obtained from a collection 

of five things. He observed that one might think that this number is 20, because one can 

choose the first thing of a pair in any of five ways and the remaining member of the pair in 

four distinct ways: 

 

But Porphyry correctly argued that the number of pairings is not 20: “Such is not the case; for 

though the first of the five can be paired with the remaining four, when we come to the 

second, one of the pairs will already have been counted; with the third, two; with the fourth, 

three, and with the fifth, four; thus there are in all only ten differences: 4 + 3 + 2 + 1.”1 

 Roughly 250 years later, Boethius (d. 524) wrote commentaries on Porphyry’s 

commentary on Aristotle, and in them he provided a more general, alternative proof. In 

modern terminology, his reasoning was as follows. Twenty is the number of ordered pairs, 

<x, y>, in which x is distinct from y, that can be formed from five distinct objects. With 

ordered pairs, a change in the order counts as a distinct pair, so <x, y> is not equal to <y, x>. 

Porphyry was interested in the number of pairs of distinct properties that could be formed 

from five properties, but he did not care about order. He was concerned with the number of 

unordered pairs, {x, y}. Clearly, for each ordered pair there will be another with the same 

objects but in the reverse order. If these two ordered pairs are thought of as together forming 

a single unordered pair, or if together they are counted as one object, then the number of 

unordered pairs will be half of the number of the ordered pairs. Ten is half of twenty, for 

example. The number of ways of choosing ordered pairs from n things is n(n  1), so the 

number of distinct unordered pairs that can be formed from n things is n(n  1)/2. 

 In the Middle Ages, the conception of the objects of knowledge as combinations of 

simple attributes that make up a kind or a complex property led to a conception of the method 

for acquiring knowledge. The method, in so far as it deserves the name, consisted of trying to 



“analyze” a thing into its simple properties (analysis), and then trying to put it back together 

by combining those properties (synthesis). Often the analysis and synthesis were purely 

mental and consisted of analyzing or synthesizing a thing only in imagination, but sometimes, 

in Renaissance chemistry, for example, analysis meant physically decomposing a substance 

into “simpler” substances, and synthesis meant physically reconstituting a substance of that 

kind. 

 One would expect that Christian intellectuals would apply the methods they had 

adapted from Aristotle and Plato to the study of God, and, of course, they did. God too had 

fundamental properties, and one could consider the combinations of God’s attributes. In the 

thirteenth century the question of how to enumerate, organize, and display God’s attributes 

led to a fundamental insight, one that we nowadays take for granted. It concerns the odd life 

of the great Spanish philosopher Ramon Lull (d. 1315), a thirteenth-century Franciscan 

monk. 

 Lull grew up in a wealthy family and passed his early adulthood in the court of James 

II of Spain. He spent his time with games and pleasantries and is reputed to have made great 

efforts to seduce the wives of other courtiers. Accounts have it that after considerable effort 

to seduce a particular lady, she finally let him into her chambers and revealed a withered 

breast. Taking this as a sign from God, Lull gave up the life of a courtier and joined the 

Franciscan order. He determined that he would dedicate his life to converting Moslem 

civilization to Christianity, and in a curious way, philosophy gained from that dedication. 

 Lull moved to Majorca, spent several years mastering the Arabic language, and 

studied and wrote tracts (of which he eventually authored hundreds) against Islam and for 

Christianity. About 1274 Lull had a vision of the means by which Moslems could be 

converted to Christianity. Stimulated by the idea, he wrote another book, his Ars Magna. 



While Lull’s fundamental style of thought is mystical and obscure, it contains one logical 

gem. 

 In effect, Lull’s idea was that Moslems (and others) may fail to convert to Christianity 

because of a cognitive defect. They simply were unable to appreciate the vast array of the 

combinations of God’s or Christ’s virtues. Lull believed that infidels could be converted if 

they could be brought to see the combinations of God’s attributes. Further, he thought that a 

representation of those combinations could be effectively presented by means of appropriate 

machines, and that was the key to his new method. Lull designed and built a series of 

machines meant to be used to present the combinations of God’s virtues. 

 A typical Lullian machine consisted of two or more disks having a common spindle. 

Each disk could be rotated independently of the others. The rim of each disk was divided into 

sections or camerae, and each section bore a letter. According to the application for which 

the machine was intended, the letters each had a special significance. They might denote, for 

example, an attribute of God. One Lullian machine, for example, has the letters B through R 

around the rims of an inner disk, and around the outer disk Latin words signifying attributes 

of God: “bonitas” (B), “magnitudo” (C), “eternitas” (D), and so on. A Lullian machine was 

operated by rotating the two disks independently, much as we would a star finder or (some 

years ago) a circular slide rule. At any setting of the disks, pairs of God’s attributes would be 

juxtaposed on the rims of the inner and outer disks. Rotating the disks would create different 

pairings. One would thus discover that God is good and great, good and eternal, great and 

eternal, and so forth. The heretic and the infidel were supposed to be brought to the true faith 

by these revelations. 

 Lull lectured on several occasions at the University of Paris. He traveled throughout 

Europe, attempting to raise money for missions to North Africa to convert Moslems to 

Christianity. He himself is reported to have made three such trips to Africa. Tradition has it 



that on his third trip, at the age of 83, he was stoned to death, but some biographers lacking in 

romantic sentiment dispute this account. 

 This may seem a bizarre and slightly amusing story of no particular philosophical 

significance. But buried within Lull’s mysticism and his machines is the seed of a collection 

of powerful ideas that only began to bear fruit three hundred and fifty years later. 

 One of the great ideas implicit in Lull’s work is that reasoning can be done by a 

mechanical process. Another equally profound idea in Lull’s thought is that reasoning does 

not proceed by syllogism but by combinatorics. Reasoning is the decomposition and 

recombination of representations. The decomposition and recombination of attributes can be 

represented by the decomposition and recombination of symbols, and that, as Lull’s devices 

illustrate, is a process that can be carried out by machines. 

 Lull’s work was known even in the seventeenth century, when these ideas were taken 

up by Leibniz, the most eminent mind on the continent of Europe in the second half of that 

century. Neither in Lull nor in Leibniz, however, do these ideas form a theory that competes 

with Aristotle’s or that offers solutions to the questions developed in the first chapter of this 

book. But Lull had at least taken the first step: he had an idea for a theory. 

Study Questions 

1. There are only two ways to order two distinct letters. How many ways are there to 

order three distinct letters? 

2. One of Lull’s machines had sixteen letters signifying attributes of God. How many 

ordered triples of three distinct letters can be formed from Lull’s sixteen letters? 

3. How many unordered triples of distinct letters can be formed from Lull’s sixteen 

letters? 

4. Let n! (said “n factorial”) denote the number n  (n  1)  (n  2)    1. The 

number n! is clearly the number of distinct ways that n things can be put in order, because we 



have n choices for the first thing, n  1 for the second, and so on, until there is only one thing 

left. The number of ways of choosing an ordered sequence of 3 distinct things from n things 

must be n  (n  1)  (n  2). The number of ways of choosing an ordered sequence of m 

distinct things from n things (where m  n) must be n  (n  1)    (n  (m  1)), or more 

simply, n!/(n  m)! Use these facts to find a formula for the number of ways of choosing m 

things from n things without regard to order. 

5. Suppose you of have a collection of n things. How many distinct collections with 2 or 

more members can be formed from the collection of n things? In the sixteenth century 

Cardano gave the correct answer: 2n  1  n. Can you give a proof of this answer? 

THE IDEA IDEA 

The method of analysis and synthesis might be thought of as a form of reasoning. So 

conceived, it is a kind of computation or calculation in which properties are added or taken 

away. But in most cases those who thought of themselves as applying this method did not 

really add or take away any properties of things. Instead, they added or subtracted thoughts or 

ideas of properties. So viewed, the method of analysis and synthesis had to do with the 

operations of the mind. 

Thomas Hobbes 

Thomas Hobbes was born at the end of the sixteenth century and lived almost until the 

eighteenth. Educated at Oxford, he made his living by attaching himself to rich and 

influential families, often serving as tutor to their children. The Civil War in England raged 

during his adult years, and Hobbes spent most of his intellectual efforts on political theory. 

The general view he had of the nature of politics and the foundations of government are still 

influential today. Although he criticized Aristotle’s system, in many respects Hobbes 

remained an Aristotelian thinker. Hobbes met on several occasions with one of the great 

intellectual revolutionaries of the first part of the seventeenth century, Francis Bacon, who 



along with many other figures of the period, was convinced that new empirical methods of 

discovery were required in science. Hobbes disagreed, and despised the experimental method 

that Bacon had championed and that by the middle of the seventeenth century was flourishing 

in England and in parts of continental Europe. Hobbes was self-taught in mathematics. He is 

said to have learned geometry by finding a book of Euclid’s Elements open to some advanced 

proposition, which, upon reading, Hobbes did not believe. Since he did not believe the 

proposition, Hobbes read the proof, which depended on still other propositions, whose proofs 

Hobbes proceeded to read. In this way he worked back to Euclid’s axioms and convinced 

himself of the truth of the proposition he had originally doubted. 

 That is just how seventeenth-century philosophers thought of it. Thomas Hobbes, for 

example, wrote as follows: 

By ratiocination, I mean computation. Now to compute is either to collect the sum of many 

things that are added together, or to know what remains when one thing is taken out of 

another. Ratiocination, therefore, is the same with addition and subtraction; and if any man 

add multiplication and division, I will not be against it, seeing multiplication is nothing but 

addition of equals one to another, and division nothing but a subtraction of equals one from 

another, as often as is possible. So that all ratiocination is comprehended in these two 

operations of the mind, addition and subtraction. 

 But how by the ratiocination of our mind, we add and subtract in our silent thoughts, 

without the use of words, it will be necessary for me to make intelligible by an example or 

two. If therefore a man see something afar off and obscurely, although no appellation had yet 

been given to anything, he will, notwithstanding, have the same idea of that thing for which 

now, by imposing a name on it, we call a body. Again, when by coming nearer, he sees the 

same thing thus and thus, now in one place and now in another, he will have a new idea 

thereof, namely that for which we now call such a thing animated. Thirdly, when standing 



near, he perceives the figure, hears the voice, and sees other things which are signs of a 

rational mind, he has a third idea, though it have yet no appellation, namely that for which we 

now call anything rational. Lastly, when, by looking fully and distinctly upon it, he conceives 

all that he has seen as one thing, the idea he has now is compounded of his former ideas, 

which are put together in the mind in the same order in which these three single names, body, 

animated, rational, are in speech compounded into this one name, body-animated-rational, or 

man. In like manner, of the several conceptions of four sides, equality of sides, and right 

angles, is compounded the conception of a square. For the mind may conceive a figure of 

four sides without any conception of their equality, and of that equality without conceiving a 

right angle; and may join together all these single conceptions in not one conception or one 

idea of a square. And thus we see how the conceptions of the mind are compounded. Again, 

whosoever sees a man standing near him, conceives the whole idea of that man; and if, as he 

goes away, he follow him with his eyes only, he will lose the idea of those things that were 

signs of his being rational, whilst, nevertheless, the idea of a body-animated remains still 

before his eyes, so that the idea of rational is subtracted from the whole idea of man, that is to 

say, of body-animated-rational, and there remains that of body-animated and a while after, at 

a greater distance, the idea of animated will be lost, and that of body only will remain; so that 

at last, when nothing at all can be seen, the whole idea will vanish out of sight. By which 

examples, I think, it is manifest enough what is the internal ratiocination of the mind without 

words. 

 We must not therefore think that computation, that is ratiocination, has place only in 

numbers, as if man were distinguished from other living creatures (which is said to have been 

the opinion of Pythagoras) by nothing but the faculty of numbering; for magnitude, body, 

motion, time, degree of quality, action, conception, proportion, speech and names (in which 

all the kinds of philosophy consist) are capable of addition and subtraction.2 



There are at least two important thoughts in this passage. One is that reasoning is a 

psychological process, so that a theory of logical inference should be a theory of the 

operations of the mind. The other is that the theory of reasoning is a theory of appropriate 

combinations. Just what the objects are that are combined is obscure in this passage, but other 

passages suggest that Hobbes thought of the mind as composed of particles, and some of 

these particles, or collections of them, serve as symbols (or as Hobbes would say, names) for 

things, and it is these physical symbols that are combined or decomposed in reasoning. As we 

will see later, the very same idea lies behind much of twentieth-century cognitive science. 

 The obvious question about the method of analysis and synthesis is why and how it 

should work. How are people supposed to be able to recognize which properties are simple 

and which are complex so that they can he decomposed into simpler combinations? Plato had 

an answer: recollection. The forms are “stamped on the soul,” and, prompted by experience, 

one has only to recollect them. Aristotle had another answer: we have a faculty of intuition 

that tells us which properties are fundamental. Neither of these answers seems very 

satisfactory. They don’t tell us, for example, why we should believe that intuition or 

recollection reliably gives us the truth. They don’t explain why people who try to apply the 

method come to very different conclusions, or how to come to agreement about who is in 

error. What could the method be? How could it work? How could we be certain that it works? 

René Descartes had an answer, sort of. 

 In Descartes’ view, as in Hobbes’s, we do not analyze and synthesize things in 

themselves. We take apart our conceptions of things, our ideas of them. What we do in 

thought, then, is to try to find the simple ideas of which complex thoughts are compounded. 

Ideas and thoughts are mental states, not physical states. An inquiry into the basis for 

knowledge must therefore be an inquiry into our psychology, into the operations of the mind, 

and it must show why those operations, if properly conducted, are reliable. Descartes held 



that such an inquiry should produce a method that could be shown to be perfectly reliable, 

and he claimed that he himself had found such a method: 

Science in its entirety is true and evident cognition. He is no more learned who has doubts on 

many matters than the man who has never thought of them; nay he appears to be less learned 

if he has formed wrong opinions on any particulars. Hence it were better not to study at all 

than to occupy one’s self with objects of such difficulty, that, owing to our inability to 

distinguish true from false, we are forced to regard the doubtful as certain; for in those 

matters any hope of augmenting our knowledge is exceeded by the risk of diminishing it. 

Thus in accordance with the above maxim we reject all such merely probable knowledge and 

make it a rule to trust only what is completely known and incapable of being doubted.3 

 Moreover by a method I mean certain and simple rules, such that, if a man observe 

them accurately, he shall never assume what is false as true, and will never spend his mental 

efforts to no purpose, but will always gradually increase his knowledge and so arrive at a true 

understanding of all that does not surpass his powers.4 

The fundamental operations of the mind involved in knowledge are intuition (by which we 

see directly that something is the case or that an immediate inference is necessary), deduction 

(in which we move through a sequence of intuitions to obtain a necessary conclusion), and 

induction (by which we infer general conclusions from particular examples). Induction does 

not provide certainty, but intuition and deduction do aim at certainty, which, according to 

Descartes, is the only proper goal of inquiry: 

By intuition I understand, not the fluctuating testimony of the senses, nor the misleading 

judgement that proceeds from the blundering constructions of imagination, but the conception 

which an unclouded and attentive mind gives us so readily and distinctly that we are wholly 

freed from doubt about that which we understand. Or, what comes to the same thing, intuition 

is the undoubting conception of an unclouded and attentive mind, and springs from the light 



of reason alone; it is more certain than deduction itself, in that it is simpler, though deduction, 

as we have noted above, cannot by us be erroneously conducted. Thus each individual can 

mentally have intuition of the fact that he exists, and that he thinks, that the triangle is 

bounded by three lines only, the sphere by a single superficies, and so on.5 

 Descartes seems to think that simple deduction, as in a syllogism, requires nothing but 

intuition. A chain of deductions, however, also requires memory: 

Many things are known with certainty, though not by themselves evident, but only deduced 

front true and known principles by the continuous and uninterrupted action of a mind that has 

a clear vision of each step in the process. It is in a similar way that we know that the last link 

in a long chain is connected with the first, even though we do not take in by means of one and 

the same act of vision all the intermediate links on which that connection depends, but only 

remember that we have taken them successively under review and that each single one is 

united to its neighbour, from the first even to the last. Hence we distinguish this mental 

intuition from deduction by the fact that into the conception of the latter there enters a certain 

movement or does not require an immediately presented evidence such as intuition possesses; 

its certitude is rather conferred upon it in some way by memory. The upshot of the matter is 

that it is possible to say that those propositions indeed which are immediately deduced from 

first principles are known now by intuition, now by deduction, i.e., in a way that differs 

according to our point of view. But the first principles themselves are given by intuition 

alone, while, on the contrary, the remote conclusions are furnished only by deduction.6 

 The questions for Descartes are how it is that intuition is to be used in producing 

knowledge, why we should believe that the deliverances of intuition are veridical, and why 

memory can be trusted. 

 Some thoughts, Descartes held, we perceive clearly, while others appear to us 

muddled or confused. Of clear ideas, some can be distinguished in imagination from all 



others, and some are indistinguishable from one another. The ideas of extension and of body, 

for example, are ideas that cannot be distinguished from one another in imagination: we 

cannot think of a body except by thinking of it as extended, and we cannot imagine extension 

without imagining some body that is extended. We have no separate idea of mind from that 

of substance that thinks. But we can form clear ideas of body and mind, and these ideas are 

distinct from one another. The idea of mind is the idea of a thinking substance, while the idea 

of body is the idea of an extended substance. 

 There is, according to Descartes, a special kind of mental state we have when we 

perceive a necessary truth clearly and distinctly. For example, when we see the connection 

between the premises of a valid syllogism and its conclusion, we see with a special clarity 

and distinctness that if the premises are true, then necessarily the conclusion must be true, 

and we do not confuse the necessary connection given by that syllogism with some other 

argument. Descartes sometimes writes of this clarity and distinctness as provided by the 

“natural light of reason.” What he says about it is an elaboration of Aristotle’s notion of the 

faculty of intuition. 

 Descartes’ method rests on three principles: 

 What is clearly and distinctly conceived to be true cannot be false. 

 The separation of thoughts of properties is a perfect indicator of the possible 

separation of the properties: properties that cannot be conceived of separately are necessarily 

coextensive, and properties that can be conceived of separately are not necessarily 

coextensive. 

 A genuine recollection of a sequence of clear and distinct ideas cannot be false. 

These are inner criteria; they do not tell you what to do to check someone else’s claim to 

know something by intuition or the natural light of reason other than to perform a thought 

experiment yourself. They do not even tell you very clearly what it is to clearly and distinctly 



conceive something or to genuinely recollect a sequence of clear and distinct thoughts. 

Descartes gives only a few examples, and his readers must try to learn from them what is a 

clear and distinct idea. Thus the idea that a triangle is a three-sided figure is, Descartes holds, 

a necessary truth that can be recognized by the natural light of reason. The quality, whatever 

it is, of the experience you have when you think of the question “Is a triangle three-sided?” is 

the mark of the natural light of reason and of a clear and distinct idea. 

 Why believe any of this? Supposing that we even understand what kinds of 

experiences Descartes means by the “natural light of reason” or “clear and distinct ideas” or 

genuine memory, why should we believe that his three principles are correct? We can ask a 

harder question, for Descartes claims that knowledge requires certainty: How can we be 

certain that the three principles are correct? Descartes’ attempt to answer these questions is 

given in his Meditations on the First Philosophy, in his answers to objections to that work, 

and in his Principles of Philosophy. 

 First, Descartes argues that some thoughts, some clear and distinct ideas, are 

indubitable. While we can doubt, at least momentarily, the existence of an external world and 

we can doubt, at least momentarily, the truths of mathematics, we cannot doubt, even for the 

moment, claims that are certain. Descartes’ example is the thought that I exist. I cannot doubt 

that I exist, for in the very attempt to doubt my existence, I show myself that I exist. 

To begin with, directly we think that we rightly perceive something, we spontaneously 

persuade ourselves that it is true. Further, if this conviction is so strong that we have no 

reasons to doubt concerning that of the truth of which we have persuaded ourselves, there is 

nothing more to enquire about; we have here all the certainty that can reasonably be desired. 

What is it to us, though perchance some one feigns that that, of the truth of which we are so 

firmly persuaded, appears false to God or to an Angel, and hence is, absolutely speaking 

false? What heed do we pay to that absolute falsity, when we by no means believe that it 



exists or even suspect its existence? We have assumed a conviction so strong that nothing can 

remove it, and this persuasion is clearly the same as perfect certitude. 

 But it may be doubted whether there is any such certitude, whether such firm and 

immutable conviction exists. 

 It is indeed clear that no one possesses such certainty in those cases where there is the 

very least confusion and obscurity in our perception; for this obscurity, of whatsoever sort it 

be, is sufficient to make us doubt here. In matters perceived by sense alone, however clearly, 

certainty does not exist, because we have often noted that error can occur in sensation, as in 

the instance of the thirst of the dropsical man, or when one who is jaundiced sees snow as 

yellow; for he sees it thus with no less clearness and distinctness than we see it as white. If, 

then, any certitude does exist, it remains that it must be found only in the clear perceptions of 

the intellect. 

 But of these there are some so evident and at the same time so simple, that in their 

case we never doubt about believing them true; e.g., that I, while I think, exist; that what is 

once done cannot be undone, and other similar truths, about which clearly we can possess this 

certainty. For we cannot doubt them unless we think of them; but we cannot think of them 

without at the same time believing them to be true, the position taken up. Hence we can never 

doubt them without at the same time believing them to be true, i.e., we can never doubt 

them.7 

(The argument Descartes gave was not original. In the fourth century Saint Augustine [354–

430] already observed that no one can doubt his own existence.) 

 Second, Descartes claims that we can know with complete certainty that a benevolent 

God exists. He gives two arguments. The first is that one has a clear and distinct idea of God 

as a perfectly benevolent, necessary being. One cannot think of God without thinking that 



God exists. The argument is essentially Saint Anselm’s, although Descartes gives him no 

credit for it. 

That the existence of God may be rightly demonstrated from the fact that the necessity of His 

existence is comprehended in the conception which we have of Him. 

 When mind afterwards considers the diverse conceptions which it has and when it 

there discovers the idea of a Being who is omniscient, omnipotent and absolutely perfect, 

which is far the most important of all; in it it recognizes not merely a possible and contingent 

existence, as in all the other ideas it has of things which it clearly perceives, but one which is 

absolutely necessary and eternal. And just as it perceives that it is necessarily involved in the 

idea of the triangle that it should have three angles which are equal to two right angles, it is 

absolutely persuaded that the triangle has three angles equal to two right angles. In the same 

way from the fact that it perceives that necessary and eternal existence is comprised in the 

idea which it has of an absolutely perfect Being, it has clearly to conclude that this absolutely 

perfect Being exists.8 

 The second argument is that the cause of our idea of God must be at least as great as 

our idea itself. Since our idea is of a perfect and necessarily existing being, it must be caused 

by something at least as perfect and necessarily existing, i.e., by God. The second argument 

seems simply to equivocate between the perfection of an idea and the idea of something 

perfect. Both arguments are obscure, but Descartes is quite firm that anyone who doubts them 

is defective, someone wanting in “the natural light of reason.” 

I really do not see what can he added to make it clearer that that idea [of God] could not be 

present in my consciousness unless a supreme being existed, except that the reader might, by 

attending more diligently to what I have written, free himself of the prejudices that perchance 

overwhelm his natural light, and might accustom his mind to put trust in ultimate principles 



than which nothing can be more true or more evident, rather than in the obscure and false 

opinions which, however, long usage has fixed in his mind. 

 That there is nothing in the effect, that has not existed in a similar or in some higher 

form in the cause, is a first principle than which none clearer can be entertained. The common 

truth, ‘from nothing, nothing comes’, is identical with it. For if we allow that there is 

something in the effect which did not exist in the cause, we must grant also that this 

something has been created by nothing; again the only reasons why nothing cannot be the 

cause of a thing, is that in such a cause there would not be the same thing as existed in the 

effect. 

 It is a first principle that the whole of the reality or perfection that exists only 

objectively in ideas must exist in them formally or in superior manner in their causes. It is on 

this alone we wholly rely, when believing that things situated outside the mind have real 

existence; for what should have led us to suspect their existence except the fact that the ideas 

of them were borne in on the mind by means of the senses? 

 But it will become clear to those who give sufficient attention to the matter and 

accompany me far in my reflections, that we possess the idea of a supreme and perfect being, 

and also that the objective reality of this idea exists in us neither formally nor eminently. A 

truth, however, which depends solely on being grasped by another’s thought, cannot be 

forced on a listless mind. 

 Now, for these arguments we derive it as a most evident conclusion that God exists. 

But for the sake of those whose natural light is so exceeding small that they do not see this 

first principle, viz. that every perfection existing objectively in an idea must exist actually in 

something that causes that idea, I have demonstrated in a way more easily grasped an 

identical conclusion, from the fact that the mind possessing the idea cannot be self derived; 

and I cannot in consequence see what more is wanted.9 



 The third step in Descartes’ argument should now be predictable. Since God is 

perfect, he cannot be a deceiver. Since we are inclined to believe whatever we clearly and 

distinctly perceive, whether through reflection or through experience, and since God created 

us, whatever we clearly and distinctly perceive must be true. For the same reason, what we 

genuinely recollect clearly and distinctly perceiving must be true, and so deduction can be 

relied upon. God is what guarantees the reliability of deductive inference. Of course, people 

can fail to apply the method reliably and, through acts of will, can confuse themselves. But 

that is not God’s fault, nor is it Descartes’. 

 Descartes’ philosophy had many critics, none more determined than Pierre Gassendi. 

Gassendi thought the whole thing a lot of balderdash, and he said so at length, first in 

objections that Descartes included in an appendix to his Meditations and then in a book. 

Gassendi revived the criticism made against Anselm: you can conceive of a perfect island, 

but that does not guarantee it exists. By parity of reasoning, that you can conceive of a perfect 

being, even one that necessarily exists, does not imply that such a being exists. Gassendi 

thought that many of Descartes’ claims about what he clearly and distinctly perceived were 

simply muddled terminology, about whose meaning Descartes had no clear conception at all: 

“He who says that anything is infinite attributes to a thing which he does not comprehend a 

name which he does not understand.”10 Gassendi thought that Descartes’ method was useless 

and in fact no method at all. We think of a method as a procedure that is more or less 

mechanical and will lead all users to the same conclusion. Descartes held that he had shown 

not only this but also that his method would lead users to the truth. Gassendi didn’t believe 

Descartes’ proof, and he thought that those who claimed to see things clearly and distinctly 

and to know things by the natural light of reason generally contradicted each other. Descartes 

replied that when they contradicted each other, it only showed that some of them had not 

applied the method correctly. 



 The content of Descartes’ books on method read a little like old-fashioned versions of 

popular books on mental improvement. Books of the latter sort are more common nowadays 

than they were in Descartes’ time, and they are generally held in contempt by people who do 

serious work on reasoning. Why were Descartes’ writings taken so seriously in their own 

day? In part because Descartes was so vociferous and skillful at arguing; in part because his 

writings addressed—even if unconvincingly to a modern mind—the essential questions about 

the reliability of the procedures that the Renaissance still held dear: syllogistic reasoning and 

the method of analysis and synthesis; and in part because Descartes had to his credit a 

number of important mathematical discoveries. He could and did claim that his method had 

led him to them. 

Study Questions 

1. In another passage from Rules for the Direction of the Mind, Descartes writes, “The 

working of conjecture is shown, for example in this: water which is at a greater distance from 

the centre of the globe than earth, is likewise less dense substance, and likewise the air which 

is above the water, is still rarer; hence we hazard the guess that above the air nothing exists 

but a very pure aether, which is much rarer than air itself. Moreover, nothing that we 

construct in this way really deceives us, if we merely judge it to be probable and never affirm 

it to be true; in fact it makes us better instructed.”11 Is this passage consistent with Descartes’ 

remarks about “probable knowledge”? 

2. How does the following remark of Descartes’ accord with the Aristotelian conception 

of scientific method? “The upshot of the matter is that it is possible to say that those 

propositions indeed which are immediately deduced from first principles are known now by 

intuition, now by deduction, i.e., in a way that differs according to our point of view. But the 

first principles themselves are given by intuition alone, while, on the contrary, the remote 

conclusions are furnished only by deduction. 



3. Rules are different from descriptions of facts. What are some of the differences? 

4. Suppose you tried to follow Descartes’ Rules for the Direction of the Mind. Could you 

know whether or not you had succeeded in following the rules? Could you know whether or 

not a conviction was an intuition guaranteed by the “natural light of reason”? If so, how, and 

if not, why not? 

5. Suppose someone else tried to follow Descartes’ Rules. Could you know whether or 

not she was doing so correctly? If so, how, and if not, again, why not? 

6. How do you know when you add two numbers together and carry that you have 

followed the addition algorithm correctly? How do you know when someone else does the 

addition under your observation that they have followed the algorithm correctly? 

7. Is Descartes’ argument that he cannot doubt his own existence a diagonal argument? 

(This is for those who did the second study question from chapter 1 in the section on infinity 

and cardinality.)* 

THE BINOMIAL THEOREM 

We have already seen that Aristotle’s and Plato’s conception of the structure of knowledge 

stimulated interest in the mathematical study of how things can be combined. By deepening 

the understanding of combinations, the seventeenth century took another important step 

toward fathoming the fundamental questions about deductive argument. One important 

contribution to this subject was Blaise Pascal’s Treatise on the Arithmetic Triangle. It 

indirectly furthered the understanding of logic and deductive reasoning, it contained one of 

the first important calculations in the the theory of probability, and it helped provide the 

foundations of modern decision theory. 

 In a later chapter I will briefly consider the importance of Pascal’s thought in creating 

the theory of probability and decision theory. For present purposes, the important aspect of 

his work on the arithmetic triangle is that it provided a systematic connection between the 



theory of combinations and ordinary algebra. Descartes had succeeded in connecting 

geometry with algebra by showing that geometrical figures such as the line and circle could 

be viewed as the collections of points that satisfy certain algebraic relations. Thus any three 

numbers, call them A, B, and C, determine a straight line if A and B are not both zero. The 

line is the set of all points (x, y) such that Ax + By + C = 0. Conversely, for every straight line 

there is some such equation. Now Pascal showed that the fundamental question of 

Aristotelian combinatorics, the number of ways of choosing r things from a collection of n 

things, concerned numbers that also have a purely algebraic significance. Pascal’s result is 

known as the binomial theorem. 

 Consider the expression (x + y)n. For different values of n we can expand this 

expression: 

n = 1: x + y 

n = 2: x2 + 2xy + y2 

n = 3: x3 + 3x2y + 3xy2 + y3 

n = 4: x4 + 4x3y + 6x2y2 + 4xy3 + y4 

We can rewrite each expansion this way (remember that x0 = 1): 

n = 1: xny(n  1) + x(n  1)yn 

n = 2: xny(n  2) + 2x(n  1)y(n  1) + yn 

n = 3: xny(n  3) + 3x(n  1)y(n  2) + 3x(n  2)y(n  1) + yn 

Each term in the sum is a binomial coefficient multiplied by a product consisting of a power 

of x and a power of y. The products of the powers of x and y are always either of the form 

xry(n  r) or of the form x(n  r)yr, where r is some number between 0 and n, inclusive. So for n = 

2, for example, the first term, x2, has the binomial coefficient 1 and has r = 0, while the 

second term, 2xy, has the binomial coefficient 2 and has r = 1. The binomial coefficients for n 

= 1 to n = 4 are therefore the following: 



n = 1: 1, 1 

n = 2: 1, 2, 1 

n = 3: 1, 3, 3, 1 

n = 4: 1, 4, 6, 4, 1 

Binomial theorem For a positive integral n, the binomial coefficient of x(n  r)yr (or of xry(n  

r) is exactly the number of ways of choosing r things from n things. In other words, the 

binomial coefficient is n!/(r!(n  r)!) Remember that 0! = 1. 

 Pascal’s Treatise helped to make it evident that the analysis of combinations arising 

from the Aristotelian and Platonic traditions was an aspect of algebraic relations among 

numbers. Descartes’ mathematical work had shown that geometry, the traditional 

mathematical language of the sciences, also has an algebraic side and that important 

geometrical properties could be characterized algebraically. By the middle and later parts of 

the seventeenth century, algebraic relations, usually presented as geometrical statements of 

ratios, had become the form in which natural science expressed the laws of nature. Kepler’s 

third law was essentially such a relation. So were Boyle’s and Mariotte’s law of gases and the 

inverse square law of gravitation. It was only natural to suppose that the actions of the mind, 

thought, must also have laws that can be described by such relations, and that the 

combinatorics of analysis and synthesis are a hint of them. Gottfried Leibniz came to that 

very conclusion. 

Study Questions 

1. Below are the first few rows of the arithmetic triangle listing the coefficients of the 

monomials in the expansion of (a + b)n: 

 

What is the next row of the triangle? 



2. The first row in the triangle gives the monomial coefficient for the expansion of (a + 

b)0, which equals 1. The second row gives the two coefficients, (1, 1), for the expansion of (a 

+ b), which is just a + b. The third row gives the usual quadratic coefficients, (1, 2, 1), for the 

expansion of (a + b)2 = a2 + 2ab + b2, and so on. Let (n, r) denote the coefficient of arb(n  r) in 

the expansion of (a + b)n. What is the formula for expressing (n, r) as a function of (n  1, r  

1) and (n  1, r)? 

3. Verify for n = 6 that (n, r) = n![r!(n  r)!]. 

LEIBNIZ AND THE MATHEMATICS OF REASON 

Pascal’s Treatise was published in 1665. The next year Leibniz, then 19 years of age, 

published his first work, a Latin treatise on logic and combinatorics, De Arte Combinatoria. 

He did not yet know of Pascal’s work, but he learned of it subsequently, and in later years 

when he journeyed to Paris, he tried unsuccessfully to meet with Pascal, who had retreated to 

religious quarters at Port Royal. Pascal had shown that the same combinatorial numbers or 

binomial coefficients also arise in relations between the terms of certain infinite series, and 

reflection on the properties of series eventually helped lead Leibniz to the discovery of the 

differential and integral calculus. 

 Leibniz’s first work was really a combinatorial study of logic in the Aristotelian 

tradition. It is the only work on logic that Leibniz ever published. Over the course of the rest 

of his life, Leibniz wrote a long series of unpublished and uncompleted papers on logic. They 

show the formation of some of the key modern ideas about deductive inference and proof, 

and they also show how very difficult the issues were for one of the greatest philosophers and 

mathematicians of the century. Leibniz’s logical theory is not consistent and thorough 

(Leibniz had a difficult time completing anything), but it contains many ideas that were 

successfully elaborated in later centuries, and it also shows clearly the limitations of the 

Aristotelian framework. 



 Leibniz’s viewpoint can be thought of as what you get if you do the following: 

 You take the Platonic and Aristotelian view of the formal structure of what is known. 

 You combine it with the method of analysis and synthesis. 

 You abolish the distinction between properties that a thing has accidentally and 

properties that a thing has essentially and assume instead that every property something has, 

it has necessarily. 

 Following tradition, Leibniz assumed that every proposition consists of a predicate 

applied to a subject, and that in this regard the structure of language reflects the structure of 

the world. In the world, substances have attributes. But Leibniz gave this a twist. Substances 

don’t, in his view, have attributes in the sense that one and the same substance could have an 

attribute or not have it. A substance just is a combination of attributes. You, for example, are 

nothing but the combination of all of the properties that you have. So there is no property that 

you in fact have that you could not have. An entity that didn’t have some property of yours 

wouldn’t be you. So every property you have, you have necessarily. The same holds of any 

other substance in the world. Whatever properties a substance has, it has necessarily. 

 In Leibniz’s view, the propositions that we assert and believe and perhaps know are 

about concepts. A proposition, “Socrates is snub-nosed,” for example, asserts a relation 

between the concept of the subject, Socrates, and the concept of the predicate, snub-nosed. It 

doesn’t assert anything about Socrates himself. The proposition is true if and only if the 

concept of Socrates, which is really a combination of primitive, unanalyzable concepts, 

contains the concept of snub-nosed, which is also a combination of primitive concepts. 

Suppose, for example, that the concept of Socrates contains the concept of a nose less than 2 

inches long, and the concept of snub-nosed just is the concept of a nose less than 2 inches 

long. Then the concept of Socrates contains the concept of snub-nosed, and so it is true that 

Socrates is snub-nosed. Similarly, the proposition “All perfect people are happy” is about the 



concept of perfect people and the concept of happiness, it is not about perfect people or about 

happy things. Leibniz had a reason for thinking that propositions are about concepts rather 

than about objects. The sentence “All perfect people are happy” may be true even though 

there are no perfect person. Unlike Aristotle, Leibniz did not think that a universal sentence 

such as “All perfect people are happy” entails that there exist perfect people. But if “All 

perfect people are happy” is true even though there exist no perfect person, the sentence 

cannot be about perfect people, for there are none. The sentence must be about something, 

however, and the proposal that it is about a mental entity, the concept of perfect men, seems 

to solve the problem. 

 In Leibniz’s theory, every concept just is a list or combination of primitive concepts. 

All true propositions are true because the list of primitive concepts of the subject term is 

appropriately related to the list of primitive concepts of the predicate term. Leibniz says that 

every true proposition is true because it is an instance of the identity A = A. He meant that if a 

proposition is true, the subject and predicate lists will be such that by eliminating irrelevant 

parts of one or the other, the same combination of concepts of attributes is found in the 

subject as is found in the predicate. So every true proposition can be given a proof. The proof 

of a proposition consists of the following: 

1. Producing the combinations of simple concepts denoted by the predicate of the 

proposition and the subject of the proposition. 

2. Showing that the concept of the predicate is included in the concept of the subject. 

Leibniz wrote extensively about these two steps. He never succeeded in making clear just 

how the analysis of concepts was to be obtained. Of course, neither had Aristotle nor the 

Scholastic tradition of analysis and synthesis. Leibniz envisioned the creation of an enormous 

dictionary or encyclopedia, and he attempted to get various people to actually assemble such 

dictionaries. 



 Once a universal dictionary has been assembled that expresses each concept in terms 

of the simplest concepts, Leibniz thought that the production of scientific knowledge would 

become mechanical. He thought an algorithm or mechanical procedure could be found to 

carry out the second part of the procedure for giving proofs. The way to formulate such a 

procedure is to treat the problem as a part of algebra. Each simple term and each complex 

term should be given a letter or other symbol (Leibniz sometimes suggested using numbers as 

symbols for concepts), and then one would use algebraic methods to search for algebraic 

identities. On other occasions he suggested representing concepts with geometrical figures, 

such as lines, and trying to carry out step 2 by geometrical procedures. The essential thing is 

that there is a mathematics of reason (in fact, that is the title of one of the logical papers 

Leibniz completed), and this mathematics can be carried out mechanically. 

 You can get the flavor of what Leibniz was up to from a fragment of one of many 

“Logical Calculi” he developed: 

(1) “A = B” is the same as “ ‘A = B’ is a true proposition.” 

(2) “A ≠ B” is the same as “ ‘A = B’ is a false proposition.” 

(3) A = AA; i.e., the multiplication of a letter by itself is here without effect. 

(4) AB = BA, i.e., transposition makes no difference. 

(5) “A = B” means that one can be substituted for the other, B for A or A for B, i.e., that 

they are equivalent. 

(6) “Not” immediately repeated destroys itself. 

(7) Therefore A = not-not-A. 

(8) Further, “A = B” and “A not ≠ B” are equivalent. 

(9) That in which there is “A not-A” is a “non-entity” or a “false term” e.g., if C = A B 

not-B, C would be a non-entity. 

(10) “A ≠ B” and “B ≠ A” are equivalent. This follows from 5. 



(11) “A = B” and “not-A = not-B” are equivalent. [Leibniz gives a proof of this claim.) 

(12) If A = B, AC = BC. This is proved from 5.12 

Leibniz goes on to state seven more claims of this kind. Clearly this looks like algebra, but it 

is an algebra for propositions rather than for numbers. 

 Leibniz was correct that the task of deciding whether all of the members of one list 

are members of another list can be done machanically. He was wrong in thinking that 

determinations of this kind are adequate for all (or even very much) of logic or of a theory of 

proof. He had difficulty, for example, giving an account in these terms of even the 

Aristotelian quantifiers. He could not give an account of reasoning that involves “or” or that 

involves “if ... then ___” (although in principle he could have expanded his framework to 

account for reasoning that depends on those connectives). Most important of all, Leibniz 

could not give any account of reasoning with relations. 

 We have already noted that Aristotle could not account for proofs in geometry 

because he could not incorporate reasoning about relations between individual objects. 

Leibniz had the same problem. From a logical point of view, he had no satisfactory solution. 

His papers contain some attempts to reduce reasoning involving relations to reasoning that 

involves no more than propositions of subject-predicate form. Leibniz seems instead to have 

adopted a metaphysical solution, and that may have led him to one of the strangest 

metaphysical positions in the history of philosophy. 

 The absence of a theory about how to reason with relations would be less bothersome 

if relations could not be the subject of knowledge. Real relations, according to the conception 

of the time, would have to be relations between two different substances. One way to avoid 

real relations, therefore, is to suppose that there is only one substance. That was Spinoza’s 

solution. According to Spinoza, there is only one substance, God, and what can be known are 

his attributes. Another way to solve the problem is to suppose that there are lots and lots of 



substances, but none of them stand in any relations to one another, or at least not in any 

relations that are the subject of scientific knowledge. That was Leibniz’s solution. 

 Leibniz claimed that the world is constituted of monads. Each monad is a little 

universe by itself. No monad has any causal relations with any other monad, so in the 

Aristotelian tradition the relations between monads are not subjects of scientific inquiry, 

since science is about causes. Some monads, such as we, have souls and so can be aware of 

themselves. Although each monad is separate from all others, each monad is a mirror of 

every other monad; some monads, those with souls, mirror one another more clearly and in 

more detail than do other monads. I am a monad, and so are you. We have no causal relations 

with one another, but Cod, who, being perfectly benign, has created the best of all possible 

worlds, has so created us that our perceptions are in perfect harmony. It appears to each of us 

that we live in a common world and have causal relations with one another. But appearance is 

not reality. 

 Leibniz’s logic was never adequate, which may explain why he published so little of 

it, and his metaphysics was not much comfort, although he intended it to be. He did, 

however, accomplish several things. 

 He formulated the notion of a decision procedure for logic: a mechanical or 

algorithmic procedure that will determine whether or not an inference is valid. He even 

attempted to give such a procedure for the theory of the syllogism. 

 He made clear the notion of an incomplete axiomatic theory. An axiomatic theory is 

incomplete provided there is some sentence in its language that can be neither proved nor 

disproved from its axioms. 

 He introduced the idea that pieces of language can be coded by abstract symbols, 

including numbers, and that logical relations among the propositions can be studied by 

considering relations among the symbols or numbers. 



 He introduced and furthered the idea that logical relations among propositions have an 

algebraic structure. 

 He developed the thought that universal subject-predicate propositions do not 

presuppose the existence of things satisfying their predicate or subject terms. 

CONCLUSION 

Although we look to the seventeenth century as the period when both modern science and 

modern philosophy began, it was also a time still captivated by the Aristotelian conceptions 

of reason and scientific knowledge. Many of the great works of seventeenth-century 

philosophy, especially on the continent, still assumed that the method for acquiring 

knowledge consists of analysis and synthesis and that real scientific knowledge requires some 

kind of proof analogous to the proofs of geometry. Almost all of the philosophical writers of 

the time assume, wrongly, that with one or another advance in these methods it will be easy 

to complete all of scientific knowledge. (In one of his last works’ Descartes chides the public 

for not providing him with the means to conduct a few experiments by which, he is sure, he 

could complete all of human knowledge.) 

 Even though seventeenth-century philosophers, except for Leibniz, made no 

fundamental advances in logic beyond the state in which Aristotle had left it, they did 

succeed in creating the intellectual framework for radical changes that began in the 

nineteenth century. Part of that framework consisted in treating logic as the theory of the 

operation of the faculty of reason, a faculty that acted to synthesize and analyze ideas. The 

mathematics of combinations became the formal basis for studying reasoning, which 

combined both logic and psychology, and it placed that study among the other new natural 

sciences. Geometry could be systematically connected with algebra, and the theory of 

combinations, which was the mathematical basis for whatever method there was to analysis 

and synthesis, could also be systematically connected with algebra. These connections were 



brought together in Leibniz’s notion that deductive inference could be studied and understood 

through the application of algebraic methods to abstract symbols representing propositions. 

One hundred and fifty years later, George Boole, a professor of mathematics at the University 

of Cork, turned this idea into a real theory of reasoning. 

Review Questions 

1. Describe the method of analysis and synthesis. 

2. How many ordered quadruples can be formed from seven distinct objects? How many 

unordered quadruples can be formed? 

3. In your own words, state two significant ideas implicit in the philosophy of Ramon 

Lull. Explain why these ideas should be considered significant. 

4. Discuss the validity of Descartes’ belief that “properties which cannot be conceived 

separately are necessarily coextensive; and properties which can be conceived separately are 

not necessarily coextensive.” 

5. Outline Descartes’ argument for the existence of God. 

6. Produce the binomial coefficients for n = 5. 

7. What is a monad? What role does it play in Leibniz’s philosophy? 
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Chapter 4 

THE LAWS OF THOUGHT 

INTRODUCTION 

In the middle of the nineteenth century, George Boole, a professor of mathematics at the 

University of Cork in Ireland, tried to realize Leibniz’s conception of an algebra of thought. 

Boole’s work was the most important advance in logic since Aristotle, and it prepared the 

foundations for the emergence of modern logic some thirty years later. Boole’s thought is 

interesting not only because of its advance in formal understanding, but also because it 

illuminates a fundamental difficulty in thinking of logic, the theory of perfect, deductive 

rationality, also as a theory of how the human mind, or some part of it, functions. 

 Boole’s conception of logic was similar to Leibniz’s: 

• Logic consists of a set of laws, like the laws of physics or the laws of geometry. 

• The laws have an algebraic form. 

• The laws have to do with the correct operation of the mind. 

One can well imagine that people think through visual images. Instead, Boole held that 

thinking is a way of talking to oneself in an unvoiced speech. According to Boole, rational 

thought is carried out in language. When we have a thought, we think a sentence. The laws of 

rational thought are therefore also the laws governing the use of language in reasoning. The 

rules of reasoning are at the same time both rules for the correct performance of various 

mental operations and also rules for the correct use of language. Boole’s theory, like 

Aristotle’s, therefore depends on an analysis of the structure of language. Boole’s own 

presentation of his views about the logical structure of language was not entirely clear, and 

perhaps not entirely coherent. We will study a somewhat simplified version of his theory 

while remaining as faithful as we can to his ideas. 

THE UNIVERSE OF DISCOURSE AND FIELDS OF SETS 



According to Boole, every discussion, every conversation, is about some domain, or universe 

of discourse. The domain may be real or imaginary, the subject may be real mountains or 

fairy-tale mountains, but for the purposes of any specific human conversation, objects not in 

the domain are ignored. 

In every discourse, whether of the mind conversing with its own thoughts, or of the 

individual in his intercourse with others, there is an assumed or expressed limit within which 

the subjects of its operation are confined. The most unfettered discourse is that in which the 

words we use are understood in the widest possible application, and for them the limits of 

discourse are co-extensive with those of the universe itself. But more usually we confine 

ourselves to a less spacious field. Sometimes, in discoursing of men we imply (without 

expressing the limitation) that it is of men only under certain circumstances and conditions 

that we speak, as of civilized men, or of men in the vigour of life, or of men under some 

condition or relation. Now, whatever may be the extent of the field within which all the 

objects of our discourse are found, that field may properly be termed the universe of 

discourse.1 

 Consider a particular domain of discourse. Suppose the topic is cats. The domain of 

discourse is the collection or set of all cats. For every conceivable property of cats, there is 

then a subset of the domain of discourse consisting of all of the cats that have that property. 

The property of being a Manx cat, for example, determines the subset of the domain of 

discourse that consists of Manx cats. The property of being a tailless cat determines the 

subset that consists of tailless cats. The property of being a black cat determines the subset 

that consists of black cats. I can make the idea clear with the same kinds of diagrams that I 

used in our study of the theory of the syllogism (Boole himself did not use such diagrams, but 

they were used by another nineteenth-century logician, John Venn). 



 If we conceive of two properties of cats, black and Manx for example, we can 

conceive of those properties holding of one and the same kind of thing, namely cats. We can 

conceive, for example, of cats that are black and Manx. That conception also corresponds to a 

subset of the domain of discourse: the set of all cats that are black and Manx, or to say the 

same thing, the intersection of the set of black cats and, the set of Manx cats. I will always 

write the intersection of two sets M and B (for the set of Manx cats and the set of Black cats, 

respectively) as M  B (figure 4.1). 

 We can also conceive of cats that are black or Manx. The corresponding set of all cats 

that are either black or Manx (or both) we call the union of the set of black cats and the set of 

Manx cats. I will always write the union of any two sets M and B as M  B. 

 If we can conceive of any property, we can conceive of its absence (what would Saint 

Anselm say about that claim?). Since a property such as being black corresponds to a subset 

of the domain of discourse, namely the set of all things in the domain that have the property 

black, the absence of black will correspond to the set of all things in the domain that are not 

black. If U is the domain of discourse, cats in this case, and B is the subset of black things in 

U, the subset of nonblack things in U will be written as B. B is said to be the complement of 

B in U, or the complement of B relative to U. When the context makes the universe of 

discourse clear, I will simply say that B and B are complements of one another. 

 Boole assumed that we can conceive of any number of compoundings of properties, 

and there are corresponding set operations that determine compound descriptions of sets. We 

can, for example, conceive of all of the cats that are not either black or Manx but are tailless. 

That corresponds to the subset of the domain of cats given by (B  M)  T, where B is the 

set of all black cats, M the set of all Manx cats, and T the set of all cats with tails. 

 Suppose that a piece of discourse or reasoning has to do with some definite universe 

of discourse U and some finite list of properties that things in that domain may or may not 



have. Suppose that the subsets of U corresponding to these properties are denoted by P1, 

P2, ... , Pn. The sets U and P1, P2, ... , Pn implicitly determine the collection of all subsets of U 

that can be obtained by forming the intersections, unions, and complements of U, P1, P2, ... , 

Pn forming the intersections, unions, and complements of those sets, forming the 

intersections, unions, and complements of those sets, and so on. If we consider the collection 

of all subsets of U that can be formed in this way, that collection is called a field of sets over 

U. A more formal formulation is the following: 

Definition A field of sets over a nonempty set U is any collection of subsets of U that 

contains U, contains the complement relative to U of any set it contains, contains the 

intersection of any two sets it contains, and contains the union of any two sets it contains. 

 It is easy to visualize simple finite fields of sets. Suppose, for example, that we are 

talking about cats, but (for whatever reason) we are only concerned with one property of cats, 

namely whether or not they have tails. Then the universe of cats divides into two kinds, those 

with tails and those without tails, and there are exactly four sets in the corresponding field of 

sets, namely the set of all cats (because U is always in a field of sets over U), the empty set 

(because the complement of U relative to U is the empty set), the set of cats with tails, and 

the set of cats without tails (figure 4.2). 

 It can be shown that there are no other distinct sets in this field of sets. For example, if 

we take the union of the set of all cats with tails and U, we get U again, which is a set we 

already have. If we take the intersection of U with the set of all cats with tails, we get the set 

of all cats with tails again, which is a set we already have. In the same way, any other 

intersection, union, or complement of these four sets generates one or another of the same 

four sets. 

 We can represent a field of sets, as in figure 4.2 on the right, by a graph with U at the 

top and the empty set  at the bottom. A line in the graph connecting two sets means that the 



lower set is included in the upper set.2 A set and its complement are never connected in such 

a graph, because neither set is contained in the other. 

 It is easy to construct other fields of sets. Simply let U be any nonempty finite set and 

list all of the subsets of U. The resulting collection, called the power set of U, is always a 

field of sets. If U has a single member, we get the simplest possible field of sets, consisting 

only of U and : 

•• 

The fields of sets obtained when U has three members and when U has four members are 

shown below: 

•• 

Study Questions 

1. Explain why the power set of any nonempty set U is a field of sets over U. Write your 

explanation as a proof of that fact. 

2. In the figures above, which elements of the field of sets are complements of other 

elements of the field? 

3. Give an example of a domain of discourse and two distinct properties such that all 

members of the domain that have one property also have the other and vice versa. 

4. Explain why there cannot exist a field of sets consisting of exactly three sets. 

LANGUAGE AND THE WORLD 

One of Boole’s central ideas was that we can regard the world, aspects of the world, or even 

imaginary worlds as structured like a field of sets. Although he did not explicitly introduce 

the notion of a field of sets as I have defined it, he held that for any discourse, there is a 

domain of objects with properties and combinations of properties. Together, the set of objects 

in the domain and the sets of objects with any particular property or combination of 

properties make up a field of sets. This proposal is really a metaphysical idea, just as 



Aristotle’s notion of objects with essential properties was a metaphysical idea. Like Aristotle, 

Boole proposed that language is structured to reflect metaphysics. 

 As a mathematical idealization of real language, Boole considered a language 

structured in the way in which the language of algebra is structured. Boole’s mathematical 

language contains variables, just as ordinary algebra does. In ordinary algebra the variables 

range over some system of numbers; we say that the variables take numbers as values. The 

variables in Boole’s language instead range over the sets that are in some field of sets. The 

context of the discourse or conversation determines the relevant field. Boole’s variables take 

sets in this field as values. So, to continue the example above, the domain might consist of the 

set of all cats, and possible values of Boole’s variables might include the set of all cats with 

tails, and the complement of that set would be the set of of all cats without tails. 

 In ordinary algebra we can write expressions that contain operation symbols and 

variables; we can write x + y, for example, and the result is a well-formed expression in the 

language of algebra. We understand that the plus sign signifies the operation of addition on 

numbers. Boole’s system also allows expressions to be formed by combining his variables 

with symbols for operations. He allows us to write x · y, x + y, and (1  x). In Boole’s 

formulas, the symbol “·” signifies set intersection, the symbol + signifies set union, and 

expression (1  x) signifies the relative complement of x in U. Just as we can build up 

arbitrarily complex expressions in ordinary algebra by combining operations and variables as 

often as we wish (with parentheses to make our meaning clear), so we can build complex 

expressions in the algebra of logic. 

 In ordinary algebra we can give explicit rules for how to evaluate expressions, 

although we don’t usually state them explicitly, because they are so obvious. For example, 

for any algebraic formulas x and y (where x, y stand not just for variables but for well-formed 

expressions of any complexity), the value of x + y is the sum of the value of x and the value 



of y, and the value of x · y is the product of the value of x and the value of y. Similarly, in 

Boole’s theory we can evaluate expressions in the algebra of logic by using explicit rules. For 

any formulas x, y, the value of x · y is the intersection of the value of x and the value of y, the 

value of x + y is the union of the value of x and the value of y, and the value of (1  x) is the 

relative complement of the value of x in U, the universe of discourse. 

 In ordinary algebra we use the identity or equals sign, =, to say that the value of one 

formula is the same as the value of another. Boole does the same thing, except that his values, 

as before, are not numbers but sets in a field of sets. In ordinary algebra we have names for 

some special numbers. In Boole’s mathematical model of language we always have a name 

for the universe of discourse and a name for the empty set. Boole uses the numeral 1 to 

denote the universe of discourse and the numeral 0 to denote the empty set, . 

 In ordinary algebra particular sentences about particular numbers can be obtained by 

replacing the variables in a formula with the names of numbers. For example, the true 

sentence 1 + 2 = 2 + 1 can be obtained by substituting 1 for x and 2 for y in the formula x + y 

= y + x. Similarly, in Boole’s system many ordinary sentences can be obtained by substituting 

terms for particular properties in place of variables and interpreting · as and, + as or, and (1  

x) as not x. For example, the sentence “Black and tailless cats are tailless and black cats” can 

be obtained by substituting “black” for x, and “tailed” for y in x · (1  y) = (1  y) · x, where 

the set of cats comprises the domain of discourse. 

 With some rearranging, many ordinary sentences can be represented by general 

expressions in Boole’s logic. Variables are substituted for names of particular properties, and 

operation symbols are substituted for English (or Chinese or Martian) connectives. Consider 

the sentence “Manx cats are tailless.” That is the same as saying, “No cats are Manx cats and 

cats with tails.” If we understand that the set of cats is the domain of discourse, and take “no 



cats” to designate the empty set, this sentence can be regarded as an instance of the formula 0 

= x · y, obtained by substituting “Manx cats” for x and “cats with tails” for y. 

THE LAWS OF BOOLEAN ALGEBRA 

In ordinary algebra we are interested in finding equalities among formulas that are true for all 

possible values of the variables in the formulas. For example, in the algebra of real numbers 

we know that 

x · y = y · x (commutative law of multiplication), 

x + y = y + x (commutative law of addition), 

x · (y + z) = (x · y) + (x · z) (distributive law), 

(x) = x. 

What distinguishes these equations from many other equations one might write down (e.g., x 

 1 = 0) is that these equations are true no matter what numbers the variables take as values. 

Equations with this property are important because they represent fundamental laws of the 

algebra of real numbers. 

 Similarly, Boole was interested in finding the laws of the algebra of thought. He 

posed the question, What equations in Boole’s algebra will be true for all values of their 

variables and in every field of sets for every (nonempty) domain of discourse? This is really 

the fundamental question about Boole’s logic. The following equations are true in every field 

of sets and for all values given to the variables. They form some of the laws of Boole’s 

system: 

x + y = y + x (1) 

x · y = y · x (2) 

x · (y + z) = (x · y) + (x · z) (3) 

x + (y · z) = (x + y) · (x + z) (4) 

x + 0 = x (5) 



x · 1 = x (6) 

x · (1  x) = 0 and x + (1  x) = 1 (7) 

x + (y + z) = (x + y) + z (8) 

x · (y · z) = (x · y) · z (9) 

0  1 (10) 

In modern mathematics any system of objects and operations in which all ten of these 

equations hold for all values of the variables is called a Boolean algebra. Every field of sets 

is a Boolean algebra. 

 It is easy enough to verify that these laws must hold in any field of sets. In most cases, 

verifying that these laws are true amounts to nothing more than saying what the operations 

involved mean. For example, the first of these equations says that for any set X (a value of the 

variable x) and any set Y (a value of the variable y), the union of X and Y is the union of Y and 

X. But the union of set X and set Y is the set whose members are in X or in Y, which is the 

same as the set whose members are in Y or in X. Again, the sixth equation says that for any 

set X in any field of sets over a set U, the intersection of X and U is X itself. Since by 

definition a set X is in a field of sets over U only if X is a subset of U, every member of X 

must be a member of U. The intersection of X and U, which is the set of all things that are 

members of X and also members of U, is therefore exactly the set of all members of X. 

Study Questions 

1. Show that x · x = x is a law in Boole’s algebra. You may derive it from equations (1) 

through (10) above or from the definition of a field of sets. 

2. Show that x + x = x is a law in Boole’s algebra. 

3. What characteristic distinguishes a law in Boole’s system from an equation that is not 

a law? Give an example of an equation that is not a law. 

TRUTH, PROPOSITIONS, AND BOOLEAN ALGEBRA 



One of Boole’s principal aims was to show that language has the same structure as do 

algebraic formulas; he aimed to provide a metaphysical but clear account of the structures of 

those formulas; he aimed to find the formulas that constitute the laws of such structures; and 

he aimed to show that reasoning in natural language could be evaluated in the same way that 

we evaluate reasoning in ordinary algebra. If the last of these aims could be achieved, we 

would be able to use the laws of Boole’s algebra to determine whether or not a particular 

sentence can be validly derived from other sentences, just as we can use our knowledge of the 

laws of ordinary algebra to determine whether or not one formula of ordinary algebra can be 

validly derived from a collection of other formulas. 

 To achieve his aims, Boole gave a second interpretation of his algebra. To understand 

this second interpretation, note that not every sentence that occurs in reasoning looks like an 

instance of one of Boole’s equations. This is because of a point that should be familiar by 

now: not all declarative sentences are compounded out of sentences of subject-predicate 

form. Boole’s first analysis of language works well enough for such sentences as “Tailless 

black cats are Manx cats” (which becomes an instance of x · y = z), but it doesn’t seem to 

apply at all to such a sentence as “Children love their parents, and parents love their 

children.” The problem in this case is that “loves” is not a property hut a relationship, and 

that in the context of the sentence, the term “parent” involves a relation between a child and 

the people that are the child’s parents. In previous chapters we learned, you will recall, that 

an important defect of traditional logic was its inability to represent reasoning with relations. 

 Boole had no theory about how to analyze sentences that involve relations, and except 

in simple cases (such as “no cats”), he had no theory of quantifiers either. But he nonetheless 

had a clever idea for analyzing some of the logical properties of such sentences within his 

algebra. The idea is this: Consider the sentence “Children love their parents.” That sentence is 



true if and only if the sentence “‘Children love their parents’ is true” is true. Trivial though 

this observation may sound, Boole made excellent use of it. 

 Consider again the simplest possible field of sets consisting of a non-empty set U and 

the empty set. Recall that Boole denotes U with 1 and the empty set with 0. Instead of 

thinking of 1 as a name for U and 0 as a name for the empty set, however, think of the 

numeral 1 as a name for the number 1, and think of the numeral 0 as a name for the number 

0. Now the ordinary numbers 1, 0 will satisfy the laws of Boole’s algebra if we give + and · a 

new interpretation. We let Boole’s symbol · denote the function of ordinary multiplication, 

but restricted to the numbers 0 and 1. In Boole’s algebra, 1 · 1 = 1, and 1 · 0 = 0, and 0 · 0 = 

0, just as in ordinary algebra. We let Boole’s expression (1  x) denote the very same 

function it denotes in ordinary algebra, but with x restricted to the numbers 0 and 1. So 1  1 

= 0, and 1  0 = 1. And we let x + y denote the ordinary sum of x and y restricted to 1 and 0, 

with one modification. The modification is that 1 + 1 is defined to be equal to 1 (not 2, as in 

ordinary arithmetic). So 1 + 0 = 1, and 0 + 0 = 0, and I + 1 = 1.3 

 In modern mathematics the described system consisting of the ordinary numbers 0 

and 1 related by the functions just defined is called the two-element Boolean algebra. Its 

structure is exactly like that of the field of sets consisting only of U and the empty set . We 

say the two structures are isomorphic, by means that if we adopt the following 

correspondence, each structure is transformed into the other. 

•• 

 In sciences besides logic, it is perfectly routine to code properties of things by 

numbers. Different numerical scales are used in different sciences for different purposes. 

Similarly, Boole proposed to use 0 and 1 as a simple numerical scale in logic. In Boole’s 

scale the numerical values register properties of sentences. Sentences are things that are true 

or false. We can think of truth and falsity as possible properties that sentences can have, and 



so we can think of the number 1 as the value a sentence has on a numerical scale when the 

sentence is true, and we can think of the number 0 as the value a sentence has on a numerical 

scale when the sentence is false. Just as we use a kilogram scale to assign particular numbers 

to objects according to a property, their weight, Boole proposes a scale that assigns numbers 

to sentences according to whether they are true or false. 

 Let us return now to Boole’s algebraic language. Previously the variables x and y 

ranged over subsets of the domain of discourse, and a sentence could be obtained from an 

algebraic formula by replacing variables with terms for properties. Now the variables receive 

a different interpretation, and accordingly, sentences are obtained from algebraic formulas in 

a different way. The variables range over the two-element Boolean algebra. Each variable can 

have 1 or 0 as its value, but no other values are allowed. Ordinary sentences receive an 

algebraic structure in the following way. Consider the sentence 

Children love their parents and parents love their children. 

Replace the original sentence by the sentence that says that the original sentence is true: 

“Children love their parents and parents love their children” is true. 

Since 1 is the value on Boole’s numerical scale for the property a sentence has when it is true, 

replace the phrase “is true” by “= 1”. 

“Children love their parents and parents love their children” = 1 

Replace “and” with ·, “or” with +, and “not” with (1  ···): 

“Children love their parents · parents love their children” = 1 

Finally, replace each distinct simple sentence (that is, each sentence not compounded out of 

others with “and,” “or,” and “not”) with a distinct variable. This gives us the following: 

x · y = 1 

The result is the Boolean algebraic form corresponding to the original sentence. 



 In this way any declarative sentence can be represented in Boole’s algebra. The 

generality is obtained at a cost, however. There is no longer any analysis of the structure of 

sentences except insofar as the structure involves sentential connectives, that is, words such 

as “and,” “or,” and “not,” which can be used to build compound sentences from simpler 

sentences. 

USE OF BOOLEAN LOGIC 

Boole meant for his logical algebra to be used in settings that are quite different from the 

contexts in which we use ordinary algebra. He meant his algebra to apply to all deductive 

reasoning. To show the applicability of his algebra, he attempted to use it to reconstruct 

several famous philosophical arguments and to determine whether or not they are valid. 

Boole considered arguments from Plato, Samuel Clarke (a contemporary of Isaac Newton), 

and Spinoza. However, only Boole’s analysis of the argument from Plato really works. 

 To understand Boole’s account of that argument, we need to make one more concept 

precise. One of Boole’s equations entails another equation if every assignment of the values 0 

or 1 to the variables of the first equation that makes it true also makes the second equation 

true. Similarly, a set of Boolean equations, the premises, entails another Boolean equation, 

the conclusion, if every assignment of values 0 or 1 to the variables that makes all equations 

in the premise set true simultaneously also makes the conclusion true. A mathematical fact, 

which we will not prove, is that if an inference from premises to a conclusion is valid when 

the variables take their values in any finite field of sets, it is also valid when the variables 

take their values in the 2-element Boolean algebra {0, 1}. Thus, to verify that an inference is 

valid (in any or all fields of sets) it is sufficient to check for validity in the 2-element algebra. 

 In The Republic, Plato gives the following argument (Socrates asks the questions and 

states the conclusions; others in the dialogue give answers to Socrates’ questions): 



Must not that which departs from its proper form be changed, either by itself or by another 

thing? 

 Necessarily so. 

 Are not things which are in the best state least changed and disturbed, as the body by 

meats and drinks and labours, and every species of plant by heats and winds, and such like 

affections? Is not the healthiest and strongest the least changed? 

 Assuredly. 

 And does not any trouble from without least disturb and change that soul which is 

strongest and wisest? And as to all made vessels, and furnitures, and garments, according to 

the same principle, are not those which are well wrought, and in a good condition, least 

changed by time and other accidents? 

 Even so. 

 And whatever is in a right state, either by nature or by art, or by both these, admits of 

the smallest change from any other thing. 

 So it seems. 

 But God and things divine are in every sense in the best state. 

 Assuredly. 

 In this way, then, God should least of all bear many forms? 

 Least, indeed, of all. 

 Again, should He transform and change Himself? 

 Manifestly, He must do so, if He is changed at all. 

 Changes He then Himself to that which is more good and fair, or to that which is 

worse and baser? 

 Necessarily to the worse, if he be changed. For never shall we say that God is indigent 

of beauty or of virtue. 



 You speak most rightly, said I, and the matter being so, seems it to you, O Adimantus, 

that God or man willingly makes himself in any sense worse? 

 Impossible. 

 Impossible, then, it is, that a god should wish to change himself; but ever being fairest 

and best, each of them ever remains absolutely in the same form.4 

 Boole took Plato’s argument to be the following: 

Premise 1: If the Deity suffers change, then the Deity is changed either by the Deity or by 

another. 

Premise 2: If the Deity is in the best state, then the Deity is not changed by another. 

Premise 3: The Deity is in the best state. 

Premise 4: If the Deity is changed by the Deity, then the Deity is changed to a worse state. 

Premise 5: If the Deity acts willingly, then the Deity is not changed to a worse state. 

Premise 6: The Deity acts willingly. 

Conclusion: The Deity does not suffer change. 

Using his algebra, Boole aimed to show that the conclusion is a necessary consequence of the 

premises, that is, if the premises are true, then the conclusion is true. To show that, he 

demonstrated that the algebraic form of the premises is such that whenever they are true, the 

conclusion is true. First he assigned variables to the simple sentences of which the premises 

are composed: 

x: The Deity suffers change. 

y: The Deity is changed by the Deity. 

z: The Deity is changed by another. 

s: The Deity is in the best state. 

t: The Deity is changed to a worse state. 

w: The Deity acts willingly. 



Boole represented sentences of the form “If A then B” as “not (A and not B),” or in other 

words, by equations of the form “A · (1  B) = 0.” 

 Boole’s formulas for the six premises and conclusion of Plato’s argument are as 

follows: 

x · (1  y) · (l  z) = 0 

s · z = 0 

s = 1 

y · (1  t) = 0 

w · t = 0 

w = 1 

x = 0 

 Now it is easy to show algebraically that the conclusion must follow from the 

premises. (Recall laws (4.1) to (4.10) of Boole’s algebra.) 

Since w = 1 and w · t = 0, t must equal 0. 

Since s = 1 and s · z = 0, z must equal 0. 

Since t = 0, 0 = y · (1  t) = y · (1  0) = y. So y = 0 

Since y = 0 and z = 0, 0 = x · (1  y) · (l  z) = x · (1  0) · (1  0) = x. Hence, x = 0. 

 In the twentieth century Boole’s algebra has found applications that he could not have 

imagined. His theory is used every day by electrical engineers who design microchips. Every 

computer you have ever used was designed using principles of Boole’s algebra. Electrical 

current (on or off) can be used to code the Boolean values of propositions, 1 and 0. The 

presence of a current stands for the value 1, and the absence of a current stands for the value 

0. In Boole’s formulas, if you put in values 0 or 1, you get a value of 0 or 1 for the entire 

formula. Bits of circuitry behave exactly as do Boolean formulas. For example, suppose an 

electrical device, a little bit of a microchip, has two input leads and one output lead, as in 



figure 4.3. If the device behaves so that the current arrives at z when and only when the 

device receives current from x and y at the same time, then the device is a physical realization 

of the Boolean formula z = x · y. Systems of such devices function together to do binary 

arithmetic in a pocket calculator or a computer. The central processing unit of such devices 

can thus be described a system of Boolean formulas, and knowledge of the properties of such 

formulas is important in designing the devices and in diagnosing their flaws. 

SOME LIMITATIONS OF BOOLE’S LOGICAL THEORY 

In the first chapter of this book I argued that a theory of deduction should answer at least 

three questions: 

• How can we determine whether or not a piece of reasoning from premises to a 

conclusion is a valid deductive argument? 

• How can we determine whether or not a conclusion is necessitated by a set of 

premises? If a conclusion is necessitated by a set of premises, how can we find a valid 

deductive argument that demonstrates that necessary connection? 

• What features of the structure of the world, the structure of language, and the relation 

between words and thoughts and things make deductive reasoning possible? 

Boole did not give us a theory that says whether a piece of reasoning is or is not a genuine 

proof. Instead, he relied on our understanding of an algebraic proof. He had no real answer to 

the first question, but his theory does tell us when a proof is possible and how to find one if it 

exists. He in effect offers an answer to the second question. There are algorithms that will 

determine, for any finite set of Boolean formulas (the premises) and any other Boolean 

formula (the conclusion), whether or not the premise set entails the conclusion. So once we 

have represented a set of premises and a conclusion as Boolean equations, there is a 

completely mechanical process to determine entailment. If the results of such a procedure say 



that the premises do entail the conclusion, then the application of the algorithm itself will 

constitute a proof of that fact. 

 Boole also gave an answer to the third question, but the answer does not seem 

satisfactory. Boole’s problem was that he had represented logic as a kind of physics of the 

mind. Logic, he assumed, describes the laws by which the mind moves, just as physics 

describes the laws by which bodies move. But we know that everyone makes errors in 

reasoning. So Boole’s theory cannot possibly describe how we reason, because in fact we 

don’t always reason that way. Instead, Boole’s theory seems to prescribe how we ought to 

reason. Theories that prescribe standards are normative. The laws of physics are not 

normative: they don’t say how bodies ought to move; they say how bodies do move in 

various circumstances. 

 Here is what Boole himself says on this and related issues: 

The truth that the ultimate laws of thought are mathematical in their form, viewed in 

connexion with the fact of the possibility of error, establishes a ground for some remarkable 

conclusions. If we directed our attention to the scientific truth alone, we might be led to infer 

an almost exact parallelism between the intellectual operations and the movements of 

external nature. Suppose any one conversant with physical science, but unaccustomed to 

reflect upon the nature of his own faculties, to have been informed, that it had been proved, 

that the laws of those faculties were mathematical; it is probable that after the first feelings of 

incredulity had subsided, the impression would arise, that the order of thought must, 

therefore, be as necessary as that of the material universe. We know that in the realm of 

natural science, the absolute connexion between the initial and final elements of a problem, 

exhibited in the mathematical form, fitly symbolizes that physical necessity which binds 

together effect and cause. The necessary sequence of states and conditions in the inorganic 



world, and the necessary connexion of premises and conclusion in the processes of exact 

demonstration thereto applied, seem to be coordinate. ... 

 Were, then, the laws of valid reasoning uniformly obeyed, a very close parallelism 

would exist between the operations of the intellect and those of external Nature. Subjection to 

laws mathematical in their form and expression, even the subjection of an absolute 

obedience, would stamp upon the two series one common character. The reign of necessity 

over the intellectual and the physical world would be alike complete and universal. 

 But while the observation of external Nature testifies with ever-strengthening 

evidence to the fact, that uniformity of operation and unvarying obedience to appointed laws 

prevail throughout her entire domain, the slightest attention to the processes of the intellectual 

world reveals to us another state of things. The mathematical laws of reasoning are, properly 

speaking, the laws of right reasoning only, and their actual transgression is a perpetually 

recurring phenomenon. Error, which has no place in the material system, occupies a large one 

here. We must accept this as one of those ultimate facts, the origin of which it lies beyond the 

province of science to determine. We must admit that there exist laws which even the rigour 

of their mathematical forms does not preserve from violation. We must ascribe to them an 

authority the essence of which does not consist in power, a supremacy which the analogy of 

the inviolable order of the natural world in no way assists us to comprehend.5 

In this passage Boole has reluctantly and halfheartedly come to the conclusion that the 

conception of logic as a kind of physics of thought, a conception inherited from the 

seventeenth century, is in error. Logic is a normative theory and a metaphysical theory. It is 

metaphysical in telling us which propositions are necessary consequences of others. It is 

normative in telling us that if we believe certain things (the premises), then we ought to 

believe other things (the necessary consequences of things we believe). But it doesn’t 

describe how our minds work. 



 There is another kind of difficulty with Boole’s theory. The first aim of a logical 

theory is to distinguish the arguments that are valid deductions from the arguments that are 

not valid deductions. Can Boole’s theory really do that? Clearly, his theory includes many 

arguments that we would regard as valid, but it does not include all of them. 

 As we have seen, Boole really had two theories. The first theory supposes that a 

sentence is of subject-predicate form or is compounded out of simple sentences of subject-

predicate form with “and,” “or,” and “not.” With this theory Boole can account for the 

validity of many syllogistic inferences. For example, we can represent the premises and the 

conclusion of the syllogistic form Camestres as Boolean equations, and the result is a valid 

argument in Boole’s system: 

No A are B A · B = 0 

All C are B C · (1  B) = 0 

No A are C A · C = 0 

It is easy to see that the Boolean argument is valid: Use the fact that an inference is valid in 

any finite algebra if it is valid in the 2-element Boolean algebra. Since it is assumed as a 

premise that A · B = 0, (i) either A = 0 or B = 0 or both. Since it is assumed that C · (1  B) = 

0, (ii) either C = 0 or B = 1 or both. Necessarily, either B = 1 or B = 0. If B = 1, then by (i), A 

= 0, so A · C = 0. If B = 0, then by (ii), C = 0, so A · C = 0. Hence, in either case A · C = 0. 

 Boole’s second theory does not assume that sentences have a subject-predicate form, 

but it only accounts for logical properties that depend on sentential connectives, such as 

“and,” “or,” and “not.” Neither of Boole’s theories can account for logical inferences that 

depend on quantifiers and relations. For example, Boole’s theories do not explain why the 

following simple inference is valid: 

Someone loves everyone. 

Therefore, everyone is loved by someone. 



Boole’s theories are not sufficient to reconstruct the arguments in Euclid’s Elements or in any 

other mathematically sophisticated work. Nonetheless, in several respects Boole’s work 

provided a real improvement on all preceding logical theories. Boole showed that logic really 

could be studied by modern mathematical methods, and he helped to distinguish logic from 

psychology. But he was not yet very close to an adequate theory of deductive reasoning. That 

achievement was begun thirty-five years later by Gottlob Frege. 

Study Questions 

1. Using an inequality, how could you represent “Not all A are B” in Boole’s theory? 

2. Consider the Aristotelian form Darapti and its Boolean representation: 

All B are A B · (1  A) = 0 

All B are C B · (1  C) = 0 

Some A are C A · C  0 

Darapti does not correspond to a valid Boolean argument: if B is the empty set (or 0 in a 2-

element Boolean algebra), the premises will be true no matter what values A and C may have, 

and in particular, A · C may be 0 or . For each of the Aristotelian syllogistic forms in the 

third figure, determine whether or not the corresponding arguments are valid in Boolean 

logic. 

3. For each of the valid Aristotelian forms in the first and second figures, construct a 

parallel argument using Boolean equations (or inequalities), and show that the Boolean 

argument is valid. 

Review Questions 

1. In what ways might Boole’s logical theory be considered a continuation of Leibniz’s 

ideas? 

2. Explain the differences between Boole’s two theories. Is it a good objection to 

Boole’s work that he does not provide a single, unified theory? 



3. What is a simple sentence in Boole’s logic? What is a compound sentence? 

4. How did Boole think that the truth or falsity of simple sentences determines the truth 

or falsity of compound sentences? 

5. What are the limitations in the answers Boole’s theory provides for the three principal 

questions at issue in a theory of proof? 
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Figure 4.1 

The intersection of the set of black cats and the set of Manx cats 

Figure 4.2 

A field of sets and a graph of their containment relations 

Figure 4.3 

An electrical device that is a physical realization of the Boolean formula z = x · y 

  



Chapter 5 

FREGE’S NEW LOGICAL WORLD 

INTRODUCTION 

Aristotle and Descartes each gave similar answers to the questions, How do we know what is 

true? How do we know the truths of geometry and arithmetic and physics, for example? Each 

of them held that we know the truths of these subjects because certain fundamental principles 

are known through intuition and other truths are validly deduced from these fundamental 

principles. By the eighteenth century this understanding of the structure of knowledge had 

almost dissolved. At the end of the nineteenth century, new developments gave birth to 

modern logic, to modern conceptions of proof and logical necessity, and to radical changes in 

metaphysics. In this chapter I will describe some of the developments that led to this new 

understanding. 

 The seventeenth century succeeded in throwing off most of Aristotle’s conception of 

knowledge and inquiry by establishing new and impressive sciences through other methods. 

The most striking example was Newton’s Principia, which established a science of motion 

that seemed at least as profound and powerful as Euclid’s geometry. But Newton did not 

argue for his new science from intuition or from the natural light of reason. He argued for it 

from observations that anyone (with appropriate instruments) could make, and he made his 

methods of argument a central point of the Principia. Francis Bacon did not succeed in 

constructing a science as impressive as Newton’s, but his Novum Organum did call for a new 

experimental method of discovery, and he illustrated that method by constructing an 

(essentially correct) theory of heat. William Harvey used simple observations and 

experiments to argue for the circulation of the blood, and William Gilbert described 

experiments to determine the properties of the lodestone, or magnet. In England, France, 

Germany, Italy, and Holland, those interested in physics, biology, and chemistry began to 



think that the way to knowledge was via the path of experimentation. Newtonian and 

Baconian science competed with Cartesian science in the late seventeenth and early 

eighteenth centuries, and Newtonian and Baconian science won. 

 The new science and its methods brought new philosophical problems. One problem, 

which will concern us in later chapters, is this: Why are the experimental and observational 

methods of modern science reliable? How can we know, or why are we justified in believing, 

that these methods lead to truth? Another problem, which will concern us in this chapter, is 

this: If science depends on inferences made from observation and experiment, what is the 

basis for our knowledge of mathematics and for the special certainty that propositions in 

geometry and arithmetic seem to have? What is it that guarantees that arithmetic applies to 

everything and that geometry applies everywhere? 

 Reflection on such questions began to create new divisions among the sciences. In the 

eighteenth century, the new sciences of physics and chemistry seemed different from 

geometry and arithmetic. Unlike the new sciences, geometry and arithmetic did seem to 

depend on self-evident principles. How could anyone who understood the matter doubt 

Euclid’s axioms or that addition is commutative? For most thinkers, geometry and arithmetic 

did not seem (in the eighteenth and nineteenth centuries anyway) altered by or elaborated 

through experimentation in the way theories in physics, chemistry, and biology are changed 

as the evidence from observation changes. There seemed to be two different kinds of 

sciences, one founded on experience and observation, the other founded on reason alone. A 

few philosophers disagreed with this division. For example, John Stuart Mill, perhaps the 

most influential English philosopher in the nineteenth century, held that geometry and 

arithmetic really are sciences exactly like physics, biology, or chemistry. Arithmetic, 

according to Mill, is an experimental subject; the fundamental principles of arithmetic seem 



certain to us only because they have so often been tested and confirmed by our experience. 

The same is true with geometry. 

 Prior to Mill’s work, another attempt to distinguish between various sciences emerged 

from the psychological perspective of the seventeenth century. Descartes and Leibniz, 

following Aristotelian tradition, had thought of physical objects as bundles of properties 

attached to a substance. Descartes thought of mental objects in the same way: bundles of 

properties attached to a mental substance. Ideas are collection of properties attached to a 

mental substance. So an idea may be simple or complex; it may consist of a single irreducible 

property or of a. bundle of properties together. Descartes’ way of thinking about ideas was 

shared by English philosophers who opposed him in other respects. John Locke, George 

Berkeley, and David Hume rejected Cartesian substances and Cartesian method, but they 

thought of ideas in roughly the way Descartes had. Flume, an eighteenth-century Scottish 

philosopher and historian, used the idea idea to give a rather traditional answer to questions 

about our knowledge of arithmetic and geometry. 

 Some propositions, Hume proposed, are about matters of fact. That the sky is blue, 

that the earth has but one moon, that Italy has a sea coast—these are matters of fact. Matters 

of fact can be discovered only from experience (if at all). The empirical sciences concern 

themselves with discovering matters of fact. Other propositions are about (or are true because 

of) relations among ideas. Since an idea is just a bundle of (mental) properties, some ideas 

may contain other ideas. Descartes insisted, for example, that the idea of body includes the 

idea of extended thing. Hume proposed that the propositions that we judge to be certain and 

to be known without observation or experimental testing are propositions about the relations 

of ideas. We can know theme without performing experimental tests, it seemed to Hume, 

because our mental life, our ideas, are immediately apparent to us and we can just see with 

the mind’s eye that some ideas contain other ideas. 



 Hume’s proposal really comes to this: True propositions that are about the relations 

among ideas can be known a priori, that is, in a way not founded on any experience, 

essentially by a combination of what Descartes would have called “natural light” and the 

method of analysis and synthesis. Propositions that are not about relations among our ideas 

but instead are about the external world cannot be known in this way. 

 Unfortunately, Hume’s proposal has an obvious flaw. Insofar as we understand what 

is meant by “idea,” it does not seem that mathematical truths can be obtained as relations 

among ideas. Consider simple arithmetic. It is a truth of arithmetic that 2 + 2 = 4, and this 

seems as certain as anything can be. But does the idea of the number 4 contain the idea of the 

sum of 2 with itself? If so and if this is why it is true that 2 + 2 = 4, then it would seem that 

the number 4 must contain an infinity of other ideas as well, for it is also true that 3 + 1 = 4 

and that 5  1 = 4 and that 8  4 = 4 and so on. No one (save possibly Leibniz) thought of 

ideas as entities that contain infinities of other ideas. Immanuel Kant, the greatest philosopher 

of the second half of the eighteenth century and one of the thinkers who most influenced 

science and philosophy in the nineteenth century, recognized this flaw in Hume’s proposal 

and built a system to try to account, nonetheless, for the a priori character of arithmetical and 

geometrical truths. 

 Kant distinguished between propositions (or judgments as he would have said) that 

are analytic and those that are synthetic. Kant thought that judgements always have a subject-

predicate form, and he wrote of concepts rather than ideas. He put the distinction between 

analytic and synthetic judgements thus: in analytic judgements, but not in synthetic 

judgements, the concept of the predicate contains the concept of the subject. Kant’s 

distinction between analytic and synthetic judgements is essentially the same as Hume’s 

distinction between relations of ideas and matters of fact, and Kant took the distinction (with 

profuse acknowledgments) from Hume. Kant also distinguished between a priori and a 



posteriori judgments. A priori judgements can be known by reason alone; a posteriori 

judgements cannot be known by reason alone but require the evidence provided by 

experience. 

 Kant took the foremost question of epistemology and metaphysics to be this: How are 

synthetic a priori judgements possible? That was Kant’s technical way of asking how, for 

example, the truths of mathematics can be known with certainty by reason alone. The truths 

of mathematics are not, in his view, analytic, so their truth cannot be established merely by 

unpacking the relevant concepts; the method of analysis cannot succeed in establishing their 

truth. Nonetheless, it is true that 2 + 2 = 4, and we can know that truth without doing 

experiments, and our conclusion is not subject to any possible refutation by experience. 

Kant’s question was how this can be so. 

 We will consider Kant’s answer and its implications in some detail in a later chapter, 

but we first need to consider it very briefly here. Kant’s answer is this. The world we 

experience and come to know is partly a world of our own creation. Our sensory and our 

cognitive apparatuses act on whatever they receive to construct a world of colors, objects, 

spatial and temporal relations, and so on. The way in which we create the world and the 

world that we create are not subject to our will, but they are nonetheless partly our creation. 

We cannot make up a world of experience simply by imagining whatever we please. The 

world of experience is determined by our cognitive apparatuses, which is not subject to our 

will, and by how the world is in itself, which we will never know. The world in itself does 

not, or at least need not, have red things or extended things or even things. The world we 

experience depends on two factors: the world in itself and our cognitive apparatuses. We 

could say, as Kant sometimes suggests, that the world in itself provides the matter or raw 

input for experience, and we ourselves provide the form of experience. A picture may help 

(see figure 5.1). 



 Kant argued that judgements of arithmetic and geometry can be synthetic and yet 

known a priori because they constitute the form of experience. That is, our cognitive 

apparatus is so constructed that arithmetic will apply to every sequence of objects in 

experience and is so constructed that Euclidean geometry will apply to every system of 

objects in experience. We can imagine creatures who do not have cognitive apparatuses like 

ours and who might therefore have very different a priori sciences. For such creatures, 

arithmetic or Euclidean geometry might not even be true. But for us, the propositions of these 

mathematical theories are certain to be true of anything we experience. With Kant, the 

content and epistemology of mathematics became an essential part of psychology. 

Study Question 

Suppose that Kant was correct that the human cognitive apparatus imposes Euclidean 

geometric forms on experience. Could Kant know that to be true? If so, could he have a priori 

knowledge of it or only a posteriori knowledge? 

FREGE, LOGICISM, AND LOGIC 

In the late nineteenth century there seemed to be few alternative accounts of mathematical 

knowledge besides those of Mill and Kant. Gottlob Frege invented an entirely new approach. 

Frege was Professor of Mathematics at the University of Jena in Germany in the closing 

years of the nineteenth century and the early years of the twentieth century. He was as much a 

philosopher as a mathematician, and the two subjects were intimately combined in his work. 

Despite the obscurity of his writings during his lifetime, Frege’s efforts opened the way to 

much of modern mathematics, modern logic, modern approaches to topics in economics, and 

the modern theory of computation. Many people (including me) think that most work of 

value in twentieth-century philosophy is in some way indebted to Frege’s ideas. His work had 

enormous practical consequences as well: every time you use a computer you take advantage 



of a device that emerged in the twentieth century as a result of Frege’s work. Frege stands to 

logic roughly as Newton stands to physics. 

 Frege’s alternative to Kant and Mill was this: arithmetic and geometry are certain and 

can be known by reason alone because arithmetic and geometry are nothing but logic, and 

logic is certain and can be known by reason alone. According to the this idea, now called 

logicism, the notions of number, numerical order, sum, and product can all be defined in 

purely logical terms, and with those definitions, the basic laws of arithmetic should turn out 

to be purely logical propositions that are necessarily true. Similarly for geometry, the notions 

of congruence and betweenness might be reduced to purely logical terms, and the laws of 

geometry shown to reduce to logical truths. 

 In the late nineteenth century this proposal seemed to face insuperable obstacles. The 

best logical theory available was Boole’s, and as we have seen, Boole’s theory could not 

account for the simplest geometric proofs, and it was equally inadequate for proofs in 

arithmetic. Frege did not know of Boole’s work when he first began publishing on these 

questions, and the logical theories available to him were even less adequate. How could one 

reduce mathematics to logic when the available logical theories did not even permit one to 

derive the consequences of mathematical axioms? Frege offered an astonishing and ambitious 

solution: invent a better a logic. That is exactly what he did. 

 The logicist program begun by Frege was continued in the twentieth century by 

Bertrand Russell and Alfred North Whitehead, but it eventually failed. The program helped 

logic to flourish, but it did not succeed in convincing most scholars that mathematics is 

nothing but logic. For one thing, mathematical theories such as ordinary arithmetic require 

that there exist an infinity of objects—the infinite series of numbers—and no matter how 

ingenious the attempts at reducing mathematics to logic, the existence of an infinite collection 

of objects does not seem to be a matter of logic alone. For another thing, by the earlier years 



of the twentieth century, developments in mathematics and science made it appear that Mill 

was correct in claiming that geometry is an experimental science. In the nineteenth century 

several new geometrical theories were developed. They came to be known as non-Euclidean 

geometries. Karl Gauss, one of the discoverers of the first non-Euclidean geometry, viewed 

the theory exactly as Mill would have: as an alternative empirical theory about space. Gauss 

tried unsuccessfully to perform a test that would determine whether space is Euclidean or 

non-Euclidean. Furthermore, by 1915 Albert Einstein and David Hilbert had developed a new 

physical theory of gravitation, the general theory of relativity, which postulated that the 

geometry of space is a physical quantity that changes with the density of matter and radiation. 

 Frege first presented his new theory of logic in a work entitled (in English translation) 

Conceptual Notation: A Formula Language of Pure Thought Modeled on the Formula 

Language of Arithmetic. The book contained not only new logical ideas but a notation in 

which formulas were spread out in two dimensions on the page. Like logicism, Frege’s 

notation did not succeed, and it is never used today: So I will present Frege’s theory in 

conventional notation. 

 Let A, B, C, stand for any sentences. Then the formulas A, B, C stand for the 

sentences “A is not the case,” “B is not the case,” “C is not the case.” The formula A → B 

stands for the sentence “If A then B.” 

 All of the operations in Boole’s logic can be expressed with such formulas. For 

example, in Frege’s system the sentence “If A then B” is equivalent to “It is not the case that 

A and not B.” “If A then B” is also equivalent to “Either it is not the case that A, or it is the 

case that B, or both.” So Frege obtained the following equivalences. The sentence “A and B” 

is equivalent to the sentence “It is not the case that if A then not B,” and so the sentence “A 

and B” can be represented by the formula (A → B). The sentence “Either A or B or both” 

is equivalent to the sentence “If A is not the case, then B,” and so the sentence “Either A or B 



or both” can be represented by the formula A → B. “Equivalent” means that necessarily a 

sentence of one form is true if and only if the sentence of the equivalent form is true. 

 Notice that parentheses are used to make clear the intended scope of an operator. In 

the formula A → B, the symbol  has only A in its scope. In the formula (A → B) the 

symbol  has the entire formula A → B in its scope. 

 Since formulas representing “or” and “and” can be given for any sentences, we can 

make things more convenient by using A & B to abbreviate (A → B) and A ˅ B to 

abbreviate A → B. 

 Recall that Boole really had two logical theories. His second theory gave an account 

of how to reason with “and,” “or,” and “not” for sentences whose structure was not further 

analyzed. His first theory gave an account of reasoning that used the subject-predicate 

structure Boole assumed for sentences. Frege integrated the two theories into one, but he did 

not assume that sentences have a subject-predicate structure. Instead, Frege introduces names, 

variables, function symbols, and predicates, and he uses these logical categories to represent 

the structure of sentences. 

 For Frege a name is any term that denotes a particular object: “the Moon,” “Bertrand 

Russell,” “Plato,” “the number 3” are all names for different objects. 

 A variable is a letter, x, y, z used in place of a name. It does not name an object but 

ranges over objects, the way a numerical variable in algebra ranges over numbers. 

 A. function symbol is a term that denotes some object when applied to a name or 

sequence of names. “Father of,” “sum of,” “product of” are function terms. Applied to an 

appropriate name or sequence of names, each function term denotes an object: “father of 

Gottlob Frege” denotes Karl Alexander Frege, “sum of 2, 2” denotes 4, “product of 2, 3” 

denotes 6, and so on. Functions can be classified according to how many arguments they 

need in order to denote an object. “Father of” requires that one name be specified. We say 



that it is a unary function. “Sum of” requires that two arguments be specified (names of the 

two numbers to be added together). Two descriptions must be specified even if they describe 

the same number, as in the sum of 2, 2. We say that sum is a binary function. Similarly, we 

can consider function terms that require three arguments, four arguments, and so on. In 

logical notation, lower case letters such as f, g, h, are often used for function symbols. 

 A predicate symbol denotes a property of individual things or a relation among things. 

When applied to a name or a sequence of names, a predicate forms a sentence that asserts that 

the named objects in the sequence stand in the relation that the predicate denotes. “Loves,” 

for example, is a predicate, and so are “is red” and “is between.” “Sam loves Mary” is a 

sentence, and so are “Mars is red” and “Point b is between point a and point c.” In logical 

notation, predicate symbols are often given by capital letters, such as P, Q, R, and the names 

to which they attach are given in sequence after them. So if B is the predicate that denotes the 

property of betweenness, and a, b, and c are names for points, the formula Babe says that 

point b is between point a and point c. Frege introduced a special predicate for identity: for 

any names a and b, a = b always means that the object named by a is the very same object 

named by b. 

 Finally, a quantifier is a phrase such as “every,” “all,” “some,” “there exists,” “there 

is,” “there are.” In Frege’s theory the phrases “every” and “all” are represented by the symbol 

, called the universal quantifier. The universal quantifier is always immediately followed by 

a variable, x, y, z, etc. The universal quantifier followed by a variable can be attached to the 

beginning of any formula to form another formula. So, for example, to the formula Baxc we 

can attach x to make the formula x Baxc, which says that every point is between points a 

and c, or equivalently, for any point, call it x, x is between a and c. Quantifier phrases that 

assert existence (phrases such as “some,” “there exists,” and so forth) can be represented by 

using  and the universal quantifier together. So the sentence “There exists a point between 



points a and c” says the same thing as the sentence “It is not the case that every point is not 

between a and c.” With the universal quantifier, the latter sentence can be represented by 

x Baxc. We use x to abbreviate x . Every quantifier also has a scope, often 

indicated by parentheses. In the formula just written, the scope of the quantifier is the formula 

Baxc, but in the formula x(Baxc ˅ Bxxx) the scope of the quantifier is the entire formula 

Baxc ˅ Bxxx. In the formula x(Baxc) ˅ Bxxx the scope of the quantifier is again just the 

formula Baxc. 

 Frege’s logic allows us to put formulas together using any of these logical structures. 

If we form a formula with → and , we can put a universal quantifier in front of it. We can 

put a whole sequence of quantifiers together in front of a formula. With these logical 

categories we can easily represent important differences in sentences that Aristotle and Boole 

could not distinguish. For example, we can say say that someone loves everyone: xy(Lxy). 

We can say that everyone loves someone: xy(Lxy). We can say that everyone is loved by 

someone: xy(Lxy). We can say that someone loves himself: x(Lxx). Frege’s notation 

represents the differences among these English sentences clearly. 

 Frege introduced a series of formulas that he took to be logical truths. Every sentence 

having the form of one of these formulas is necessarily true, that is, true in every logically 

possible world. Frege’s list of logical truths is not intended to be complete. There are an 

infinity of other formulas that are also logically true and that can be derived from those that 

Frege gave. Here are some of Frege’s forms of logical truths: 

A → (B → A) 

(C → (B → A)) → ((C → B) → (C → A)) 

(D → (B → A)) → (B → (D → A)) 

(B → A) → (A → B) 

A → A 



A → A 

(c = d → K) → Kc/d (where Kc/d is the result of substituting d for c wherever c occurs in 

formula K) 

c = c 

 Besides his logical formalism, Frege introduced a series of rules of inference. The 

rules of inference permit one to infer one formula from others. Frege’s idea was that a proof 

consists of a sequence of sentences that can be represented as a sequence of logical formulas 

in which each formula is either an assumption of the proof (a premise) or else is derived from 

preceding formulas by means of one of the rules of inference. 

 I will not give all of Frege’s rules of inference, but here are a few rules that hold for 

his system of logic. 

Substitution From any set of premises at all, infer the result of substituting any formulas 

for A, B, C, and D, and of substituting any names for c and d in any of the forms of logical 

truths given above. 

Modus ponens From A → B and A, infer B, where A and B are any formulas. 

Quantifier deletion From x(Fx), infer Fx for any formula F. 

Conjunction introduction From any formulas A, B, infer A & B. 

Notice that these rules of inference are given entirely in terms of the structure of the formulas 

themselves. They do not depend on the meanings of the formulas. 

 A proof in Frege’s system is just a finite sequence of formulas such that every 

formula in the sequence either follows from preceding formulas by one of the rules of 

inference or else is an assumption of the proof. 

 Using nothing more than these rules of inference, Frege was able to account for 

deductive arguments that would have baffled Aristotle and Boole. The details of a system of 

proof derived from Frege’s are given in the next chapter. 



 The virtue of Frege’s system is not that the formal proofs it gives are short or simple. 

The virtues of Frege’s system are quite different: 

• The rules of proof are sufficient to reconstruct valid deductive arguments in 

mathematics and science. 

• The rules of formal proof are entirely explicit. 

• They are so explicit, in fact, that it is a completely mechanical matter to determine 

whether or not a sequence of formulas is a proof. All that is required to test whether a 

purported proof is indeed a proof is to check whether the rules of inference have been 

properly applied. 

Study Questions 

1. Explain what constitutes a proof in Frege’s logic. If we prove something about 

Frege’s logic are we giving a proof in his logic? 

2. Explain informally why the first six of Frege’s logical truths should be regarded as 

necessarily true. In other words, why should one think that sentences of these forms cannot 

possibly be false on the intended meanings of the symbols  and →. 

3. Use the list of Frege’s logical truths and the rules of substitution and modus ponens to 

give proofs of the following formulas: 

A → (A → A) 

(A → A) → (A → A) 

A → (A → A) 

A → A 

THE THEORY OF MEANING: LANGUAGE AND THE WORLD 

Frege’s logical theory was founded on an analysis of the logical structure of language, and his 

theory of proof uses nothing but grammatical features of formulas in a logical language. But 

what are formulas in such a language about? The “logical truths” Frege assumed are 



supposed to be forms of sentences that are necessarily true. But what is truth, and why are 

these sentences necessarily true? Do the proofs that can be constructed in Frege’s system 

necessarily preserve truth? Does a proof exist for every valid deductive inference? Answering 

these questions about Frege’s theory requires a theory of meaning. Frege himself thought a 

great deal about the question of meaning, and after the turn of the century, philosophers and 

logicians developed a mathematical theory of meaning to correspond to Frege’s logic. 

 Frege distinguished the reference of a phrase or a sentence from its sense. The phrases 

“morning star” and “evening star” refer to the same object, the planet Venus, but they have 

different senses. Frege held that each declarative sentence refers to its truth value. So true 

sentences refer to truth, and false sentences refer to falsehood. But, of course, not every true 

sentence means the same thing, so sense and reference must be distinguished. Reference does 

not determine sense, nor does sense determine reference, but according to Frege, two 

expressions that have the same sense must have the same reference. Frege’s picture suggests 

a linguistic transformation of metaphysics. Instead of searching for the essences of things, we 

should search for the senses, the meanings, of expressions. We will consider in later chapters 

some of the consequences of this way of thinking. 

 The mathematical theory of meaning that developed for Frege’s logic is really an 

elaboration of ideas implicit in George Boole’s work. Boole had emphasized that every 

conversation tacitly presupposes a universe of discourse. Suppose there is a set, called the 

domain, that contains all of the objects we wish to talk or reason about in a particular context. 

If we are reasoning about whole numbers, the domain will consist of the natural numbers. If 

we are doing anthropology, the domain will consist of people and the objects people possess 

or know about. In other contexts, other domains will be assumed. 

 In Boole’s conception, the objects in a domain have properties. For example, if the 

domain is the natural numbers, some of the numbers are even, some are odd, some are prime, 



some are perfect squares, and so forth. As with Boole’s first theory, consider for each 

property of interest the set of all objects in the domain having that property. The property of 

being even determines in the natural numbers the set of all even numbers, the property of 

being odd determines the set of all odd numbers, and so on for any property that we want to 

talk about. Like Boole, I will assume that a discourse is about a domain and a specific 

collection of properties of members of that domain, and that each property determines the set 

of all objects of the domain having that property. 

 Suppose E and O are one-place predicates in a formal language that we wish to use to 

represent arithmetic reasoning. We might specify that E denotes the set of all even numbers 

and O denotes the set of all odd numbers in a domain that consists of all the whole numbers. 

If the language has numerals as names, we might further specify that “0” denotes the number 

0, “1” the number 1, “2” the number 2, and so on. Then the formula E2 will say something 

true about numbers. What makes E2 true? The fact that “2” denotes an object (the number 2) 

that really is in the set denoted by E (the set of even numbers). A formula is true or false only 

in relation to a structure (a domain and subsets of that domain) and some rule that connects 

particular predicates with particular subsets of the domain and particular names with 

particular objects in the domain. 

 A formula such as Ex is neither true nor false, since x is a variable. However, if we let 

the variable x have a particular value, say the value 2, then the formula Ex will be true of that 

value. Ex is neither true nor false by itself, but in the domain we are considering, Ex is true of 

the number 2, false of the number 1, and so on. The formula Ex will be true of a value of x 

whenever that value of x is not in the set denoted by E. The formula  Ex is true of the 

number 3, for example. Now the formula x(Ex) says that Ex is true of everything in the 

domain. So x(Ex) is true if and only if Ex is true of every value of x. The formula x(Ex) 



says that some number is even. It is true if and only if the formula Ex is true of some number 

or other, in other words, if and only if Ex is true of some value of x. 

 When is a formula such as Ex ˅ Ox true of a value of x? When the value of x is in the 

set denoted by E or is in the set denoted by O. That is the same as saying that Ex ˅ Ox is true 

of a value of x if and only if that value of x is a member of the union of the set denoted by E 

and the set denoted by O. For example, in the interpretation of E and O we are considering, E 

denotes the set of even numbers, and 0 denotes the set of odd numbers, and since every 

number is even or odd, the union of E and O is the set of all numbers. So Ex ˅ Ox is true of 

every number in the domain. It follows from what was said in the preceding paragraph that 

x(Ex ˅ Ox) is true. In parallel fashion, the formula Ex ˅ Ox will be true of any object that is 

a member of both the set denoted by E and the set denoted by O. In other words, it will he 

true of any member of the intersection of those sets. Since no number is both even and odd, 

Ex & Ox is true of no number. Hence x(Ex & Ox) is false. 

 If the terms of a formal language are given their meanings according to the procedures 

just described, some formulas will come out true no matter what domain we choose, as long 

as it is not empty, and no matter what subsets of the domain individual predicates denote. For 

example, the formula x(Ex ˅ Ex) is true no matter what domain we consider and no matter 

what subset of that domain E denotes. x(Ex ˅ Ex) is a logically true formula. It is easy to 

see why: x(Ex ˅ Ex) is true in a domain under any particular specification of what E 

denotes if and only if Ex ˅ Ex is true of every element of the domain. Ex ˅ Ex is true of a 

member of the domain if that individual is a member of the set denoted by E or a member of 

the complement (in the domain) of the set denoted by E. But every member of every 

nonempty domain is a member of E or of the complement of E, no matter what set E is. So Ex 

˅ Ex is true of every value of x. So, finally, x(Ex ˅ Ex) is always true. 

Study Questions 



The mathematical theory of meaning for Frege’s logic can be extended to relations as 

follows. A two-place relation between members of a domain determines the set of pairs of 

objects in that domain that stand in the relation. In the natural numbers, the relation less than 

determines the set of all pairs of numbers where the first member of the pair is less than the 

second. So the pair <1, 2> is determined by this relation, but not the pair <2, 1> and not the 

pair <1, 1>. A two-place predicate in a formal language forms a sentence when followed by 

two names, but the names may also be replaced by variables. Such a predicate may be taken 

to denote the set of all pairs in a domain that stand in some relation. For example, let the 

domain be the natural numbers 0, 1, 2, 3, ... , and let L be a two-place predicate that denotes 

the relation “less than.” Then L(1, 2) is true, but L(2, 1) and L(l, 1) are false. The formula Lxy 

is true of the pair <1, 2> but false of the pair <2, 1> and false of the the pair <1, 1>. The same 

thing may be done with three-place relations and three-place predicates, four-place relations 

and four-place predicates, and so on. 

1. Given the definitions in the paragraph above, what pairs of natural numbers is the 

formula Lxx true of? 

2. Is the formula xy Lxy true in the domain of natural numbers? Is the formula xy 

Lyx true? Explain what each of these formulas says. 

3. Explain what the following formula says, and determine whether or not it is true: 

xyz((Lxy) → (Lxz & Lzy)) 

4. Write a formula that says that for every two distinct points, there is a point between 

them. Use whatever symbols you need. 

IMPLICATIONS OF FREGE’S THEORY 

The proof of the logical truth of x(Ex ˅¬Ex) given in the preceding section is the basis for 

an explanation of why logical truths are necessarily true. Logical truths are true because of 

how we use our language. If we use “and,” “or,” “not,” “for every,” “some,” and other logical 



phrases in the way Frege describes, then the truth or falsity of complex sentences will depend 

on the truth or falsity of simpler sentences from which they are compounded, and the truth or 

falsity of sentences with quantifiers will depend on what the formulas without quantifiers are 

true of: These dependencies of complex sentences on simpler sentences will make some 

formulas come out true no matter whether their simpler sentences are true or false and no 

matter what the predicates they contain denote. The sentences or formulas that come out true 

in every possible world are the sentences or formulas that are true as a matter of logical 

necessity, true in every conceivable world. In Frege’s theory, there is no longer a great 

mystery as to how some sentences can have this kind of necessity. 

 The mathematical theory of meaning for the part of Frege’s logic I have described 

(sometimes called first-order logic) provides a formal notion of entailment. Recall that one 

sentence entails another if the truth of the first sentence logically necessitates the truth of the 

second sentence, in other words, if it is not logically possible for the first sentence to be true 

and at the same time for the second sentence to be false. Similarly, we say that a set of 

sentences entails another sentence if it is not logically possible for all of the sentences in the 

set to be simultaneously true and the entailed sentence to be false. We can analyze entailment 

as follows: 

Definition Let  be a collection of sentences, and let S be a sentence.  entails S if and only 

if for every nonempty domain D and every rule assigning subsets of D to predicates occurring 

in  or S, if all sentences in  are true, then S is also true. 

 With the theory of meaning and this definition of entailment, various fundamental 

questions about the adequacy of Frege’s logical theory become mathematical questions that 

can be answered by (often difficult) mathematical investigations. One such question is 

whether proofs in Frege’s logic necessarily preserve truth. This question becomes the more 

precise question, In every proof in Frege’s logic, do the assumptions of the proof entail the 



conclusions? Logicians succeeded in proving that the answer to this question is affirmative, 

and that is why proofs show that premises entail conclusions. Another question is whether for 

every entailment there is a corresponding proof. More precisely, if  entails S, is there a proof 

of S from assumptions in ? In 1931 Kurt Gödel, then a young Viennese logician, proved that 

the answer to this question is also affirmative. 

 I began our study of the idea of a deductive argument with three principal questions. 

1. How can we determine whether or not a piece of reasoning from premises to a 

conclusion is a valid deductive argument? 

2. How can we determine whether or not a conclusion is necessitated by a set of 

premises? If a conclusion is necessitated by a set of premises, how can we find a valid 

deductive argument that demonstrates that necessary connection? 

3. What features of the structure of the world, the structure of language, and the relations 

among words, thoughts, and things make deductive reasoning possible? 

 Frege’s theory provides an answer to the first question. Given a deductive argument, 

we can now determine whether or not it is a good deductive argument. We put the premises, 

the conclusion, and the intermediate steps of the argument into formal notation and then 

determine whether or not each step of the formal argument follows from preceding steps or 

from the premises by Frege’s rules of proof or by rules that can be derived from Frege’s 

rules. Moreover, this constitutes an adequate answer to the question. Using Frege’s theory, 

we can represent proofs in number theory, algebra, geometry, set theory, and those empirical 

sciences that use mathematical reasoning. In previous chapters I illustrated the limitations of 

theories of proof with the problem of reconstructing the very first proof in Euclid’s Elements. 

I emphasized that Aristotle’s theory of the syllogism could not account for Euclid’s proof and 

later noted that George Boole’s logical theory could not do much better. Frege’s theory can 

do better. Frege himself claimed that his system could be used to reconstruct proofs in 



geometry as well as other types of deductive arguments, such as Saint Anselm’s ontological 

proof of the existence of God. (Frege even wrote a paper on Anselm’s argument.) But it turns 

out to be a considerable task actually to develop a formal system in which Euclid’s 

geometrical assumptions can be stated and all of Euclid’s propositions can be proved. David 

Hilbert presented the first such system after the turn of the century, using some stronger 

logical principles than those I have discussed. 

 Frege’s theory also provides a kind of answer to the third question. The answer is 

given through the theory of meaning, which connects formulas in Frege’s logical notation 

with domains and their subsets, and specifies what it means for a formula to be true (or to be 

false) when its variables range over a domain and its predicates are assigned to subsets of that 

domain. The idea is that the names and predicates of a language denote objects, properties, 

and relations, and in the actual world some objects may happen to exemplify any particular 

property or relation, and some may not. The denotations and the facts of the world determine 

the truth values of sentences. What constitutes the relation of denotation between words on 

the one hand and things, properties, and relations on the other remains mysterious. This 

sketchy theory of meaning, together with the logicians’ mathematical demonstration that 

proofs in Frege’s system show that the premises of the proof entail the conclusion and 

Gödel’s proof that if a set of sentences entails a conclusion, then there exists some proof in 

Frege’s system that derives the conclusion from the premises, provide a partial answer to the 

third question. 

 Only the second question remains untouched, but it is a very important. Recall that 

Leibniz hoped that by formulating all of science in a formal language, an “alphabet of 

thought,” we would obtain an algorithm, a mechanical means, to derive all of the 

consequences of any proposition. If Leibniz’s vision were fulfilled, all of the tedious work of 

investigating the consequences of any set of assumptions could be done by machine. We 



would never need to be in ignorance of the implications of any theory: a computer could 

calculate them for us. On Frege’s logical theory, the second part of the second question 

amounts to the following: Is there an algorithm that, if run forever, will list every proof in 

Frege’s logic? The answer is that there is such an algorithm. If a finite set of sentences entails 

a conclusion, this algorithm will find a proof of that conclusion from premises in the set. But 

when we formulate the question in this way, we realize that the answer is a little 

disappointing, for what if we don’t know whether or not a set of premises entails a conclusion 

and want to find out? An algorithm that runs forever looking for a proof and doesn’t find one 

will never tell us at any finite time that there is no proof to be found. It seems that to fulfill 

Leibniz’s vision what we really want is a positive answer to the following question: Is there 

an algorithm, a mechanical, computable procedure, that will determine for every formula 

whether or not that formula is a logical truth in Frege’s system? If there were such an 

algorithm or computational procedure, we could use it to determine whether or not any 

particular set of premises logically necessitates any particular conclusion. For suppose that 

the premises are A, B, C, ... , D, and suppose that the conclusion is E. Then if the premises 

logically necessitate the conclusion, whenever the premises are true, the conclusion is also 

true; in other words, in no possible circumstance are the premises true and the conclusion 

false. Thus if the premises necessitate the conclusion, then the sentence (A & B & C & ... & 

D) → E must be true in every possible world, that is, it must be a logical truth. Conversely, if 

the formula (A & B & C & ... & D) → E is logically true, then in every world in which the 

formula A & B & C & ... & D is true, E is also true. So the premises necessitate the 

conclusion. Therefore, to determine whether or not the premises A & B & C & ... & D 

necessitate the conclusion E, we have only to determine whether the formula (A & B & C 

& ... & D) → E is logically true. So an algorithm that would determine whether or not a 



formula in Frege’s system is logically true would realize Leibniz’s dream. But is there such 

an algorithm? 

 There is not. No algorithm exists that will determine for every formula whether or not 

that formula is logically true. Hence no algorithm exists that will determine for every set of 

premises and every possible conclusion whether or not the premises entail the conclusion. 

Leibniz dreamed an impossible dream. 

 To obtain this answer, logicians in the 1930s had to formulate a precise theory of what 

is and what is not computable, and they had to formulate precise mathematical descriptions of 

idealized machines for carrying out computations. These logical studies created the 

mathematical subject now known as the theory of computation. That theory was developed 

by a number of people in the 1930s and 1940s, including Gödel, whom I have already 

mentioned; Alonzo Church, then a professor of mathematics at Princeton; and his students, 

including Alan Turing, then a young Englishman whom Church brought to Princeton. Their 

work led to the modern understanding of computation and provided the ground work for 

theoretical computer science. At the close of World War II, the new theory of computation 

and the emerging understanding of programming systems guided the construction of the first 

programmable electronic computers. 

MYSTERIES 

Frege’s theory leaves a number of problems unsolved. For example, Frege thought that his 

formula x(Ax → Bx) captured the logical properties of scientific laws about causality. But 

“Smoking causes cancer” cannot be represented very well by a logical formula of the form 

x(Sx → Cx). The sentence “Smoking causes cancer” does not imply that everyone who 

smokes gets cancer. Logicians have sought formal systems that better represent causal 

reasoning. Again, Frege’s logic does not succeed very well in capturing the logical properties 

of conditional senses whose antecedents are known to be false. For example, “If George Bush 



were not president, then Dan Quayle would be president” is true (at least in 1991), but “If 

George Bush were not President and he had emigrated to Chile in 1987, then Dan Quayle 

would be president” is false. But in Frege’s logic, if any sentence of the form. A → B is true, 

then so is (A & C) → B. Elegant formal systems have been developed to account for 

counterfactual reasoning. There are many other problems of this sort, but in each case modern 

solutions continue to use both Frege’s fundamental ideas and the basic principles of the 

theory of meaning that later logicians developed for Frege’s theory. 

 Frege’s theory also leaves or creates a number of other philosophical problems that 

we do not yet fully understand. Frege’s theory supposes that names denote objects, and 

predicates denote properties (or the sets that are the extensions of properties). One of the 

fundamental concerns of twentieth-century philosophy has surrounded the following 

questions: What is the relation of denoting? What makes it the case that a particular word or 

phrase on a particular occasion of utterance denotes a particular object or property? What are 

meanings or senses? 

 One answer to these questions is that people have a mysterious and irreducible 

capacity to make words mean things. On this view, the relation of denoting cannot be 

explained in any natural way. Most philosophers today regard such a view as unfounded, but 

finding a scientifically acceptable alternative is not easy, A plausible proposal is that denoting 

is some sort of causal relation between objects or properties on the one hand and utterances 

of words or phrases on the other. The idea is, for example, that when we say or write 

“Cicero,” we denote the Roman orator because our use of the word “Cicero” is connected by 

a millennium long causal chain of uses to the event in which Cicero was named “Cicero.” A 

use of the word “red” denotes the property red because somewhere in the prehistory of 

language, ancestral users picked a word for the property red, and that word evolved through 

history into the English word “red.” On this view, utterances of “red” and the presences of 



red things may be correlated, but the relation of denotation does not consist in that 

correlation. The correlation is what makes it useful to have a term for the property red and 

what makes it possible for us to learn what “red” denotes. Children are able to learn what 

“red” denotes because their teachers arrange circumstances in which the property denoted, 

red, is strongly correlated with utterances of “red.” 

 But what makes a particular action an act of naming? We need a natural account of 

naming quite as much as we need an account of denoting. The obvious explanation of naming 

appeals to what the namer intends for a word to denote. But to intend something seems to 

require having thoughts that have a linguistic structure and whose component simple thoughts 

stand in denoting relations to things and properties. Is the causal account therefore inevitably 

circular, and circular in a way that makes it unenlightening and unscientific? These questions 

have been the subject of considerable debate in philosophy in the last twenty years. 

 A third approach to the question of denoting denies that there is any such relation. In 

effect, it claims that the theory of meaning developed for Frege’s logic is a mistake. This 

approach is generally attributed to the American pragmatists Charles Sanders Peirce, William 

James, and John Dewey, who wrote during the first decades of this century, and also to 

various continental philosophers writing in the same period. It continues to be held today by 

some philosophers. The pragmatists denied that there are relations between language and a 

world (independent of language) in virtue of which sentences are true or false. Peirce, for 

example, claimed that truth is what will be believed in the Iong run. The radical reading of 

this slogan is that whatever people come to believe in the long run constitutes the truth. This 

idea is puzzling for several reasons, including the following: For an utterance or a writing to 

express a belief, and not be just ink marks or noise, requires that parts of the utterance or 

writing have a meaning, which seems to require that they denote properties or things (or at 

least possible properties and possible things). So the idea that beliefs could completely 



determine the world seems curiously incoherent, since the idea of something being a belief 

seems to require a world and meaning relations. Perhaps for reasons such as these, some 

contemporary pragmatists explicitly do not follow Peirce’s program. Instead, they emphasize 

that the fundamental property of sentences is not their truth or their falsity but their 

assertability. In some contexts it is appropriate to assert a sentence, and in other contexts it is 

not appropriate. The proper study of language and logic on this view is not the study of 

entailment but the study of assertability. A convincing development of this view of language 

faces formidable tasks, including explaining how linguistic competence is acquired, 

explaining how we can use assertions to reliably manipulate the world (“Jump! There’s a 

truck coming”), and explaining the basis for our intuitions about entailment and logical 

implication. I will return to some of these topics in a later chapter. 

 Meaning is not the only profound problem that has followed Frege’s logic. Another 

difficulty has to do with twentieth-century physics. We can give perfectly adequate formal-

logical reconstructions of many branches of physics. In essence, this has been done for 

classical particle mechanics, for the special theory of relativity, and for several other physical 

theories. There is one branch of twentieth-century physics, however, for which it seems that it 

cannot be done, and unfortunately, that part of physics, quantum theory, is the most 

fundamental. Quantum theory emerged in the first decades of this century from ideas due to 

Max Planck, Albert Einstein, and Niels Bohr. In the middle of the 1920s the theory was 

changed dramatically by Erwin Schrödinger, Werner Heisenberg, and others. The “new 

quantum theory” that emerged has a mathematical framework that can be perfectly well 

represented in a formal logical system. However, when we try to say what the entities of the 

theory are and what their properties are, things begin to come apart. 

 The fundamental problem can be thought of this way. Consider a box that has two 

sides, and suppose that there is an electron in the box. According to quantum theory, it can be 



true that an electron is in the left side of a box or in the right side of the box, while at the 

same time it is false that the electron is in the left side of the box and it is false that the 

electron is in the right side of the box. This phenomenon is known as superposition. Let Le 

mean the electron is in the left-hand side of the box, and let Re mean the electron is in the 

right-hand side of the box. Then it is true that Le ˅ Re and false that Le and false that Re. So 

we have that (Le ˅ Re) & Le & Re, which is a contradiction according to Frege’s logical 

theory (and according to Boole’s as well). 

 What do we do when a fundamental physical theory involves a contradiction? Well, 

ordinarily we might reject the physical theory and look for a better theory that does not 

involve a contradiction. Many physicists have attempted to do just that, but they have found 

no theory without superposition that is able to account for the statistical relations found 

among properties of subatomic particles. The same phenomenon is present even in more 

recent fundamental theories, such as the quantum theory of fields. Another response is to 

conclude that the physical theory is an excellent calculating device for predicting the 

outcomes of experiment but that the theory really says nothing about the constitution of 

matter. This view, often known as instrumentalism, avoids the problem of inconsistency by 

treating sentences that seem to be about individual particles as not about such things at all. 

Instrumentalism saves us from paradox, but only at the cost of enormous disappointment. 

After all, we thought that modern physics would tell us about the structure of the universe. 

On the instrumentalist view, modern physics does no such thing; it only tells us how to 

predict the outcomes of experiments. 

 There is another way to resolve the problem. If our fundamental physical theories 

seem to involve a contradiction, perhaps we should change our ideas about what is and what 

is not a contradiction. Perhaps the difficulty is not with physics but with Frege’s logic, and 

perhaps we should look for a logical theory in which the formula (Le ˅ Re) & Le & Re is 



consistent. Philosophers, physicists, and logicians have developed several logical systems of 

this kind, called quantum logics. Quantum logics avoid the logical paradox in modern 

physics, and some of them are still strong enough to permit the reconstruction of classical 

mathematical reasoning, but they have not yet been provided with a theory of meaning as 

clear as the system of domains and subsets that provides the theory of meaning for Frege’s 

logic. Perhaps the theory of meaning for quantum logic never will be so clear. Niels Bohr 

argued that quantum phenomena are essentially complementary, by which he meant that there 

is a coherent picture not of all properties of a quantum system taken together but only of one 

or another aspect of quantum systems considered independently. If he is right, then we should 

not expect to find an unequivocal theory of meaning that includes the foundations of modern 

physics. 

CONCLUSION 

Frege’s logical theory solves the problems I posed for a theory of deductive argument. It 

characterizes a notion of proof adequate to encompass mathematical proofs in a wide range of 

subjects. When elaborated with a theory of meaning, the theory of proof turns out to be 

complete in the sense that for every entailment, there exists a corresponding proof. Moreover, 

the theory of meaning explains why proofs reveal entailment, since the theory of meaning can 

be used to show that whenever there is a proof of a conclusion from a set of premises, the 

premises necessitate the conclusion. It is disappointing but certainly enlightening to learn that 

no possible algorithm can tell us, for every finite set of premises and every possible 

conclusion, whether there exists a proof of the conclusion from the premises. The work that 

led to understanding this limitation also created the modern theory of computation. 

 With all of its benefits and insights, Frege’s logical theory and the theory of meaning 

that was built upon it also left us with many puzzles. Some of the puzzles require extending 

the logical theory or introducing modifications while keeping the same general picture of 



how language relates to the world. Other puzzles, including explaining what constitutes 

meaning relations and reconciling Frege’s logic with modern physics, seem more 

fundamentally difficult. 

Review Questions 

1. What is logicism, and to what views of Mill and Kant is it opposed? 

2. Explain Frege’s logical categories and his conception of a formal proof. 

3. What does Frege’s theory say about the three fundamental questions concerning 

deductive argument? 

4. Explain the basic idea of the mathematical theory of meaning developed for Frege’s 

logic. 

5. Many previous theories were limited because they could not account for reasoning 

about relations. Explain how Frege’s theory can account for such reasoning. 

6. Describe some contemporary difficulties for Frege’s theory and some proposed 

solutions to them. 

7. Suppose that we could present Frege’s theory to Aristotle and to Leibniz. How do you 

suppose each of them would evaluate Frege’s theory? If they accepted Frege’s logical theory, 

what implications would that have for their own metaphysical theories? 

8. What roles did each of the following people have in the story of this chapter: Alfred 

North Whitehead (1861–1947), Immanuel Kant (1724–1804), John Stuart Mill (1806–1873), 

David Hume (1711–1776), Bertrand Russell (1872–1970), Alan Turing (1912–1954), David 

Hilbert (1862–1943), Albert Einstein (1979–1955), Alonzo Church (1903–present), Niels 

Bohr (1995–1962), Charles Sanders Peirce (1839–1914). 

9. Briefly explain the views of Hume, Mill, and Kant about the nature of mathematical 

knowledge. 

Further Reading 



Frege 

Dummett, Michael A. E. The Interpretation of Frege’s Philosophy. Cambridge: Harvard 

University Press, 1981. 

Frege, Gottlob. Collected Works on Mathematics, Logic, and Philosophy. Ed. Brian 

McGuinness. New York: B. Blackwell, 1984. 

Frege, Gottlob. Philosophical and Mathematical Correspondence. Ed. Gabriel Gorrfried. 

Chicago: University of Chicago Press, 1980. 

Haaparanta, Leila, and Jaakko Hintikka, eds. Frege Synthesized: Essays on the Philosophical 

and Foundational Work of Gottlob Frege. Boston: D. Reidel, 1986. 

Resnick, Michael D. Frege and the Philosophy, of Mathematics. Ithaca, N.Y.: Cornell 

University Press, 1980. 

Sluga, Hans D. Gottlob Frege. Boston: Routledge and Kegan Paul, 1980. 

Weiner, Joan. Frege in Perspective. Ithaca, N.Y.: Cornell University Press, 1990. 

Wright, Crispin, ed. Frege: Tradition and Influence. New York: B. Blackwell, 1984. 

Counterfactuals and conditionals 

Jackson, Frank. Conditionals. Cambridge, England: B. Blackwell, 1987. 

Lewis, David K. Counterfactuals. Cambridge: Harvard University Press, 1973. 

Pollock, John L. Subjunctive Reasoning. Boston: D. Reidel Publishing Co., 1976. 

Peirce 

Peirce, Charles S. The Philosophy of Peirce: Selected Writings.  Ed. Justus Buchler. New 

York: Harcourt, Brace, 1940. 

Philosophy of language 

Blackburn, Simon. Spreading the Word: Groundings in the Philosophy of Language. New 

York: Oxford University Press, 1984. 



Chomsky, Noam. Language and Problems of Knowledge: The Managua Lectures. 

Cambridge: MIT Press, 1988. 

French, Peter A., Theodore Edward Uehling, and Howard K. Wettstein, eds. Contemporary 

Perspectives in the Philosophy of Language. Vol. 2. Notre Dame, Ind.: University of Notre 

Dame Press, 1989. 

Schwartz, Stephen P., ed. Naming, Necessity, and Natural Kinds. Ithaca, N.Y.: Cornell 

University Press, 1977. 

Quantum logic 

Hooker, Clifford Alan, ed. The Logico-algebraic Approach to Quantum Mechanics. Boston: 

D. Reidel, 1979. 

Pitowsky, Itamar. Quantum Probability, Quantum Logic. New York: Springer-Verlag, 1989. 

Figure 5.1 

Kant’s picture of metaphysics 

  



Chapter 6 

MODERN LOGIC* 

In this chapter we will take a more careful look at logic as it has developed since Frege. We 

will consider many of the same ideas discussed in the previous chapter, but we will proceed 

more rigorously, and I give more details. 

RELATIONAL STRUCTURES 

One might be asked to find the roots of the polynomial x2  1. That is really just to ask for the 

values of x that satisfy the following formula: 

(1) x2  1 = 0 

The answer, of course, is {1, 1}. The formula states a condition satisfied only by special 

values of the variable x. We could say that the equation is true of the number 1 and true of the 

number 1. But it would not make sense to say that the equation is, all by itself, true, nor 

would it make any sense to say that the equation is false. The formula is true of some 

numbers, those that satisfy it, and false of other numbers, those that do not satisfy it. Compare 

these sentences: 

(2) For all x, x2  1 = 0. 

(3) For all x, if x2 = 1 then x2  1 = 0. 

(4) There exists an x such that x2  1 = 0. 

Sentence (2) is simply false if the domain over which the variables range is the real numbers. 

It is not true of some numbers and false of others. It is simply false. Sentence (3) is true; it is 

not true of some numbers but not others. Sentence (2) is false because it says that x2  1 is 

satisfied by every number, and that is false. Sentence (3) is true because it says that every 

number satisfying x2 = 1 satisfies x2  1 = 0, and that is true. Sentence (4) is true, not true of 

some numbers and false of others, but simply true. There are, however, particular numbers 



that make (4) true, specifically the numbers 1 and 1. They make (4) true because they satisfy 

(1), and what (4) says is that some numbers satisfy (1). 

 The difference between (1), which is true of some numbers but not others, and (2) 

through (4) is that (1) has a free variable, x, whereas in (2) through (4), the variable x is 

bound. In (2) and (3), every occurrence of the variable x is governed by the phrase “for all,” 

and we say that when a variable occurs in such a context, it is bound. Similarly, in (4) every 

occurrence of the variable x is governed by the phrase “there exists,” and we also say a 

variable occurring in such a context is bound. We say that formulas with free variables are 

open formulas and that formulas without free variables are closed formulas. Closed formulas 

will also be called sentences. 

 Other phrases can be used to bind variables. “Every” means the same as “for all.” 

“There exists” and “for some” are synonymous with one another, but they bind variables in a 

different way than does “for all.” 

 Why is the formula x2  1 = 0 satisfied by {1, 1}? Well, because if we take the 

number 1 and square it, we get the number 1 back, and if we take that number and subtract 

from it the number 1, we get 0. We get the same result if we take the value of x to be 1, but 

not if we take x to have any other value besides 1 or 1. So we are really thinking of the 

numbers in the real line as the possible values of x, and we are thinking of these numbers as 

things for which such functions as addition, subtraction, and multiplication are defined. 

Further, we think of the real numbers as each standing in a special relation to itself and to no 

other number, the relation of identity or equality. 

 So the picture we have when we do algebra is of a domain—perhaps the real line, 

perhaps the real plane, perhaps sometimes some other system of objects. When we write 

algebraic expressions using variables, the variables range over the objects of the domain. 

When we say “for all,” we mean for all members of the domain, and when we say “there 



exists,” we mean that there exists a member of the domain. The objects of the domain are 

related to each other by some definite collection of functions and by some definite collection 

of properties or relations. 

 Let us call a relational structure any nonempty set D, which we will call the domain 

of the structure, together with any finite collection of functions defined on all members of D, 

all ordered pairs of D, or all ordered triples of D, and so on, according to whether the 

functions require one argument or two arguments or whatever. The functions also have their 

values in D. We further allow that a relational structure may have any finite number of 

relations or properties. A property is just a subset of D, a two-place relation is just a subset of 

all of the ordered pairs of D, and so on. We write the set of all ordered pairs of D as D  D, 

sometimes called the Cartesian product of D with itself, or the second Cartesian power of D 

(after Descartes, of course). 

 The natural numbers form one relational structure. The domain consists of an infinite 

collection of objects. There are three functions—successor, addition, and multiplication—

defined on the domain. The successor function, s, maps each number to its immediate 

successor, that is s(x) = x + 1. There is one constant or distinguished individual, namely the 

number 0. There are two relations in the structure: one is the relation of identity that each 

number has to itself; the other is the relation of order (a < b), which holds of numbers a, b if 

and only if a is less than b. We write this structure as [N, 0, s, +, , =, <] and denote it by N. 

 We can consider the structure that has the same domain as the natural numbers but 

has no functions, no constant, and two relations: identity and the less-than relation. The 

structure is [N, <, =]. The structure just defined is sometimes described as discrete order with 

a first element because there is an object in the domain, namely the number zero, that is less 

than every number except itself. 



 The integers, denoted by Z, form a relational structure, [Z, 0, s, +, , =, <], that can be 

thought of as an extension of N. The integers include the positive numbers, zero, and the 

negative numbers. Successor, addition, and multiplication are all part of this relational 

structure, just as with the natural numbers. Whereas in the natural numbers there is a number, 

zero, that is not the successor of any number, in the integers every number is the successor of 

a number. In the integers we can define an operation, subtraction, that we cannot define on 

the natural numbers. (By our conventions a function can only be introduced if it is defined on 

all members of the domain of the structure, or on all ordered pairs if it is a two-place 

function. Subtraction does not have a value in the natural numbers for all pairs of natural 

numbers.) 

 If we ignore the functions in Z and consider just the identity and the ordering 

relations, we obtain a structure sometimes called discrete order without first or last elements, 

[Z, =, <]. 

 Another familiar number domain is the collection of rational numbers. The rational 

numbers can be described in various ways. They are, for example, the real numbers that have 

repeating decimal expansions. Another way to think of the rationals is as those numbers that 

can be represented by a ratio of integers. Of course, one and the same rational number can 

often be represented by more than one ratio of integers. Thus 1/2 is the same number as 2/4, 

as 3/6, as 4/8, and so on. Two ratios of integers a/b and c/d, represent the same number 

provided that ad = cb. So, starting with the integers, Z, we can consider the set Z  Z of all 

ordered pairs of integers, except for those ordered pairs whose second element is 0 (because 

we cannot divide by 0). We can then define an equivalence relation, call it E, between such 

ordered pairs by the condition that E(a, b, c, d) if and only if ad = cb. For each ordered 

pair of integers a, b in Z  Z (except ordered pairs whose second element is 0), we can 

consider the set of all ordered pairs x, y such that E(a, b, x, y). We can call this set the 



equivalence class of a, b and denote it by [a, b]. So if E(a, b, c, d) holds, that is, if a, 

b and c, d are equivalent ratios of integers, then they determine one and the same 

equivalence class, that is to say, [a, b] = [c, d]. 

 Now take the domain of the rational numbers to be the set of all equivalence classes 

just constructed. In other words, treat the equivalence classes as themselves the fundamental 

objects. We can define operations + and on these equivalence classes in terms of the 

operations of addition and multiplication on the integers. To understand the point of the 

definitions, recall that a fraction, say 1/2, is simply one way of representing the ordered pair 

1, 2, and recall that in adding fractions, say 1/2 + 2/4, we multiply the numerator of each 

fraction by the denominator of the other, add the results, and divide by the product of the 

denominators. The definitions are as follows: 

Definition of sum [a, b] + [c, d] = [ad + bc, bd] 

Definition of product [a, b]  [c, d] = [ac, bd] 

The first of these equations says that the operation + operating on the two equivalence classes 

[a, b] and [c, d] is defined to be the equivalence class of the ordered pair of numbers ad + 

bc, bd, where the + between ad and bc means ordinary addition of integers. The second 

equation is to be read in an analogous way. 

 We can also define an ordering relation, denoted by <, on the rational numbers from 

properties of the integers. Thus we have the following definition of order: 

Definition of order [a, b] < [c, d] if and only if there exists a rational [u, v] such that u > 

0 and v > 0 and [a, b] + [u, v] = [c, d]. 

Using the integers, we have constructed the rational numbers, which we denote by Q. 

Actually, we had to use a good bit more than just the integers; we also had to use principles 

of set theory. 



 The rational numbers form a relational structure that has an infinite domain with the 

operations of addition and multiplication (but not the successor operation). Informally, we 

think of the rational numbers as including the integers, so that each integer x is identified with 

a particular rational number, [x, s(0)]. Just as with the natural numbers and the integers, we 

can use addition to define the relation of less than on the rational numbers, and we can think 

of the structure obtained from Q by deleting all relations and functions except for identity and 

less than. This ordering differs from the ordering on the integers in the following way: 

between any two rational numbers, there is another rational number. So the sentence “For 

every object x and for every object y, if x is less than y, then there is an object z such that x is 

less than z and z is less than y” is true in the rationals but false in the integers. An ordering for 

which this sentence is true is said to be dense. 

 Number systems are not the only relational structures. Euclidean geometry is 

concerned with such structures. Consider a structure whose domain consists of all ordered 

pairs of real numbers. Intuitively, each object in the domain is a point of two-dimensional 

Euclidean space. The points can be taken to stand in two relations (besides identity): 

betweenness and congruence. Betweenness is a three-place relation. Informally, a point z is 

between two points x and y just in case there is a Euclidean (straight) line segment from x to y 

containing z. Congruence is a four-place relation. Again informally, a pair of points x, y is 

congruent to a pair of points u, w just in case the line segment with endpoints x and y has the 

same length as the line segment with endpoints u and w. 

 In fact, any set of objects, together with functions and relations defined on the objects, 

can form a relational structure. The domain can be the set of streets in Pittsburgh. Properties 

might be the set of paved streets, and the set of cobblestoned streets. One relation might be 

the set of pairs of streets such that the first intersects the second. 

Study Questions 



1. For each of the following formulas, describe the set of natural numbers (i.e., nonnegative 

whole numbers) satisfying it: 

x  2 = 0 

x2 < 5 

x + (x  3) = 4 

x  x = 0 

2. Which of the following are true in the structure of a discrete order with a first element? (a) 

There is an object such that every object is less than it. (b) For any two distinct objects, there 

is a third such that the third object is less than one of the first two and the other object of the 

first two is less than the third object. (c) No object is less than itself. (d) If one object is less 

than a second and the second object is less than a third, then the third object is less than the 

first. (e) If one object is less than another, then the latter is also less than the former. 

3. Specify the set of natural numbers that satisfy the following (note that what follow are not 

sentences; they are formulas): (a) x is less than all other numbers; (b) x is less than all 

numbers; (c) x is less than 3, and 1 is less than x; (d) x is less than 3, and 2 is less than x; (e) x 

is less than 3, or 2 is less than x. 

4. Can you give a formula that cannot be satisfied in the domain of the integers but can be 

satisfied in the domain of natural numbers? 

5. Let E be the relation defined in the construction of the rational numbers from the integers. 

Prove that for all ordered pairs u = x, y, w = k, z, v = m, n, the following hold: E(u, u); if 

E(u, w), then E(w, u); and if E(u, w) and E(w, v), then E(u, v). Any two-place relation that has 

these three properties (called, respectively, reflexivity, symmetry, and transitivity) is an 

equivalence relation. 



6. Show that the following open formula (open because x and y are free variables) can be 

satisfied by some pairs of numbers in the integers: if x is less than y, there is an object z such 

that x is less than z and z is less than y. 

7. Prove that the ordering of the rational numbers is dense. 

FORMAL LANGUAGES 

Consider the sentence “For any two objects, there is a third such that the third object is less 

than one of the first two and the other object of the first two is less than the third object.” 

What makes this sentence clumsy is the need for coreference. Different parts of the sentence 

must refer to one and the same unnamed object and not to other objects. In this case we can 

introduce the device of variables in such sentences in lieu of names. So we might say, “For 

any two distinct objects x, y, there is a third object z such that z is less than x or z is less than 

y, and if z is less than x then y is less than z, and if z is less than y then x is less than z.” This 

restatement ought to be clearer, even though it is still complicated. One reason logicians work 

with formalized languages is to remove such ambiguities. Another reason is that logicians 

want to prove things about properties of languages, and doing so requires that a language be 

a definite mathematical object. 

 In a formalized language there is a basic vocabulary consisting of expressions that 

serve as names for particular objects in the domain (analogous to the names “zero” and “0,” 

which we use for the number zero), expressions that serve as variables, expressions that 

denote properties and relations, expressions that denote functions, expressions that serve as 

quantifiers (analogous to “for all” and “there exists”), expressions that serve as sentential 

connectives (analogous to the & and  and  of chapter 5), and items, such as parentheses, 

that serve a role analogous to that of punctuation marks in English. 

 For example, we can take the vocabulary for the basic language of arithmetic to 

consist of the following: 



Names: 0 

Variables: xi for any i in N 

Two-place predicate symbols: L, = 

One-place function symbol: s 

Two-place function symbols: +,  

Quantifiers: ,  

Sentential connectives: &, , ,  

Parentheses: (,) 

This basic vocabulary is infinite, but only because we allow an infinity of distinct variables. 

 Clearly there are an infinite number of finite strings of elements from this vocabulary, 

for example, the following are all strings from this vocabulary: 

(L  =)( 

(x)Lx30 

((((((((((((((((((((((()))))))))))) 

In a natural language such as English, not every string from the vocabulary makes sense. 

“English, up goes the, to tree. not; ;;? who” is a string of English words and punctuation 

marks, but it is not a sentence; it has no meaning in the English language. We say it is not 

well formed. 

 In the same way, we want only special strings from our formal vocabulary to count as 

being well formed, but we want it to be perfectly definite which strings are, and which are 

not, well formed. In English and in other natural languages there is no bound on the length or 

number of well-formed strings, or sentences, and so the collection of sentences in English is 

infinite. We want the same to be true of the well-formed strings in formalized languages. 

After all, the number of truths is infinite, and we hope to be able in principle to state any of 

them. 



 How can we characterize this infinite class exactly? We do so by giving an inductive 

definition. The inductive definition will begin by saying that a certain perspicuous collection 

of strings is well formed. Then it will specify rules or operations from which a new well-

formed string can be made from previous well-formed strings. Finally, it will say that the set 

of all well-formed strings is exactly the set of all strings that can be generated by applying 

these rules to the initial finite set of well-formed strings any finite number of times. In this 

way the set of well-formed strings will be “built up.” 

 For the vocabulary I have just given, the characterization of the set of well-formed 

strings is as follows: 

Definition of a term (1) The symbol 0 is a term. (2) Every variable is a term. (3) If t1, … , 

tn are terms and f is an n-place function symbol, f(t1, ... , tn) is a term. (4) Nothing else is a 

term. 

Definition of an atomic formula An atomic formula is a string of the form Ltitk or of the 

form ti = tk, where ti and tk are any terms. 

Definition of a well-formed formula (1) Every atomic formula is well formed. (2) If M is 

well formed, so is (M). (3) If M is well formed, so is M. (4) If M and N are well formed, so 

are (M & N) and (M  N) and (M  N). (5) If M is well formed, so are xiM and xiM, where 

xi is any variable. (6) Nothing else is well formed. 

The inductive definition of a well-formed string implicitly provides a procedure for 

determining whether or not an arbitrary string is well formed. If there is a means of 

determining whether a symbol is a variable, the procedure can be made completely 

mechanical. 

 When we first considered examples from algebra, I noted the difference between 

variables that occur free and variables that are governed by a quantifier expression such as 

“there exists” or “for all.” We can make the notion of a free occurrence of a variable precise 



for any formalized language of the kind we are considering. Recall first of all that one and the 

same variable can occur in several places in one and the same well-formed formula, so that 

what must be defined is the notion of a free occurrence of a variable in a well-formed 

formula: 

Definition of a free occurrence of a variable in a well-formed formula (1) Every 

occurrence of a variable in an atomic formula is a free occurrence. (2) An occurrence of a 

variable in S is free if and only if that occurrence is free in S. (3) An occurrence of a 

variable is free in (M  N) if and only if that occurrence is free in M, if it occurs in M, or free 

in N, if it occurs in N. (4) An occurrence of a variable is free in (M & N) if and only if that 

occurrence is free in M, if it occurs in M, or free in N, if it occurs in N. (5) An occurrence of a 

variable is free in (M  N) if and only if that occurrence is free in M, if it occurs in M, or free 

in N, if it occurs in N. (6) An occurrence of a variable xi is free in xkS or in xkS if and only 

if that occurrence is free in S and i does not equal k. 

An occurrence of a variable that is not free is said to be bound. 

 We say that a well-formed formula is closed or is a sentence if it contains no free 

occurrences of variables. Otherwise, the formula is said to be open. 

 One great advantage of formal languages is that the language itself becomes a 

perfectly definite mathematical object, so that one may proceed to prove things about it, just 

as one proves things about numerical or geometrical objects. The importance of formal 

languages is not so much in their actual use but rather in showing that everything can in 

principle be made precise. In practice, completely formal languages are much too clumsy to 

use, and I will abbreviate formulas in obvious ways, for example, by ignoring extraneous 

parentheses required by the formation rules but unnecessary for seeing what is meant. 

 The formulation and study of formalized languages was concurrent with the 

development of logic early in this century. In the 1950s this aspect of logic served as a model 



and stimulus for the science of linguistics. Since then a principle aim of many linguists, 

following the work of Noam Chomsky, has been to characterize natural languages as systems 

with explicit rules of formation, or parsing rules. Like the rules of our simple formalized 

language, these linguists search for a formulation of grammatical principles that will make it 

possible to determine mechanically whether or not a string of symbols from a language is 

grammatical. 

Study Question 

Which of the following are terms if f is a two-place function symbol and g is a one-place 

function symbol and x and y are variables: 

f(x, f(x)) 

f(g(x), y) 

g(f(x, g(y)) 

g(g(g(g(x)))) 

TRUTH AND SATISFACTION 

We know the basic idea for connecting formulas in a formal language to relational structures. 

The aim is to connect symbols with objects, properties, and relations in such a way that 

formulas in the language will be true or false of objects or sequences of objects in the domain 

and sentences in the language will be true or false. The basic idea is that each predicate of 

each type (that is, one-place, two-place, etc.) is mapped to a subset of members of the domain 

(or subset of ordered sequences of members of the domain) satisfying a property or relation. 

One-place predicates are mapped to subsets of the domain, two-place predicates are mapped 

to sets of ordered pairs of members of the domain, and so on. In the same way, unary-

function symbols in a formal language are mapped to unary functions in the relational 

structure, binary-function symbols to binary functions, etc. I will call an interpretation any 



mapping that connects the names, predicates, and function symbols of a language with the 

relations and functions of a relational structure. 

 We also know from chapter 5 what it is that makes an atomic formula with a free 

variable true of an object in the domain of a relational structure on an interpretation 

connecting the language of the formula with the relational structure. A formula, such as Mx is 

true of an object d in the domain of a relational structure under an interpretation, call it J, 

provided that d is in the subset of the domain that J connects with the predicate M. Logicians 

tend to say that d satisfies Mx, keeping the terminology familiar from algebraic formulas. 

More formally, if we let J(M) be the subset of the domain D to which J maps M, then d 

satisfies Mx with respect to J if and only if d  J(M). If the predicate is two-place, then a 

formula such as Bxy is true of, or satisfied by, an ordered pair of objects from the domain, say 

c, d, provided that c, d is in the set of ordered pairs connected to B by J. That is, c, d 

satisfies Bxy with respect to J if and only if c, d  J(B). We also know that a formula of the 

form x Mx will be true with respect to an interpretation if and only if some object in the 

domain is in the set to which J maps M, in other words, if and only if some object in the 

domain satisfies Mx. x Mx will be true with respect to interpretation J if and only if every 

object in the domain is in the set to which J maps M, in other words, if and only if every 

object in the domain satisfies Mx. A general definition of truth of sentences and satisfaction 

of formulas can be given inductively. 

Study Question* 

Think of an assignment function K as a rule that specifies, for each variable in a formal 

language, an object in a domain D. Then we say that K satisfies M(x) if K(x) is in J(M), where 

the interpretation J is assumed. Try to give an inductive definition of “Mapping K of variables 

in language L to domain D of relational structure R satisfies formula S.” Assume a fixed 



interpretation J of the predicate and function symbols and the names in the language. Start 

with clauses for atomic formulas in the language. For each sentential connective (&, , ), 

add a clause saying when K satisfies a compound formula with the connective (for example, 

P & Q) in terms of when K satisfies the components (P and Q in the example). For existential 

quantifiers, take K to satisfy x S(x, y, z), for example, if some assignment function J that has 

the same value as K for all variables except possibly for the variable x satisfies S(x, y, z). For 

universal quantifiers, take K to satisfy “x S(x, y, z) if every assignment function L that has 

the same values as K for all variables except possibly for variable x satisfies S(x, y, z).” 

PROOFS 

There are many different ways to formulate a theory of proof for the kinds of formal 

languages I have discussed. Different formulations may start from different sets of logical 

truths and use different rules of inference. All of the many formulations turn out to be 

equivalent in the sense that if a formula is provable from a set of assumptions in one 

formulation, it is also provable from the same set of assumptions in other formulations. I will 

give a system of proof that is based loosely on Frege’s treatment.1 

 To obtain a consistent and adequate system of proof, we must be careful about the 

substitution of variables. The problem is that we cannot permit the substitution of an arbitrary 

term in an arbitrary universally quantified formula. Where t is an arbitrary term, we cannot 

without restriction infer a formula of the form x St or the formula St from a formula of the 

form x Sx. For example, suppose that the formula we are considering is xy(x = y). This 

sentence says there are at least two things in the domain. If we substitute the term y for the 

variable x in this sentence, we would get the sentence xy(y = y), which, by quantifier 

deletion, entails y(y = y). This sentence is a contradiction asserting there exists something 

that is not identical with itself. 



Definition of substitutable (1) For atomic S, any term is substitutable for x in S. (2) Term t 

is substitutable for x in S if and only if t is substitutable for x in S. (3) Term t is substitutable 

for x in M  N if and only if t is substitutable for x in both M and N. (4) Term t is 

substitutable for x in x S if and only if either x does not occur free in S or x does not occur in 

t and t is substitutable for x in S. 

 Our formal characterization of proof is given by a system of axioms and inference 

rules. There are an infinity of different axioms, but they may all be obtained from a finite 

number of axiom schemata either by substituting any well-formed formulas in an axiom 

scheme or by substituting and then placing universal quantifiers in front of the formula. 

Definition Formula S is a generalization of formula S if and only if S is obtained from S 

by prefixing S with any finite number of universal quantifiers in any variables. 

 Every generalization of any formula obtained by substituting any well-formed 

formulas for A, B, and C and any names or variables for x, c, and d and any term for t in the 

following axiom schemata is an axiom. 

A  (B  A) 

(C  (B  A))  ((C  B)  (C  A)) 

(D  (B  A))  (B  (D  A)) 

(B  A)  (A  B) 

A  A 

A  A 

c = d  K  (Kc/d) (where K is an atomic formula and Kc/d is the result of substituting d for 

c in zero or more occurrences of c in formula K) 

c = c 

x Sx  St (where t is substitutable for x in Sx) 



x(M  N)  (x M  x N) 

S  x S (where x does not occur free in S) 

 There is a single rule of inference: 

From S  T and S, infer T. 

 Finally, I define a proof of formula S from a set of assumptions  to be a finite 

sequence of formulas such that the last formula in the sequence is S and each formula in the 

sequence is in , is an axiom, or follows from two preceding formulas in the sequence by the 

rule of inference. 

 Actual proofs in this system may be quite lengthy and very difficult to construct. The 

important thing, once more, is not that this characterization of proof provides a convenient 

system in which actually to construct proofs. It does not. Rather, the important thing is that 

the notion of a proof in a formal language becomes perfectly definite, so that we can 

informally prove things about formal proofs, just as we give informal proofs about other 

definite mathematical objects, such as numbers or sets. 

SOUNDNESS AND COMPLETENESS 

I have developed the logic of quantifiers from several points of view. First I described 

relational structures, which I took to be the abstract structure of the possible worlds or 

circumstances that are of concern in mathematics and the sciences. Then I described 

formalized languages, which differ from natural languages in their simplicity and in having 

explicit rules that make it possible to determine in a mechanical way whether or not a string 

of symbols is well formed. Third, I developed a semantics for formalized languages. The 

semantics specifies precisely the conditions under which a set of values for variables in the 

language satisfies a formula in the language. Using these notions, one can say precisely what 

is meant by the claim that a collection of formulas in the language entails another formula. 

Recall that a set of sentences  entails a sentence S if and only if S is true in every relational 



structure for which all sentences in  are true. Fourth, I sketched a theory of proof. Although 

the intent of the theory of proof is that proofs will preserve truth, the theory of proof given 

made no use of any of the semantic notions; it did not use the notion of a relational structure 

or the notion of a set of values satisfying a formula. Nonetheless, it is possible (informally) to 

prove that the theory of proof and the semantic account of entailment coincide perfectly: a 

collection of formulas entails a formula if and only if the latter is provable from a finite 

subset of the former. More exactly, we have the following theorems for formalized languages 

of the kind considered in this chapter. 

Soundness theorem If  is any finite set of formulas and there is a proof of a formula S 

from , then  entails S. 

A much more difficult result is the converse, first proved by Kurt Gödel in his doctoral 

dissertation in 1930: 

Completeness theorem If  is any collection of formulas and  entails S, then there is a 

proof of S from formulas in . 

Since a proof must be a finite sequence of formulas and therefore only a finite number of 

assumptions can occur in any proof, an immediate corollary is the following: 

Compactness theorem If S is entailed by , then S is entailed by some finite subset of . 

These results, which will not be proved here, tend to show that the semantics and the proof 

theory are in accord. It remains to be shown, however, that the logical theory I have described 

is really adequate to reconstruct deductive reasoning in the mathematical sciences. 

THEORIES AND MODELS 

The logical theory I have developed in this chapter is usually referred to as first-order logic 

because it permits quantifiers to bind variables that range over individuals but it does not 

contain variables that range over properties nor does it have quantifiers that bind such 

variables. One of the best ways to consider the richness of first-order logic is to consider 



some collections of sentences and formulas in formalized languages, and the collections of 

relational structures in which those sentences or formulas are true. First we need some 

convenient terminology. 

 Relational structures are often called models. In particular, a relational structure in 

which sentence S is true is called a model of S. Any collection  of formulas in a formalized 

language has a set of logical consequences, denoted Cn(). Cn() is the set of all well-

formed formulas that can be deduced from  or, in other words, that are entailed by . For 

any set , Cn() is deductively closed; that is to say, every logical consequence of Cn() is 

already in Cn(). A deductively closed collection of formulas is called a theory. A theory is 

consistent if and only if it has a model. Two sentences in a language are said to be consistent 

if and only if their conjunction has a model. 

 Given a theory T, if there exists a collection  of formulas for which (1) there is an 

algorithm that determines for any formula in the language whether or not it is in , and (2) 

Cn() = T, then T is said to be axiomatizable. If there exists a finite set of formulas  such 

that Cn() = T, then T is said to be finitely axiomatizable. 

 A theory is said to be complete if for every sentence S in the language of the theory, 

either S is in the theory or S is in the theory. If a relational structure is for a formal 

language, then every sentence in that language is either true or false in that relational 

structure. Hence for any relational structure, the set of all sentences true in that structure is a 

complete theory. 

The Theory of Identity 

Consider the following sequence of sentences: 

x1x2(x1 = x2) 

x1x2x3(x1 = x2 & x1 = x3 & x2 = x3) 

. 



. 

. 

The first sentence says that there are at least two things. The second sentence says that there 

are at least three things. The next sentence in the sequence will say that there are at least four 

things, and so on. 

 All models of the first sentence have two or more elements in their respective 

domains. Every relational structure [D, =] in which D has at least two members is a model for 

the first sentence. Every model of the second sentence has three or more elements in its 

domain, and every structure with identity that has a domain of three of more members is a 

model of the second sentence. 

 Notice that every model of the second sentence above is also a model of the first 

sentence. Every model having a domain with at least three members is a model with a domain 

having at least two members. So the second sentence entails the first sentence. Since the 

second sentence has a model, the two sentences are consistent. We can form the set of 

sentences consisting of both of these sentences. Call that set 3 to indicate that it is a set of 

sentences that says there are at least three things. By including more and more sentences in 

the sequence of sentences indicated above, we can form a sequence of sets of sentences, 4, 

5, ... , n, ... The set n is a collection of sentences that are true in all and only structures 

having at least n members in their respective domains. 

 Now suppose we form the set that is the union of all sets n for all n > 1, and call the 

set of sentences that results . We use the symbol n(…) to denote the operation of taking 

the union of an arbitrary collection of sets indexed by n. Accordingly,  = n(n). 

 The set  contains each sentence that occurs in any of the n. Cn() is a theory. In 

what structures is the theory true? For every n > 1, there is a sentence in  that says there are 

at least n things. That sentence is false in any domain having fewer than n members. So for 



every number n > 0,  is not satisfied in any domain having exactly n elements and no more. 

So the only structures in which all sentences in  are true are structures having infinite 

domains. In fact, one can prove that all structures for the language having infinite domains 

are models of . 

 There is an obvious algorithm for determining, for any given sentence, whether or not 

that sentence is in . So Cn() is an axiomatizable theory. It is easy to prove that it is not a 

finitely axiomatizable theory. One can also prove that the theory is complete. 

How Can It Be Proved That Cn() Is Not Finitely Axiomatizable? 

First I prove a lemma needed for the proof of the theorem: 

Lemma If  is any set of sentences and Cn() is finitely axiomatizable, then there is a 

finite subset of  that axiomatizes Cn(). 

Proof Suppose that A is a finite set of sentences such that Cn(A) = Cn(). Then certainly  

entails A. Hence by the completeness and compactness theorems, there is a finite subset of , 

call it , such that  entails A. So  is a finite subset of  that axiomatizes Cn(). Q.E.D. 

Theorem Cn() is not finitely axiomatizable. 

Proof Now suppose, contrary to what is to be proved, that  is finitely axiomatizable. 

Then by the lemma just proved, there is a finite subset of  that axiomatizes . Any such 

finite subset must be the same as n for some n. So n entails . But all the sentences in n 

are true in any domain that has at least n members. So they are all true in a domain that has 

exactly n members and is therefore finite. But  has no finite models. So there are models of 

n that are not models of . So n does not entail , which is a contradiction. Since the 

supposition that  is finitely axiomatizablc implies a contradiction,  is not finitely 

axiotnatizable. Q.E.D. 

Study Questions 



1. Write a sentence that says there are at least four things. 

2. Write a sentence that says there are exactly four things. 

3. Give an argument to show that Cn(n) is not a complete theory for any n. (Hint: Show 

how, for any given n, to find a sentence true in one model of Cn(n) and false in another 

model.) 

The Theory of Successor 

Consider the structure [N, 0, s, =], obtained from the natural numbers by ignoring the 

functions of addition and multiplication. Since this structure has an infinite domain,  is true 

in it. So, of course, are other sentences and formulas. Consider the following: 

x(s(x) = 0) (Zero is not the successor of any number.) 

yx s(y) = x (Every number has a successor.) 

xy(s(x) = s(y)  x = y) (No two distinct numbers have the same successor.) 

xs(x) = x (No number succeeds itself.) 

These four sentences are true in [N, 0, s, =] but do not entail all that is true in that structure. In 

fact, the complete theory of [N, 0, s, =] can be axiomatized but it cannot be finitely 

axiomatized. But the four sentences just given do entail all of the sentences in . So while 

the theory Cn () is not finitely axiomatizable, we can extend that theory with extra 

vocabulary (in this case, the constant symbol 0 and the symbol for the successor function) to 

a finitely axiomatizable theory. Moreover, the extension is conservative: the extended theory 

entails Cn() but no other sentences that can be stated with identity alone. 

Study Questions 

1. Finish the proof of the following theorem: 

Theorem If theory T is any extension of Cn() that is not conservative, then T is 

inconsistent. 



Proof Since a sentence and its denial cannot both be true in a relational structure, it suffices 

to show that if T is a nonconservative extension of Cn(), then Cn(T) includes some 

sentence and its denial, and hence T has no model. T is an extension of Cn() means that 

Cn(T)  Cn(); that is, every consequence of  is a consequence of T. That T is not a 

conservative extension of Cn() means that there exists a sentence in the language of  

(the language with only identity as a predicate) that is a consequence of T but is not a 

consequence of . Let S be such a sentence. Since , is complete, either S is in Cn() or 

S is. But since S is by assumption a sentence that is not a consequence of , S is in 

Cn(). Etc. 

2. Explain why the set consisting of the four sentences for the theory of successor given 

above has no finite model. 

The Theory of Successor and Discrete Order 

If we add the order relation on the natural numbers to the identity and successor relations, we 

are considering the structure [N, 0, s, <, =]. The theory of this structure is rather different 

from the theory of identity or of successor for the natural numbers. The complete theory of 

[N, 0, s, <, =] is finitely axiomatizable. Here is a set of axioms: 

y((y = 0)  x(y = s(x))) 

xy(Lxs(y)  (Lxy  x = y)) 

xy((Lxy  x = y)  Lxs(y)) 

x  Lx0 

xy(Lxy  (x = y  Lyx)) 

xy(Lxy  Lyx) 

xyz(Lxy  (Lyz  Lxz)) 



By adding structure to a structure that can only be described with an infinite set of axioms, 

we get a structure that can be completely described by a finite set of axioms. 

The Theory of Dense Order 

The ordering on the rational numbers gives the structure [Q, <, =]. The complete theory of 

this structure is also finitely axiomatizable, and it too has no finite models. The theory can be 

axiomatized by the following axioms: 

xy(Lxy  z(Lxz & Lzy)) 

yx Lxy 

yx Lyx 

x  Lxx 

xyz(Lxy  (Lyz  Lxz)) 

xy(Lxy  (x = y  Lyx)) 

Study Questions 

1. Give English paraphrases for each of the axioms in the two axiom systems just given. 

2. Suppose that you are allowed to look only at a finite number of elements and their order 

relations. Imagine that either all of the objects are selected from a domain that is either 

densely ordered or discretely ordered, but you are not told which. Could you determine from 

the finite sample whether the objects came from a discretely ordered domain or from a 

densely ordered one? 

TWO PARADOXES 

Many familiar theories can be formalized in first-order logic. The postulates of arithmetic 

developed by Guiseppe Peano (1858–l932) in the nineteenth century can be formalized. In 

fact, I have formalized parts of that theory in the examples of previous sections. The theory of 

sets has been given a first-order formalization, and Euclidean geometry, hyperbolic geometry, 

and the geometry of spherical surfaces have also been given nice formalizations. Algebraic 



theories, such as the theory of real algebra, have been formalized and extensively studied. 

Moreover, theories that are not purely mathematical have also been given first-order 

formalizations. These include the classical mechanics of particles, classical rigid-body 

mechanics, parts of genetics, the special theory of relativity, parts of cosmology, and many 

other theories. There are, however, some fundamental notions that escape representation in 

first-order theories. Various conceptions of cardinality cannot be represented, even though 

they seem to be fundamentally important ideas. The notion of truth cannot be adequately 

represented, even though the notion is essential to the semantics of first-order logic. 

The Finite and the Infinite 

I have already described a formal theory, , that expresses the concept of infinity. Every 

model of the theory has an infinite domain, and every infinite domain serves as a model of 

the theory. But consider the concept of finiteness. Every domain that is not infinite is finite. 

So it might seem reasonable to expect that if the idea of infinity can be represented in a first-

order theory, so can the idea of finiteness. Such a representation would consist in a theory 

that has every finite domain as a model and has no models with infinite domains. We cannot 

form such a theory by asserting the denial of , because  is not a sentence but rather an 

infinite set of sentences. Sets do not have denials; sentences do. Intuitively, to express the 

idea of finiteness, we would need to find a way to assert within the language of  that some 

sentence in that set is false. It turns out that there is no way to do that. In fact, the following 

can be proved: 

Theorem In any first-order language, every theory that has models of every finite 

cardinality has an infinite model. 

Traditional metaphysics held that the notion of infinity is obscure, but the notion of finiteness 

is not troublesome. In modern logic things seem to get reversed. Infinity is easy, finitude is 

obscure. 



 But infinity is not that easy. Recall that in chapter 1 we considered theorems of 

Cantor’s that show that for any set , the set of all subsets of  (the power set of ) has a 

larger cardinality than . So the set of all subsets of the set of natural numbers is larger than 

the set of natural numbers, and the set of all subsets of the set of all subsets of the natural 

numbers is larger still, and so on. There are infinities, bigger infinities, still bigger infinities, 

and so on forever. But the differences among infinite sets with different cardinalities cannot 

be represented by any first-order theory. One of the remarkable results proved early in this 

century is the following: 

Löwenheim-Skolem theorem In any first-order language, every theory that has an infinite 

model has an infinite model of every cardinality. 

The Löwenheim-Skolem theorem is sometimes described as a paradox. It states a fact about 

first-order theories, but since that fact presupposes that we can distinguish between infinite 

sets with different cardinalities, the fact itself cannot be faithfully represented as a claim 

within any first-order theory. 

 The moral seems to be that not everything that it makes sense to say can be said in a 

first-order language. Many philosophers and logicians have drawn that conclusion. More 

powerful logical systems (systems that in fact originated in Frege’s work) permit one to 

distinguish between different infinities. The essential thing is that while sentences in first-

order languages have only variables that range over individuals in a domain, more powerful 

logical systems have variables that also range over arbitrary subsets of a domain. In first-

order logic we can say that all individuals in the domain have some property or that there 

exists an individual with some property, but in more powerful logical systems we can also 

say that there exist properties and relations with some second-order property. 

 Some philosophers and logicians resist the conclusion that first-order logic is 

inadequate and hold that everything can be said in a first-order language. They may do so, for 



example, because they doubt that such abstract objects as sets, properties, and relations really 

exist, and they do not want to use a formal language that logically commits them to the 

existence of such entities. Those with such a view seem to be stuck with the position that 

there are no absolute notions of finitude or of infinite cardinalities. Or more radically and 

skeptically, they may recall Gassendi’s riposte to Descartes: he who says that anything is 

infinite attributes to a thing that he does not comprehend a name that he does not understand. 

Perhaps the same is true for he who says that anything is finite. 

The Liar 

In the the Old Testament, the Cretan says that all Cretans are liars. Suppose he had said that 

all Cretans lie whenever they speak. Then what he said could not have been true, since if it 

were true, everything said by a Cretan is false, and since what he said was said by a Cretan, if 

it were true it would be false. 

 The biblical paradox leads to a modern logical paradox. This time the paradox is not 

peculiar to first-order logic but intrinsic to the very idea of giving a theory of truth for a 

language. Let us make one assumption about truth and falsity: 

Assumption No sentence in a language is both true in that language and false in that 

language. 

 It is easy to show that if a language is strong enough to say certain things about the 

truth or falsity of sentences in that language, then the assumption must be contradicted. 

Consider the following sentence: 

(1) Sentence (1) is false. 

There are only three possibilities: (1) is true in English, (1) is false in English, or (1) is neither 

true nor false in English. Suppose that (1) is true. Then since (1) says that (1) is false, what it 

says is false. So if (1) is true, it is also false, which contradicts the assumption. Suppose that 

(1) is false. Then since (1) says that (1) is false, what it says is true. Hence (1) is true. So if 



(1) is false, then it is true, which contradicts the assumption. Finally, suppose that (1) is 

neither true nor false. Then since (1) says that it is false and it is neither true nor false, what it 

says of itself is false. Hence if (1) is neither true nor false, it is false, which is a logical 

contradiction. 

 There are several responses to this argument. One response is to try to find some 

logical flaw in the proof. One might think that there is something unclear about  the idea of 

English as a definite object about which one can produce proofs. One of the great logicians of 

this century, Alfred Tarski, showed that essentially the same result can be obtained for certain 

formalized first-order languages. So the paradox does not result from the vagueness of the 

English language. Some think that the argument contains some subtle equivocation in the 

notion of truth, but there is little agreement about what the equivocation might be. Another 

response is to accept the conclusion. If one accepts the conclusion, then any of several lines 

of thought suggest themselves. One is to try to introduce a new technical notion that is like 

the notion of truth but does not have the unwelcome property that for some sentences it both 

applies and does not apply. Another is to attempt to isolate all discourses that, like sentence 

(1), produce paradox, and to avoid applying semantic notions to them. There is no single 

widely accepted solution. 

 In a way, the liar paradox is refreshing. We started with a pre-Christian problem, to 

characterize valid deductive arguments, and that quest led 2,500 years later to a modern, 

mathematical theory of proof, meaning, and deductive argument. It is amusing and ironic to 

find the resulting theory perplexed by a simple remark recorded more than 2,000 years ago. 

Study Questions 

1. Sentence (1) refers to itself, but not all forms of the liar paradox require self-reference. 

What can be inferred about the truth or falsity (or lack thereof) of sentences (2) and (3) 

below? 



(2) Sentence (3) is true. 

(3) Sentence (2) is false. 

2. What can be inferred about the truth or falsity (or lack thereof) of sentences (4) and (5) 

below? 

(4) Sentence (5) is neither true nor false. 

(5) Sentence (4) is neither true nor false. 

Review Questions 

1. In this chapter I have given a theory of proof and proofs of theorems about the theory of 

proof. What is the relation between the two? 

2. What is meant by an inductive definition? 

3. Give examples of each of the following: (a) two complete, finitely axiomatizable theories 

that each has no finite model but that are inconsistent with one another, (b) a theory that is 

not finitely axiomatizable, (c) a theory that is finitely axiomatizable and has no finite models 

but is not complete. 

4. Explain the difference between discrete order and dense order. 

5. Explain why the compactness theorem follows from the completeness theorem. 

6. Suppose that you are given a finite sample of objects and the facts about their relations 

with one another, either all drawn from a relational structure that has discrete order with first 

endpoint or all drawn from a relational structure that has discrete order without endpoints. 

Could you tell from the sample which structure it came from? Why or why not? 

7. Explain how to construct the rational numbers from the integers. 

8. Suppose that someone devised a theory of proof for which no completeness theorem is 

true. What would you conclude about the adequacy of the theory of proof, and why? Suppose 

that someone devised a theory of proof for which no soundness theorem is true. What would 

you conclude about the adequacy of the theory of proof, and why? 
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Part II 

EXPERIENCE, KNOWLEDGE, AND BELIEF 



Chapter 7 

SKEPTICISM 

INTRODUCTION 

Euclid’s geometry was the paradigm of science shared by Aristotle, Descartes, and many 

people in between. At roughly the same time that Descartes was reaffirming this conception 

of knowledge and attempting to give arguments for a “method” adapted to it, revolutionary 

developments in science were replacing the Cartesian view of how knowledge is acquired 

with a quite different conception. Andreas Vesalius had examined human cadavers to 

produce new revelations about human anatomy; Galileo had discovered sunspots, found the 

satellites of Jupiter, and observed their rotation about that planet; William Gilbert had 

investigated the properties of the magnet; and William Harvey had done experiments to argue 

for the circulation of the blood. 

 These and other discoveries did not seem to have the form expected by either 

Aristotelian or Cartesian science. There were no intuitions of general principles about 

lodestones or human physiology from which everything else in these subjects was deduced. 

Instead, examples of particular phenomena were observed, found to be repeatedly and 

regularly produced, and thus taken to hold generally. Inferences from particular instances to 

general conclusions were called inductive, and they were contrasted both with the direct 

intuition of general principles and with deductive inferences. 

 Induction might lead to general conclusions from observed regularities, but the goal 

of the new science was to go beyond simple generalizations of observed regularities to find 

their causes and the laws governing those causes. Scientists of the time searched for the 

hidden powers, causes, and structures that produce appearances, and they searched for the 

laws that govern such powers, causes, and structures. In the sky the sun and the stars appear 

to move, but according to Copernicus, that is only appearance, and in fact, it is the earth that 



moves. Harvey observed that living humans invariably have a pulse, but he explained the 

pulse by postulating a hidden mechanism not available to the eye: the heart acts as a pump 

and sends the blood through tubes in the body. Copernicus and Harvey and Galileo seemed to 

be penetrating the “hidden springs” of nature, but how could they do so? What could the 

method be? Different answers to these questions were offered by two great English scientists 

and philosophers: Francis Bacon and Isaac Newton. 

BACON’S INDUCTIVE METHOD 

Francis Bacon’s Novum Organum, published in 1620, was an influential statement of the 

goals and methods of the new science. Bacon saw clearly that the aims of science are not just 

to generalize observed regularities but more fundamentally to find the causes of those 

regularities. In keeping with the scholastic terminology of the day, Bacon usually wrote not 

of causes but instead of “forms”; even so, by that term he meant those properties of things 

that together are responsible for phenomena of scientific interest. Rather like Aristotle, he 

thought of the content of scientific 

Francis Bacon 

Francis Bacon was born in 1561 to a politically prominent English family. He studied at 

Cambridge University, where he learned and came to dislike Aristotelian philosophy. After a 

period on the Continent, he returned to England and studied law, thereafter making his living 

through law, the patronage of various nobles, and a small inheritance. When James I 

succeeded Elizabeth I to the throne of England, Bacon prospered and eventually became 

Chancellor. In 1621 he was accused of taking bribes; he was found guilty of the accusations 

by a Parliamentary court and sentenced to an enormous fine, imprisonment, and disbarment. 

Most of the sentence was not carried out, but Bacon never again held public office, and he 

died five years later. He wrote systematically on scientific method between 1605 and the end 

of his life, but he missed many of the scientific developments of his day. He did not know 



William Gilbert, although Gilbert was a contemporary and was the physician of both 

Elizabeth I and James I. William Harvey was Bacon’s own physician, but Bacon seems not to 

have known of Harvey’s work on the circulation of the blood. But others knew of Bacon. 

Harvey said that he “writes philosophy like a lord chancellor.” 

laws as conjunctions of conditions necessary and sufficient for observed effects. 

Bacon thought that scientific laws are to be discovered by applying the appropriate kind of 

reasoning to observations of particular cases. If one is studying the cause of heat, for 

example, then instances of hot things and cold things must be observed, and from those 

instances Reason must draw a conclusion as to the general cause of heat. The important 

questions for scientific method concern what observations to make and how to reason from 

the observations to conclusions about causes. 

 Bacon’s answer was clear but not fully precise. To discover the cause of a 

phenomenon such as heat or light or gravity, one should collect three different kinds of 

instances. Bacon thought of the instances of each kind as formed into “tables” or lists. One 

should first collect a list of positive instances of the phenomenon in question. A list of 

positive instances of heat should include many instances of distinct kinds, incorporating as 

much variety as possible. Second, one should collect a list of negative instances. The 

negative instances should be chosen to be as similar to the positive instances as is possible 

while still failing to exhibit the phenomenon to be explained. Third, one should form a list of 

degrees. The list of degrees is like the list of positive instances but the instances in it are 

ordered by the intensity of the effect. A list of degrees of heat contains positive instances of 

heat, ordered from instances in which heat is least apparent and least intense to those in 

which heat is most apparent and most intense. 

 Bacon’s primary example was the investigation of the cause of heat. He provided 

lengthy lists, of which the following arc only a selection of the instances: 



Positive instances of heat 

• The rays of the sun, especially in summer and at noon 

• The rays of the sun reflected and condensed, as between mountains or on walls, and 

most of all in burning glasses and mirrors. 

• Fiery meteors 

• Burning thunderbolts 

• Eruptions of flame from the cavities of mountains 

• All flames 

• Ignited solids 

• Natural warm baths 

• Liquids boiling or heated 

Negative instances of heat 

• Rays of the moon, stars, and comets 

• The rays of the sun on the tops of mountains where the air is thin 

• The rays of the sun in the polar regions 

• The rays that emerge from a reverse burning glass 

• Rotten wood that shines by night but is not hot 

• The scales of fish and the body of the glowworm, which give light but are not warm 

Degrees of heat 

• Everyday inanimate substances, such as rocks and metals 

• Substances formerly hot, such as horse dung, lime, and ashes from fires 

• The heat of animals 

• Animal heat is increased by motion and exercise, wine, feasting, sex, fevers, and pains 

• The heat of the sun in warm climates 

• The heat of a flame, which depends on the body ignited 



Bacon supposed not only that the investigator has such lists of positive and negative instances 

as well as instances of various degrees but also that the investigator knows the properties of 

each instance. Sometimes his own lists include commentaries that indicate properties he takes 

to be relevant. Thus he tells us that on mountaintops the air is thin and that the body of the 

glowworm gives light. 

 From the lists, Bacon proposed that the cause or “form” be found by seeking a 

conjunction of properties such that 

• each property in the conjunction occurs in every positive instance, 

• in every negative instance, some property in the conjunction is absent, 

• the combination of properties increases in intensity as the phenomenon increases in 

intensity. 

Bacon did not explain how the intensity of a combination of distinct properties is to he 

measured, nor did he explain how a combination of the kind required is to be found. But he 

did give an example, the cause of heat, which he concluded is the chaotic motion of the very 

small parts of a thing, but the procedure by which he found this explanation is not fully clear. 

 Bacon’s method became a standard for the new science in the late seventeenth century 

and after, and it has been subsequently redescribed in many different ways, sometimes in 

more detail than Bacon himself provided. In the nineteenth century John Stuart Mill wrote an 

influential logic text, A System of Logic, that treats induction almost exactly as Bacon did (but 

without giving Bacon any credit). Mill proposed three “methods” for inferring causes: the 

method of agreement, the method of difference, and the method of concomitant variation. 

The method of agreement is simply the rule, Infer that the properties common to all instances 

of an effect are its causes. The method of difference is the rule, Infer that the properties 

common to all instances of an effect and absent from all noninstances of the effect are the 

causes. The method of concomitant variation is the rule, Infer that the combination of 



properties that increases in intensity as the effect increases in intensity, and decreases in 

intensity as the effect decreases in intensity is the cause of the effect to be explained. Mill’s 

methods are simply a decomposition of Bacon’s procedure. In the 1950s a number of 

psychologists became interested in how children learn new concepts from old concepts. One 

of the very first proposals is that they do so by a procedure that is essentially Bacon’s. Today 

elaborations of Bacon’s procedures find little application in studies of human psychology, but 

they are widely used in artificial intelligence procedures that simulate learning. 

THE NEWTONIAN REVOLUTION 

In 1686 Isaac Newton published the first Latin edition of his Philosophiae Naturalis 

Principia Mathematica (Mathematical Principles of Natural Philosophy). If ever a work of 

ideas shook civilization, Newton’s Principia did. Not only did it establish the content and 

methods of much of physics as we still understand that subject, it also provided the example 

for the next century of how scientific knowledge is to be acquired. 

 Newton’s masterpiece is divided into four parts. The first part is a statement of the 

purpose of the work, together with a system of definitions and axioms. The second part, book 

1, is a series of theorems on the motions of bodies subject to forces of various mathematical 

forms. Together with the definitions and axioms of the first part, book 1 forms an axiomatic 

system much like Euclid’s Elements (and in fact Newton assumes without comment all of 

Euclidean geometry), but the subject is motion rather than the relations of figures. Book 2 

concerns hydrostatics (the motions of bodies in fluids, such as air and water) and wave 

motion. It too proceeds axiomatically, investigating the laws of motion that follow from the 

axioms under various assumptions about forces of resistance. Newton’s theorems are 

illustrated by applications to various hydraulic experiments. In book 3, Newton uses the 

theorems deduced in book 1, together with observed laws of planetary motion, to argue for 



the law of universal gravitation and then to deduce consequences of that law and the laws of 

motion. 

 Newton was not concerned with providing a theory that merely generalizes observed 

regularities. His goals were deeper. In Newton’s conception, what we see and observe are 

apparent motions—the motions of bodies relative to one another and relative to the position 

we inhabit. The effects we see in nature—the motions of the planets, the tides, falling 

bodies—are effects compounded of several different causes or forces. But in Newton’s 

conception, besides apparent motions there are real motions, that is, motions with respect to 

absolute space. And there are real causes as well, those fundamental forces that apparent 

causes are composed of. 

 Newton thought simple experiments could demonstrate that there is real motion with 

respect to absolute space and that real motion is different from the relative motion of one 

body with respect to another. If a bucket of water is rotated, at first the bucket moves relative 

to the water within it, and initially the surface of the water is flat. But shortly the rotation of 

the bucket is communicated to the water and the water begins to rotate as well, until 

eventually the water is rotating as fast as the bucket, and the two, water and bucket, are no 

longer rotating relative to one another. But as the water in the bucket begins to rotate, the 

surface of the water ceases to be flat and becomes more and more concave, so that when the 

water is rotating with the rotating bucket and the two are no longer rotating with respect to 

one another, the water has crept up the sides of the bucket (figure 7.1). Thus there are two 

states in which the bucket and the water are at rest with respect to one another. In one of 

them, the initial state before rotation, the surface of the water is flat. In the other state, when 

both water and bucket are rotating, the surface of the water is concave. The difference must 

he caused by something, and it cannot be caused by the relative motion of the water and the 

bucket, since there is none in either case. Newton concluded that the difference is caused by 



different states of motion with respect to absolute space: rotation with respect to absolute 

space causes the water to recede from the axis of motion and makes the surface of the water 

concave. 

 The point of the Principia is to show how to infer true motions and causes from 

apparent motions and causes. 

It is indeed a matter of great difficulty to discover, and effectually to distinguish, the true 

motions of particular bodies from the apparent; because the parts of that immovable space, in 

which those motions are performed, do by no means come under the observation of our 

senses. Yet the thing is not altogether desperate; for we have some arguments to guide us, 

partly from the apparent motions, which are the differences of the true motions partly from 

the forces which are the causes and effects of the true motions. ... But how we are to obtain 

the true motions from their causes, effects, and apparent differences, and the converse, shall 

be explained more at large in the following treatise. For to this end it was that I composed it.1 

 Aside from the assumptions of Euclidean geometry, Newton’s axioms consist of his 

three laws of motion: 

• Every body continues in its state of rest or of uniform motion in a straight line unless 

it is compelled to change that state by forces impressed upon it. 

• The change of motion is proportional to the motive force impressed and is made in the 

direction of the straight line in which that force is impressed. 

• To every action there is always opposed an equal reaction; that is, the mutual actions 

of two bodies upon each other are always equal and directed to contrary parts. 

Newton’s evidence for these three laws consisted of a variety of simple experiments with 

pendulums conducted by Newton’s contemporaries—Christopher Wren, John Wallis, and 

Christian Huygens (“the greatest geometers of our times”)—and by Newton himself. Other 

evidence included Galileo’s law (that bodies falling freely toward earth cover a distance 



proportional to the square of the time of fall), the motions of projectiles, the motions of 

magnets floating on water, and simple mechanical experiments. Experiments of these kinds 

exhibit either the composition of forces required by the first two laws or the conservation of 

momentum required by the third law. 

 In these experimental arguments for the laws of motion, Newton assumed that 

something about the forces is known. For example, he assumes that in Galileo’s experiments 

with falling bodies, it is known that the force of gravity acting on each body is constant and 

the “quantity of matter” or mass of the falling body does not change. “When a body is falling, 

the uniform force of its gravity acting equally, impresses, in equal intervals of time, equal 

forces upon that body, and therefore generates equal velocities; and in the whole time 

impresses a whole force, and generates a whole velocity proportional to the time. And the 

spaces described in proportional times are as the product of the velocities and the times; that 

is, as the squares of the times.”2 In other words, given that the force of gravity is constant in a 

falling body, the second law requires that the acceleration of each body be constant, and 

hence that the distance a body falls is proportional to the square of the time elapsed. 

 Galileo’s law also provides the basis for a more detailed argument for the second law 

of motion, an argument that does not assume that the force of gravity is constant. For finding 

that for one class of bodies the distance traveled in free fall is proportional to the square of 

the elapsed time, you might use Newton’s second law to infer that for this class of bodies the 

force of gravity is constant for each body. Then by induction you might conclude that for any 

body in free fall near the surface of the earth, the force of gravity is constant. And finally, by 

applying this conclusion to a new class of bodies in free fall and measuring the time elapsed 

to cover a fixed distance of fall, you might conclude that the second law of motion is 

satisfied. This argument pulls the second law of motion up by its own bootstraps by assuming 

that the law is true of one system of bodies in order to obtain a generalization about the force 



of gravity, which it then applies to another system of bodies in order to test the second law. 

Later, in book 3 of the Principia, Newton gives a much more complex argument with a 

similar structure. 

 While book 1 of the Principia is a work of great mathematical power, it is book 3 that 

shows Newton’s new method in its most dramatic application. Here Newton gave an 

argument for the law of universal gravitation. The argument has an intricate structure, but the 

general idea is quite simple. Newton started with observed regularities about the motions of 

the sun, moon, and planets and the properties of pendula here on earth. Using these 

regularities and logical consequences of his three laws as premises, he then deduced that 

there exists a force attracting the planets to the sun, a force attracting the satellites of Jupiter 

to the planet Jupiter, and a force attracting the moon to the earth. He further proved from 

these premises that the force in question varies inversely as the square of the distance 

between the bodies and that the force is proportional to the products of the masses of the 

bodies. Accordingly, from generalizations induced from observed regularities and from his 

three laws of motion, Newton deduced that there exist bodies in which one body attracts the 

other with a force given by the equation F = GMM'/r2, where G is a constant, M is the mass 

of one of the bodies, M' is the mass of the other body. and r is the distance between them. 

 Newton then inferred inductively that for every pair of particles in the universe, there 

is such a force between them. Using the law of gravitational force, he was able to compute 

the relative masses of many of the planets and the sun and hence to estimate the center of 

mass of the solar system, which he hypothesized to be at rest with respect to absolute space. 

 Newton placed his argument, which he called a “general induction from the 

phenomena,” within a general method for the conduct of science. He prefaced the argument 

with a system of “Rules of Reasoning in Philosophy” and then applied the rules to justify 

particular steps in his general induction of the law of gravitation. The rules of reasoning have 



to do with the circumstances in which one may legitimately induce general conclusions about 

causes: 

Rule I We are to admit no more causes of natural things than such as are both true and 

sufficient to explain their appearances. 

Rule II Therefore to the same natural effects we must, as far as possible, assign the same 

causes. 

Rule III The qualities of bodies, which admit neither intensification nor remission of 

degrees, and which are found to belong to all bodies within the reach of our experiments, are 

to he esteemed the universal qualities of all bodies whatsoever. 

Rule IV In experimental philosophy we are to look upon propositions inferred by general 

induction from phenomena as accurately or very nearly true, notwithstanding any contrary 

hypotheses that may be imagined, till such time as other phenomena occur, by which they 

may either be made more accurate, or liable to exceptions.3 

 Rule I sounds circular: How are we to know which are the “true” causes? But Newton 

used the rule in a way that was not circular. When he argued for the existence of a force in 

nature, such as the force of gravitation, and found that force sufficient to explain some 

phenomenon, such as the tides, he took rule I to justify the conclusion that no other 

explanation need be sought. Rules I and II together amount to a complex (and rather vague) 

claim that in science we should proceed as though the world is causally simple. Rule III is the 

basic inductive rule, applied to properties things either have or don’t have, but not to values 

of variable quantities. Rule IV was meant to exclude alternative explanations of phenomena. 

In Newton’s argument for the law of universal gravitation, instances of the law were obtained 

by applying independently confirmed laws of motion to phenomena. The law of gravitation 

and the laws of motion in turn explain the motions of the planets and pendula used to derive 

instances of the law of gravitation. Alternative explanations of the motions of the planets and 



the motions of pendula might be concocted, but if these alternative explanations postulate 

regularities for which instances cannot be obtained from the phenomena (by independently 

confirmed laws, such as the laws of motion), then rule IV says that these alternative 

explanations are to be rejected. 

 Newton’s argument for universal gravitation and the general achievement of the 

Prineipia formed the framework for much of science in the eighteenth and even the 

nineteenth centuries. Later physicists sought to establish the existence of other forces and 

their laws through arguments that paralleled Newton’s, while philosophers of science 

believed that they saw in Newton’s arguments the most penetrating insights into the structure 

of nature. 

ANCIENT INDUCTIVE SKEPTICISM 

Whether in Newton’s “general induction” or in Bacon’s simpler framework, inductive 

inference is subject to an important objection. The objection was apparent to the ancient 

Greeks, and it is one of the reasons why Plato, for one, sought other grounds for claims to 

knowledge. 

 In one passage in The Meno, Plato pointed out the difficulty with inference from 

particular facts to general conclusions. In the dialogue, Socrates and his acquaintance, Meno, 

are applying the Socratic method to attempt to answer the question, What is virtue? The 

method is to consider various hypotheses about what constitutes virtue and to confront each 

hypothesis with various cases to see whether the cases accord with the hypothesis or provide 

a counterexample to it. (Socrates and Meno agree as to whether or not something is virtuous.) 

When a counterexample is found to the current hypothesis, a new hypothesis is tried. 

Eventually Meno tires of the enterprise and asks Socrates a pointed question about how, by 

this method, one could ever know the correct characterization of virtue: 



Meno: How will you look for it, Socrates, when you do not know at all what it is? how will 

you aim to search for something you do not know at all? If you should meet with it, how will 

you know that this is the thing that you did not know?4 

 Many commentators, including Aristotle in his Posterior Analvtics, understand this 

passage to pose a problem about recognizing an object of which only a description is known, 

or about referring to an object that is unknown in one or another respect. But Plato has hit on 

a point that is at once simpler, deeper, and more precise. Consider any universal hypothesis, 

such as “All ravens are black” or “All virtuous people are just” or “All pure water boils at 

100 degrees centigrade at 1 atmosphere of pressure.” Suppose that we collect particular cases 

of things that are ravens and things that are not or, as the case may be, of people that are 

virtuous and people that are not or of the boiling points of samples of pure water. Suppose 

that after looking at a sufficiently large sample, we conclude that all ravens are indeed black, 

that virtuous people are just, or that all pure water boils at 100 degrees centigrade at I 

atmosphere pressure. And suppose that when we draw these conclusions, we are right, the 

conclusions are in fact true. Plato has Meno ask how we will know the conclusions are true. 

For even if we are in fact right about the boiling point of water, it is still logically possible 

that some as yet unexamined sample of pure water will boil at a different temperature at 1 

atmosphere of pressure. Even if we are really in a world in which no such sample exists and 

we believe we are in such a world, how, after examining only a finite sample, can we know 

that we are in such a world? 

 The answer depends on what is meant by knowledge. For Plato, someone can know a 

proposition only if the proposition is true, the person believes it, and the person also knows 

why the proposition is true. Plato had a detailed theory of what is required to know why a 

proposition is true, but for our purposes, the important point is that Plato held that knowledge 

of a proposition requires that one believe it through a process that guarantees or necessitates 



the truth of the belief. Thus, according to Plato, for someone to know that all ravens are black 

after having examined a finite sample of ravens, the person must have formed a belief in such 

a way that the occurrence of the belief guarantees the truth of “All ravens are black.” The 

belief must be brought about by a mark or, as the ancients would have said, a criterion of its 

truth. A belief occasioned by a criterion of truth will be certainly true, and no further 

evidence need be examined. Meno’s objection is that from a logical point of view the 

evidence of a finite sample contains no such criterion for a universal claim. 

 Plato’s solution to Meno’s problem is to claim that there is an internal criterion within 

the inquirer. By some method, one considers hypothesis after hypothesis, confronting each 

with the evidence, according to the Socratic procedure. When eventually one hits upon the 

true hypothesis, some inner recognition guarantees its truth. The criterion is not in the 

evidence that the inquirer has used to reject other hypotheses before arriving at the true one; 

the criterion is in the inquirer. All that the evidence does is to prompt the inquirer to 

recognize a conclusion that the inquirer already implicitly knew. Discovery is recollection. 

The latter part of the dialogue attempts to illustrate this claim by having Socrates prompt a 

slave boy, supposed ignorant of all geometry, to produce the Pythagorean theorem by 

considering a sequence of examples and counterexamples. 

 The skepticism of Meno’s question was endorsed by a number of Hellenistic writers. 

Several schools of thought developed in the fourth century B.C., and many of them continued 

to be developed into the second century A.D. One of these schools of thought, Pyrrhonism, 

took its name from Pyrrho of Elis (circa 360–275 B.C.). The main source of the views of this 

school of thought is the writings of Sextus Empiricus (circa A.D. 200). He argues for a great 

variety of skeptical doubts. One of his doubts is that there is any such thing as a criterion, 

whether internal or in the evidence itself, and hence Sextus doubts that induction can provide 

knowledge: 



It is also easy, I consider, to set aside the method of induction. For, when they propose to 

establish the universal from the particulars by means of induction, they will effect this by a 

review either of all or of some of the particular instances. But if they review some, the 

induction will be insecure, since some of the particulars omitted in the induction may 

contravene the universal; while if they are to review all, they will be toiling at the impossible, 

since the particulars are infinite and indefinite. Thus on both grounds, as I think, the 

consequence is that induction is invalidated.5 

 The arguments given by Plato and Sextus depend on a purely mathematical point: no 

procedure is mathematically possible that, in every logically possible world or circumstance, 

will correctly decide the truth or falsity of a universal hypothesis from a finite sample of 

singular facts. It is not simply that we haven’t chanced to think of such a procedure. None is 

possible, any more than it is possible that 2 + 2 = 5. Although Plato and Sextus don’t give 

rigorous proofs, they make it plain that they see the idea for a proof: Suppose there were a 

procedure that reliably decides the truth or falsity of a universal hypothesis H in every 

logically possible world. Then in any logically possible world W in which H is true, there 

must exist finite evidence E true in W such that when the procedure is given E, it decides that 

H is true. But for any finite evidence E consistent with a universal hypothesis H, there is, 

besides the logically possible world W in which E is true and H is true, another logically 

possible world V in which E is true and H is false. So the procedure will give the wrong 

output on evidence E in world V. Hence, no reliable procedure of the kind desired is logically 

possible. 

Study Questions 

1. Imagine a procedure that is given a series of particular facts about a domain and after 

each new fact outputs one of the following: *, T, F. The asterisk indicates that the procedure 

makes no conjecture, “T” indicates that the procedure claims some hypothesis H is true, and 



“F” indicates that the procedure claims H is false. Once T or F are output, the procedure 

continues to output the same value ever after. Assume that every singular fact in the domain 

will eventually be presented to the procedure, but the facts may be presented in any order, 

and any fact may be repeated any number of times. Say that H can be verified if there exists a 

procedure that will output T in all and only those possible domains in which H is true; say 

that H can he falsified if there exists a procedure that will output F in all and only those 

possible domains in which H is false; say that H can be decided if there exists a procedure 

that will output T in every possible domain in which H is true and will output F in every 

possible domain in which H is false. Which of the following kinds of hypotheses can be 

verified, falsified, or decided: (a) a singular claim about a particular fact, e.g., “Sarn is a black 

raven,” (b) a universal hypothesis, e.g., “All ravens are black,” (c) an existential hypothesis, 

e.g., “There exists a black raven.” 

2. Give an example of a sentence that cannot be verified or falsified by any collection of 

singular sentences or facts. 

3. Prove that if hypothesis H can be verified and also falsified, then H can be decided. 

4. Suppose that we change the requirements of the procedure. Once the procedure 

outputs T or F, it is no longer required to keep outputting the same conjecture. The procedure 

is allowed to change its conjecture: if T or F is output on some evidence E, the reverse (F or 

T, respectively) may be output on some larger finite set of evidence E′ including E. Say that 

H can be verified in the limit if there exists a procedure that outputs only T in all and only 

possible domains in which H is true, after some finite number of conjectures. Say that H can 

be falsified in the limit if there exists a procedure that outputs only F in all and only possible 

domains in which H is false, after some finite number of conjectures. Say that H can be 

decided in the limit if there exists a procedure that output only T in every possible domain in 

which H is true, after some finite number of conjectures and that outputs only F in every 



possible domain in which H is true, after some finite number of conjectures. Which of the 

following kinds of hypotheses can be verified, falsified, or decided in the limit: (a) a singular 

claim about a particular fact, e.g., “Sam is a black raven,” (b) a universal hypothesis, e.g., 

“All ravens are black,” (c) an existential hypothesis, e.g., “There exists a black raven.” 

5. Can the example you gave in answer to question 2 be verified or falsified in the limit? 

Can you think of a sentence that cannot he verified or falsified in the limit? 

HUME’S INDUCTIVE SKEPTICISM 

The difficulty with inductive inference is that it can he unreliable. If every observed object 

has a certain feature, it is logically possible that some (or even all) objects that have not yet 

been observed will not have that property, or that objects that have the property at all 

observed times will not have it at subsequent times. Many of the ancient Greeks thought the 

heavens were perfect and unalterable, for they exhibited perfectly regular motions that 

seemed never to change. But then in the sixteenth century there appeared a new star (now 

thought to be a supernova): the heavens did change. Until the eighteenth century, no means 

had ever been found to synthesize a biological chemical from inorganic chemicals, but then 

Friedrich Wöhler found a way to synthesize urea. Whenever we draw conclusions about the 

unobserved based on samples in our experience, we risk the possibility that our conclusions 

will he false. If our conclusions may be false, we cannot be justified in being certain of them. 

If we cannot be justified in being certain of our conclusions, then, according to the 

conception of knowledge that endured from Plato to Descartes, we cannot have knowledge. 

 The new science of the seventeenth century prospered by ignoring the traditional 

objections to induction, but those objections were not altogether forgotten. The writings of 

the ancient skeptics were known in the sixteenth and seventeenth centuries, and the problem 

was obvious enough in any case. Thomas Hobbes complained that inductive inference was no 

more than guessing, and Cartesian scientists resisted the empirical arguments of Newton and 



Boyle and others. But in the writings of David Hume, an eighteenth-century philosopher and 

historian, the old skeptical concerns about induction were revived and elaborated most 

forcefully in a new philosophical idiom. 

 Hume’s skeptical arguments were formulated within a psychological theory that he 

adopted from other English philosophers, notably John Locke and George Berkeley. Among 

the contents of mental life, Hume distinguished between ideas and impressions. Impressions 

are the contents of sensation, of experience, whether of the external world or of our own 

feelings and thoughts. In Hume’s way of talking, ideas are either memories of impressions or 

thoughts formed by combining such memories. Hume writes of ideas and impressions as 

though they are so many pieces that can he combined together or taken apart. An impression 

is not the entire gestalt of experience at any moment; instead, it is some aspect of experience. 

If you see a red ball at rest on the green grass in a yard on a day when the sky is blue, you 

have separate impressions of red, green, and blue, as well as an impression of a round thing 

and so on. Any of these separate impressions may be copied in memory to form ideas and 

may be combined with other ideas to form new complex ideas. There is nothing novel in this 

part of his psychological theory: we see much the same view in the writing of Descartes and 

Hobbes. But Hume goes further. 

 Ideas combine and separate in thought according to natural law. The principles that 

determine whether or not ideas are associated with one another have to do with the contents 

of those ideas, with what they are ideas about. One idea tends to lead to another if the two 

ideas have a similarity in their content (resemblance, Hume called it), if they are ideas of 

events that are close to one another in time or space (contiguity, Hume called it), or if one of 

the ideas is of a cause and the other idea is of the effect of that cause. 

 Ideas can be obtained as copies in memory of impressions or by combining copies of 

impressions stored in memory, but with minor exceptions, ideas can he obtained in no other 



way. There are no innate ideas: “When we think of a golden mountain, we only join two 

consistent ideas, gold and mountain, with which we were formerly acquainted. A virtuous 

horse we can conceive; because, from our own feeling, we can conceive virtue; and this we 

may unite to the figure and shape of a horse, which is an animal familiar to us. In short, all 

the materials of thinking are derived either from our outward or inward sentiment. The 

mixture and composition of these belongs alone to the mind and will.”6 

 Finally, in Hume’s psychology the mind has traditional faculties or capacities. The 

capacities of the mind are composed of the faculties of will, imagination, understanding, and 

so on. Reason is the operation of the understanding, and Hume thought of reasoning as 

deduction, analysis, and synthesis. Hume sometimes gave a peculiar psychological 

formulation to the question of the reliability of inductive inference as a means to produce 

knowledge. The issue, as he formulated it, is whether it is the understanding that acts in 

inductive inference, or something else. 

 If, as Bacon and Newton seem to suggest, inductive inference is the inference to 

causes from effects (and effects from causes) and to general principles about causes and 

effects, then the question, as Hume saw it, is how such relations may be discovered and what 

it would be to discover them. By “discover” Hume meant cone to know, and he regarded 

knowledge as something more than an inner state of complete conviction. To know 

something must not only you have come to believe it, but it must also be true, and you must 

have come to believe it by a reliable means. How, then, can we acquire knowledge of causes 

and effects? Not by reason alone, for any attempt to predict causes from effects without 

experience would be arbitrary and unreliable. From the point of view of reason, the actual 

effect of any given cause is an arbitrary selection from a myriad of possibilities: 

I shall venture to affirm, as a general proposition, which admits of no exception, that the 

knowledge of this relation is not, in any instance, attained by reasonings a priori, but arises 



entirely from experience, when we find, that any particular objects are constantly conjoined 

with each other. Let an object be presented to a man of ever so strong natural reason and 

abilities; if that object be entirely new to him, he will not be able, by the most accurate 

examination of its sensible qualities, to discovery any of its cause or effects. Adam, though 

his rational faculties be supposed at the very first, entirely perfect, could not have inferred 

from the fluidity, and transparency of water, that it would suffocate him, or from the light and 

warmth of fire, that it would consume him. No object ever discovers, by the qualities which 

appear to the senses, either the causes which produced it, or the effects which will arise from 

it; nor can our reason, unassisted by experience, ever draw any inference concerning real 

existence and matter of fact.7 

In a word, then, every effect is a distinct event from its cause. It could not, therefore, be 

discovered in the cause, and the first invention or conception of it, a priori, must be entirely 

arbitrary. And even after it is suggested, the conjunction of it with the cause must appear 

equally arbitrary; since there are always many other effects which, to reason, must seem fully 

as consistent and natural. In vain, therefore, should we pretend to determine any single event, 

or infer any cause or effect, without the assistance of observation and experience.8 

Hume’s point could be put this way: from premises that consist of a description of how an 

object or collection of objects appear to us, there is no reliable course of reasoning that leads 

to conclusions about how the object or objects will behave. 

 Even after we have experience with an object or kind of object or circumstance, any 

conclusions we may draw cannot be founded on reason “or any process of the 

understanding.” 

These two propositions are far from being the same, I have found that such an object has 

always been attended with such an effect, and I foresee, that other objects, which are, in 

appearance, similar, will be attended with similar effects. I shall allow, if you please, that the 



one proposition may justly be inferred from the other; I know in fact, that it always is 

inferred. But if you insist, that the inference is made by a chain of reasoning, I desire you to 

produce that reasoning. The connexion between these propositions is not intuitive. There is 

required a medium, which may enable the mind to draw such an inference, if indeed it be 

drawn by reasoning and argument. What that medium is, I must confess, passes my 

comprehension; and it is incumbent on those to produce it, who assert, that it really exists, 

and is the origin of all our conclusions concerning matter of fact.9 

 Hume did not leave the matter as a challenge; he went on to give an argument that 

there can be no reasoning that leads from experience to general conclusions about causes and 

effects. The argument is that all reasoning is either deductive (or “demonstrative,” as Hume 

called it) or else inductive (or “moral reasoning,” as Hume called the latter). In the cases at 

issue, nothing in the premises about the experience of causes, or the experience of the 

succession of causes and effects, permits one to deduce a general proposition that says that a 

certain cause will always and everywhere have a certain effect. If we analyze the concept of 

causality, we find no impression corresponding to the notion of a necessary connection 

between cause and effect; we cannot see a connection that would warrant us in always 

inferring the effect from the cause. But, Hume claimed, reasoning from experience to 

universal claims about causes and effects cannot be a kind of inductive or moral reasoning 

either, on pain of circularity. His argument is a little compressed: 

If we be, therefore, engaged by arguments to put trust in past experience, and make it the 

standard of our future judgement, these arguments must be probable only, or such as regard 

matter of fact and real existence, according to the division above mentioned. But that there is 

no argument of this kind, must appear, if our explications of that species of reasoning be 

admitted as solid and satisfactory. We have said, that all arguments concerning existence are 

founded on the relation of cause and effect, that our knowledge of that relation is derived 



entirely from experience, and that all our experimental conclusions proceed upon the 

supposition, that the future will be conformable to the past. To endeavour, therefore, the 

proof of this last supposition by probable arguments, or arguments regarding existence, must 

be evidently going in a circle, and taking that for granted which is the very point in 

question.10 

The thought behind this passage seems to be something like this: The question is why the 

inference is reliable from the premise “I have found that such an object has always been 

attended with such an effect” to the conclusion “Other objects in all appearance similar will 

be attended with similar effects.” In other words, what guarantees that whenever the premise 

is true, the conclusion is true, or even that in most cases in which the premise is true the 

conclusion is true? The answer cannot be that the inference is reliable because in most cases 

(or always) in our experience it has been reliable, and therefore it will be reliable in every (or 

almost every) instance, for that reasoning is a particular case of the inference whose 

reliability is in question. 

 Hume’s conclusion is that inductive inference is not founded on reason. We have no 

rational grounds for believing such inferences to be reliable, and so when we do empirical 

science, we are not engaged in a rational activity. Inductive inferences, Hume concluded, are 

founded on custom and habit rather than reason. We are so constructed psychologically that 

from observed instances of regularities we come naturally to expect the same regularity in 

future instances. We cannot in many circumstances help but form such expectations. But the 

fact that we are driven by nature to hold certain convictions does not mean that we have any 

reason for holding them; it does not mean that we can give a sound argument for such 

convictions. 

 Hume’s skepticism was based on the fact that there are many alternative logically 

possible continuations of the world we have so far experienced, as diagramed in figure 7.2. 



Bread has always nourished humans, but it is logically possible that after tomorrow it no 

longer will. Hydrogen has always had less mass than oxygen, but it is logically possible that 

after tomorrow it no longer will. Any conclusion we draw now about the future is potentially 

false. Whether or not a conclusion is true depends on which of the many logically possible 

alternative futures turns out to be the actual future. In some possible futures the claim that 

bread will nourish will be false, and in others it will be true. Whichever is actually the case, 

flume’s view is that now we don’t have knowledge that bread will always nourish, because 

even if we happen to be correct, our conclusion was not obtained by a procedure we can 

know to he reliable. Lucky guesses are not knowledge. 

METAPHYSICAL SKEPTICISM 

Suppose somehow that we had before us all possible facts of a certain kind; suppose that by 

magic we could survey an infinity of possible experiences. Then Hume’s or Sextus’ 

skepticism would not apply. But one can imagine that skeptical doubt would remain even 

then. In his Meditations, Descartes offers the following consideration: 

I will suppose not a supremely good God, the source of truth, but rather an evil genius, as 

clever and deceitful as he is powerful, who has directed his entire effort to misleading me. I 

will regard the heavens, the air, the earth, colors, shapes, sounds and all external things as 

nothing but the deceptive games of my dreams, with which he lays snares for my credulity. I 

will regard myself as having no hands, no eyes, no flesh, no blood, no senses, but as 

nevertheless falsely believing that I possess all these things.11 

 A modern version of Descartes’ thought is this: Imagine that you are a brain in a vat, 

with your sensory nerves stimulated according to a schedule controlled by a powerful 

computer so as to create in you the illusion of a coherent life. In the illusion created by the 

stimulations of your nerves, you move about through the world, talk to other people, and so 

on, none of which you really do. Having imagined such a circumstance, now ask yourself 



how you know that it isn’t true. It seems that nothing in experience, not even in an infinity of 

experiences, will distinguish between the case in which you are a brain in a vat and the case 

in which you are not. 

 Descartes’ demon is the basis for a whole class of skeptical problems distinct from the 

problems of inductive inference. Consider the following claims, which every reader of this 

hook believes: 

(1) Ordinary objects and persons continue to exist when I do not perceive them. 

(2) Other persons have minds. 

(3) Some past events really took place. 

(4) The world I perceive really exists. 

The skeptical arguments that we don’t know any of these things almost always follow the 

same strategy. They try to show that there is a logically possible world in which my 

experience will be exactly the same as in the real world, but in the logically possible 

alternative world, one or another of these four claims will be false. For me to know that (1) is 

true, for example, I should be able to form my conviction that (1) is true by a procedure that 

can reliably discriminate between worlds in which (1) is true and worlds in which (1) is false. 

But if there is a logically possible world in which (1) is false and in which I have the very 

same experiences as I actually do, then no evidence provided by experience can tell me 

whether or not I am in that world rather than in a world in which (1) is true. And since I 

cannot know that (1) is true by reason alone, I cannot know that (1) is true. The idea is that if 

God were to place me a number of times into worlds in some of which (1) is true and in some 

of which (1) is false but in all of which my experience is like what I have in this world, then I 

would never be able to tell into which kind of world I had been placed. Because I cannot 

discriminate, I cannot know that (1) is true, even though I believe that (1) is true and even if, 

as it turns out, I am correct in my belief. 



 We can certainly imagine a world in which objects vanish from existence when they 

are not perceived. George Berkeley, an English philosopher of a generation before Hume, 

claimed that such is actually the case. Things exist, Berkeley held, when and only when they 

are perceived. Berkeley maintained, however, that things do not vanish from existence when 

you or I are not perceiving them because God is always perceiving them. But if God should 

blink while we are sleeping, the world would disappear and reappear like some flashing neon 

sign. 

 The relation between mind and body is mysterious. Nothing about the physical 

appearance of an object shows directly that it feels or thinks. Your experience would be the 

same if, contrary to Newton’s rules of reasoning, you and you alone had feelings and 

thoughts, while all other animals and persons do no more than act as if they sometimes have 

feelings and thoughts. That seems to be a logically possible world, and one that you cannot 

reliably discriminate from the world in which the second claim is true. 

 In the nineteenth century the growing evidence of evolution provided by geology and 

fossils discomforted many members of the clergy (as it does even now). Calculations based 

on the Old Testament led to the conclusion that according to Holy Writ the world was created 

less than 5,000 years ago. Rocks and fossils suggested that creatures lived and became extinct 

thousands and even millions of years before that. The Reverend Phillip Gosse found a way of 

reconciling scripture and science. Gosse proposed that when God created the world some 

5,000 years ago, he created it complete with geological strata and fossils. The geological 

strata and the fossils within them are thus not the traces of a real past but only evidences 

created to make things look as if there were a real past. Gosse’s strategy can be carried out 

more generally, as Descartes realized. There is nothing inconsistent in your assuming that all 

of your memories are illusory and that in fact the world was created yesterday along with 

your memories and the physical circumstances that corroborate your memories. For all you 



could experience, the two worlds, one in which memories are true or veridical, the other in 

which they are illusory, would be indistinguishable. 

 Each of these skeptical arguments uses the same strategy; in each case the object is to 

show that some simple and fundamental belief is underdetermined by any possible 

experience. It cannot even he said that the beliefs in question are inconsequential or that it 

would make no difference whether we believed them or not. There are any number of things 

in my life that I regret and wish I had done otherwise. The same is true of most people. But if 

I believed that the past is a fiction, I would have no regrets. Each of us judges others by their 

character and their history, and we probably put more weight on individual history than is 

useful in predicting future behavior. But if we believed the past to be an illusion, we would 

let go our grudges against others and take account of their fictive past only insofar as it 

proves useful in predicting their future behavior. If I believed that others besides myself had 

neither feelings nor thoughts, my moral inhibitions would vanish. Prudence tells me to avoid 

actions for which I might be punished, but given the chance to make use of another person 

without retribution, there would be no reasons to inhibit me. Metaphysics matters. 

CONCLUSION 

Both inductive skepticism and metaphysical skepticism challenge the thought that there is a 

reliable method for getting from evidence or experience to the conclusions of everyday life 

and science. Knowledge requires that belief be formulated in a reliable way, and therefore, 

skepticism argues, we have and can have no knowledge of the claims of everyday life and 

science. There seem to be only two ways of avoiding the skeptical conclusion: 

• We can deny the skeptical description of our situation. We can maintain, for example, 

that we do have available all facts at once, or we can maintain that we directly experience 

other minds, bodies, the past, and so on, so that no inference is required to know them. 



• We can deny that knowledge or rational belief requires a process of belief formation 

that is reliable in all logically possible worlds. 

 Plato took the first solution, and so have a number of English philosophers, including 

G. E. Moore early in this century and others even to the present. 

 In one way or another, attempts to develop the second response to skepticism have 

generated a large part of the theory of knowledge and metaphysics from the eighteenth 

century up to the present. These efforts have had enormous consequences outside of 

philosophy. They are at least in part responsible for the foundations of much of contemporary 

economic theory, statistics, cognitive science, and computer science. We will see some of 

these implications in later chapters of this hook. In the next three chapters I will consider two 

major versions of the second response. Each variant forms a rich tradition of work that has 

occupied philosophers and many others besides. 

Review Questions 

1. Describe Bacon’s method for inductively reasoning. 

2. How did Newton use the rotating bucket as an argument for motion with respect to 

absolute space? Reproduce his reasoning in sufficient detail. 

3. State Newton’s rules of reasoning in your own words. 

4. What constitutes knowledge for Plato? For Hume? 

5. What is meant by the term “criterion of truth”? 

6. Discuss the distinction between ideas and impressions for Hume. 

7. Explain why there can be no innate ideas in Hume’s philosophy. 

7. Characterize Hume’s skepticism concerning inductive inference. 

8. How does the relationship between the external world and your perception of this 

world lead to metaphysical skepticism? How is metaphysical skepticism different from 

inductive skepticism? 
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Chapter 8 

BAYESIAN SOLUTIONS* 

NATURAL RELIGION 

Sophisticated Enlightenment intellectuals may have been annoyed by the difficulties about 

the rationality of science presented in David Hume’s arguments, but others were at least as 

troubled by the difficulties that Hume presented for religion. At the time an influential 

conception of Christianity in the British Isles (and nowhere more so than in Hume’s own 

Scotland) held that religion is an extension of science. The same rational sense that produced 

arguments that revealed a universe obeying Newton’s laws could also produce, it was firmly 

believed, arguments to show the existence of God and the truth of Christianity. Hume set out 

the principal arguments in his Dialogues Concerning Natural Religion, and then refuted 

them. 

 The argument from design was a favorite of advocates of natural religion. Hume 

stated the argument through the voice of his conversationalist Cleanthes: 

Look round the world: Contemplate the whole and every part of it: You will find it to 

be nothing but one great machine, subdivided into an infinite number of lesser 

machines, which again admit of subdivisions to a degree beyond what human senses 

and faculties can trace and explain. All these various machines, and even their most 

minute parts, are adjusted to each other with an accuracy which ravishes into 

admiration all men who have ever contemplated them. The curious adapting of means 

to ends, throughout all nature, resembles exactly, though it much exceeds, the 

productions of human contrivance—of human design, thought, wisdom, and 

intelligence. Since therefore the effects resemble each other, we are led to infer, by all 

the rules of analogy, that the causes also resemble, and that the Author of Nature is 

somewhat similar to the mind of man, though possessed of much larger faculties, 



proportioned to the grandeur of the work which he has executed. By this argument a 

posteriori, and by this argument alone, do we prove at once the existence of a Deity 

and his similarity to human mind and intelligence.1 

Hume’s skeptic, Philo, objects that in science inferences from effect to cause are founded on 

many examples, and when applied to a new case require that the case be as similar as possible 

to those already known. But the inference from little parts of the universe and their design by 

humans to the universe as a whole and its creation according to a design of God’s is an 

extraordinary change of context, circumstances, and scale quite unlike the careful, detailed 

similarities that natural science requires. 

 Hume had even more disconcerting objections to the argument from design. The 

argument supposes that like effects have like causes, and that since the universe shows 

pattern and structure as do human artifacts, the universe must have been designed, just as 

watches and ships are designed. But the designs of watches and ships are caused by the ideas 

of such designs in men’s minds, and these ideas are themselves the effects of various 

complicated causes operating to produce them. So by the same principle that like effects are 

due to like causes, we must conclude that the idea of the design of the universe in the mind of 

the designer, God, has causes. So God’s thoughts, like ours, are caused by something else. 

 There are worse problems, Hume argued: 

 The argument from design cannot establish the infinity of any of God’s attributes, for the 

part of the universe that falls within the compass of our observations is, however large, 

necessarily finite, and “the cause ought always to he proportioned to the effect.” 

 God cannot be perfect, because nature is not, or at least seems not to be on the basis of the 

evidence available to us. We live in a world in which children die horrible deaths from 

disease and in which evil sometimes triumphs over good. If the cause must be like the effect 

and the world is imperfect, then so must be the creator or creators of the world. To judge 



from the design that nature shows to us, either God is not all powerful, or else God is 

malicious. In either case, God is imperfect. 

 Even the perfections of the world do not, according to the analogy, give evidence that God 

is correspondingly perfect. A workman may produce an excellent piece of work only after 

many failed and bungled attempts. For all we know, God has tried to make many worlds and 

bungled most attempts. 

 The analogy provides no grounds for believing that there is a single God. To the contrary, 

when large complex projects are executed by humans, many designers and builders are 

required. The argument from design therefore seems to require us to conclude that there are 

many creators acting in consort, not one. 

 Hume’s philosophy raised two kinds of difficulties for natural religion: First, the 

kinds of arguments applied in the sciences did not lead to Christian doctrine when applied 

more broadly, as in the argument from design. Second, according to Hume’s general skeptical 

arguments, natural science itself is a matter of habit rather than reason. The second difficulty 

was the most fundamental, and in the eighteenth century the theory of probability offered a 

solution. 

THE THEORY OF PROBABILITY 

The modern mathematical theory of probability emerged from the Renaissance through the 

work of many people, including some, such as Pascal and Leibniz, whom I have already 

discussed. Games of chance and astronomical observations were two main sources of 

problems that led to the development of the theory, but theoretical arguments also provided a 

motive for developing the theory of probability as an account of the weight and bearing of 

evidence. By the eighteenth century probability theory was sufficiently developed that people 

attempted to apply it in more general settings, and an important use of the theory was to reply 



to skepticism and atheism. Before we turn to some of the applications of the theory of 

probability, let us consider some basic features of the theory itself. 

 One standard model of circumstances in which probabilities arise consists of drawing 

balls from an urn (figure 8.1). Suppose that all the balls are the same shape, but some are 

black and some are white. The probability of drawing a black ball is taken to be equal to the 

proportion of black balls in the urn. Suppose a number b of the balls are black, and a number 

w are white. Then the probability p of drawing a black ball is p = b/(b + w), and the 

probability of drawing a white ball is (1  p) = w/(b + w). 

 Drawing a black ball from the urn is an event. Drawing a white ball from the urn is a 

different event. These two events are incompatible (as outcomes of one and the same 

drawing): if one of them occurs, the other does not. They are also complementary: if one of 

them does not occur, the other one must, on the assumption that some ball or other is drawn. 

We can describe other relevant events, for example, the event that either a white ball or a 

black ball is drawn. If a ball is drawn, this event is certain to occur. We can consider the 

event that neither a black ball nor a white ball is drawn. If a ball is drawn and the urn contains 

only black balls and white balls, this event is impossible. 

 The events described can be viewed as forming a field of sets or a Boolean algebra. 

Consider the set D = {B, W} that has two members: B, representing the drawing of a black 

ball, and W, representing the drawing of a white ball. Consider the subsets of D: {B, W}, {B}, 

{w}, . They form a field of sets over D and represent the events of drawing either a black 

ball or a white ball, drawing a black ball, drawing a white ball, and drawing neither a black 

ball nor a white ball. 

 

I have already noted that event of drawing a black ball has probability b/(b + w). Drawing a 

white ball from the urn is a different event, with probability w/(b + w). Whatever numerical 



values b and w have, so long as they are not both zero, these ratios must have values between 

0 and 1. 

 The sum of the probability of drawing a white ball and the probability of drawing a 

black ball is b/(b + w) + w/(b + w) = 1. In other words, if a ball is drawn from the urn, it is 

certainly either black or white. Drawing a white ball or a black ball is also an event, but one 

that is certain to happen if any ball is drawn at all. Thus if we assume that a ball is drawn, it is 

certain that the ball drawn is black or white. Events that are certain have a probability of 1. 

 The event of drawing a white ball on a specific draw is incompatible with the event of 

drawing a black ball on that turn. These two events are therefore systematically related: if one 

happens, necessarily the other does not happen. The probability of {B, W}, the event of 

drawing a black ball or a white ball, is the probability of a disjunction (or union) of two 

incompatible events. It is thus the sum of b/(b + w) and w/(b + w), or 1. The probability of 

two incompatible events is the sum of their probabilities. 

 These features characterize the mathematical properties of probabilities whenever the 

collection of alternative events is finite. From a formal point of view, probabilities do not 

have to be associated with drawings from urns. They can be associated with any system of 

events that form a Boolean algebra or field of sets. All that are required for a mathematical 

function to be a probability measure or probability distribution in the formal sense are that it 

be defined on a collection of events that form a field of sets and that the numerical 

assignments given to the events satisfy the principles in italics in the previous paragraphs. In 

other words, the following: 

Definition A (finitely additive) probability measure on a field F of sets over a nonempty set 

D is any function p defined on all sets in F and assigning each set a real number between 0 

and 1 such that (1) p(D) = 1 and (2) for any two sets R and S in F that have an empty 

intersection, p(R  S) = p(R) + p(S). 



Study Questions 

1. Show that for any probability measure over any field of sets, the probability of the 

empty set is 0. 

2. Show that for any probability measure p over any field of sets F, if R and S are sets in 

F and if R is a subset of S, then p(R)  p(S). 

BERNOULLI TRIALS 

Late in the seventeenth century Jacob Bernoulli studied the properties of sequences of draws 

from an urn with balls of two kinds, say black and white. Whatever ball is drawn, it is 

returned to the urn (and the urn mixed up again) before the next draw. (Bernoulli sometimes 

wrote of drawing “tiles” and rather than drawing black or white balls. He assumed each tile 

either had or lacked some property that made it “fertile,” i.e., desired or useful. Of course, for 

philosophical and mathematical purposes, it makes no difference whether the examples we 

consider are about black and white balls or fertile tiles.) 

 Bernoulli was motivated by considerations of the following sort. Suppose that you 

don’t know the proportion of black balls in an urn but you can draw a ball at random, see 

whether or not it is black, and return it to the urn. You can repeat this procedure as many 

times as you like, mixing the balls in the urn thoroughly after each trial. After you have 

carried out a number of trials, there will be a proportion of the trials in which a black ball was 

drawn and a remaining proportion in which a white ball was obtained. The proportion of 

trials in which a black ball is obtained ought to be a rough estimate of the proportion of black 

balls in the urn. We would expect that the larger the number of trials made, the better this 

estimate would be. Bernoulli aimed to do two things: first, to prove that as the number of 

trials increases, the proportion of trials in which a black ball is drawn will converge to the 

proportion of black balls in the urn, and second, to determine how the accuracy of this 

estimate depends on the number of trials made. Apparently because Bernoulli did not think 



he had satisfactorily answered the second problem, he did not publish his work. Fortunately, 

in 1713, eight years after Jacob Bernoulli’s death, his nephew published the work as the book 

Ars Conjectandi. 

Newton’s problem 

Late in the seventeenth century Isaac Newton, who was then rightly regarded as the greatest 

living natural philosopher and mathematician, was asked a simple problem about repeated 

trials. Newton’s problem was the following: A man who is condemned to death is given a 

chance to save his life and regain his liberty. He has a choice of three different options: (1) 

throw 6 dice and be freed if and only if exactly I die comes up 6, (2) throw 12 dice and be 

liberated if and only if exactly 2 dice show a 6, (3) throw 18 dice and be liberated if and only 

if exactly 3 dice show a 6. Which should he choose? Newton’s (correct) answer was that the 

prisoner should choose the first alternative. Why? 

 The events associated with repeated trials of draws from an urn can also be viewed as 

a field of sets or a Boolean algebra, and probabilities can be assigned to those events subject 

to the rules I have just given. The algebras become very large very fast. So let us consider 

only the algebra of events associated with two trials in which a ball is drawn from an urn of 

black and white balls, with the understanding that after the first trial, the ball drawn is 

returned to the urn and the contents are mixed up. 

 If we let Bl denote drawing a black ball on the first trial and W2 denote drawing a 

white ball on the second trial, then the list of possible outcomes of the two trials is this: 

{B1B2}, {B1W2), {W1B2), {W1W2} 

Each outcome of two trials in this list is an event. In one sense, these events are the most 

fundamental in the problem. All other events having to do with the outcomes of the trials are 

unions of these simple events. For example, the event of drawing a black ball on the first trial 

is {B1B2, B1W2} = {B1B2}  B1W2}. If the Boolean algebra or field of sets for this problem is 



drawn, the events in the list each are immediately above the impossible event, . In another 

sense, however, the events in this list are not fundamental, since each is a composite of an 

outcome on the first trial, which is an event in the simpler Boolean algebra we drew earlier, 

and an outcome on the second trial, which is an event in an isomorphic simpler Boolean 

algebra. The algebra for the two trial problem can be thought of as a product of two simpler 

algebras: one for the first trial and one for the second trial. 

 The fundamental events (called atoms of the algebra) just about  in the large algebra 

are composites of the fundamental events (also called atoms) just about  in the simpler 

algebras. The larger product algebra is then constructed simply by taking unions of the 

composite atomic events. 

 A probability measure for the two trials will assign a number between 0 and 1 to each 

event in the product algebra. What relation should there be between the probabilities assigned 

to events in the product algebra and the probabilities of events in the separate trials? 

Bernoulli’s claim is this: 

Bernoulli’s rule If the trials are conducted independently of one another, so that the 

outcome of one trial has no effect on the outcome of the other trial, then the probability of a 

composite event should be the ordinary product of the probability of the separate events that 

compose it. 

 Suppose 1/3 of the balls in an urn are black. Then on any trial the probability of 

drawing a black ball is 1/3, and the probability of drawing a white ball is 2/3. According to 

Bernoulli, the probability of drawing a black ball on the first trial and a black ball on the 

second trial, p({B1B2}), is therefore 1/3  1/3 = 1/9. The probability of drawing a white ball 

on the first trial and a black ball on the second trial, p({W1B2}), is 2/3  1/3 = 2/9. In the same 

way Bernoulli’s rule for assigning probabilities to atomic events determines values for 

p({B1W2}) and p({W1W2}). 



 The probabilities of the atoms in an algebra determine unique probability values for 

all other events in the algebra. For example, consider p({B1W2, B1B2}). The set {B1W2, BlB2} 

is the union of the sets {BlW1} and {B1B2}. These sets have  as their intersection. Hence by 

the rules for probability measures, p({B1W2, B1B2}) = p({B1W2}) + p({B1B2}) = (1/3  2/3) + 

(1/3  1/3) = 2/9 + 1/9 = 1/3. 

 The example is perfectly general. The probabilities of atomic events in the product 

algebra for a number of independent trials are the products of the probabilities of atomic 

events in the algebras for the individual trials. Any two atoms are disjoint sets having an 

empty intersection. In the product algebra, every event is a union of atoms. So the probability 

of any event in the product algebra is obtained simply by adding up the probabilities of the 

atoms contained in that event. For the simple example of two independent trials, if p(B) = 1/3, 

we get the following values: 

 

 What is the probability of getting no black balls in two independent draws from an 

urn? There are two ways to compute this probability, each, of course, yielding the same 

value. One way is to apply Bernoulli’s principle about composite events directly. The event 

of getting no black balls in two draws is composed of the events of getting a white ball on the 

first draw (p = 2/3) and a white ball on the second draw (p = 2/3). Since the events have no 

effect on one another, the probability of the composite event is obtained by multiplying and is 

4/9. The other way is simply to look at the event in the product algebra that represents getting 

no black balls, {W1W2}, and see that its probability is 4/9. 

 What is the probability of getting exactly one black ball in two trials? This event is the 

union of two disjoint events, namely the event {B1W2} and the event {W1B2}. By Bernoulli’s 

rule, the probability of {B1W2} is 2/9, and the probability of {W1B2} is also 2/9. Since these 



events have an empty union, the probability of their union is the sum of their probabilities, or 

4/9, which is the answer. 

 What is the probability of getting exactly two black balls in two trials? This event is a 

composite event consisting of drawing a black ball on the first trial (p = 1/3) and drawing a 

black ball on the second trial (p = 1/3). So by Bernoulli’s rule, the probability is 1/9. 

Study Question 

Suppose that the probability of drawing a black ball is 1/6. Calculate the probabilities of all 

events in the algebra representing two trials with this probability. 

THE BINOMIAL DISTRIBUTION 

Bernoulli, like Newton and other students of probability in the seventeenth century, was 

interested in the general formula for obtaining any number, say k, of successes (or “fertile” 

cases) in n independent trials when the probability of success in each trial is p (and so the 

probability of an outcome other than a success is 1  p). For example, we could call drawing 

a black ball a success and ask such questions as, What is the probability of drawing a black 

ball 5 times in 10 trials when the probability of drawing a black ball on any one trial is 1/3? 

 One way to obtain the answer to such questions is as follows. Suppose a sequence of 

n = 10 trials yields 5 draws of black balls. Suppose, in particular, that the first 5 draws yield 

black balls and the next 5 draws yield white balls. Each draw of a black ball is an event with 

probability p = 1/3, and each draw of a white ball is an event with probability q =1  p = 2/3. 

The trials are all independent, so the probability of a composite atomic event consisting of 5 

draws of black balls on the first 5 trials and 5 draws of white balls on the next 5 trials will be 

the product of the probabilities of the outcomes of the individual trials that compose it. In 

other words, the probability of the composite event consisting of 5 draws of black balls 

followed by 5 draws of white balls will be 1/3  1/3  1/3  1/3  1/3  2/3  2/3  2/3  2/3 

 2/3 = (1/3)5  (2/3)5 = (1/3)5  (2/3)n5 = p5qn5. Now drawing black balls on the first 5 



draws and drawing white balls on the next 5 draws is only one member of the event of 

drawing exactly 5 black balls in 10 trials. For we could draw the 5 black balls on any 5 of the 

10 trials; it is not necessary that we draw the 5 black balls on the first 5 trials. For example, 

the event of drawing exactly 5 black balls in 10 trials also includes the case in which we draw 

a white ball on the first trial, then draw 5 black balls, then draw 4 white balls; it also include 

the case in which we draw a white ball, then a black ball, then a white ball, then a black ball, 

and so on. Each different way of drawing 5 black balls in 10 trials will have the same 

probability, namely p5qn5. No two distinct ways of drawing 5 black balls can both occur; 

considered as events, their intersection is empty. So, to answer the question with which we 

began—What is the probability of drawing a black ball 5 times in 10 trials when the 

probability of drawing a black ball on any one trial is 1/3?—we must calculate how many 

different ways there are of selecting, from 10 trials, 5 trials that result in black balls and we 

multiply that number by p5qn5. 

 The number of different members of the event of drawing exactly 5 black balls in 10 

trials is given by the number of different ways in which we can select 5 things (the 5 trials on 

which a black ball occurs) from 10 things. From chapter 3 we know that number is C(5, 10) = 

10!/(5!(10  5)!) So finally we obtain the conclusion that the probability of drawing 5 black 

balls in n = 10 independent trials, on each of which the probability of drawing a black ball is 

p = 1/3 and the probability of drawing a white ball is q = (1  p) = 2/3, is given by 

5 5
10! 1 2

.
5!(10 5)! 3 3

   
   

    
 

 The reasoning used is perfectly general: 

Theorem The probability of k successes in n independent trials each having a probability p 

of success and a probability q = (1  p) of failure is C(k, n)pkg(nk). 



 You may recall that Pascal proved that C(k, n), the number of ways of choosing k 

things from n things, is also the value of the kth binomial coefficient in the expansion of an 

nth power binomial such as (x + y)n. In fact, the formula for the probability of k successes in n 

independent trials each with probability p of success is the very same as the formula for the 

kth monomial in the expansion of the binomial (p + q)n. For this reason the probability 

measure that assigns the probability C(k, n)pkqnk to the event of k successes in n trials is 

called the binomial distribution. For n = 8 and p = q = 1/2, the binomial distribution is as 

shown in figure 8.2. 

 Recall that Bernoulli wanted to determine how good an estimate of the proportion of 

black balls in an urn is provided by the proportion of black balls actually drawn in a sequence 

of trials. The first question, however, is whether it can be shown that as the number of trials 

gets larger, the proportion of black balls drawn comes closer and closer to the proportion of 

black balls in the urn. In the probability distribution shown in figure 8.2, where 8 draws are 

made from an urn that is half filled with black balls, the probability is a little over .27 that 

half the balls drawn will be black, and the probability that either 3, 4, or 5 of the balls drawn 

will be black is roughly .71. In other words, the probability is .71 that the proportion of black 

balls drawn will be within 1/8 of the proportion of black balls actually in the urn. Let us 

consider the binomial distribution for 16 trials rather than just 8, again with p = 1/2. Then we 

would find that the probability of getting black balls on exactly half of the draws is just 

under .20, and the probability is about .79 that the proportion of black balls drawn is within 

1/8 of the proportion of the black balls in the urn (1/2). 

 As the number of trials increases, the probability goes down that the proportion of 

successes will be exactly equal to the probability of a success on a single trial, but as the 

number of trials increases, the probability of obtaining a proportion of successes within a 



fixed interval of the probability of success on a single trial increases. Bernoulli himself made 

the point this way: 

I suppose that without your knowledge there are concealed in an urn 3000 white pebbles and 

2000 black pebbles, and in trying to determine the numbers of these pebbles you take out one 

pebble after another (each time replacing the pebble you have drawn before choosing the 

next, in order not to decrease the number of pebbles in the urn), and that you observe how 

often a white and how often a black pebble is withdrawn. The question is, can you do this so 

often that it becomes ten times, one hundred times, one thousand times, etc., more probable 

(that is, it be morally certain) that the numbers of whites and blacks chosen are in the same 

3:2 ratio as the pebbles in the urn, rather than in any other different ratio? 

 To avoid misunderstanding, we must note that the ratio between the number of cases, 

which we are trying to determine by experiment, should not be taken as precise and 

indivisible (for then just the contrary would happen, and it would become less probable that 

the true ratio would be found the more numerous were the observations). Rather, it is a ratio 

taken with some latitude, that is, included within two limits which can be made as narrow as 

one might wish. For instance, if in the example of the pebbles alluded to above we take two 

ratios 301/200 and 299/200 or 3001/2000 and 2999/2000, etc., of which one is immediately 

greater and the other immediately less than the ratio 3: 2, it will be shown that it can be made 

more probable, that the ratio found by often repeated experiments will fall within these limits 

of the 3:2 ratio rather than outside them.2 

 In fact, Bernoulli succeeded in proving essentially the following theorem, which is 

now sometimes known as the weak law of large numbers. 

Bernoulli’s theorem For any small positive number  and any large positive number c and 

any value of p (0  p,  1), there is an n such that for the binomial distribution with n trials, 

each with probability p of success, if x is the number of successes in n trials, then 



Prob(x/n  p > ) < 1/(c + 1). 

 Bernoulli and his successors, such as Abraham De Moivre, took this result to form the 

basis for a rebuttal to skepticism, or at least to Hume’s kind of skepticism. If some quantity 

(analogous to the true proportion of black balls) is constrained by nature to have a particular 

value and we can make repeated experiments to measure the quantity (which is analogous to 

making repeated trials and using the frequency of black balls in the trials to estimate the 

proportion of black balls in the urn), then the probability that our estimate is within a given 

small interval of the truth gets larger and larger. We are justified, as the number of 

experiments or trials we make increases, in having more and more confidence that our 

estimate of the quantity is within any given interval of the true value. The argument depends, 

however, on our granting the analogy between urn problems and scientific problems, and the 

appropriateness of urn problems as a general model for empirical inquiry might be doubted. 

 In the middle of the eighteenth century, the Reverend Thomas Bayes provided the 

basis for a more powerful argument against Hume. 

Study Questions 

1. How does the binomial distribution (for any n > 0) look when p = 1? 

2. Compute the values and graph the results for the binomial distribution with n = 8 and 

p = 3/4 (as in figure 8.2). 

WHAT IS PROBABILITY? 

During the seventeenth and eighteenth centuries philosophers and mathematicians were 

uncertain about the metaphysics of probability. Much of that uncertainty remains today. On 

the one hand, probability was thought of as a measure of a feature of events, their chance. 

Games of chance, such as dice games, are so called because they determine specific chances 

for various outcomes. It is the physical properties of dice that determines the chance that they 

will show one side or another when thrown. So chance is a kind of complex physical 



property. On the other hand, probability was thought of as a treasure of opinion, a measure of 

degree of belief or credence. 

 The view of probability as a measure of opinion or degree of belief was strengthened 

by the effects of Newtonian philosophy. In problems in dynamics, an initial description of the 

state of a physical system is given, positions and momenta at one time, for example, and 

Newtonian laws then entail unique values for the state of the system at subsequent times. The 

Newtonian laws provide a function between possible states of a system at one time and 

possible states of the system at certain subsequent times. Each initial state determines unique 

subsequent states. Pierre Simon de Laplace, the greatest mathematical physicist and 

prohahilist of the eighteenth century, drew a bold conclusion from this feature of Newtonian 

dynamics: 

Laplacian determinism From a complete description of the mechanical state of the 

universe at one moment of time, the Newtonian laws of dynamics determine a unique state of 

the universe at any subsequent moment of time. The latter state can in principle be computed 

from the initial description and the laws. 

 We now know that, even if we assume Newtonian laws, Laplace’s view is false and 

requires considerable qualification, but from the eighteenth century until the twentieth 

century Laplacian determinism was accepted not only by physicists but by many other 

scientists as well. Laplace provided a picture of the universe in which there is no such thing 

as a real physical property of chance except for the extreme cases (chances of 0 or of 1), and 

the appearance of chance variation in events is simply the result of our ignorance. 

 This was, in fact, the view that Hume endorsed in his section on probability in the 

Enquiry: “Though there be no such thing as Chance in the world; our ignorance of the real 

cause of any event has the same influence on the understanding, and begets a like species of 

belief or opinion.”3 If one took Hume’s view quite literally, then the study of probability 



would become the study of belief, its degrees, and its variations. But that was something no 

one in the eighteenth century knew how to attempt. Probabilists knew how to count and 

observe frequencies, and they knew how to compute some of the mathematical consequences 

of mathematical probabilities, but they did not know (or really care) about variations of belief 

in actual people. Perhaps one result of this tension was that astute writers were carefully 

equivocal about the meaning of probability. 

 Thomas Bayes, who wrote one of the most important studies of probability in the 

eighteenth century, defined the notion this way: “The probability of any event is the ratio 

between the value at which an expectation depending on the happening of the event ought to 

be computed, and the value of the thing expected upon its happening. By chance I mean the 

same as probability.”4 

 The idea behind Bayes’ definition can be seen by thinking what a promise would be 

worth to you if you knew that it would be kept. A lottery ticket is a kind of promise, and 

lottery tickets can generally be sold or exchanged. Suppose you are offered a lottery ticket 

that will pay $2 if a 6 comes up on a roll of a die. To compute what the ticket is worth to you 

(“the value at which an expectation depending on the happening of the event ought to be 

computed”) multiply $2 (“the value of the thing expected upon its happening”) by the 

probability of the event: 

Value of an expectation depending on the happening of the event = (probability of the event) 

 (value of the thing received if the event happens) 

So the value at which an expectation depending on the happening of the event ought to be 

computed, divided by the value of the thing expected upon its happening, is just the 

probability of the event: 

Probability of the event

 (probability of the event)  (value received if the event occurs)

value received if the event occurs




 



 The ambiguity in Bayes’ definition arises because of his use of the phrase “ought to 

be.” What probability ought to be given to a possible outcome of a lottery? One that is the 

measure of some physical property? One that is somehow logically correct? Bayes does not 

say. If Bayes had instead used the phrase “is,” then his account would amount simply to a 

reformulation of Hume’s, in which the degree of belief in an outcome is measured indirectly 

through assessments of the value of bets or lotteries on the outcome of the event. 

BAYES, PRICE, AND HUME 

Bayes was a Scottish minister and a contemporary of David Hume. He was known for his 

mathematical skills, but published almost nothing during his lifetime. After his death a 

remarkable manuscript was found among his papers, a manuscript that eventually came to 

revolutionize the theory of probability. Bayes’ “Essay towards Solving a Problem in the 

Doctrine of Chances” was read, with an introduction and postscript by Richard Price, to the 

Royal Society of London in 1763, and it was subsequently published in the Proceedings of 

the Society. While the essay itself was entirely mathematical, Price presented it as a response 

to Hume’s skepticism. 

 Consider one of Hume’s examples: How can reason together with experience justify 

our belief that the sun will rise tomorrow? Hume, of course, argued that they could not, and 

that our belief is founded on experience and habit rather than on experience and reason. Price 

thought of the issue in terms of Bernoulli trials and the binomial distribution. The days and 

nights we experience can be thought of as so many draws from Nature’s urn: periods of night 

followed by periods of day are successes; a period of night that lasts a long while and is not 

followed (in central latitudes) by a day (after roughly twelve hours) would count as a failure. 

In Hume’s terminology, Nature’s “hidden springs” determine the probability that a day will 

follow a night. So as Price conceived the issue, our experience of nights and days constitute 

so many trials from a binomial distribution, in which the probability of observing k successes 



in n trials is C(k, n)pkqnk, where q is by definition equal to 1  p. If we knew the value of p, 

the chance that the sun will rise tomorrow would be represented by the value of the parameter 

p. If p = 1, the sun will certainly rise tomorrow (and the day after that, and the day after that, 

forever). If p = 0, then the sun will certainly not rise tomorrow, or ever. If we are uncertain of 

the value of p, we are uncertain whether the sun will rise tomorrow. 

 In Bayes’ theory, the value of p itself has a probability. In formal terms, for example, 

that p is between 1/2 and 2/3 is an event to be assigned a probability. The idea may be a little 

confusing, since p itself is a number that determines a probability. In draws from urns, for 

example, p is a proportion that determines the probability of k successes in n draws from the 

urn. But quite aside from that, Bayes supposed that the event that p lies within an interval of 

values is measured by a probability. In general, to follow Bayes’ reasoning you must keep in 

mind that several different probability measures will be talked about at once. 

 The probability distribution on p determines, for any n and k, a probability that there 

will be k successes on n trials. To obtain that probability, for each value of p, compute the 

probability of k successes in n trials, then multiply that probability by the probability of the 

value of p used, and then sum over all of the values of p. Since the values of p form a 

continuum, we must actually integrate rather than sum. If we let Prob(x) signify the function 

representing the initial probability that parameter p has the value x or less and let Prob(k, n) 

signify the probability of obtaining k successes in n trials, then the formula for Prob(k, n) 

becomes 
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Changing the function Prob(x), which measures the probability of values of p, will generally 

result in changes in Prob(k, n), the probability of k successes in n trials. 

 In Price’s view, the central question about induction, therefore, is to determine how 

much probability should be assigned to any interval of values of p in light of evidence about a 



number of successes and failures in Bernoulli trials. Once that is known, it will be understood 

how we can rationally learn from experience: “the number of times in which an unknown 

event has happened and failed being given, to find the chance that the probability of its 

happening [in a single trial] should lie somewhere between any two named degrees of 

probability.”5 

 Bayes supposed that before any trials are made, the probability that p lies in the 

interval between a and b is b  a (0  b < a  1). We now call the initial probability 

distribution for p that Bayes assumed a uniform distribution. Accordingly, the mathematical 

and conceptual problem that Bayes addressed concerns how the initial uniform probability 

distribution for p should be changed as Bernoulli trials are conducted and their outcomes 

noted. 

 For a uniform distribution, x = Prob(x), and so 1 = d Prob(x)/dx, and therefore, the 

expression for Prob(k, n) simplifies to 

1
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0
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If we regard n as fixed, this is Bayes’ expression for the probability that k successes will be 

obtained. 

 What is the probability that k successes will be obtained and that the value of p lies 

between two numbers a and b? Bayes argued that it is just the sum (or integral) of the 

probability of k successes taken over each value of p from a to b. In other words, 

Prob(k successes in n trials & a  p  b) = 
( ) ( , ) (1  ) d .

b
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 Finally, Bayes argued that the probability of event A given event B is the probability 

of A and B jointly occurring, divided by the probability that B occurs. (We now call the 

notion that event A occurs given that B occurs the probability of A conditional on B, and write 



it Prob(A  B)). Applying this principle to his problem, Bayes concluded that the probability 

that p is between a and b, given that k successes have been observed in n trials, is 

Prob(a  p  bk successes in n trials) = 
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 The most difficult problem for Bayes was to evaluate these integrals. He showed that 

the denominator is always equal to 1/(n + 1), no matter what value of k is considered, but the 

numerator is more difficult, and Bayes was not able to give a general solution. He was able to 

give an analysis for the numerator only when either k or (n  k) is small. 

 It is easy to see what happens to the probability of values for p as one gathers trials in 

which only successes occur. Starting with a uniform probability distribution over p, suppose 

that there are k successes in k trials, i.e., that n = k. C(k, k) = 1, and (n  k) = 0, so we have 

that 

Prob(a  p  bk successes in k trials) = 1 1
d

1/( 1)
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As the number of trials k becomes large, this quantity approaches 0 for any interval that does 

not include the value p = 1, and it approaches 1 for any interval that does include the value p 

= 1. In other words, if we start from an initial uniform distribution over values of p, as the 

number of trials without failure increases, the probability distribution becomes concentrated 

around p = 1. Moreover, we do not have to wait for a large number of trials before the 

probability of values of p in intervals of interest that do not include 1 becomes very small. 

After 10 successes in 10 trials, for example, the probability that p lies between 0 and 1/2 is 

less than .001, and the probability that the value of p lies between 3/4 and 1 is greater 

than .94. 

Price thought such results as these to be a decisive reply to Hume: 



Let us imagine to ourselves the case of a person just brought forth into this world and 

left to collect from his observation of the order and course of events what powers and 

causes take place in it. ‘The Sun would, probably, be the first object that would 

engage his attention; but after losing it the first night he would be entirely ignorant 

whether he should ever see it again. He would therefore be in the condition of a 

person making a first experiment about an event entirely unknown to him. But let him 

see a second appearance or one return of the Sun, and an expectation would be raised 

in him of a second return, and he might know that there was an odds of 3 to 1 for 

some probability of this. This odds would increase, as before represented, with the 

number of returns to which he was witness. But no finite number of returns would be 

sufficient to produce absolute or physical certainty. For let it be supposed that he has 

seen it return at regular and stated intervals a million of times. The conclusions it 

would warrant would be such as follow—There would be the odds of the millionth 

power of 2 to one, that it was likely that it would return again at the end of the usual 

interval. ... 

 It should be carefully remembered that these deductions suppose a previous total 

ignorance of nature. After having observed for some time the course of events it would be 

found that the operations of nature are in general regular, and that the powers and laws which 

prevail in it are stable and permanent. The consideration of this will cause one or a few 

experiments often to produce a much stronger expectation of success in further experiments 

than would otherwise have been reasonable; just as the frequent observation that things of a 

sort are disposed to gather in any place would lead us to conclude, upon discovering there 

any object of a particular sort, that there are laid up with it many others of the same sort. It is 

obvious that this, so far from contradicting the foregoing deductions, is only one particular 

case to which they are to be applied.6 



Study Question 

For the binomial distribution with n = 8 and p = 1/2, calculate the conditional probability that 

exactly 5 successes are obtained, given that more than 4 successes are obtained. 

THE MODERN REVIVAL 

Bayes’ ideas did not have much influence in the eighteenth or even the nineteenth centuries. 

Laplace used similar but less explicitly developed methods. There was a small school of 

Bayesians at the University of Cambridge in the nineteenth century, but they seem to have 

published very little. In the twentieth century, in the hands of the philosopher Frank Ramsey 

and the statistician Bruno De Finnetti, Bayes ideas were rekindled and developed into a major 

branch of modern statistics, as well as an influential approach to philosophical issues about 

knowledge. 

 Three distinct problems beset the Bayes and Price response to Hume’s inductive 

skepticism: 

1. What is probability? Bayes, De Moivre, Leibniz, and others suggested that it is the 

degree of belief or confidence that ought to be given to an event or state of affairs, but they 

gave no clear account of what this means. 

2. Bayes showed how to compute simple cases of a conditional probability for a 

parameter of a binomial distribution, and we have seen that the conditional-probability 

distribution may quickly come to be localized around a particular value for the parameter. 

But does the process of changing probabilities by forming conditional probabilities as new 

evidence arises always converge to the truth? 

3. Price’s response to ‘Hume assumes that our inquiries into nature are accurately 

represented as attempts to infer a parameter in a binomial distribution from a sequence of 

Bernoulli trials. But he gave no argument for the accuracy of this representation, and it is not 



obviously correct in general. Perhaps in nature the value of p varies from trial to trial; perhaps 

our sample is not randomly selected from any binomial distribution. 

 Ramsey’s solution to the first question was to argue that probability is a measure of 

rational degree of belief. In Ramsey’s conception, different rational agents may assign 

different degrees of belief, and hence different probability measures, to the same system of 

events. Thus you may judge that a coin is fair and have confidence equal to 1/2 that it will 

land heads if flipped, while I may judge that the coin is biased and have confidence equal to 

1/3 that it will land heads if flipped. Moreover, Ramsey allowed that different rational agents 

may assign different degrees of belief to the same system of events even though the rational 

agents have available to them exactly the same body of evidence. You and I may each have 

observed the same fifty flips of the coin in question and have no other specific information 

about it, but we may still differ in the probability we assign to heads on a given flip. 

According to Ramsey, the rationality of a system of degrees of belief requires only two 

things: 

 The measure of degrees of belief must satisfy the axioms for probability measures. 

 As new evidence is acquired, the measure of degrees of belief in a system of events must 

change to their conditional probabilities (under that same measure) on the evidence. 

 If probability is a measure of degree of belief, how can degree of belief be measured? 

Ramsey proposed a method that assumes one further principle about rational agents. To 

explain it requires that we be clear about the notion of expected value, which Bayes himself 

used. 

Definition For an action with a finite set of possible outcomes, each outcome having a 

definite value, the expected value of the action is the sum over all possible outcomes of the 

measure of degree of belief that the outcome will occur multiplied by the value of the 

outcome. 



Ramsey assumed the following principle: 

Ramsey’s assumption Given a set of alternative actions one of which must be chosen, a 

rational agent will choose the action with the largest expected value. 

Ramsey was then able to show that under quite general conditions the degrees of belief of an 

agent that satisfies this assumption can be inferred from the agent’s choices among gambles. 

In appropriate circumstances, degrees of belief are measurable features of ideally rational 

agents (see boxed illustration). 

An illustration 

The problem is to find dollar values A, B, and C such that the rational agent is indifferent 

between the following prospects: 

1. Getting $A for sure 

2. Getting $B if proposition q is true and getting $C if q is not true 

Suppose further that we have determined that the agent’s degree of belief in q, DOB(q), is 

one minus the agent’s degree of belief in q, 1  DOB(q). Since the agent is indifferent 

between choice 1 and choice 2, they must have the same expected value. Hence, A = B  

DOB(q) + C(1  DOB(q)). Therefore, by simple algebra, DOB(q) = (A  C)/(B  C). 

 The second question concerning Price’s response to Hume has to do with whether or 

not one will converge to truth if one follows the strategy of adopting an initial (or prior) 

probability distribution and then changing it by forming conditional probabilities as new 

evidence is acquired. In the context of Ramsey’s account of probability as rational degree of 

belief, the question about convergence is quite general. There is no reason, on Ramsey’s 

account, why we should start with a uniform distribution. 

 Modern studies of probability have shown that in very general circumstances, 

changing probability by conditionalizing does result in convergence to the truth. There are, 

however, some important restrictions on this claim. 



1. If the initial distribution gives 0 prior probability to a set of values that contains the 

true value of a parameter, that set will continue to receive 0 probability no matter how much 

evidence is obtained. 

2. If the evidence has the same probability on alternative hypotheses, then the ratios of 

the probabilities of those hypotheses will be unchanged by conditionalizing on the evidence. 

The first of these limitations means that a dogmatic Bayesian agent who happens to be wrong 

cannot recover from that error. The second means that if two (or more) hypotheses give the 

same likelihood to every possible body of evidence, then conditioning on evidence will never 

change the initial ratio of their probabilities. And this means, of course, that if exactly one of 

them is true, then we will not converge toward giving probability 1 to the true hypothesis by 

conditioning on ever larger bodies of evidence. 

 The third problem for Price’s argument against Hume has to do with the 

appropriateness of the binomial model as a representation of inquiry into nature. Instead of 

relying on the binomial representation, using modern logic, we can state the essential points 

of Price’s argument much more generally. Imagine a Fregean formal language that has an 

infinite number of predicate and function symbols. That is, suppose that the language is large 

enough that every hypothesis can be expressed in it (up to the limits of expressibility of 

formalized languages). Say that two sentences in the language are equivalent if they are 

logically equivalent, if each of them can be deduced from the other. Then numbers 

representing degrees of belief can be assigned to sentences in such a way that equivalent 

sentences receive the same degrees of belief. The degrees of belief can then satisfy the 

axioms of probability, and it can be shown under general conditions (provided restrictions 

numbered 1 and 2 above are not violated) that a Bayesian agent who changes degrees of 

belief by conditionalizing on the evidence will converge to the truth. 



 The Bayesian picture does not refute metaphysical skepticism. Rather, it tries to 

render it harmless. Metaphysical skepticism imagines alternative hypotheses that generate 

exactly the same experiences, so the ratio of the initial probabilities of the alternatives will 

always be the same as their ratio after conditioning on any evidence. This means that we 

cannot learn, even in the long run, that the skeptic’s hypothesis that we are brains in vats is 

false. But so what? How will our ignorance harm us in either deliberation or action? 

 The modern Bayesian picture of rational action and deliberation derives as much from 

Pascal and Ramsey as from Bayes, and this very picture forms the foundation of much of 

contemporary economic theory and of an influential branch of contemporary statistics. The 

individual is considered to be someone who must decide what to do. Alternative courses of 

action are available, and each alternative course of action may produce outcomes of interest 

to the individual, depending on how the world really is. The individual has preferences 

regarding the possible outcomes: some may be valuable, some may be disastrous, and so on. 

The value of the alternatives is assumed to be measurable on some scale, and these measured 

values of outcomes are traditionally called utilities. The individual also has views about the 

likelihood or probability of the various alternative states of the world; in the modern 

subjective Bayesian tradition, following Ramsey, these probabilities are nothing more than 

the individual’s degrees of belief in the various alternative states of the world. If the 

individual can frame her preferences, measure the utility to her of the various possible 

outcomes, formulate the probabilities of the alternative states of the world, and determine 

which outcomes will result from which actions in which states of the world, then she can 

calculate her expected utility for each alternative action. The expected utility of action A is 

just the sum, over each possible state W of the world, of the utility of the outcome of action A 

in world state W multiplied by the subjective probability of state W of the world. 



 On the modern Bayesian view, to act rationally, the individual must choose an action 

that has as large an expected utility as possible. Nothing more is required for rationality than 

degrees of belief that satisfy the axioms of probability, preferences that are coherent, and 

actions taken to maximize expected utility. It is perfectly rational, therefore, for an individual 

to recognize the logical possibility that she is a brain in a vat, or that other minds don’t exist, 

and to give such claims 0 probability or infinitesimal probability so that they make no 

difference to expected utility calculations. It is also possible to give such hypotheses some 

substantial probability but to judge that they will make no difference whatsoever to outcomes 

of value. The modern Bayesian may even be a metaphysical skeptic, bit that skepticism 

makes no difference to rational deliberation or rational action. 

Study Question 

Pascal provided a famous argument for the rationality of causing oneself to believe in God. 

He realized that one cannot simply choose to believe in God, but by going to church, 

avoiding temptation, and pious behavior, one can so act that one comes to believe in God. 

Pascal’s argument that this is the rational course of action contains the central ideas of the 

probabilistic study of rational decision making, or decision theory, as the subject is now 

called. It also uses an interpretation of probability according to which all alternative 

circumstances are equally probable. Pascal assumes that it is rational to act so that your 

expected utility is maximized. 

 One of Pascal’s arguments is this: If God exists and you act so as not to believe in 

him, you will be condemned to hell for eternity and suffer an infinite loss in utility; if God 

exists and you do believe in him, you will spend eternity in Heaven and have an infinite gain 

in utility; if God does not exist and you do believe in him, you will suffer a small finite loss 

in utility in having given up sinful pleasures; if God does not exist and you do not believe in 

him, you will gain a small, finite utility from sinful pleasures. Either God exists, or he does 



not. So the probability is 1/2 for either case. Thus the expected utility of acting so as to 

believe in God is 1/2   = . A rational person will therefore choose to act so as to 

believe in God. 

 What is wrong with Pascal’s argument? 

BOUNDED RATIONALITY AND BAYESIAN PROBLEMS 

Altogether, the results obtained by modern Bayesians provide a powerful response to Hume’s 

inductive skepticism and an interesting response to metaphysical skepticism. But as so far 

developed, it is a response for an ideally rational agent, that is, an agent who 

1. never makes logical mistakes, 

2. never needs to consider novel hypotheses not previously thought of, 

3. can compute anything, 

4. never accepts anything false as data. 

And that’s not us. Some of the reasons we do not satisfy these four conditions have to do with 

human perception. Let’s consider point 4. The Bayesian account of belief and learning as 

presented assumes that the data the rational agent uses in forming conditional probabilities is 

free of error. But there is no reason to believe this to be the case with us humans. We often 

describe data, or aspects of data, in ways that subsequently come to be thought of as 

erroneous. Richard Jeffrey, a distinguished Bayesian philosopher, offers the example of 

observing the colors of objects by candlelight. What you see may alter your degree of belief 

that an object is blue (or green or red, as the case may be), but it is unlikely to make you 

certain that the object is blue. 

 Various responses to this problem have been proposed by those who are sympathetic 

with Bayesian approaches to the theory of knowledge. One is to claim that the uncertain 

descriptions of our data are themselves inferences made from simpler descriptions that are 

certain. It might be argued, for example, that there are “sense data” events, from which any 



ordinary report of things seen are tacitly inferred. From a mathematical point of view, the 

algebra of events in which we describe possible outcomes of experiments can always be 

enlarged to include such hypothetical events, and measures of our degree of belief can be 

extended to such events to give some of them the value 1. A second response is to suggest 

that we should not change our degrees of belief by forming conditional probabilities on the 

data, because that process results in giving the data a degree of belief of 1. Instead, we could 

suppose that, as with observation by candlelight, experience causes us to change our degrees 

of belief in some propositions (e.g., that the object is blue) but does not cause us to change 

them to 1. We then must readjust our degrees of belief in the propositions so that the total 

system of degrees of belief will again satisfy the axioms of probability. Jeffrey proposed a 

rule for doing so. One difficulty with this approach is that we lose the general guarantee of 

convergence to the truth. 

 Another reason we don’t satisfy the four conditions has to do with the limitations of 

human logical powers. It is obvious that we humans are not able, at any moment in our 

history, to consider all possible hypotheses about the world. The history of science is filled 

with episodes in which novel theories were introduced, theories that had never before been 

articulated. If at a given moment we have a set of alternative hypotheses about which we 

have degrees of belief, and a novel hypothesis not previously thought of is introduced, we 

must decide what degree of belief to give to this novel hypothesis. We cannot do this by 

conditioning on empirical data, since no new empirical data have been obtained (other than 

the existence of the novel hypothesis). What happens when a new hypothesis is introduced is 

that the relevant algebra of events is changed. But unfortunately, nothing in the Bayesian 

story tells us how to alter our degrees of belief when this happens. 

 Perhaps the most profound difficulty for the Bayesian conception arises from a 

combination of philosophy of mind, psychology, and the theory of computation. One of the 



most powerful ideas of the twentieth century---and an idea that we will consider in detail in 

subsequent chapters—is that the human brain is a biological computer and the cognitive 

activities of humans are produced by computational procedures within this biological 

computer. If we assume for the moment that this is so, then we humans cannot determine the 

answers to mathematical problems that are in principle beyond the capacity of any possible 

computer to decide. 

 A perfectly nondogmatic Bayesian must be able to determine a degree of belief for 

each of an infinity of sentences. For any declarative sentence, the perfect, ideally rational 

nondogmatic Bayesian agent has a degree of belief in that sentence. Moreover, initially the 

only sentences given a degree of belief of 0 are logical contradictions, for what it means to be 

perfectly nondogmatic is that no sentence whose truth is logically possible is given a 0 degree 

of belief. That, recall, is one condition required to show that an ideal Bayesian agent can 

converge to the truth, whatever it is. For brevity, let me call such a probability measure 

nondogmatic. One of the results of modern logic and the modern theory of computation that 

developed from it in this century is that no possible computer can compute a nondogmatic 

probability function defined on all sentences in a formalized first-order language that 

contains even one two-place predicate. If no possible computer can do it, and if no human 

can do it unless some possible computer can do it, then no human can do it. 

 In fact, it turns out that only very dogmatic probability functions are feasible to 

compute. But if such probability measures are used, then of course reliability must be 

sacrificed, and the claim to have a general answer to Hume’s skepticism is lost. 

CONCLUSION 

Although in many ways religious belief was one of the great motivations for the study of 

probability, probability has not, on the whole, been kind to religious belief. How much 

comfort, if any, Bayes’ ideas provide to natural religion is not clear. When asked what place 



God has in his system of the universe, Laplace is said to have replied, “I have no need of that 

hypothesis,” and insofar as he was correct about what he needed to explain the motions of the 

planets, his remark illustrates that Bayesian doctrine does not provide much support for 

natural religion. Insofar as natural phenomena can be explained by theories that do not invoke 

God (or at any rate, do not invoke a nice God), Bayesian approaches provide no special case 

for religious belief. On the other hand, Bayesian doctrine is extremely tolerant, and nothing in 

it argues that religious belief is in any way irrational. 

 Historically, another “natural” argument for religious belief is founded on miracles: a 

God who can intervene in the course of nature is said to be the best explanation for miracles. 

Hume ridiculed such arguments on the grounds that natural laws are confirmed by billions of 

instances known to mankind, and in the case of any miracle it is more probable that the 

testimony of witnesses is false than that the laws of nature have failed. In the late nineteenth 

century, Francis Galion, one of the chief inventors of modern social statistics, gave a 

probabilistic argument against the efficacy of prayer. He compared the longevity of clerics 

and kings, whose health was presumably prayed for a great deal, with that of more ordinary 

folk, who presumably got less prayer on their behalf. He found that on the average there were 

no differences in the lifespans of the two groups. 

 Nonetheless, religion aside, the study of probability is one of the great successes of 

skepticism. Although serious skeptics would not welcome the gratitude, contemporary 

economic and statistical theorists owe an intellectual debt to the skeptical tradition. 

Review Questions 

1. State the argument from design, and explain Hume’s objections to it. 

2. What response could be given to Hume’s objection to arguments for the existence of 

God founded on miracles? 

3. Give the definition of a probability measure. 



4. What is a field of sets? 

5 What is meant by a “Bernoulli trial”? 

6. State Bernoulli’s theorem. 

7. Describe the binomial distribution, and explain in detail why it is called the binomial 

distribution. 

8. What is Laplacian determinism? 

9. Explain Hume’s conception of probability. 

10. What is a uniform probability distribution? 

11. Using any appropriate mathematical examples, explain how Bayes proposed that 

probabilities should be changed as evidence is acquired. 

12. Explain how Price used Bayes’ results as a response to Hume’s skepticism. How 

might Hume reply? 

13. Describe Frank Ramsey’s contributions to Bayesian conceptions of probability and 

inference. 

14. Discuss some difficulties with the Bayesian conception of rationality. 
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Black and white balls in an urn 

Figure 8.2 

The binomial distribution for n = 8 and p = q = 1/2 

  



Chapter 9 

KANTIAN SOLUTIONS 

INTRODUCTION 

At the beginning of this century the great American physicist Josiah Willard Gibbs 

introduced his revolutionary book on statistical mechanics and thermodynamics with the 

remark that its aim was to reduce the study of heat to an a priori science. Gibbs’s purpose 

shows the extraordinary influence of an eighteenth-century philosopher, Immanuel Kant. 

Kant claimed to have demonstrated that the fundamental principles of physics, ranging from 

the conservation of matter to Newton’s three laws of motion, are founded on reason alone, 

are not induced from experience, and could not be falsified by any possible experience. More 

than a century later, Gibbs, along with many others, still believed him. 

 Kant spent all of his life in or near Königsburg, in the eastern part of Prussia. He is the 

first philosopher we have considered who was so by profession: in 1770, after fifteen years as 

a lecturer, he became professor of logic and metaphysics at the University of Königsburg. 

Until 1770 Kant wrote on scientific topics, particularly questions of geophysics. From 1781 

he produced in rapid succession a sequence of books on epistemology, ethics, and aesthetics. 

One of his principal philosophical works, The Prolegomena, is explicitly directed to an 

audience of teachers of philosophy, something quite uncommon before the eighteenth 

century. 

 Kant’s theory of knowledge was developed in response to Hume’s skeptical 

arguments. In The Critique of Pure Reason, Prolegomena to Any Future Metaphysics, and 

Metaphysical Foundations of Natural Science, Kant claimed to explain why arithmetic and 

geometry can be known a priori with certainty and to provide a demonstration of the a priori 

certainty of the most fundamental laws of physics, a demonstration that every event must 



have a cause, a demonstration that every sequence of causes and effects must follow some 

rule, and a refutation of Hume’s skepticism about induction. 

 All of these works are written in a very obscure and forbidding style. Kant introduced 

an enormous variety of technical terms, which he seldom defined clearly and did not use in 

an obviously consistent way. He was fond of classifications and subclassifications, and so 

each part of his work received a separate special name or title, always in technical terms that 

sometimes mystify even those who are immersed in his system. Kant’s combination of 

obscurity and influence have naturally produced a great many commentaries intended to 

clarify and evaluate his views and arguments, and several excellent secondary works have 

been published in the last twenty years. 

 In Chapter 2 we saw that Aristotle’s logic cannot account for the proofs in Euclid’s 

geometry, not even for the proof of the very first proposition in The Elements. Euclid’s 

conclusions seem to follow from his assumptions, but the derivations cannot be reconstructed 

as syllogisms. Euclid’s first proposition, like many others in The Elements, involves a 

relation with mixed quantifiers, both universal and existential: for every line segment there 

exists an equilateral triangle having that segment as one side. The proof uses the axiom of 

circles, which again is of mixed formed: for all radii and all points, there exists a circle with 

that radius having that point as center. Euclid’s argument uses the axiom of circles to move 

from any particular given line segment to the existence of circles having the line segment as 

radius and the end points of the segment as centers. While the inference is perfectly 

legitimate, it is not syllogistic. 

 Kant seems to have recognized this fundamental defect in the foundations of the 

mathematics of his time—and the two millennia before his time. Since he regarded 

Aristotle’s logic, with minor modifications, as complete, he did not seek to found 

mathematics on a better logic. But if the consequences of Euclidean geometry (and the 



axioms, for that matter) are necessarily true and certain and this certainty does not come from 

logic, what can be its basis? The very same issues arise about proofs in arithmetic. According 

to Kant, the propositions of geometry and arithmetic are not logically necessary, or even 

conditionally logically necessary given Euclid’s assumptions, and yet we know them with 

certainty and without generalizing inductively from experience. How is this possible, or as 

Kant put it, how are propositions that are synthetic (i.e., not logically necessary) and a priori 

(i.e., knowable without reliance on the content of our experience) possible? Kant’s ingenious 

answer is that we are so constituted that no experience can violate the laws of geometry or 

arithmetic. For example, in each instance in which we think of or see a line segment, our 

constitution provides (in imagination or in sensation) the circles and points that Euclidean 

geometry says exist. Kant’s epistemology is an elaboration of this response to the puzzle 

about the foundations of mathematics. 

 But not just mathematics. If the strategy Kant proposed worked for geometry and 

arithmetic, might some version of it work as well for other principles that we think are 

beyond doubt but that we doubt could be learned from experience? For example, one might 

think that all changes (or changes of certain kinds) have causes and at the same time doubt, 

with Hume, that any such principle could be learned (let alone learned with certainty) from 

experience. Kant hit upon the idea that the principle that changes require causes is not 

something we learn from experience but something we ourselves use to form experience. 

THE KANTIAN PICTURE 

The world we experience is a world of enduring things arranged in space and of events 

involving those things. Some events occur simultaneously with one another, and others occur 

in succession. If we look out upon a scene, we do not see separate patches of color and 

luminosity on a two-dimensional surface. Instead, we see things, objects. We see trees and 

houses and clouds and fences and other objects arranged in three-dimensional space. And yet 



it would seem that it is just such patches and their boundaries that are presented to each of our 

eyes. Somehow our mind puts together the inputs to each eye, transforming them into 

something quite different. If we follow a scene, we do not see a succession of patches of 

color and luminosity, but again it seems that just such a succession is presented to each of our 

eyes. We see causal processes involving changes in things and in their relations with one 

another. A bird flies through the sky, the clouds move with the wind, a leaf falls from a tree 

and drops to the ground. Somehow our mind transforms the inputs into intelligible causal 

changes in objects. If we move about in the world, or close our eyes and reopen them, we do 

not just see two or more different systems of patches of color and luminosity, although that is 

what is presented to our eyes. Instead, we may see the same objects once more. We recognize 

that we are home again, back in places we have been before, looking at the faces of our 

neighbors or friends. Our mind somehow reidentifies objects of experience. 

 These examples indicate the radical difference between what is presented to the eye 

and what we see. Patches of light and color are not presented to the retina with such tags as 

“house”; sequences of patches are not presented to us with such tags as “causal process”; two 

arrangements of patches are not presented to us linked with such identifiers as “patches of the 

same thing you saw this morning.” We see things identified, objectified, and causally 

ordered, but that is our doing. Kant saw in reflections such as these a fundamental point: the 

world we experience is a world constructed by our minds. Kant called this process synthesis. 

We have seen the Kantian picture before, but it is worth seeing again (figure 9.1). 

 For the most part, the construction of the empirical world from sensory inputs is 

automatic; it is done by our minds but not by our wills. We do not have to deliberately and 

consciously assemble things out of patches of color and illumination. But sometimes higher-

order versions of these processes are deliberate, as when scientists introduce atoms and other 

unseen particles to explain experimental results or when Newton introduced the universal 



gravitational force. These inferred objects and processes also belong to the world of 

experience in a broad sense. Atoms and gravitational forces are not patches of color and 

illumination; they are objects, properties, and processes in three-dimensional space and in 

time. Such theoretical objects and processes are postulated to explain other objects and 

processes more apparent in experience. Kant’s interests included the deliberate, scientific 

construction of the unseen features of the world, but his primary concern was with the 

construction of the prescientific world of experience by our minds. 

 In view of these conclusions, we might expect to learn about general features of our 

experience by investigating how our minds construct the world from sensory inputs. That is 

exactly what cognitive scientists attempt to do in our own time, but in the eighteenth century 

no one had suggested such an inquiry, nor, exactly, did Kant. For one thing, neither Kant nor 

anyone else in the eighteenth century had any idea of how such an experimental inquiry into 

the operations of the mind could be conducted. But in any case, Kant would not have thought 

that such experimental inquiries could be important in responding to Hume’s skeptical 

arguments. For any conclusions obtained from experiments about how the mind works, and 

thus about general features of any possible experience, would be subject to Hume’s doubts 

about induction. If from experiments we learned that mental operations always produce 

experiences with a certain feature, that information would not provide any response to 

Hume’s skepticism about induction. Indeed, conclusions about the operations of the mind 

founded on experiment would themselves be subject to the general doubts that Hume 

advanced about the conclusions of inductive inference. 

 Kant never suggested an experimental inquiry into the operations of the mind. Instead, 

he claimed to deduce conditions necessary for any possible experience. The premises of such 

an argument are to be nothing more than that the mind produces experience of reidentifiable 

objects undergoing regular changes in time and in three-dimensional space. The conclusions 



of such arguments are that Euclidean geometry is true of the space we experience, that every 

event has a cause, that every sequence of causes and effects follows a general rule, and that 

the most general fundamental laws of natural science necessarily hold in the world we 

experience. Kant called such arguments transcendental. Kant took Hume’s skepticism to be 

refuted by the principles that every event has a cause and that a sequence of causes and 

effects must satisfy general laws. Moreover, the demonstration of these claims is supposed to 

be immune to Hume’s doubts about inductive inference, because the argument that leads to 

the reliability of induction is not an inductive inference or a deductive argument but a 

transcendental argument premised only on the possibility of experience. Kant thought he had 

shown, in other words, that inductive inference can he reliable for any possible course of 

experience. 

 Kant emphasized repeatedly that he retained a certain form of skepticism. What Kant 

doubted was that we could have any knowledge of how the world is in itself, as distinct from 

our knowledge of things in the world of experience constructed by our minds. Of course, 

through experimental investigations we can acquire knowledge about how external 

circumstances produce radiation on our retinas and about the correlation between our 

perceptions and those external things. But all knowledge of that kind is knowledge of things 

within the world of experience, not knowledge of things in themselves. In distinguishing 

external causes of our internal perceptions, we already presuppose that there are things, that 

they are located in three-dimensional space, and that they are subject to a causal order. All of 

these suppositions are products of the application of our minds to the data of sensation. They 

are true of the world of experience—indeed, necessarily true, according to Kant—but we 

have no reason whatsoever to believe that they are true of the world in itself. 

 Unfortunately, none of Kant’s transcendental arguments are sound. Kant in fact gives 

no direct argument that Euclidean geometry is true or is imposed by the mind on the data of 



sensation. Instead, he assumed that Euclidean geometry is true of the space of experience, 

and he further assumed that it is necessarily true (no possible experience could contradict it), 

and that we can know a priori that it is true. His argument is that his theory explains how this 

could be so: if Euclidean geometrical relations are an artifact of how we synthesize the 

manifold of experience, then all possible experience must satisfy Euclidean geometry, and we 

can be certain (Kant says “apodeictically certain”) of its truth, so we do not have to resort to 

inductive inference. Despite Kant’s claim, this is not even an adequate explanation. The 

hypothesis that in creating experience from the data of sensation the operations of the mind 

guarantee that spatial representations satisfy Euclidean geometry would explain why space is 

Euclidean (if that were true, which it is not), but it would not of itself explain the certainty 

that Euclidean geometry is true. In fact, it seems that if the mind constructs experience so that 

Euclidean geometry is true, we still have no means other than induction from experience to 

learn that Euclidean geometry is true. There are at least two senses of a priori, and it seems 

that Kant sometimes does not clearly distinguish them. In one sense, a feature of the world is 

a priori if it is due to our minds; in another sense, a feature is a priori if without induction we 

can come to know the proposition that says that the feature obtains. Even in Kant’s own 

story, Euclidean geometry is a priori in the first sense but not in the second sense. 

 Kant’s arguments for an a priori physics are given in the Metaphysical Foundations of 

Natural Science. One example will show the flavor of his demonstrations: 

Proposition 3: second law of mechanics Every change of matter has an external cause. 

(Every body remains in its state of rest or motion in the same direction and with the same 

velocity unless it is compelled by an external cause to forsake this state.) 

Proof (In universal metaphysics there is laid down the proposition that every change has a 

cause; here [in mechanics] there is only to be proved of matter that its change must always 

have an external cause.) Matter as mere object of the external senses has no other 



determinations than those of external relations in space and hence undergoes no changes 

except by motion. With regard to such change, insofar as it is an exchange of one motion 

with another, or of motion with rest, and vice-versa, a cause of such change must be found 

(according to the principle of metaphysics). But this cause cannot be internal, for matter has 

no absolutely internal determinations and grounds of determination. Hence all change of a 

matter is based upon an external cause.1 

 The physical argument just considered is at least succinct. In contrast, Kant’s 

argument for the reliability of inductive inference is very elaborate and very obscure. The 

general picture is quite simple, but how it works is neither clear nor simple. The general 

picture is roughly as follows: In synthesizing the manifold of experience, the understanding 

makes judgements. Judgments all have a logical structure. There are only a few possible 

logical structures for judgements, and they can be completely described (according to Kant) 

in a simple table (table 9.1). There are 81 distinct logical forms. Each logical form is 

determined by a value for quantity, quality, relation, and modality, and each of these four has 

three possible values. 

 Kant, I think, would have classified the judgement that necessarily, all Manx cats are 

tailless, as universal (“all”), infinite (it neither affirms nor denies a property of a particular 

thing), categorical (it is not a conditional or disjunctive claim), and apodeictic 

(“necessarily”). The classification is a version of the logical theories current late in the 

eighteenth century, of which Kant had his own. The important thing is that Kant claimed that 

with each value of quantity, quality, relation, and modality there is a corresponding concept 

of the understanding. For example, the concept of the understanding that corresponds to 

hypothetical judgements (expressed by conditional sentences) is cause. 

 When we form the manifold of experience from the matter of experience, we apply 

the concepts of the understanding to make judgements, and some of these judgements are 



hypothetical. Hypothetical judgements incorporate the concept of causality, and so we form 

the world of experience so that sequences of events (in the world of experience) make 

appropriate sentences of the form “If A then B” always true. Thus we have an a priori concept 

of causality and of necessary connection, which we do not need to form from experience but 

rather use to form experience. And the construction of the world of experience guarantees 

that the causal relations that experience presents to us in particular sequences of events can be 

generalized and will always be true. 

 What we have is a sequence of claims that together form a general picture of how the 

world of experience is constituted, why geometry and parts of physics are irrefutable by any 

possible experience, and why induction is reliable. 

 There are really two different themes in Kant’s philosophy. One is idealism: the world 

of experience is constructed by the mind, and aspects of the world of experience may 

therefore be artifacts of that construction. The other theme is transcendental argument: 

necessary conditions of any possible experience can be established by deductive arguments 

from general features of experience. Variations on Kant’s form of idealism captivated a great 

many philosophers and philosophically inclined scientists in the nineteenth and twentieth 

centuries. Despite the failure of Kant’s own attempts at transcendental arguments, many 

others have since been given. Indeed, the idea of a transcendental argument has been 

broadened to include, for example, arguments for necessary conditions of any possible belief 

from general features of belief. In one way or another, Kant’s picture posed the issues for 

much of modern philosophical thought about knowledge. In the remainder of this chapter I 

will consider some of those developments. 

CONSTRUCTIONAL SYSTEMS 

Kant held that the objects of experience are constructed or “synthesized,” but he was not at 

all clear about what they are constructed from, or how the details of such a construction could 



work. After Frege’s work, a few philosophers began to have novel ideas about what a 

“construction” or “synthesis” might be. The three most important philosophers first 

influenced by Frege were Bertrand Russell, Ludwig Wittgenstein, and Rudolf Carnap. 

Russell had an important correspondence with Frege, and Carnap went to Jena to study with 

him. 

 Russell and Carnap each proposed (at about the same time) that extensions of Frege’s 

logical theory, or Frege’s logic in combination with set theory, could be used to describe the 

construction of physical objects from the data of sensation. Russell and Whitehead developed 

techniques to carry on Frege’s logicist program to reduce mathematics to logic; Russell and 

Carnap independently thought that the same techniques could be used to give an account of 

our knowledge of the external world. 

 Russell’s idea was that with variables ranging over basic entities (the sense data) and 

with predicates denoting properties of sense data (such as red) one could define terms that 

would denote sets of sense data. Physical objects would literally be sets of sense data, or sets 

of sets of sense data, or sets of sets of sets of sense data, and so on. Similarly, higher-order 

properties of physical objects (such as the property of being a tree) would also be appropriate 

sets of sense data (or sets of sets of sense data, etc.). Russell sketched these ideas in a popular 

book, Our Knowledge of the External World, but he made no attempt to describe any logical 

details. Meanwhile, Carnap actually produced an outline of such a system. 

 Carnap’s book, The Logical Construction of the World, was published in 1929. 

Carnap assumed that the fundamental entities over which the variables of his system range 

are what he called elementary experiences. An elementary experience is all that appears to 

someone at a particular moment. In addition, he assumed one relation between elementary 

experiences is given in experience, namely the relation that obtains when one recollects that 

two experiences are similar in some respect or other. (For example, they might both be 



experiences that contain a red patch somewhere.) The construction of the world begins with a 

finite list of pairs of elementary experiences; for each pair in the list, the person whose 

experiences they are recollects that the first element in the pair is in some respect similar to 

the second element in the pair. Qualities such as color and tone are then defined as certain 

sets (or sets of sets, etc.) formed from this list. Objects are to be constructed in the same way. 

 One of the most remarkable things about Carnap’s logical construction of the world is 

that it is presented not only as a collection of logical formulas to be applied to terms denoting 

elementary experiences and the relation of recollection. Carnap also described the 

construction as a computational procedure. That is, along with each logical construction he 

gave what he called a “fictitious procedure” that shows how to calculate a representation of 

the object constructed from any list of pairs of elementary experiences. The procedures are 

perfectly explicit, and they could be represented in any modern computer language, such as 

Pascal or LISP. Carnap was the first philosopher (indeed, the first person) to present a theory 

of the mind as a computational program. The use of logical representations immediately 

suggested (to Carnap, anyway) that computation can be done not just on numbers but on 

symbols that represent nonnumerical objects. This was really Ramon Lull’s idea, and 

Hobbes’s idea after that, but in Carnap’s work it begins to look much more serious. 

 Contemporary work in artificial intelligence (AI) aims to produce computer programs 

that describe procedures that, when implemented on a computer, will produce intelligent 

behavior. Many AI workers build programs that are in the general spirit of Carnap’s 

procedures. There is even a popular AI programming language, PROLOG, that represents 

procedures as logical formulas. Such programs operate on inputs to create data structures that 

play the role of beliefs, desires, or interests and that describe objects and properties, which 

the programs infer from the data given to them. Of course, when Carnap wrote his book, 

there were no electronic digital computers, no computer programs, and no programming 



languages. Those did not begin to appear until fifteen years later. Even so, a great deal of 

contemporary work in artificial intelligence has descended from Carnap’s ideas. 

CONVENTIONALISM AND ANALYTIC TRUTH 

Kant’s goals were to put geometry and the laws of motion on an a priori foundation and in 

addition to solve the problem of inductive skepticism that Hume had posed. His strategy was 

to see the world as a system of objects, properties, and relations constructed by the mind in 

such a way that Euclidean geometry and Newton’s laws of motion are always satisfied and 

inductive inference is reliable. The problem was that Kant could not really demonstrate these 

claims. Carnap’s Logical Construction of the World gave a more detailed and clearer 

description of procedures by which features of the world could be constructed by the mind 

from simpler data. But Carnap’s work did not show (nor did Carnap claim) that our minds 

actually construct the world of experience in the way Carnap described. That would be an 

empirical claim for which Carnap had no evidence. In addition, Carnap’s construction did not 

guarantee that induction will be reliable or that the laws of motion are satisfied. So Carnap’s 

construction formed a kind of logical bridge between Kant’s project and modern cognitive 

science, but Carnap’s work did not help to fulfill Kant’s epistemological goals. For that, we 

must consider another modern line of thought, conventionalism. 

 Henri Poincaré (1854–1912) was one of the great mathematicians, mathematical 

physicists, and philosophers of the late nineteenth century. Poincaré held that Euclidean 

geometry is true a priori, and that, as Kant maintained, it is we who make Euclidean geometry 

true. But Poincaré’s account of how we make Euclidean geometry true is quite different from 

Kant’s. 

 Poincaré thought that nothing in experience could contradict geometry by itself, 

because pure geometry makes no predictions about the world. Only geometry in combination 

with physics makes predictions that can be tested by experience. Suppose, for example, that 



you wish to test the Pythagorean theorem. You might measure the two sides and the 

hypotenuse of a right triangle and see if the sum of the squares of the lengths of the sides 

equals the square of the length of the hypotenuse. But how would you measure the lengths? 

Perhaps you would use a measuring stick of some kind, laying it off against the sides and 

against the hypotenuse of the triangle. Suppose now that you do the measurements and that to 

your surprise you discover that the sum of the squares of the lengths of the sides does not 

equal the square of the length of the hypotenuse of the triangle. Must you conclude that the 

Pythagorean theorem is false? Poincaré thought not. 

 Rather than reject the Pythagorean theorem, you are free to conclude that as the 

measuring stick was moved from one position to another when measuring the sides and 

hypotenuse of the triangle, it was subject to forces that changed its length; you are also free to 

conclude instead that the triangle was not really a right triangle. If you get the imagined 

results, you are free to change physics rather than geometry. Poincaré thought that if we made 

observations inconsistent with the combination of geometry and physics, we would always 

prefer to change physics and keep Euclidean geometry unaltered. The truth of Euclidean 

geometry is therefore, in Poincaré’s view, a matter of decision, of human convention. We 

always have a choice about how to interpret observations, and we always choose to interpret 

them so that geometry is true. The reason, according to Poincaré, is that maintaining 

Euclidean geometry and altering physics as needed will keep our total system of beliefs 

simpler than would adopting a non-Euclidean geometry. We happen to prefer simpler 

systems of belief. 

 Poincaré’s account of geometrical truth reminds one of the account of logical truth 

developed from Frege’s theory. In that view, logical truths are true in virtue of our use of 

such simple parts of language as quantifier phrases (“every,” “no,” “all”) and sentential 

connectives (“and,” “or,” “not”). It is our linguistic practice that makes certain sentences 



logical truths, just as, according to Poincaré, it is our linguistic and inductive practice that 

makes geometrical claims immune to refutation. Poincaré’s explanation of geometrical truth 

could readily be extended to other kinds of mathematical truths. Philosophers influenced by 

his views offered a parallel explanation for truth in arithmetic. On this view, arithmetic is true 

because we do not allow anything in experience to contradict it. When we use a scientific 

theory and arithmetic to make a prediction that turns out false, we blame the scientific theory, 

not arithmetic. 

 Poincaré’s conventionalism provided an alternative to Kant’s account of mathematical 

truth, and it saved an important Kantian theme. For both Kant and Poincaré, mathematics is 

not founded on inductive inference and is not subject to refutation by any possible 

experience. 

 Conventionalist explanations might be extended to parts of physics as well. Might it 

not be that, like geometry, certain parts of physics cannot be tested separately but only in 

conjunction with other parts of physics? And might the parts of physics that cannot be tested 

in isolation be made true by convention, that is, by our decision not to let any unexpected 

observations count against them but rather to always put the blame for failed predictions 

elsewhere? Influenced by Poincaré, Albert Einstein argued that some determinations of 

simultaneity relations between physical events arc conventional. 

 Imagine that you are trying to determine whether two events A and B that occur in 

regions of space some distance from one another are simultaneous (figure 9.2). Light travels 

with a finite velocity. Imagine that the two events occur close enough together in time so that 

no light pulse could be sent from the place where A occurs, when A occurs, to arrive at the 

place where B occurs before or at the moment B occurs, and symmetrically, that no light 

pulse could be sent from the place where B occurs, when B occurs, to arrive at the place 

where A occurs before or at the moment A occurs. 



 One of the fundamental principles of Einstein’s special theory of relativity is that no 

causal process can move faster than light. If a light ray cannot be sent from A to B or to an 

event in the same place prior to B, then no signal of any kind can be sent from event A to 

event B. The same is true for signals from B to A. Einstein maintained that whether or not 

events A and B are simultaneous is a matter of convention. One could just as well decide to 

take any of the events between B* and B** as simultaneous with A. But certain choices about 

which distant events are simultaneous lead to a simpler system of physics than do other 

choices, and that is why, Einstein claimed, we should adopt appropriate conventions about 

simultaneity. 

 Hans Reichenback (1881–1953), Einstein’s student, developed the conventionalist 

idea still further. According to Reichenbach, the fundamental laws of motion, whether 

Newton’s or Einstein’s, are true by convention if they are true at all. The first law of 

Newtonian mechanics says that a body subject to no force will move through space in a 

straight Euclidean line with a constant speed (when viewed from an unaccelerated frame of 

reference). The first law picks out certain motions through space and time and says that they 

are the motions possible for a body subject to no force. But no experiment could contradict 

such a law of motion, Reichenbach argued. For suppose we found that when we eliminate all 

known forces, bodies do not move in straight Euclidean lines. Then instead of abandoning 

Newton’s first law of motion, we could postulate a new “universal” force that acts on all 

bodies all the time, keeping them from moving in straight Euclidean lines with constant 

speed. In fact, Reichenbach claimed, gravity is such a “universal force.” It affects everything 

and keeps bodies that are otherwise isolated from more specific forces from moving in 

straight Euclidean lines at constant speed. When Newton and Newtonians treated gravity as a 

force that disturbs bodies from their natural, unforced motion, they were exercising a 

convention, not drawing an experimentally founded generalization. Whether we use 



Newton’s laws of motion, Einstein’s laws of motion, or some other system, according to 

Reichenbach it is our decision or convention that makes the laws of motion we choose true 

and irrefutable. 

 For Kant, as for Leibniz, Hobbes, and others, analytic truths are judgements that are 

true because one concept is contained in another concept. Philosophers in the twentieth 

century influenced by the conventionalist approach gave the term “analytic truth” quite a 

different interpretation. It came to mean any sentence that is true because of the conventions 

implicit in our use of language or because of our general inductive practice about which parts 

of our theories we blame when the unexpected occurs. Logical truths thus count as analytic 

truths, according to conventionalists, and so do geometry, arithmetic, parts of physics, and 

even such everyday truths as “All bachelors are unmarried men.” 

DOUBTS 

Several of the accounts of knowledge that emerged in the first half of this century share a 

similar structure. They postulate some kind of fundamental level of appearances—whether 

Russell’s “sense data,” Carnap’s “elementary experiences,” or whatever—that can be 

described and reported. The claims of other minds, of an external world, of physical objects, 

of the objects and laws of science are connected with claims about fundamental appearances 

by means of conventions (or stipulations or analytic truths). The connections aren’t 

deductive, they are part of the very meanings of our terms for describing the world and its 

contents. Versions of this picture were developed by Russell, by Carnap, and by such 

American philosophers as Roy Wood Sellars and Clarence Irving Lewis. Elements of this 

picture are still advocated by a number of philosophers, but its central tenets were critically 

attacked in the middle of this century. 

 One challenge was to the very idea of a category of statements that provide a 

“foundation” for knowledge. The idea of a foundational class of statements is that statements 



not in this class are justified by their logical or conceptual connections to claims in the 

foundational class and, of course, by the truth of the appropriate claims in the foundational 

class. For example, Russell’s sort of foundationalism seemed to say that our claims about 

physical objects are ultimately justified by claims about sense data. The claims that we assert 

from the foundational class need no justification whatsoever: no justification is or can be 

given for my claim about how something appears to me. A number of philosophers denied 

that any such foundational class of statements exists. They acknowledged that for the 

purposes of some inquiry or for resolving some question, we might very well distinguish the 

hypothesis at issue from a class of possible sentences that could be evidence for or against the 

hypothesis. But, they argued, other considerations could always induce us to broaden or 

narrow the evidence class, or to reject some purported piece of evidence. For reports of 

appearances to be beyond the requirement of justification, there must be no way of calling 

such judgements into doubt, and the critics argued that every judgement in public language 

can he called into doubt. If you say “The cat looks black to me,” one can ask how you know 

you are using “black” correctly, how you know there is a cat before you, how you know that 

it’s you who are the subject of this experience. 

 Willard Van Orman Quine was one of the most influential critics of the 

conventionalist solutions. Quine argued that there is no mark that distinguishes claims that 

philosophers such as Reichenbach and Carnap called conventional from any other claims of 

science. There is nothing special about geometry or simultaneity or the laws of motion. 

 Quine’s argument really has two sides. First, it cannot be said that geometry or 

theories about simultaneity or the laws of motion are immune from revision. These claims 

have changed a great deal in the course of the history of science. In the general theory of 

relativity, Euclidean geometry has been replaced by dynamic non-Euclidean geometries. The 

laws of motion of the theory of relativity and of quantum theory are not the laws of motion 



that Newton postulated. Simultaneity relations according to the theory of relativity are 

different from such relations according to Newtonian theory. Just like the rest of science, the 

parts that neo-Kantians called “conventional” have been altered over time. 

 Second, Quine argued that there is no logical distinction between claims that are 

called conventional and other parts of science. The change that takes place when we alter the 

laws of motion is not a change of a different logical kind from the change that takes place 

when we alter the laws of electrodynamics. It is not true, according to Quine, that some parts 

of science are subject to refutation from experience and other parts of science are immune 

from any such refutation. If we are determined enough and ingenious enough, Quine argued, 

no matter what unexpected observations we make, we can revise science so as to keep 

unchanged any particular claim we wish. We simply have to be willing to make enough 

alterations in other parts of our scientific theories. As Quine put it, anything can he held true, 

come what may. It is true that our science is in some measure conventional, if that means our 

scientific theories are a human creation that serve a purpose, which alternative creations 

might serve as well. But it is not true, according to Quine, that the conventionality is located 

in particular parts of our system of beliefs. On the contrary, a hit of arbitrariness is diffused 

over the whole system. 

 Quine realized that we can start with conventions or analytic truths. We can introduce 

a new term as an abbreviation for a combination of old terms. But as soon as we begin to 

form generalizations and to conjecture laws that involve the new term, we create an option 

for ourselves. If a 

Quantum logic? 

Does the diffused conventionalism extend even to logic? Could we, to save our physical 

theories, literally change our principles of inference in the face of unexpected experiences? 

Quine himself was equivocal on the question, but subsequent philosophers were not. Many 



philosophers proposed that the phenomena of quantum mechanics call for a change in logical 

principles. Recall that there are physical phenomena of the following kind: An electron is in a 

box divided into two sides, the left side (L) and the right side (R). According to common 

interpretations of the quantum theory, it can happen that  Le is true and  Re is also true, 

but at the same time it is true that Le  Re. These circumstances are impossible according to 

classical, or Fregean, logic. One might think, therefore, that the remedy is to change the 

physical theory, but for many reasons, physicists are not willing to do that. A number of 

philosophers, physicists, and mathematicians have proposed that what has happened in 

quantum theory is a change in logic itself. One philosopher, Hilary Putnam, has compared the 

change in logic implicit in quantum theory with the change in geometry implicit in the 

adoption of the general theory of relativity. But a change of logic is in a sense more radical 

than any change in a particular theory. A change in logic is not simply a change in beliefs but 

a change in the consequences that one draws from any proposition whatsoever. 

counterexample to the new conjectures is produced that involves the connection between the 

original term and the new term, then rather than giving up the conjectures, we have the option 

of abandoning the definition while keeping the new term and the new conjectures. We can 

make conventions for the moment, but if they are useful in empirical science, they soon cease 

to be any different from other scientific claims. 

 Arguments such as these undermined the conventionalist road to Kant’s goals, and in 

particular to the special status of geometry and the laws of motion. 

IDEALISM, SKEPTICISM, AND RELATIVISM 

One of the unexpected effects of Kant’s philosophy was to produce a concern with the 

historical development of belief and culture. The initial source of the connection between 

idealism and history was Hegel, who thought of all of human history as a kind of Kantian 

synthesis in the mind of God, or (as Hegel called the deity) the Absolute. The synthesis Hegel 



imagined was not carried out by the categories of the understanding but by what Hegel called 

dialectic; history produces a condition and an opposing condition that works against the first, 

a thesis and an antithesis as Hegel called them, and the two opposing forces produce a 

synthesis, which then faces another antithesis, and so on. Hegel’s views have been one 

important source for the development of historicist conceptions of knowledge and truth. 

 In its boldest form, historicism is the view that the world changes as human culture 

and belief about the world change, or equivalently, that the contradictory beliefs of human 

cultures at different epoches are all equally true. For example, in Aristotle’s time there were 

final causes because Aristotle and the Greeks believed in them, but now there are no final 

causes. There were witches in Salem in the days of Cotton Mather, but now there are none. 

There are few contemporary thinkers who explicitly endorse such bold historicist claims, but 

many writers implicitly use the historicist perspective. 

 In any period there are bound to be groups with conflicting beliefs. A view closely 

related to but distinct from historicism is cultural relativism, which asserts that the beliefs of 

all human communities are equally well founded and that none are more or less true than 

others. While cultural relativism is liberal and tolerant, it also offends almost every moral 

sensibility. It entails, for example, that we should not censure those who organize their 

families differently than we, who have different religious views, or who have different 

medical practices. But it also entails that if a physician in rural Oklahoma believes that 

women of a local religious community are dying because of infection produced by 

incompetent midwives but the male elders of the religious community believe that the women 

are dying only because it is God’s will, there is no truth to the matter, and no one, neither 

physician nor religious authority, can have the better reasons. It also means that if Hitler 

caused many to believe that Jews form an inferior race, he and his followers were not less 

right or less warranted in their beliefs than were those who opposed such opinions. 



 Historicism was associated with idealism through Hegel’s influence, and the 

association of these themes continues today even among those who have never read a word of 

Hegel. Cultural relativism has many of the same sources, but it was also supported by 

twentieth-century movements in cultural anthropology. Cultural relativism seems little 

different from radical skepticism of the kind that Descartes imagined but never seriously 

entertained and that Hume thought philosophically warranted but absurd and impossible in 

practice. Recently, however, neo-Kantian replies to skeptical arguments have come to be 

widely replaced by views that are quite close to cultural relativism. Many of the arguments 

for these views have to do with psychology and the history of science. 

The History of Knowledge 

One of the striking facts about the history of science is that, judged from our present 

perspective, almost every scientific theory ever proposed has been false in some respect. 

Moreover, there are sometimes radical breaks in scientific tradition. When these breaks or 

scientific revolutions occur, new theories emerge that may postulate a different fundamental 

structure for the world or for some aspect of the world. New scientific theories do not simply 

propose novel laws for the same quantities that occur in the theories that proceed them. 

Instead, when a scientific revolution occurs, old quantities and old entities may be 

disregarded altogether—even their existence may be denied—while new laws are proposed 

that govern novel properties and entities. 

 Newton’s dynamics was about motion with respect to absolute space. In the theory 

that succeeded Newtonian dynamics, the theory of relativity, there is no such thing as 

absolute space. In relativity, a property of bodies, relativistic mass, varies with the velocity of 

the moving body. There is no such quantity in Newtonian dynamics. In the theory of heat that 

dominated the nineteenth century, heat was regarded as a fluid called caloric, and the study 

of heat was the study of the properties and motions of that fluid. There is no such fluid 



according to modern theories of heat. In eighteenth-century chemistry, combustion involved 

the loss of a chemical species, phlogiston. Much of eighteenth-century chemistry concerned 

the properties of various gases from which some measure of phlogiston had been removed. 

Phlogiston chemists called samples of light, colorless gas dephlogisticated air. In the 

chemistry of the nineteenth century and afterwards, there is no such thing as phlogiston, and 

so there is no such process as removing the phlogiston from a gas. There is hydrogen gas, and 

oxygen gas, but there is no such thing as dephlogisticated air. 

 Thomas Kuhn, a contemporary historian and philosopher whose influential book The 

Structure of Scientific Revolutions emphasized these aspects of scientific development, 

argued that changes in scientific theory constitute changes in how the world is seen. Kuhn’s 

thought was that scientists before and after a scientific revolution may literally perceive 

different entities in circumstances that might otherwise seem similar. Faced with the same 

light, colorless gas, an eighteenth-century chemist would see dephlogisticated air, while a 

nineteenth-century chemist would see hydrogen. Examining the water in a spinning bucket, a 

Newtonian scientist sees rotation with respect to absolute space, whereas an Einsteinian 

scientist sees only absolute acceleration but no motion with respect to absolute space. 

 Furthermore, Kuhn argued, revolutionary changes in scientific theory change the very 

meanings of words. There are no fixed senses to claims made in different scientific 

paradigms. When the Newtonian talks of “mass,” something different is meant than when the 

relativist talks of “mass.” Because there are no fixed meanings, scientists in different 

paradigms cannot describe their observations in neutral terms, which means that there is no 

possible empirical procedure by which advocates of different paradigms can resolve their 

differences. Phlogiston chemists and oxygen chemists could not even agree on how to 

describe experimental results, nor could classical ether theorists and relativity theorists. Kuhn 



says that the language in one scientific paradigm is incommensurable with language in a 

competing paradigm. 

 Finally, scientific revolutions change scientific method. In practice, scientific method 

in any subject consists of elaborate and often tacit criteria for good observational studies, 

criteria for experimental designs, particular statistical methods for analyzing data, and 

restrictions on the form and content of scientific explanations. Alternative paradigms differ in 

some or all of these aspects of scientific method. So even if advocates of different paradigms 

could agree on empirical premises, they would make very different inferences. 

 The radical conclusion that some philosophers have drawn from Kuhn’s picture of the 

history of science is that the world of experience depends upon variable features of human 

beings or communities of human beings. Different worlds of experience arise because of 

different conceptual schemes, and any empirical knowledge must he relative to such a 

scheme. An even stronger conclusion is that there are absolutely no normative principles that 

can or should regulate the transition from one conceptual scheme to another. Nothing can be 

said about whether one conceptual scheme was better than another or whether evidence 

warranted any historical transition from one paradigm to another over the course of human 

intellectual history. 

 In one respect, conceptual relativism can he viewed as a philosophical position that 

frees a parameter fixed in Kant’s framework. According to Kant, the world of experience is a 

function of the world in itself, which is unknown and unknowable, and what we might call 

the human conceptual scheme. The two together determine the world of experience of each 

person and guarantee their correlation. Our notions of possibility involve counterfactual 

worlds of experience, presumably those that might occur if things in themselves were 

different. The relativist framework retains the Kantian view that the world of experience is 

determined by the individual’s conceptual scheme and the world in itself, but allows the 



conceptual scheme to vary from person to person and for each person from time to time. 

Within each conceptual scheme, the counterfactual worlds of experience are those that might 

occur if things in themselves were different. Viewed in this formal way, conceptual 

relativism looks like a natural extension of the Kantian framework, but in substance, it 

represents a collapse of the Kantian solution into skepticism, in which there is and can be no 

rational basis for agreement between people committed to different paradigms or conceptual 

schemes. We will see in the next chapter, however, that even this apparently radical view of 

the human condition leaves room for normative principles about how best to conduct inquiry. 

Study Questions 

1. Does conceptual relativism entail that whatever one believes is true? 

2. What do you think that Quine would say about the doctrine of incommensurability 

across paradigms? 

3. Do you think that there is a level of description of the outcomes of experiments at 

which phlogiston and oxygen chemists would agree as to what happened? If so, what 

becomes of Kuhn’s thesis? 

AFTER KANT 

Language Games 

If the Kantian and neo-Kantian replies to skepticism fail, what reply can be given to 

metaphysical and inductive skepticism? What answer can we give to questions about how it 

can be known that we are not brains in vats, or how any one of us can know that others have 

minds, or why the results of scientific inquiry should be trusted? More fundamentally, if the 

project of giving a priori foundations for knowledge is impossible, what is there for 

philosophical inquiry about knowledge to do? 

 One line of thought in the twentieth century tries to answer these questions by 

outlawing them. They can be outlawed in either of two ways. One way is to argue that the 



questions themselves are incoherent, self-contradictory, or meaningless. This response to the 

collapse of Kantian theory was taken by the logical positivists of the 1920s, who proposed the 

verification principle, which held that the meaning of a claim is exhausted by whatever 

would verify it. The principle still has advocates, principally among philosophers associated 

with Oxford University. More elaborate attempts to dismiss metaphysical and inductive 

skepticism are based on claims that the questions violate standard linguistic practice. In the 

middle of this century John Austin argued that skeptical doubts and claims about the evidence 

of the senses involve linguistic improprieties. Peter Strawson argued that reliance on 

inductive inference is just part of the meaning of “rational,” so that no one can coherently ask 

why it is rational to believe in the results of inductive inference. More recently, Donald 

Davidson has argued that the very idea that most of our beliefs could be wrong is incoherent. 

Other arguments claim that we don’t infer the existence of an external world or of others 

minds; we simply recognize them immediately and without inference. 

 None of these responses provide very satisfactory responses to skepticism, although 

the detailed analyses of the informal logical properties of parts of language given by Austin 

are fascinating in their own right. Even if our inductive practices are part of what we mean by 

“rational,” it still makes sense to ask why we should think that these practices are reliable, 

and it still makes sense to ask why, if we are interested in coming to believe the truth, we 

should be “rational.” It certainly seems to make sense to ask how I know I’m not a brain in a 

vat. Whether or not I go through a process of inference when recognizing objects or other 

persons seems irrelevant to the skeptical challenge, which is to show that my practice or habit 

or capacity for recognizing persons and things would reliably discriminate the real thing from 

particular conceivable illusions. 

 Descartes’ question as to how he can know that he is not dreaming, or parallel 

questions about how anyone can know she is not a brain in a vat, or how anyone with a mind 



can know other people have minds, and so on, are fundamentally questions about how to 

reliably distinguish whether our beliefs are correct or illusory. Remarks about language and 

practice are attempts to show a priori in each case that one of the alternatives is impossible. 

They are near relatives to Kant’s transcendental arguments, and about as convincing. 

Primitivism 

A second contemporary approach to skepticism and the problems of knowledge, an approach 

that can best be called primitivism, rejects the concern for rational, true belief that such 

problems presuppose. The primitivist response claims that intellectuals ought not to bother 

with such questions or with trying to answer them, sometimes hinting darkly that the 

questions are not really profound or that they have hidden confusions that need not be 

detailed (e.g., there is no such thing as true belief) or even that the skeptical questions and 

responses to them indicate a kind of cultural decay. Primitivism rejects the scientific 

description of the world as a place of things, events, and processes that are in themselves 

indifferent to human concerns, and in which the emergence of human consciousness and 

intentionality constitute phenomena to be explained. Primitivism instead insists on the sort of 

anthropomorphic conception of the world that we use in our everyday lives, a conception in 

which we think of things in terms of their utility to us and others and their significance as 

symbols. In the writing of the most influential primitivist of the twentieth century, Martin 

Heidegger, primitivism tends to be associated both with a holism that denies that any 

particular sort of object can be characterized and defined, or its essence given, in any way 

that separates that kind from the whole system of Being. Heidegger’s primitivism emphasizes 

the authority of the community over the individual. Indeed, Wilhelm Dilthey, a German 

philosopher who is the source of much of contemporary primitivism and who influenced both 

Heidegger and such American pragmatists as John Dewey, suggested that individuals do not 

really exist; all that really exists is the social role an individual plays. After World War II, 



versions of these views were taken up by a number of French philosophers, notably Jean-Paul 

Sartre, Maurice Merleau-Ponty, and (less clearly) Albert Camus, whose doctrines came to be 

popularly known as existentialism. In recent years primitivism has been championed by a 

number of American philosophers, and in one version or another it has become the standard 

philosophical opinion of many scholars in the humanities other than professional 

philosophers. 

 Primitivism doesn’t have much to offer those interested in the possibilities and limits 

of knowledge, in how we must be constituted and how the world must be constituted for us to 

know the world, in the nature of reason, demonstration, or meaning, in how the phenomena 

of mind can arise in a mindless world. Indeed, primitivists do not want to offer any results 

about these topics, nor, often enough, do they want others to. 

Naturalized Epistemology 

A third response to the collapse of attempts to give an a priori foundation for human belief is 

quite different. That response is to start with whatever we think we know about the world and 

ourselves and to work backward and sideways, asking what we mean by knowledge; what the 

limits of knowledge are and are not for creatures such as ourselves; how to make a coherent 

metaphysical picture of the world, ourselves, and our interactions with the world that fits with 

our scientific understanding; and how creatures such as ourselves living in worlds such as 

ours can best achieve the goals of knowing and understanding. These projects are often called 

naturalized epistemology. Naturalized epistemology is not psychology, although it may very 

well use psychological results. Naturalized epistemology is not an empirical inquiry into how 

people learn. Instead, naturalized epistemology is partly a matter of analyzing the very goals 

and presuppositions of inquiry, partly a matter of trying to put together what we believe about 

the physical and the psychological realms into a coherent story of the human condition, and 

partly a matter of discovering how creatures such as ourselves can best conduct inquiry to 



achieve our goals. Some aspects of naturalized epistemology aren’t even particularly about 

people but instead are about norms for any possible agents that share certain features of the 

human condition, agents that might be androids or computers, for example. 

 The questions of naturalized epistemology are a mixture of vivid contemporary issues 

and traditional philosophical concerns: How does mind relate to body? Could people be 

computers? How do the phenomena of meaning work? How can and should a 

computationally bounded agent reason? How can and should such an agent conduct inquiry? 

What can it learn, and what can it not learn? Given what we think we know about the world 

and ourselves, what questions can and cannot be answered in principle? Some of these 

questions have a vaguely Kantian ring, even though no attempt is made in naturalized 

epistemology to give a priori foundations for knowledge. A hypothesis about the substantive 

assumptions concerning causal structure, space, and time that a human must make to get 

around in the physical world is not any sort of a priori proof that those assumptions are 

correct, but it has an aspect of the transcendental about it. A mathematical proof 

characterizing the class of questions that a computationally bounded agent can and cannot 

reliably discover sounds a bit like a Kantian transcendental deduction. One difference is that 

the proofs of naturalized epistemology, unlike Kant’s, are valid. Another difference is that the 

natural epistemologist doesn’t claim to have shown a priori that the world we experience 

must be such that procedures of inquiry succeed. 

 Bertrand Russell’s intellectual career illustrates the transition from neo-Kantianism to 

naturalized epistemology. Russell began his philosophical career as a neo-Kantian; his 

doctoral work was, in fact, a defence of the a priori claims of geometry in response to the 

development, in the nineteenth century, of consistent non-Euclidean geometries. Early in the 

twentieth century he focused on the problem of how, a logically powerful individual could 

“construct” the external world from sense data, that is, how he could define set-theoretic 



structures, based on possible sense data, that would play the roles of things in space and time 

and their properties and relations. Russell derided the idea of doing philosophy while simply 

assuming that there is an external world; that procedure, he wrote, has the advantage of theft 

over honest toil. By the time he wrote his last major philosophical work, Human Knowledge: 

Its Scope and Limits, Russell had decided that this kind of honest toil was work for Sisyphus. 

In this book Russell tried to characterize the assumptions about causal structure that humans 

must somehow have wired into them if they are to succeed in learning about the world as we 

believe it to be. 

 Naturalized epistemology does not provide a reply to skepticism, any more than does 

primitivist philosophy. But unlike primitivism, naturalized epistemology abandons neither 

reason nor clarity and offers a rich structure of problems, solutions, and results. In the 

remaining chapters of this book we will consider some of each. 

Review Questions 

1. Discuss in your own words the claim that the world we experience is a world 

constructed by our minds. 

2. For Kant, why must Euclidean geometry and the fundamental laws of natural science 

necessarily hold for all human experiences of the world? 

3. What is a transcendental argument? 

4. Kant rejected Hume’s skepticism but retained another form of skepticism. Explain the 

distinction between these two, and discuss why Hume’s skepticism is denied by Kant. 

5. Outline Kant’s logical structure for judgements of the understanding. 

6. Discuss the role of the concept of causality in the formation of the manifold of 

experience from the matter of experience. 

7. What is meant by the term “idealism” as used in Kant’s philosophy? 

8. Outline Carnap’s idea of a constructional system based on elementary experiences. 



9. Discuss Poincaré’s argument for the necessary truth of Euclidean geometry (now 

called conventionalism). 

10. How did Quine argue against conventionalism? 

11. Define “historicism.” Define “cultural relativism.” How are they different? 

12. Describe what you think Kuhn means by a scientific paradigm. 

13. What does Kuhn mean when he says that languages of distinct paradigms are 

incommensurable? 
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Chapter 10 

KNOWLEDGE AND RELIABILITY 

INTRODUCTION 

The challenges of metaphysical and inductive skepticism can be met in at least two different 

ways. One way is to change the conception of reliability used by Plato and Sextus. The 

Platonic conception of reliability requires that, whatever the truth may be, after a finite 

amount of evidence is obtained, we will believe the truth and know that we believe the truth. 

Another way is to loosen the connection between reliability and knowledge. The arguments 

of Meno, Sextus, Descartes, and even Hume demand that for knowledge in the actual world, 

we be able to reliably determine the truth in arbitrary imaginable worlds. But perhaps 

knowledge requires only reliability in some possible worlds, not in all imaginable 

circumstances. These are two of the most serious contemporary responses to skepticism. 

 We have already considered the Bayesian response to skepticism. Modern Bayesians 

abandon the notion of knowledge altogether, focusing instead on the notion of rational 

degrees of belief and rational changes of degrees of belief. Rather than obtaining the truth 

after a finite amount of evidence has appeared and knowing when one has obtained the truth, 

Bayesians conceive reliability as at most convergence to the truth in the limit, so that as 

evidence increases without bound, one’s probability distribution becomes concentrated more 

and more tightly around the true hypothesis. Rather than requiring that inquiry lead to the 

truth in all logically possible worlds, Bayesians allow many logically possible worlds to have 

a zero initial probability; if the truth lies in such a world, it will not be found. And finally, 

Bayesians maintains that for deliberation, decision, and action, only expected utilities matter, 

and these may be defined and computable even in the presence of skeptical hypotheses. 

 In this chapter we will consider two additional contemporary responses to skepticism. 

One involves analyzing the notion of knowledge in a novel way; the other involves analyzing 



the notion of reliability in a novel way. The novel analyses of knowledge have been 

developed almost entirely by philosophers; the novel analyses of reliability were first 

introduced by the contemporary philosopher Hilary Putnam, but they have been further 

investigated by linguists, psychologists, computer scientists, and economists. How we 

respond to skepticism turns out to have many implications for disciplines besides philosophy. 

KNOWLEDGE 

The skeptic claims that we don’t know things we ordinarily think we know very well. One 

response to the skeptic is to define “knowledge” so that it follows from the definition that the 

skeptic’s claims are false. This is a dicey strategy, because we will not be very satisfied if the 

definition also has the consequence that lots of things we think aren’t really knowledge turn 

out to be knowledge according to the definition. Nothing much is gained if we refute know-

nothingism by embracing know-everythingism. 

 Here is a nice account of knowledge, proposed by the great American philosopher 

Clarence Irving Lewis: 

Lewis’s account of knowledge Someone, s, knows proposition p if and only if (1) s 

believes that p, (2) p is true, (3) s is justified in believing that p. 

The key terms used in the analysis—“believes,” “true,” and “justified”—are all vague in one 

way or another, but the notion of justification is especially vague. If we understand 

justification in a sufficiently broad way, this kind of analysis of knowledge offers a reply to 

skepticism. We might say, for example, that we are justified in a belief if we have formed it 

in the ordinary ways through seeing, touching, hearing, or other senses. To the skeptical 

claim that we do not know that there is an external world, we can reply that we do indeed. 

For we believe there is an external world, there truly is an external world, and we are justified 

in our belief because we formed it in the ordinary ways in which people form beliefs. 



 There is something unsatisfactory about this answer. If we came to recognize for 

some reason that many of our ordinary ways of justifying beliefs were in fact wildly 

unreliable, so that false beliefs were as likely to be justified as true beliefs, we might think 

that someone whose true belief was justified only by such unreliable methods really did not 

have knowledge. Traditional skeptical arguments depend on the fact that our standard 

methods of acquiring beliefs, such as perception, are not infallible. Indeed, sometimes our 

standard methods of forming beliefs are not even close to infallible. Psychological 

investigations in the last fifty years have shown that in many contexts people’s ordinary ways 

of forming beliefs and making judgements are in fact quite unreliable. People are unreliable, 

for example, in forming probability judgements when they are given information sufficient to 

determine the right judgement according to the probability calculus. In many cases, even 

people with a good deal of experience in using statistics make predictable errors in judging 

probabilities. People are also known to be unreliable in judging certain forms of risk. Few 

people are afraid of driving in cars, while many people are afraid of flying, but driving in a 

car is much more risky. Moreover, human unreliability isn’t limited to probability 

judgements. There is a great deal of evidence that most medical experts are unreliable at 

many forms of diagnosis, that psychiatric experts are unreliable at predicting future behavior, 

and that textbook methods standardly used in the social sciences to determine causal facts are 

unreliable. In any of these cases a person using an unreliable method could claim to be 

justified in belief, but if the method used was unreliable we might question whether she really 

had knowledge, even if by chance her belief was true and even if the method was widely 

accepted and used. 

 In a short paper famous among philosophers, Edmund Gettier gave a refutation of the 

account of knowledge as justified, true belief.1 Some of his examples go like this: Suppose 

you believe that Barishnikov is in town because you have seen an advertisement for a dance 



performance; seeing the advertisement justifies your belief. But suppose Barishnikov’s 

performance was canceled because, unknown to you, the orchestra went on strike. 

Nonetheless, Barishnikov is in your town because he has a chronic health problem and your 

town is where the specialist he sees maintains a practice. According to Gettier, your belief 

that Barishnikov is in town is true, and you are justified in having the belief, but in fact you 

have no knowledge that Barishnikov is in town. 

 It is easy to produce further examples in which someone has a true belief and has 

acquired that belief by a means that we ordinarily think justifies the belief, and yet the reason 

why the person holds the belief is not the reason why the belief is true. Many people think 

that in such a state, belief is not knowledge; something is missing. Gettier’s examples 

produced a number of attempts to say what that something is. Here are a few possibilities: 

Defeasibility. Say that a true belief p that someone holds is defeasible for that person if there 

is some other true proposition such that if the person believed that proposition, she would not 

believe p. The proposal is that true beliefs that are knowledge must not be defeasible. 

Truth of reasons. For knowledge, the reasons one would give to justify a belief must 

themselves all be true. 

Causal relations. For knowledge, the circumstances justifying the belief that p must stand in 

appropriate causal relations to the truth that p and to the belief that p. 

Reliability. The belief that p must have been acquired by a process that reliably yields the 

truth. 

 There are objections to all of these remedies. The appeal to reliability, for example, 

seems to offer little aid in avoiding Gettier’s objection, since in the sorts of examples Gettier 

gives, a true belief is acquired by a method that generally is reliable and yet knowledge does 

not seem to result. 



 One of the most appealing answers to Gettier’s problem was developed in recent 

years by Robert Nozick. It also forms a response to the skeptical claim that nothing is known. 

Nozick’s idea is that one knows a proposition p if the proposition is true and if one’s belief in 

it was acquired by a method such that if the proposition p were not true, the method would 

lead one to believe p, and if p were true, one would believe p. 

 The force of the idea is that in saying that method m would lead one to believe p if p 

were false, Nozick is not claiming that the method must be reliable in every imaginable or 

logically possible circumstance. When we consider the conditions for the truth of sentences 

using subjunctives, such as “if the dancer were not in town,” we do not consider arbitrary 

logically possible worlds. Instead, we consider only those possible circumstances that we 

would expect if things were very much as they are except that the indicated circumstance of 

the subjunctive phrase (the dancer is in town) were true. Consider Gettier’s sort of example 

again. A person truly believes that Barishnikov is in town from reading an advertisement. 

Barishnikov is indeed in town, not because of the concert, which has been canceled, but for 

reasons of heath. If Barishnikov were not in town, it would be because he did not have an 

appointment with the physician. From reading the advertisement, the person in question 

would nonetheless believe that Barishnikov is in town. So the person does not have 

knowledge, and Gettier’s objection is nicely sidestepped. 

 Many objections have been offered against Nozick’s analysis of knowledge. I will 

consider just a few of them. One objection is this. On Nozick’s analysis, one can know that p, 

and also know that p logically entails q, but fail to know that q. Nozick himself welcomed 

this feature of his account. I can, for example, know very well that I am typing, since if I 

were not typing, I would not believe that I am. But that I am typing entails that I am not a 

brain in a vat, and I know that the entailment holds. Nonetheless, on Nozick’s analysis of 

knowledge, I do not know that I am not a brain in a vat, since if I were a brain in a vat, I 



would not then believe that I am a brain in a vat. Many commentators find it absurd that we 

should not be credited with knowing the known logical consequences of what we know. One 

way of fixing the analysis to meet this objection is suggested in the next set of study 

questions. 

 Another problem with Nozick’s analysis concerns reliability. Sometimes a very 

reliable method will give the truth whenever some condition is met but will give no output or 

a random output in cases where the condition is not met. There are familiar examples from 

logic and mathematics. There is a method, for example, that, when given any logical formula, 

will return “yes” if the formula is a logical truth but is not guaranteed to return anything if the 

formula is not a logical truth. The same sort of one-sidedness can happen with methods or 

strategies for forming empirical beliefs. Nozick’s analysis, however, requires something 

much stronger, something apparently too strong. It requires that the method m for resolving 

the question of whether p he a sort of decision procedure for p: it must return p if p is true and 

return the denial of p if p is not true. But if p is in fact true and we believe p and the method 

by which we formed the belief that p is reliable for positive assertions but not for denials, it 

would seem that we still know p.2 

Study Questions 

1. The problem of logical closure in Nozick’s analysis might be removed by modifying 

the analysis to say that subject s knows that p if there exists a proposition q such that s knows 

that p entails q and if s acquired the belief that q by a method m that would have led s to 

believe the denial of q if q were not true. Is it a good objection to this revised analysis that the 

notion of knowledge of logical consequence is used to analyze the notion of knowledge? 

2. The proposed analyses of knowledge in the text are more or less Socratic: knowing 

that p is analyzed in terms of a conjunction of other conditions not involving the notion of 

knowledge. Could knowing that p instead be usefully analyzed in terms of knowledge 



that___, where the blank is filled in by something other than p? Could knowing that p at time 

t be usefully analyzed in terms of knowledge of other propositions at times prior to t? 

3. In mathematical logic, definitions are often recursive. The addition of natural 

numbers, +, for example, is often defined recursively in terms of 0 and the successor function 

s on the natural numbers. (By definition, s(x) equals the number immediately following x.) 

The definition of addition is that x + 0 = x and x + s(y) = s(x + y). A recursive definition 

determines the value of a predicate or function for each object in a series in terms of some 

base case (the addition of 0 in the example just given) and in terms of the values of the 

predicate or function for succeeding members of the series. Can you use a time ordering to 

give a recursive analysis of knowledge? 

4. Nozick proposes his account as an analysis of empirical knowledge, not of 

mathematical knowledge. What difficulties would his analysis meet if it were applied to 

mathematical knowledge? 

RELIABILITY AND JUSTIFICATION 

It may be a waste of time to spend a great deal of effort on attempting an analysis of 

knowledge. Perhaps, as Bayesians maintain, knowledge isn’t really the central concept of 

human inquiry. For what ends should one want knowledge rather than merely true belief? For 

purposes of prediction or deciding action, it seems sufficient to believe truly and unnecessary 

to meet the further conditions, whatever they are, for knowing. Plato put this issue plainly in 

The Meno and answered it with the suggestion that knowledge has the further virtue of 

stability: we are less likely to forget or to change beliefs we know; we are more likely to 

change opinions concerning what we truly believe but do not know. 

Socrates: If someone knows the way to Larissa, or anywhere else you like, then when he goes 

there and takes others with him he will be a good and capable guide, you would agree? 

Meno: Of course. 



Socrates: But if a man judges correctly which is the road though he has never been there and 

doesn’t know it, will he not also guide others aright? 

Meno: Yes he will. 

Socrates: And as long as he has a correct opinion on the points about which the other has a 

knowledge, he will be just as good a guide, believing the truth but not knowing it. 

Meno: Just as good. 

Socrates: Therefore true opinion is as good a guide as knowledge for the purpose of acting 

rightly. That is what we left out just now in our discussion of the nature of virtue, when we 

said that knowledge is the only guide to right action. There was also, it seems, true opinion. 

Meno: It seems so. 

Socrates: So right opinion is something no less useful than knowledge. 

Meno: Except that the man with knowledge will always be successful, and the man with right 

opinion only sometimes. 

Socrates: What? Will he not always be successful so long as he has the right opinion? 

Meno: That must be so, I suppose. In that case, I wonder why knowledge should be so much 

more prized than right opinion, and indeed how there is any difference between them. 

Socrates: Shall I tell you the reason for your surprise, or do you know it? 

Meno: No, tell me. 

Socrates: It is because you have not observed the statues of Daedalus. Perhaps you don’t 

have them in your country. 

Meno: What makes you say that? 

Socrates: They too, if no one ties them down, run away and escape. If tied, they stay where 

they are put. 

Meno: What of it? 



Socrates: If you have one of his works untethered, it is not worth much: it gives you the slip 

like a runaway slave. But a tethered specimen is very valuable, for they are magnificent 

creations. And that, I may say, has a bearing on the matter of true opinions. True opinions are 

a fine thing and do all sorts of good so long as they stay in their place, but they will not stay 

long. They run away from a man’s mind; so they are not worth much until you tether them by 

working out the reason. That process, my dear Meno, is recollection, as we agreed earlier. 

Once they are tied down, they become knowledge and are stable. That is why knowledge is 

something more valuable than right opinion. What distinguishes one from the other is the 

tether.3 

 Modern views of the tether are different from Plato’s. The contemporary answer is 

that knowledge is necessarily associated with having a justification for belief, and with 

justification comes stability. A justification is a kind of argument. Besides promoting stability 

of true beliefs, arguments can also be used to excuse one’s beliefs to others and to persuade 

others of their truth. 

 These reasons for wanting something more than true belief are met by having 

arguments sufficient to persuade oneself if one should fall into doubt, sufficient to excuse one 

from complaints about actions based on what one believes, and sufficient to persuade others 

of what one believes. Arguments that serve such purposes may be of many sorts, depending 

on the beliefs and dispositions of whomever they are arguments for. For some people and 

some communities citing a holy book may always suffice to remind, excuse, or persuade. 

What more than truth should members of such a community want of beliefs that they know 

can be thus justified? Holy writ suffices for the devout because the devout believe it to be 

reliable. The same sort of argument is available to the rest of us: Anyone can remind himself 

of a belief temporarily called into doubt by recalling that it was acquired by a procedure he 

believes to be reliable. If recollection of one’s own history is in doubt, one may sometimes be 



able to reacquire the belief by applying such a method again. Similarly, one may excuse a 

belief to others by showing that it was acquired by a method believed to be reliable. One may 

try to persuade others of the truth of something one believes by showing them that it reliable 

method produces the same conclusion. 

 Such arguments have a common structure. They appeal to a background of beliefs that 

limit the possible alternative circumstances or hypotheses that need to he considered as 

possible truths; they appeal to a method believed to reliably yield the truth in any of those 

possible circumstances; they appeal to beliefs about evidence; and they show or claim that the 

method yields a particular result. For example, those who appeal to a holy book to decide 

some question imagine at least two alternatives: either a proposition at issue is true or its 

denial is true. They believe that a reliable method to determine the truth, whatever it may be, 

is to consult the holy hook, and they cite evidence as to what the book says. If there is 

something wrong in their procedure, it is that the testimony of the book may not he reliable. 

But not every justification involves a direct appeal to reliability. 

 Lots of justifications don’t seem to involve claims of reliability directly but do rest on 

them indirectly. A woman can justify a claim that there are giraffes in Pittsburgh by saying 

that she saw a giraffe in Pittsburgh. But on reflection it seems that justifying beliefs by 

appeals to perception has a great deal to do with showing that the belief was acquired by a 

reliable method. One need not he a grand skeptic here, or worry about the existence of an 

external world: if tests reveal the woman can’t distinguish a giraffe from a plum tree and 

there are lots of plum trees in Pittsburgh, we may conclude that her appeal to perception fails 

to establish her knowledge that there are giraffes in Pittsburgh, and, depending on subtleties 

of context, we may even deny that her claim to have seen giraffes, or the corresponding 

perceptual events, justify her belief that there are giraffes in Pittsburgh. 



 Many justifications have no immediate connection to truth or reliability. For example, 

your belief in a proposition p can be justified by showing that you learned it from someone 

else who ought to know, someone who is an accepted authority. If you formed your belief on 

good authority, whether or not the authority really did know that p is irrelevant to whether 

you are justified in your belief. Again, in court testimony and elsewhere, when professional 

engineers or professional statisticians serve as expert witnesses, they often justify their 

opinions by claiming that the opinions were obtained in accordance with accepted 

professional standards. Of course, in some cases accepted professional standards might prove 

to he quite unreliable guides to the truth, but for the purpose of the legal context, the expert 

witness need offer no guarantee of reliability to claim to he justified in her opinion. However, 

even in these cases there is a second level of justification that has to do with reliability. You 

may he justified in a belief obtained from an accepted authority, in the sense that you are 

excused from any charge that your belief was wanton, formed carelessly, or without 

foundation. But if we are interested in believing the truth, the question of the reliability of 

your authority, or of accepted professional standards, still remains and should not be avoided. 

 Philosophers of science have proposed any number of confirmation relations between 

evidence and theory, and they claim that belief in, or acceptance of, a hypothesis is justified if 

the hypothesis is confirmed by known evidence. But few of these confirmation relations have 

any connection with truth or reliability. The confirmation theories either evade a 

straightforward question or deny its presupposition: If we are interested in believing the truth, 

predicting the future, or predicting the effects of alternative actions, why should we give 

credence to hypotheses that are “confirmed” by the evidence? One idea is to try to avoid this 

question by reanalyzing the notion of truth so that the questions just posed become 

meaningless. One analysis of truth, for example, sometimes called the redundancy or 

prosentential theory of truth, holds that to claim something to be true is merely an indirect 



method of referring to and endorsing some definite proposition or system of propositions. On 

this view, “It is true that snow is white” is an emphatic way of saying snow is white. 

“Whatever John thinks is true” is merely an indirect way of endorsing whatever propositions 

John thinks (even if the person making the endorsement does not know exactly what John 

thinks). Various standard usages of the notion of truth might be thought to he unintelligible 

on this account of truth, especially the very usages that have to do with inquiry. If truth is 

simply a device for referring to and endorsing sentences otherwise described and not any 

property of sentences, then it might seem that we can make no sense of such sentences as 

“Find out the truth about the greenhouse effect,” “Find out the truth about torture and murder 

around the world.” These injunctions seem to make no sense on the redundancy account of 

truth because they do not refer to any definite propositions that are independently 

characterized by some other description; on the redundancy theory of truth, no propositions 

can be characterized simply as the truth about some issue or domain. Likewise, it seems to 

make no sense to say, “We are interested in believing the truth.” So it might seem that no 

challenge about reliability can be posed about confirmation relations. 

 Using a simple logical device, however, we can easily formulate questions about 

inquiry and reliability consistent with the redundancy or prosentential theory of truth. We 

need to use variables that range over propositions. Then we can say, “Find the propositions p 

about the greenhouse effect such that p.” “Find out the propositions p about torture and 

murder around the world such that p.” “We are interested in believing those propositions p 

such that p.” Using propositional variables and subjunctives (“if it were the case that p”), we 

can ask whatever we wish to about the reliability of a proposal for forming or changing 

beliefs, and to do so, we do not need to explicitly use the notion of truth. 

THE MATHEMATICS OF RELIABILITY 



These considerations suggest that emphasis on the analysis of knowledge and of justification 

may be unprofitable. Perhaps instead we should directly consider the notion of reliable 

methods of forming opinion. What can we discover about reliable inference? I begin with the 

twentieth-century philosopher Hans Reichenbach. Reichenbach claimed that the goal of 

science is to determine the probabilities with which events of various kinds will occur, or the 

probabilities with which certain events will occur, given that others have occurred. 

 Suppose that you flip a coin four times and it comes up heads three of the four times. 

Then the relative frequency of heads in the sequence of four flips is the number of times the 

coin landed heads, divided by the total number of flips. In this case the relative frequency is 

3/4. Suppose that you flip a coin 12 times and it comes up heads 7 of those times. In that case 

the relative frequency of heads in the sequence is 7/12. Suppose that we flip a fair, evenly 

balanced coin a number of times, and suppose that the flipping has no effect on the balance of 

the coin. The relative frequency of heads will change as we flip the coin more and more 

often. But as the number of flips grows ever larger, the change in the relative frequency of 

heads will tend to become smaller and smaller. If we flip the coin 1,000 times, we cannot 

expect that it will land heads exactly 500 times, but the relative frequency of heads should he 

very close to 1/2, and it should remain close to 1/2 if we flip the coin 10,000 times. 

 Imagine flipping the coin forever, so that there is an infinite sequence of flips. Then 

there is a corresponding sequence of relative frequencies of heads. 

H T T H H H T H T T H ... 

1 1/2 1/3 1/2 3/5 2/3 4/7 5/8 5/9 1/2 6/11 ... 

Assuming that the coin is fair and perfectly balanced and remains that way through all flips, 

the infinite sequence of relative frequencies of heads should converge to 1/2. Or in other 

terms, 1/2 should be the limit of the infinite sequence of numbers giving the relative 



frequencies. According to Reichenbach, probabilities are limits of relative frequencies. So, 

according to Rcichenbach, the aim of science is to determine limits of relative frequencies. 

 Now some infinite sequences of numbers have limits and some do not. The sequence 

1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, 8/9, ... , if continued forever, converges to 1. But the sequence 

1/2, 1, 1/2, 1, 1/2, 1, 1/2, 1, ... does not converge at all. It oscillates forever between 1/2 and 

1. So, in Reichenbach’s view, probabilities do not always exist, and therefore sometimes the 

goal of scientific knowledge cannot be achieved. But when probabilities do exist and there 

are limits of relative frequencies for events of kinds that interest us, then there is a method of 

conjecturing hypotheses that will always lead to the truth. Reichenbach called this method the 

straight rule. 

Straight rule of induction Always conjecture that the limit of the relative frequency of 

events of kind a in a sequence of events of kind b is the relative frequency so far observed of 

events of kind a among events of kind b. 

 Reichenhach’s argument that the straight rule of induction is reliable is very simple. 

Consider (1) an infinite sequence of flips of a coin, (2) the corresponding infinite sequence of 

relative frequencies of heads, and (3) the corresponding infinite sequence of conjectures 

about the limit of the relative frequency of heads by the straight rule: 

H T T H H H T H T T H ... 

1 1/2 1/3 1/2 3/5 2/3 4/7 5/8 5/9 1/2 6/11 ... 

1 1/2 1/3 1/2 3/5 2/3 4/7 5/8 5/9 1/2 6/11 ... 

The sequence (3) of conjectures according to the straight rule is the same as the sequence (2) 

of relative frequencies. If the sequence of relative frequencies converges to a limiting value, 

then so does the sequence of conjectures about that limiting value, made in accordance with 

the straight rule. Any method of conjecturing the limit of relative frequencies can converge to 

the truth only if the sequence has a limit. If an infinite sequence of relative frequencies has a 



limit, the straight rule will converge to it. Thus if any method will succeed in converging to 

the probability of an event in a sequence, the straight rule will. 

 Reichenbach called his argument a pragmatic vindication of induction. He meant 

something like the following: We can imagine that some procedures for making inductive 

inferences will work, will converge to the truth, in certain circumstances, and other 

procedures will work in other circumstances. One problem about induction is how to know 

which procedures are reliable in which circumstances, since different rules for conjecturing 

might lead to different conjectures on the same evidence. Since the straight rule is maximally 

reliable, in practice the only sensible thing to do is to form conjectures according to the 

method of the straight rule. 

 Many objections to Reichenbach’s vindication of induction concern his understanding 

of the goals of science. No real coin will ever be flipped an infinity of times, let alone an 

infinity of times without having its center of gravity altered. Why should scientists be 

concerned with the limit of an imaginary infinite sequence? 

 There are other objections as well. Suppose that we flip a coin a number of times and 

after each new flip apply the straight rule to estimate the probability of heads on a flip. Then 

we obtain, as before, a sequence of outcomes (1), a sequence of relative frequencies (2), and a 

sequences of conjectures about the limit of the relative frequency of heads in flips of the coin 

(3). If we form conjectures according to the straight rule, we are guaranteed to converge to 

the true limit of the sequence of there is such a limit. But the same is true if we form our 

conjectures according to any of an infinity of different rules. 

 For example, consider the following rule: 

Alternative rule If the observed relative frequency of events of kind a in a sequence of n 

events of kind b is r, conjecture that the limit of the relative frequency of events of kind a in 

the sequence of events of kind b is (1/n) + (n  2)r/n. 



As n becomes large, the first term in this sum approaches 0, and the second term in the sum 

(equal to r  2r/n) approaches r. So in the limit, the conjectures produced according to this 

rule converge to r, the relative frequency. If the straight rule converges to a limiting value 

when applied to a given sequence, the alternative rule also converges to the same value. The 

conjectures of the straight rule and the alternative rule will differ, but they will converge to 

the same value. Let its call any alternative rule that converges to the same limit as the straight 

rule a convergent rule. 

 For any sequence of events of kind b and any relative frequency of events of kind a in 

the first n members of this sequence, and for any number 1 between 0 and 1, there is a 

convergent rule that conjectures 1 from the first n members of the sequence. In other words, a 

pragmatic justification can he given for any conjecture one pleases on any evidence. This is a 

rather mathematical way of pointing out that Reichenbach’s pragmatic vindication of 

induction helps only in the long run but does not help at all in the short run. But, as the great 

economist John Maynard Keynes objected, in the long run, we’re all dead. 

PUTNAM’S FRAMEWORK 

About 1960 Hilary Putnam transformed Reichenbach’s frequency analysis of reliability to 

create a general framework for analyzing the reliability of methods for deciding the truth or 

falsity of any sort of hypothesis. We have already seen the basic idea in a study question from 

an earlier chapter. Imagine, for example, that we want to determine the truth or falsity of “All 

ravens are black.” To make things simple, let’s suppose that there are no difficulties in 

determining the color of any individual object we meet, and no difficulties in determining 

whether or not any object we come across is a raven. Further, let’s suppose that we can 

continue searching for ravens forever; I assume that every raven that ever exists will 

eventually be seen, even though the same raven may be seen repeatedly and even though 

there may be no time at which all ravens have been seen. After each new piece of evidence is 



collected, the scientist conducting this inquiry for us can make a conjecture about the truth or 

falsity of the hypothesis that all ravens are black. Finally let’s suppose that the scientist uses 

some rule R for forming conjectures. We can picture the setup as in figure 10.1. 

 Mathematically, rule R is simply a function from finite sequences of evidence to the 

two-member set {True, False}. What does it mean for such a rule to be reliable? Putnam’s 

criterion for the reliability of any such rule R is this: 

Putnam’s criterion In every logically possible world W in which the conditions above are 

met and for every possible order of presentation to the investigator of the individual facts in 

W, there exists some finite number of facts after which R outputs only T if the hypothesis is 

true and outputs only F if the hypothesis is false. 

In other words, the investigator eventually gets it right and sticks with the right answer. The 

difference between Putnam’s conception of reliability and Plato’s conception is that Plato 

requires that a reliable method never output T unless the hypothesis is true or output F unless 

the hypothesis is false. Putnam’s reliable learner is allowed to vacillate and change the 

conjecture an arbitrary but finite number of times. In general, we cannot say how large or 

how small finite will be. A method that is reliable in Putnam’s sense is guaranteed to arrive at 

the correct hypothesis at some time, but usually no guarantee can be given as to when that 

time will be. 

 It is easy to apply Putnam’s criterion to methods for investigating whether or not all 

ravens are black. Carl Hempel, a twentieth-century philosopher of science, proposed that a 

body of evidence E that consists of singular sentences describing the color and ravenhood of 

a finite number of objects confirms “All ravens are black” if and only if E, together with the 

assumption that nothing exists that is not named in the evidence, logically entails “All ravens 

are black.” Hempel’s analysis of confirmation can he transformed into a rule for forming 

conjectures: conjecture T if the evidence confirms the hypothesis, and F otherwise. It is easy 



to see that, in Putnam’s sense, this rule is not a reliable method for determining the truth 

value of any universal hypothesis such as “All ravens are black.” Let the hypothesis be true in 

a world with an infinity of black ravens, but let the evidence he ordered so that the 

investigator always discovers a new raven at a stage prior to discovering its color. The body 

of evidence consisting of sentences asserting for n things that they are ravens and black and 

for one other thing that it is a raven doesn’t entail (even with the assumption that nothing else 

exists) that all ravens are black. The status of the (n + 1)th raven is not settled by the evidence 

at that stage. So a scientist using Hempel’s rule could he made to change her mind infinitely 

often about the hypothesis. In contrast, Karl Popper, another influential twentieth-century 

philosopher of science, proposed that inquiry should proceed by conjecturing the most easily 

refutable hypothesis and sticking with it until efforts to refute it succeed. By Popper’s 

method, we would conjecture the truth of “All ravens are black” until (and if) the evidence 

contains a description of a raven that is not black. It is also easy to see that Popper’s method 

is reliable in Putnam’s sense for the question of whether ravens are black: If we follow the 

rule and are in a world in which all ravens are black, we will always be right in our 

conjecture. If we follow the rule and are in a world in which there is a raven that is not black, 

then eventually that raven will be put in evidence, and we will change our conjecture to F and 

be right ever after. Either way, we will always get to the correct conjecture and stick with it 

after a finite body of evidence is collected. 

 Popper’s rule is more reliable than the one derived from Hernpel’s confirmation 

theory, but Popper’s rule is defective in other respects. It can be shown that Popper’s rule is 

not the most reliable procedure that can be constructed. There is, in fact, a maximally reliable 

rule of inference, and there are problems for which Popper’s rule fails but the maximally 

reliable rule succeeds. 



 Other common methodological recommendations also turn out to reduce reliability. 

For example, some philosophers of science recommend that scientific change be 

conservative: a theory or hypothesis should not be given tip until it is contradicted by the 

evidence. Popper’s rule is conservative, but so are many others. It can be shown that, any 

conservative rule is less than maximally reliable. Another common recommendation is that 

theories should be simple, but it can he shown that various precise versions of a preference 

for simple hypotheses sacrifice reliability. 

 Putnam’s framework was discovered independently by a computer scientist, E. Mark 

Gold, and it has since been developed by computer scientists, linguists, psychologists, and 

philosophers. It forms one standard used to evaluate procedures to make computers learn, and 

it is the basis for a technique for studying language learning in children. 

 My presentation may make it seem that Putnam’s framework is rather artificial: the 

imaginary investigator gets to receive data, but he never gets to conduct experiments, the way 

real investigators do; the data the imaginary investigator receives are never erroneous, but 

real data sometimes are; every fact about the world eventually occurs among the evidence the 

imaginary investigator receives, but that may very well not be true of us; the imaginary 

investigator inquires about hypotheses in a formal first-order language, but real investigators 

usually have other formulations of their hypotheses; the imaginary investigator is given the 

hypothesis to investigate, but real human investigators often have to generate their 

hypotheses themselves; our imaginary investigator knows little or nothing about the world, 

but real investigators know a great deal. But in the last thirty years Putnam’s framework has 

been generalized so that each of these aspects of real inquiry are represented, and 

mathematical results about reliable procedures are still obtained. The framework does not 

have to be limited to hypotheses that can be expressed in a formal first-order language; it has 

been adapted so that it applies to a great variety of ways of representing hypotheses. 



Reliability can be studied over any arbitrary set of possible infinite sequences of data (the 

exclusion of some sequences amounts to background knowledge brought to the inquiry). The 

data need not be free of error, nor need the investigator be merely a passive recipient of the 

data. The hypothesis does not have to be specified in advance; instead, we can study the 

reliability of procedures that try to discover true hypotheses about a domain. Reliability can 

he studied when various restrictions are put on the learning rule. One of the most interesting 

restrictions is that the rule be computable. When that restriction is imposed, many of the 

theoretical results obtained are reinterpretations of mathematical results in the theory of 

recursion, a subject we will briefly consider in a later chapter. 

 What is the relation between the analysis of knowledge and Putnam’s sense of 

reliability? If we settle for Putnam’s sense of reliability rather than Plato’s stronger 

requirement, the force of inductive skepticism is weakened a little. From data consisting of 

particular facts, no universal claim can reliably be established in Plato’s sense, as Sextus 

pointed out. We know that universal claims can he reliably established in Putnam’s sense. 

From a logical point of view, a formal sentence can be reliably verified (that is, we will 

converge after finite evidence to saying the hypothesis is true if and only if it is true) 

provided the sentence is logically equivalent to a sentence with a string of existential 

quantifiers, followed by a string of universal quantifiers, followed by a formula without 

quantifiers. So, for example, “There exists a smallest particle” is verifiable in this sense. A 

sentence can reliably be falsified provided it is logically equivalent to a sentence with a string 

of universal quantifiers, followed by a string of existential quantifiers, followed by a formula 

without quantifiers. So a sentence is reliably verifiable and falsifiable if it is logically 

equivalent to both sorts of quantified sentences. What this means is that it is easy to think up 

claims—even perhaps claims we believe—that cannot be reliably verified or falsified in 

Putnam’s sense unless some possible worlds and data sequences are ruled out by prior 



knowledge. An example is “For every compound there exists a temperature at which the 

compound is a liquid for all pressures greater than 1 atmosphere.” But although the truth or 

falsity of such a sentence cannot he reliably decided, it may he a logical consequence of some 

sentence that can be reliably decided, or it may simply be that we are committed to prior 

beliefs relative to which the sentence is decidable. 

Study Questions 

1. Suppose that for a particular set of infinite sequences of possible data and a particular 

proposition that is true in the worlds described by some possible sequence of evidence but not 

in the worlds described by other possible sequences of evidence, there is an inference rule 

that is reliable in Putnam’s sense and that, when the inference procedure has finally settled on 

a value, it will not change. That is, suppose that the inference rule can announce that it has 

settled down. Show that there is then an inference rule that is reliable in Plato’s sense. 

2. Consider an arbitrary set S of infinite sequences of possible data and a set of mutually 

exclusive and exhaustive hypotheses. Suppose that there is a prior probability distribution on 

the evidence and data that in every infinite data sequence in S converges by Bayesian 

conditionalization to probability 1 for the true hypothesis. Show that there is a conjecturing 

rule (a function from finite data sequences to hypotheses) that is reliable in Putnam’s sense. 

3. Does Keynes’s objection to the Reichenbach’s “vindication of induction” also apply 

to results about the existence of inference methods that are reliable in Putnam’s sense? 

4. If the truth or falsity of p can he reliably determined in Putnam’s sense and p logically 

entails q, does it follow that q can be reliably determined in Putnam’s sense? 

RELIABILITY WHEN TRUTH IS RELATIVE 

There are many familiar ways in which what we say or believe changes the very truth value 

of what we are talking about. The predictions of Wall Street “gurus” may help to make their 

own predictions come true. If everyone in a community believes everyone else is going to act 



selfishly, they may all reason that it is in their interest to act selfishly as well, and so the 

beliefs come true. Some philosophers have suggested much more radical ways in which truth 

may depend on belief, so radical that people with different beliefs or different conceptual 

schemes may literally live in different worlds of experience. In that case, if two such people 

meet and dispute, there is no fact of the matter as to who is correct. 

 Philosophers who think that truth is in this way relative to something about the 

speaker—her conceptual scheme, her social role, or whatever—sometimes hold a modified 

Kantian picture of the human condition. According to Kant, there is an unknown world in 

itself that, together with the conceptual scheme fixed in all of us, determines our common 

world. According to the relativist, there are many possible conceptual schemes, and the world 

of any individual’s experience is a function of the world in itself and her conceptual scheme. 

If, through a scientific revolution, a leap of faith, or immigration, the person were to change 

her conceptual scheme, then, according to the relativist, what is true of her world of 

experience would also change. The picture is something like figure 10.2. A picture like figure 

10.2 does not imply that whatever the investigator thinks is true therefore is true. Just because 

the truth varies with her conceptual scheme or beliefs doesn’t mean that the truth varies in 

such it way as always to agree with her beliefs. 

 The picture of inquiry when truth is not relative allows us to try to satisfy two 

requirements at once: to reach agreement with one another and to reach the truth. If truth is 

relative in this way, however, we cannot ensure reaching agreement, but we can still ask 

when it is that someone can reliably get to the truth, although what the truth is will depend on 

features of the person herself. Most philosophers who have thought about relative truth have 

thought that the very idea is inconsistent with any normative standards of inquiry, but in fact 

that is not so. Indeed, the issue of reliable methods of inquiry becomes more interesting when 

truth depends on the conceptual scheme of the inquirer. It turns out that if you want to get to 



the truth of the matter about some question when the truth of the matter depends on you, and 

even depends on what you think is the truth of the natter, there are still more reliable and less 

reliable ways to proceed. 

 Let us suppose that an investigator can alter his conceptual scheme as he chooses and 

that the data he gets will depend on how the world is in itself and on the conceptual scheme 

he adopts. To make things more interesting still, let us suppose that there are alternative 

possible worlds in themselves about which nothing substantive can be known but that may 

combine differently with conceptual schemes to produce a world of inquiry from which data 

is obtained. If the investigator changes from conceptual scheme 1, say, to other conceptual 

schemes and then returns to conceptual scheme 1, he receives data that continue where he left 

off. If, therefore, he adopts a given conceptual scheme infinitely often, he will receive a 

complete set of data for that conceptual scheme. The picture of inquiry now looks something 

like figure 10.3. 

 Changing conceptual schemes may change proposition s from true to false or from 

false to true, or even make the proposition meaningless. Suppose that the investigator wants 

to have his conjectures about s converge to a truth value, true or false, that is correct. Already 

the relativist picture shows itself to be more complicated and more interesting than the realist 

picture, because there are at least three different senses that might be given to this 

convergence (see figures 10.4 to 10.6). 

 We can think of a relativistic inquiry problem as given by a set of possible worlds in 

themselves, a set of conceptual schemes, and a function that determines a world of inquiry for 

each pair consisting of a world in itself and a conceptual scheme. The worlds of inquiry are 

just like ordinary worlds from which ordinary data are presented (until the investigator 

changes the conceptual scheme). In some of them the matter under investigation, s, is true, 

and in some of them it is false (and in some of them s is neither true nor false). In addition, to 



make a relativistic discovery probIem definite, we need to specify a sense of convergence. 

Once all of these components are specified, it is a mathematical fact whether or not there 

exists a method that will reliably converge to the right truth value for s. It turns out that the 

different requirements on convergence really make a difference as to whether a question can 

he reliably answered. There are relativistic problems of inquiry that cannot be reliably solved 

if schemestable convergence is required but that can be solved if only truth-stable 

convergence is required, and there are problems that cannot he solved if truth-stable 

convergence is required but that can be solved with unrestricted convergence. 

 The difficulty of obtaining a reliable method is basically this: Any fixed conceptual 

scheme determines a discovery problem in which there are a number of alternative possible 

worlds of inquiry. That discovery problem might be unsolvable, so if the method stays with 

the conceptual scheme, it will fail to converge to the correct truth value in that conceptual 

scheme. But if the discovery problem posed by that conceptual scheme is reliably solvable, 

the investigator must return to that scheme often enough to obtain sufficient data to converge 

to the correct truth value for the hypothesis. In more vivid terms, deciding when to go along 

with a scientific revolution is a delicate matter. Given that the goal is to converge to a truth 

value for some proposition, there are better and worse methods of inquiry. When the number 

of alternative possible conceptual schemes is finite, there is a universal method, that is, a 

relativistic discovery procedure that is reliable if any method is reliable. The method is too 

intricate to consider here, but the philosophical moral is not difficult at all. Even when truth is 

relative, there are interesting and intricate epistemological norms concerning reliable 

inference. 

CONCLUSION 

In the last twenty years there have been an enormous number of careful attempts to give 

necessary and sufficient conditions for someone to know something. The analyses have 



almost all been Boolean; that is, a Boolean combination of conditions are offered as 

necessary and sufficient for knowledge. The inquiry produced no consensus and no firm 

result, although it did produce several analyses, such as Nozick’s, that seem to capture 

something important about the concept of knowledge, even if they do not provide necessary 

and sufficient conditions. 

 An alternative enterprise that received less attention from philosophers has proved 

more fruitful. That enterprise, the analysis of conditions for reliable inference, was 

inaugurated by a philosopher, but like many fruitful philosophical ideas, it spread beyond the 

confines of professional philosophy. Moreover, the investigation of conditions for reliable 

inference followed a fundamentally different course than the investigation of conditions for 

knowledge. Rather than insisting that there is one unique correct set of conditions for 

reliability, researchers entertained a variety of different notions of reliability and investigated 

the relations among them. And rather than stopping with a statement of one or another 

conception of reliability, researchers investigated mathematically the properties of methods 

that are (or are not) reliable in any particular sense. 

Review Questions 

1. State C. I. Lewis’s account of knowledge. What are some problems with the idea of 

justified belief? 

2. Give an example of the type of prototypical situation that Gettier uses to refute 

Lewis’s account of knowledge. 

3. State Nozick’s account of knowledge, and discuss how it circumvents Gettier’s 

objection. 

4. Give a definition of “convergence.” 

5. What is Reichenbach’s straight rule of induction? Cite the flaw in Reichenbach’s view 

discussed in the text. 



6. Characterize the contrasting rules for conjecture formation proposed by Hempel and 

Popper. Discuss each with respect to Putnam’s criterion for reliability. 

7. Explain why any sentence that is logically equivalent to a sentence with a string of 

universal quantifiers followed by a string of existential quantifiers followed by a formula 

without quantifiers can be reliably falsified. 
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Figure 10.1 

A scientist conjectures about the hypothesis that all ravens are black, using rule R. 

Figure 10.2 

One’s world of experience is determined by the world in itself and one’s conceptual scheme. 

Figure 10.3 



One’s conceptual scheme and the world in itself determine the data stream and hence the 

truth values of sentences under that conceptual scheme. 

Figure 10.4 

The conceptual scheme is stable. Converge to a conceptual scheme, stabilize the truth value 

of s (that is, converge to a world of inquiry), and then converge to the truth value of s for that 

conceptual scheme. 

Figure 10.5 

The truth value is stable. Stabilize the truth value of s, and then converge to its truth value. 

Figure 10.6 

Unrestricted. Permit the truth value of s to fluctuate forever, so long as you are eventually 

always right about it. 

  



Chapter 11 

MIND AND MEANING 

INTRODUCTION 

One of the fundamental mysteries of philosophy is the place we humans have in 

nature. Are we completely natural objects subject to the same laws of nature as air and 

water and apples, or are we special systems whose features—consciousness, 

deliberation, choice, feeling—are outside of the system of laws that constrain other 

objects? The sciences of biology and psychology in our time have assumed that we 

are completely natural objects whose structure and properties can be reduced to 

physics, chemistry, and computation. Philosophers and logicians helped to create the 

computational part of this scientific enterprise, while other philosophers have 

developed a variety of arguments against the very possibility of reducing humans to 

physical, chemical, and computational systems. In this chapter we will consider the 

connection of mind and body, focusing on arguments against the possibility of 

unifying humans with the rest of nature. 

 Suppose we make a list of some of the kinds of events there are in our 

everyday world: 

• Birthdays 

• Elections 

• Shopping trips 

• Being thirsty 

• Seeing chairs 

• Seeing autos 

• Believing that it is George Washington’s birthday 

• Collisions 



• Eclipses 

Birthdays, elections, shopping trips, collisions, and eclipses seem to be public 

occurrences, while events such as seeing chairs or autos or believing that it is 

someone’s birthday seem to be private. Private events have to do with a particular 

person, whoever is doing the seeing or believing. We think of such private events as 

mental. We could also make a list of the kinds of entities there are in the world. 

Again, some of them—cars, chairs, and bathtubs—arc public entities, while others—

thoughts and desires, hopes and fears—are private entities that we usually think of as 

mental. The nonmental is not a homogeneous collection. Nonmental events include 

birthdays, elections, and shopping trips, all of which are social events that could not 

occur unless appropriate mental events also occurred. Nonmental events also include 

the decay of uranium atoms, eclipses of the sun, aortic ruptures, and other events that 

we think of as physical rather than social. Nonmental entities include such physical 

objects as electrons and refrigerators, but social entities such as nations and political 

parties are also nonmental. 

 The division of our world into the mental and the nonmental raises a number 

of curious questions: What is the basis for the division? That is, what characteristics 

differentiate the mental from the nonmental? What are the relations between the 

events, states, entities, and processes of these two different sorts? Are they 

fundamentally identical in some way, so that when we understand things properly, the 

distinction disappears? Or if the distinction is genuine, are there causal relations 

between mental events and processes and nonmental events and processes? Are 

events of one sort entirely determined by events of the other sort? 

 Every answer we might give to such questions produces a great many more 

questions. If, for example, we suppose, as did Bishop Berkeley in the eighteenth 



century, that nonmental events, entities, and processes do not really exist, then we 

must ask why, if that is so, it nonetheless appears as though there are physical entities 

whose existence does not depend on thought and whose appearances seem subject to 

general laws. And, given any answer to that question, another arises: How is the 

answer, whatever it is, known to be true? Other theories in the philosophy of mind 

take roughly the same form. An answer to the fundamental questions about the 

relation between the mental and the nonmental raises further questions about the 

details of the connection and how, if at all, the fundamental view can explain features 

of our experience. Other epistemological questions arise concerning the justification 

for the claims of any theory of the mental and the physical. 

 In this chapter we will consider some of the general viewpoints about the 

relations of the mental and the nonmental, and we will focus on special problems 

about the source of meaning. Then in the two succeeding chapters we will consider 

the details of some contemporary theories of mind that hold mental states to be 

intimately connected with computational states. 

SOME METAPHYSICAL VIEWS 

One view of any entity, whether mental or physical, is provided by the image of a 

clothesline: any object consists of a substance (the clothesline) to which various 

properties have been pinned. Although the picture ignores many complexities and 

qualifications in any philosopher’s conception of things, the clothesline view of 

objects is contained in much of metaphysics from Aristotle to Descartes, and even 

after. Aristotle considered matter of different kinds as built up by applying different 

forms to other materials. The bare clothesline in Aristotle’s metaphysics is elemental 

matter. When elemental matter acquires forms (Aristotle sometimes suggests this 

occurs by mixing the four elements in various proportions), a new substance emerges 



to which other forms may be attached, and so on. (So if we want to pursue the 

clothesline metaphor, in Aristotelian metaphysics the clothes on a line may be rolled 

up and new clothes pinned over them.) Although Aristotle would perfectly well have 

recognized the distinction between mental events, processes, and entities on the one 

hand and nonmental events, processes, and entities on the other hand, he did not 

separate minds and bodies into two different kinds of fundamental substances. 

 According to Aristotle, the body and the mind (or soul, to use Aristotle’s term) 

are not two different substances. The features of ourselves and others that we call 

mental are special properties of bodies and could not exist without bodies. Aristotle 

uses an analogy from geometry: souls and mental features are not like lines and 

planes, which we think of as kinds of geometrical objects. Souls and mental features 

are like the geometrical property of being straight, which we think of as a feature of 

certain lines: “The affections of the soul are inseparable from the material substratum 

of animal life to which we have seen that such affections, e.g., passion and fear, 

attach, and have not the same mode of being as a line or a plane.”1 

 René Descartes is often credited with introducing into philosophy a 

metaphysical conception in which there are two distinct kinds of substance, one 

mental and one physical. It is as though there were two clotheslines and two different 

sorts of clothes. Clothes of one kind and only that kind, the physical properties, can be 

pinned on one of the clotheslines, while clothes of the other kind and only that kind, 

the mental properties, can be pinned on the other clothesline. In the Cartesian view, 

mental properties of mental substances can have causal relations with physical 

properties of physical substances, and vice versa. Your intention to move your arm, 

for example, causes your arm to move, and the alcohol in wine may cause the feeling 

of dizziness. Both the mental and the physical realms are subject to various 



regularities or laws. The functioning of the mental has a structure, just as does the 

functioning of the physical. (Gilbert Ryle, a twentieth-century philosopher who 

rejected almost all of Descartes’ metaphysics, described it this way: the physical 

world works like clockwork, the mental like “not-clockwork.”) 

 Descartes held that a substance can be characterized as that which can exist 

independently of other entities. Bodies can exist without minds, and, according to 

Descartes, minds can exist without bodies. In Descartes’ terminology, a mode of a 

substance is that which cannot exist unless the substance exists. Descartes held that 

there are three kinds of substance: God, mental substance, and physical substance, the 

latter two of which are combined in humans. Unfortunately for the consistency of his 

views, Descartes also held that the existence of all other things depends on the 

existence of God: if God did not exist, neither would minds or bodies. Spinoza, 

applying the Cartesian definitions consistently, concluded that there is but one 

substance, God, and that the mental and the physical are only different modes of God. 

 This picture of entities as substances with attached properties was eroded in 

the eighteenth century, especially by English philosophers. In the seventeenth century 

John Locke, a friend of Newton and Boyle, found the notion of substance puzzling 

because substances seem not to be objects of experience: one may see a chair, its 

color, its shape, feel its weight, and so on, but one has no perception of its substance. 

Locke nonetheless retained the idea of physical substance, once referring to it as “the 

something, I know not what, underlying the evident.” Early in the eighteenth century 

George Berkeley, an Anglican bishop, argued that there is no such thing as material or 

physical substance. There is a mental substance, he maintained, of which each of us is 

directly aware, and there are mental properties, ideas, of which we are also directly 

aware. But none of us are ever directly aware of anything but ideas and mental 



substance. We are locked behind a veil of ideas, but there is nothing on the other side 

of the veil. The notion of material or physical substance is only a confusion of words. 

 David Hume rejected even the hypothesis of mental substance. Recall that 

Hume held that all ideas, all thoughts, are compounded from the impressions of 

sensation, whether “inner” sensation or “outer.” Hume argued that we have no 

impression at all of anything corresponding to mental substance. We have current 

sensations, we have memories, but we have no idea corresponding to a bare entity that 

is the self. 

 What does it matter whether there is only one substance, some properties of 

which may be physical and some mental, or whether there are two substances, one 

mental and one physical, the first taking only physical properties and the second 

taking only mental properties, or whether there are no substances at all? Among other 

topics, it matters for the identity of persons. 

PERSONAL IDENTITY 

Just who you are is a matter of great personal and practical importance. You can mull 

over the senses in which you are and in which you are not the same person you were 

five years ago. Legal issues present a context in which the concept of identity is of 

central importance. Legal proceedings must establish who is now the person who did 

a crime at some earlier time, or who entered into a contract at some earlier time, or 

who was the person designated at some earlier time to receive an inheritance. In most 

cases the establishment of identity in legal contexts may present little of conceptual 

interest, but sometimes legal issues may push our conception of identity to its limits. 

Is an amnesiac who forgets everything about her past, and must relearn it all, the same 

person she was before losing her memory? Ought she to be responsible now for harms 

she did then? If someone suffers a disorder of multiple personalities and one 



personality is permanently replaced by another, does the person remain identical? It is 

a lot easier to ask such questions than to see what facts about the world could settle 

them, but they raise a fundamental philosophical question: What determines the 

identity of persons through time? 

 The traditional Western religious answer to the question is that the soul 

determines personal identity. The soul isn’t the same as the mind, or consciousness. 

Rather, it is a kind of marker, an invisible tag, attached to human beings. Captured 

wild animals are sometimes tagged so that if they are captured again, their identities 

can be established. The soul serves the same purpose, except that traditionally the soul 

is more than a marker. One can imagine that two wild bears somehow exchange 

identification tags, but that wouldn’t change the identity of the bears. It is impossible 

that two people could exchange souls, because the soul necessarily determines the 

identity of the person. 

 Evidently, the notion of a soul has some logical resemblance to the notion of a 

substance: souls, like substances, are what endures through change; souls, like 

substances, are essential to the thing they constitute. For that very reason, the 

philosophers who rejected the notion of mental substance would not be satisfied with 

the notion of soul. The reasons for dissatisfaction are much the same: No one has ever 

seen or measured a soul, just as no one has ever seen or measured a substance. 

Instruments that enhance the powers of our senses—telescopes and microscopes—

don’t reveal souls or substances. There is no scientific phenomenon that requires such 

things for its explanation. 

 If the idea of mental substance is given up, the question of personal identity 

becomes more interesting and more difficult. Consider persons at a given moment as 

collections of properties located in space-time. I am here now with all of the physical 



properties and mental properties I have at the moment I am writing this page. I was in 

Butte, Montana, in 1959, with all of the physical properties and mental properties I 

had then. What is it about those two collections of properties, one here and now and 

the other in Butte in 1959, that makes them moments of one and the same person? If 

there is no such thing as substance that establishes identity and that remains the same 

through change, what is it that makes for the identity of persons through time? The 

same kind of question could be posed about objects. If there is no such thing as 

substance, what makes an object at a moment the same object as that at some other 

moment? 

 Two kinds of criteria have arisen for identifying stages of persons as stages of 

the same person. One emphasizes physical connections between person stages, while 

the other emphasizes psychological connections between person stages. On one view, 

what determines that persons at two moments are stages of one and the same person is 

a physical continuity between the stages: one stage leads to the other by the motion 

and slow change of matter. On the other view, what determines that persons at two 

moments are stages of one and the same person is some kind of psychological 

continuity, as when, for example, the later person stage remembers being the earlier 

person stage. Each of these views must be qualified in various ways to meet obvious 

difficulties. 

 Consider first physical continuity. Starting with a wooden boat at a certain 

moment, we could replace one hoard of the boat at a time with a new board. After a 

while a boat stage would be obtained that had none of the original boards, and yet we 

would naturally think of it as a later stage of the very same boat. Suppose, however, 

that as the old boards were removed from the boat one by one, they were reassembled 

into another boat exactly like the first. Then at some moment we would have two boat 



stages, one made up entirely of new boards and another made up entirely of the old 

boards in the original boat arranged in the same way. Which of these boats is identical 

with the original boat? If the criterion is identity of constituents and similarity of 

arrangements, then it seems the second boat, the one made from the same boards as 

the original boat, is identical with the original boat. If, however, the criterion for 

identifying boat stages is the existence of a physically continuous transition from one 

stage to another, then the conclusion changes. With this criterion we would conclude 

that the original boat is identical with the boat stage consisting of new boards. Some 

philosophers suggest that neither boat is identical with the first boat: the existence of 

the two competitors for the status of being identical with the original boat somehow 

keeps either of them from being so. 

 Next consider psychological continuity. We cannot simply say that a later 

person stage is identical with an earlier person stage if and only if the later stage 

remembers being the first stage. For one thing, there are earlier stages of me that I do 

not remember. For another, people can have false memories, as when someone 

remembers being Napoleon. The first problem is solved readily enough by requiring 

that between two identical stages there be a sequence of interposed stages such that 

there is a chain of memories from the first stage to the last. The second problem is 

more difficult. We might say that it is not enough for one stage to remember being an 

earlier stage; in addition, the memory must be correct. But that requirement seems 

circular and therefore uninformative: What does it mean to say that a later person 

stage correctly remembers being an earlier person stage, other than that the later 

person stage is identical with the earlier person stage and remembers having been that 

stage? 



 One way to test how these different criteria fit our fundamental conception of 

what determines identity is to imagine some rather unpleasant experiments. Imagine 

that there is a machine that can scan and copy every molecule in your body, forming a 

perfect duplicate of you. Suppose that in the year 2000 you step into the machine and 

are duplicated. You and your duplicate are rather like the two boats. To make the 

analogy more complete, you need only imagine that the machine stays with you for a 

number of years and creates a duplicate of you from the very atoms that you shed over 

the years. So all of the various views about the identity of boat stages apply equally 

well to you and your duplicate. Your duplicate has the same memories you have, and 

so the criteria of psychological continuity does not distinguish between the the 

identity of younow and you2000 on the one hand and the identity of younow and your 

duplicate in 2000 on the other. So we have, at least in imagination, the kind of case 

about which there seem to be so many conflicting criteria of identity. 

Study Question 

If some consideration not yet entertained shows that in our usual judgement, younow 

really are identical with one of the alternatives—you2000 or your duplicate—and not 

the other, that consideration would tell us something about our concept of identity. 

Suppose that one and only one of you2000 and your duplicate made in the year 2000 

will thereafter be tortured. You get to choose now which of them it will be. What is 

your preference, and why? 

REDUCTION 

After making lists of physical properties and mental properties, one might think that 

there is some connection between the two. One might guess, for example, that mental 

properties are simply certain combinations of physical properties and that any entity 

that has a brain in a certain physical state at a certain moment will therefore also be an 



entity that has a certain thought or mental state at that moment. Or instead one might 

guess that physical properties are simply certain combinations of mental properties, as 

in idealist metaphysics of the kind we found in Kant, Russell, and Carnap. If, 

however, there are two kinds of substances, one mental and one physical, and the 

mental kind can have no physical properties and the physical kind can have no mental 

properties, then any reduction of the mental to the physical or of the physical to the 

mental seems clearly impossible. Without distinct substances, new possibilities 

emerge, and many of the most fundamental controversies in Western thought since 

the seventeenth century have turned on which of these possibilities is correct. 

 Thomas Hobbes presented a quite different view of mind from other English 

writers of the seventeenth century. Hobbes held that reasoning and judgement are 

forms of computation. The corpuscles of the body may serve as special counters, like 

the counters of an abacus. The states of these counters have a symbolic role: they refer 

to or represent something in the external world. Mind is matter that functions in a 

special way. This view was given a direct endorsement in the eighteenth century by 

Julien La Mettrie, who claimed that humans should properly be understood as 

machines. It would follow that mental states, processes, and events are physical 

aspects of physical systems. Everything mental could be reduced to something 

physical. The reductive relations would not simply be causal; it wouldn’t be, for 

example, that physical events in the brain cause thoughts. Rather, on the reductionist 

view, special physical events in the brain just are thoughts. 

 The reductionist idea, sometimes called materialism or physicalism, gained 

enormous ground with scientific developments in the nineteenth and twentieth 

centuries: The chemicals of life were found to obey the very same laws as inorganic 

chemicals. Some animal behavior that seemed purposeful was found to be produced 



by simple chemical mechanisms. Phototropism in moths, for example, was found to 

be due to a chemical reaction in the nerve cells, so that when one eye of a moth was 

blinded, rather than moving toward a light, it would pivot in a circle. Many people 

supposed that as science progresses, we will find that we are like very complex moths, 

and that our purposeful, apparently rational, goal-directed behavior is the result of 

intricate but purposeless mechanisms inside us. Even so, a large philosophical 

literature has developed arguing that no reduction of the mental to the physical is 

possible. Let’s consider some of the arguments against the possibility. 

The Intensional and the Extensional 

Franz Brentano, a nineteenth-century philosopher, insisted that a distinguishing mark 

of mental events is that they have a special sort of content. They are directed at an 

object or circumstance from a particular aspect, and the aspect is crucial. Brentano’s 

thought was forceful but not especially precise, and some twentieth-century 

philosophers have offered logical revisions of his claim. They depend on some 

features of logic that are thought to be true of the language of physics but not true of 

the language of mind. 

 Let F(i) be a formula in a logical system such as Frege’s, where i is the name 

of an individual. Then from F(i) and i = k, it follows deductively that F(k), for any 

name k. Formal languages with this property are sometimes said to be extensional. In 

an extensional language the truth or falsity of a claim about an object doesn’t depend 

on how the object is named or described. Some parts of ordinary language don’t seem 

to be extensional. Consider, for example, sentences about what someone desires or 

fears or hopes or believes. It might be true that Sam likes seeing the morning star and 

false that Sam likes seeing the evening star. But the morning star and the evening star 

are the very same object, the planet Venus. Phrases such as “likes,” “believes,” 



“fears,” and so forth are said to create itensional contexts. Substitution of names or 

descriptions for identical objects in intensional contexts can change truth values. 

 An argument to the conclusion that the mental cannot be reduced to the 

physical goes like this: 

Premise 1: The language of physics is extensional. 

Premise 2: The language of mind is intensional. 

Premise 3: For the mental to reduce to the physical, all true claims in the language of 

mind must be entailed by true claims in the language of physics plus definitions. 

Premise 4: No addition of definitions to an extensional language can create a 

language with intensional contexts. 

Conclusion: Therefore, the mental cannot be reduced to the physical. 

The argument is valid, and the only questions concern the truth of its premises. I will 

focus on premise 4, although premises 1 and 3 might also be challenged. Assume that 

we have an extensional language L for stating physics. Let’s consider the problem of 

giving a physical account of the sentence “Sam likes the morning star.” If we add to L 

the predicate “likes,” a reduction must find some formula in physical language, call it 

(x, y), that holds whenever object x likes object y. But the argument shows that no 

such equivalence is possible. 

“likes(Sam, morning star)” 

is true, and 

“likes(Sam, evening star)” 

is false, even though “morning star = evening star” is true. So whatever  is, it would 

have to satisfy 

(Sam, morning star), (Sam, evening star), 



and “morning star = evening star.” These conditions violate the assumption that the 

physical language L is extensional. 

But suppose that the reduction took a slightly different form. Instead of a two-place 

predicate “likes,” consider a three-place predicate Likes(x, y, z), where z represents a 

particular description or physical aspect of an object. In the example, 

Likes(Sam, Venus, “morning star”). 

Notice that the third position is taken not by a name of Venus but instead by a name 

of a name of Venus. So it is true that 

Likes(Sam, Venus, “morning star”) 

and false that 

Likes(Sam, Venus, “evening star”) 

and irrelevant that evening star = morning star. Extensionality is satisfied. (In this 

example, instead of using a linguistic object in the third position of “Likes,” we could 

use an angle, or range of angles, between Sam, Venus, and the Sun.) 

 Perhaps we can always reduce an intensional language to some extensional 

language by introducing extra places in predicates. Until there is a proof that this 

cannot be done, the logical argument against reduction is incomplete. 

Functionalism, Physicalism, and the Cartesian Fallacy 

Another influential argument against physicalism can be given informally. The 

argument is that a creature could be in a mental state such as believing or hoping or 

fearing even if the creature had a very different physical constitution from us. The 

creature’s biology might be based on a silicon chemistry rather than a carbon 

chemistry, it might use deuterium oxide instead of water, and so forth. But we can at 

least imagine that such a creature has the same sorts of inner experience we do and the 

same dispositions to act that we do when we believe or fear or desire something. In 



such imaginary cases we ought to say that the creature has the corresponding mental 

states. But since a creature could have the same mental states we do without having 

the same physical structure we do, mental facts cannot be reduced to physical facts. 

 In the last thirty years, versions of this argument persuaded some philosophers 

to think that mental states should be viewed as functional states and that functional 

states are necessarily something quite different from physical states. Functional states 

are supposed to be causal features or dispositions of a system to produce a certain 

output from a certain input and to have nothing to do with the material composition of 

the system. So the imaginary silicon creature could be in the same functional state as a 

human, even though the two have quite different physical compositions. 

 The argument has two flaws. One of them is an overly narrow conception of 

physics, and the other is a common equivocation over the notion of possibility. The 

first flaw is very simple. Many of the fundamental notions of physics are functional. 

Consider the fundamental objects of simple mechanics: the lever, the pulley, the 

inclined plane. What makes something a lever or an inclined plane is a certain 

function the thing can perform. not its chemical constitution. An inclined plane can be 

made of ice, of steel, or of wood. The same is true of many other physical notions. 

Chemical composition is not what makes something a planet. So the opposition 

between physicalism and functionalism is spurious. 

 The second flaw in the argument is more interesting and more important, 

because it uses ideas that occur quite frequently in philosophical disputes. It may in 

fact be among the most common fallacies in philosophical writings about the mind. 

The first idea is this: 

(1) Imagination is the test of possibility. Whatever can be consistently imagined is 

possible. 



The argument against physicalism combines this idea with another: 

(2) If two properties are identical, they are necessarily identical. In other words, 

the properties are identical in all possible circumstances. 

Principles 1 and 2 provide a spurious strategy for proving that property f cannot be 

identical with property g: just imagine a circumstance in which something has f but 

not g or a circumstance in which something has g but not f. We have already met 

principle 1 in Descartes’ arguments. The principle is correct if we are talking of 

logical possibility, the sort of possibility we consider when we ask whether a 

purported proof is valid. But scientific claims (as distinct from proofs) usually involve 

a narrower conception of possibility, in which principle 1 is false. For example, 

modern science holds that it is not possible for a massive body to be accelerated from 

a velocity less than that of light to a velocity greater than that of light, but such an 

acceleration is certainly thinkable. Again, modern science holds that water is the 

compound of one atom of oxygen and two atoms of hydrogen, but it is certainly 

imaginable that water is, say, the compound of one atom of oxygen and one atom of 

hydrogen. Early in the nineteenth century the father of the modern atomic theory, 

John Dalton, believed that very thing. (The scientific conception of impossibility is 

undoubtedly vague. It means roughly the following: try as you will with whatever 

resources, such a thing will never come about; it is a law of nature that it will not 

come about.) When we consider the question of the identity of the mental and the 

physical or the reduction of mental properties to physical properties, this second 

scientific sense of possibility is involved, not the wider sense of logical possibility. To 

show in this sense that it is possible for creatures with different chemical 

compositions to be in mental states such as ours, it is not enough to imagine creatures 

who experience as we do but have a different chemical composition. For all we know, 



it may be a law of nature that no object can have the sort of experience we have unless 

it has the sort of chemical composition we have. 

 The moral is that we should not argue about scientific identifications through 

imaginary cases unless there is good reason to think that the cases imagined could be 

realized consistently with physical law. Of course, in many cases good reasons will be 

available, and then there is nothing wrong with arguing by imagination. 

Study Questions 

1. Find some other examples of scientific properties that are identical to one 

another. 

2. Is principle 2 correct? 

WHAT ARE MEANINGS? 

Issues about minds are closely connected with issues about meaning. The 

phenomenon of meaning is of special philosophical interest because meanings seem 

so central to what it is to be a sentient, rational creature, and yet at the same time the 

nature of meaning is elusive. Meanings are supposed to be whatever it is one has a 

hold on when one understands a concept, statement, or rule. One of the things that 

distinguishes humans from rocks and even from computers is that humans understand 

concepts, statements, and rules. We grasp meanings. Things without minds don’t 

grasp meanings. Things without minds may behave in ways that can be described by 

rules, but they don’t apply rules. A rock doesn’t apply the law of gravity when it falls, 

but a person applies a rule for addition when figuring out the sum of ten numbers. 

What is it that we grasp when we get the meaning of a rule, a claim, or a word, and 

what is it to mean something or to understand what something means? We will 

consider several influential and interesting ways of approaching these questions. 

Truth Conditions 



Frege’s philosophy of language distinguished between the sense and reference of a 

thought, or as we might say, between the meaning and the truth value of a proposition. 

Twentieth-century elaborations of Frege’s view place the speaker in a system of 

relations with other speakers and the world and focus on a relation of reference or 

denotation between thoughts or utterances and objects or features of the world. The 

views I describe in the next few paragraphs were developed by several philosophers, 

but most forcefully by Alfred Tarski in the first half of the twentieth century and by 

others subsequently. 

 Here is the picture: Names denote particular objects, as “George Bush” 

denotes George Bush. Predicate terms such as “red,” “male,” “leader of a nation” 

denote properties or relationships. So “male” denotes a property that George Bush 

exemplifies. The relation of denotation determines the conditions for the truth or 

falsity of claims. The facts determine whether these conditions are met. So, for 

example, the sentence “George Bush is a male” is true if and only if the object 

denoted by this use of the term “George Bush” has the property denoted by this use of 

“male.” That is, “George Bush is a male” is true if and only if George Bush is a male. 

This sort of statement of a condition for the truth of a sentence sounds rather trivial, 

but if we understand the words in quotes as arbitrary symbols and if we also 

understand the unquoted words as we ordinarily do, then the statement says 

something. It gives the condition (in English) for the truth of the quoted sentence. The 

truth condition only appears trivial because the quoted sentence is already in English. 

But if it were in French, the truth condition would more clearly provide some 

information: “George Bush est un male” is true if and only if George Bush is a male. 

 What makes words or phrases denote the particular individuals or properties 

they do? One standard answer is that thoughts, words, and phrases get their 



denotations from the causal relations in which speakers find themselves. Our uses of 

“George Bush” denote George Bush because George Bush’s mother named him 

“George Bush” and because she told him that his name is “George Bush” and so, 

through newspapers and television and through talking with other people, we who 

have never laid eyes on George Bush come to know and use his name. This account is 

very sensible, but it leaves at least one mystery: What did George Bush’s mother do to 

cause him to be named “George Bush”? Naming someone or something seems to 

require a certain intention on the part of the namer; something had to make it the case 

that Bush’s mother was naming George, rather than naming something else (his crib, 

for example), and rather than not naming anything at all (as if she had muttered, “(By) 

George, (I’m) bush(ed)”). We don’t as yet have any causal analysis of intending; 

some philosophers claim we never will. 

 Whatever constitutes the denoting relation between words and the world, on 

this view of meaning, what one has when one grasps or understands a concept, rule, or 

phrase is a knowledge of some aspect of the denoting relation. You understand one 

sense of the English word “male” because you know that one kind of occurrence of 

“male” denotes the property of being male. You understand another sense of “male” 

because you know that another kind of occurrence of “male” denotes the property of 

being the convex half of a concave-convex coupling device. Similarly, you 

understand a sentence such as “George Bush is male” because you know the condition 

for its truth. Clearly, you can know the truth condition for a sentence without knowing 

whether the sentence is true, or in Frege’s terms, you can know the sense of a 

sentence without knowing its reference. 

 Many philosophers have complained that the analysis of meaning through 

truth conditions isn’t very illuminating. The analysis tells us that we can know the 



truth condition for a sentence of our own language only if we already know the 

meaning of another sentence that looks just like the sentence whose truth condition is 

being given. The truth condition for “George Bush is male” makes essential use of our 

understanding of the meaning of “George Bush is male.” Truth conditions may 

provide a good technique for translation from one language to another, but meanings 

can be acquired even by someone who speaks no language at all. Imagine for a 

moment trying to teach someone who speaks no language at all, a child, to understand 

English by giving the person truth conditions for English sentences. Suppose the child 

is willing and intelligent and learns all of the truth conditions by heart. Even so, the 

child won’t have a glimmer of how to use English sentences, and she won’t 

understand their meanings. 

 About 1960 Willard Van Orman Quine produced an argument against truth-

conditional theories of meaning. Quine’s argument concluded that if meanings are 

truth conditions, there are no meanings. Quine’s argument began with the case in 

which a truth conditional analysis of meaning seems most informative: the case of 

translating sentences in one language into another language. Assume that we are 

translating the language of a people we know almost nothing about; suppose to start 

with that we understand their words for affirmation and for denial, but nothing else. 

Then, Quine claimed, no matter how much we study their behavior, no matter how 

much evidence we gather about what they say in various circumstances, we will not 

be able to construct a unique translation manual from their language into ours that 

gives English truth conditions for the sentences of their language. Quine maintained 

that this sort of “radical translation” always allows alternative translations that are 

incompatible with one another. For example, Quine argued that if we were to find that 

the people we are studying seem to apply the word “gavagai” to rabbits, then 



“gavagai” could be translated as rabbit or equally well as “undetached rabbit part.” It 

must be admitted that Quine’s examples of this sort of underdetermination of 

translation by behavior are not particularly shocking or even interesting. But from this 

claim, Quine infers that since not even all possible observations of behavior would 

determine the correct translation, there is therefore no correct translation and no 

correct set of truth conditions in English for the sentences of the people’s language. 

We should then apply the same conclusion to ourselves, Quine claimed, and conclude 

that there are no conditions in English that give the requirements for the truth of 

English sentences. 

Study Questions 

1. Suppose that a defender of truth conditions as analyses of meaning were to reply 

that the imaginary case of a child who speaks no language and who memorizes 

English truth conditions is not really a counterexample to the claim that understanding 

a language consists in knowing the truth conditions of its sentences. For, the reply 

continues, the child doesn’t understand the truth conditions it is taught to memorize, 

and therefore, even though it knows how to repeat utterances that sound like 

statements of the truth conditions, the child doesn’t really know the truth conditions. 

What do you say in response to this reply? 

2. Another objection to the analysis of meaning by truth conditions is that notions of 

meaning also apply to sentences that aren’t declarative. “Close the door!” is a 

sentence that means something, but it isn’t true or false and doesn’t have a truth 

condition. How might the meanings of imperative sentences be analyzed at least in the 

spirit (if not the letter) of truth-conditional analyses? 

3. “Juliet is the sun” is a metaphor from Shakespeare. Explain some of the 

difficulties metaphors present for truth-conditional analyses of meaning. 



4. Quine’s argument seems to require the assumption that nothing can be true of 

people unless its truth can be determined (at least in principle) from observations of 

their behavior. This view, championed by Quine’s colleague of many years, the 

psychologist B. F. Skinner, is often called behaviorism. What can be said for and 

against this idea? 

Meaning as Use 

A quite different approach to meaning was advocated by Ludwig Wittgenstein. 

Wittgenstein was an Austrian who turned to philosophy while studying engineering in 

England. He first wrote a celebrated book defending a version of the truth-conditional 

approach to meaning. In Wittgenstein’s early view, simple facts in the world join 

individuals, properties, and relations, and more complex facts are formed by Boolean 

combinations of simple facts. The structure of facts is isomorphic to the logical 

structure of language. A sentence is true if the corresponding facts obtain. Toward 

midcentury Wittgenstein completely rejected his earlier view and wrote a number of 

works advocating a different approach to meaning, which has become very 

influential. Wittgenstein’s later writings are notoriously allusive and unsystematic, 

and his followers and critics have argued at length about what he was saying. The 

view we will consider mixes Wittgenstein’s themes with those of a number of other 

philosophers. 

 The idea is this. Understanding a phrase or sentence is knowing how to use it. 

Knowing how to use a phrase such as “red apple,” for example, is knowing that the 

term applies to paradigm examples of red apples, knowing that it doesn’t apply to 

green figs, being able to make standard inferences in language involving “red apple,” 

and so on. For example, someone who understands the English “red apple” is able to 

infer that a red apple is a fruit, that red apples are not usually painted red, and that 



apples grow on trees. There is no single analysis of terms nor a single truth condition 

for a sentence. Instead, there is a range of applications and nonapplications, contexts 

where the sentence is appropriate to utter and contexts where it is not, and inferences 

to be made using a phrase or sentence. This much of Wittgenstein’s doctrine seems 

like good sense, and many philosophers have adopted some version of it. 

Nevertheless, the view naturally raises many unanswered questions: Are some 

applications of a word more central to its meaning than others? Are some inferences 

more important than others? If so, which and why? I won’t attempt to answer these 

questions here. 

 Another doctrine is associated with Wittgenstein’s name, although whether he 

actually endorsed it is controversial. The doctrine is that there is no such thing as the 

meaning of any part of language or any act of speech or expression. There are no 

meanings. Nothing means anything. The argument for this apparently absurd 

conclusion goes as follows:2 

Premise 1: Meanings, if anything at all, are normative. They constitute partial rules or 

standards for correct and incorrect uses of language. If someone systematically 

violates these standards in his use of some phrase, we say that he does not know the 

meaning of the phrase. If, for example, someone sincerely says “Two plus two is 

five,” we conclude that he does not understand the meanings of his words. Norms are 

about what ought or ought not to happen or to be done. One ought not to say “Two 

plus two is five.” Norms are not about what actually does happen: perhaps some 

people do say “Two plus two is five,” and in any case, everyone sometimes makes 

errors in addition. 



Premise 2: Nothing about what actually exists or about what used to exist entails 

anything about what ought to exist. Hume makes this point in his discussion of 

morals: 

In every system of morality, which I have hitherto met with, I have always remark’d 

that the author proceeds for some time in the ordinary way of reasoning, and 

establishes the being of a God, or makes observations concerning human affairs; 

when of a sudden I am surpriz’d to find, that instead of the usual copulations of 

propositions, is, and is not, I meet with no proposition that is not connected with an 

ought or an ought not. This change is imperceptible; but is, however, of the last 

consequence. For as this ought, or ought not, expresses some new relation or 

affirmation, ’tis necessary that it shou’d be observ’d and explain’d; and at the same 

time that a reason should be given, for what seems altogether inconceivable, how this 

new relation can be a deduction from others, which are entirely different from it.3 

Inference: Therefore, absolutely no statement of any fact about what exists or did 

exist entails that any usage is erroneous or incorrect in the sense of failing to accord 

with a norm or standard. 

Conclusion: Therefore, absolutely nothing makes errors of usage errors. Our 

individual or collective dispositions to use words in a certain way do not themselves 

entail norms of usage; we as a community just happen to say on particular occasions 

that some usages of words are incorrect and others are not. But our saying so is a bare 

fact, and there isn’t any property of a speaker, the world, or the speaker’s audience 

that makes a sentence erroneous or otherwise inappropriate. There isn’t, in other 

words, any such thing as a meaning that constitutes a norm or standard of usage. 

 Almost no one believes the conclusion of this argument. So where is the 

fallacious inference or the false premise? Many philosophers would reject the 



inference of (3) from (2), and some would reject (2) altogether. They would say, for 

example, that one of the things that might exist in the world is a norm or standard at a 

particular time, and a norm may very well entail that a particular action violates the 

standard. For example, there is in fact a norm about how “plus” is to be used, and that 

norm entails which possible uses of “plus” in addition are correct and which are 

incorrect. The argument overlooks the possibility that meanings are among the things 

that exist. 

 Almost everyone would reject the conclusion that nothing means anything, but 

arguments of this sort can be turned around. From the spirit of Hume’s observation 

that statements about what there is (other than norms) do not imply statements about 

what ought or ought not to be, the observation that meanings are norms, and the banal 

conclusion that people really do mean things by their words and thoughts, it seems to 

follow that the notion of a person cannot be reduced to any structure of physical or 

functional relations. By the very fact that they mean something by their words and 

thoughts, persons instantiate norms, and norms are not reducible to physics or to 

function. We can put this backward argument this way: 

1. Meanings are normative. 

2. Thoughts have meanings. 

3. Nothing physical or functional has normative attributes. 

4. Therefore, thoughts are not physical or functional. 

 Is the possibility of reducing mental phenomena to physical or functional 

phenomena and structures thus refuted? Let me distinguish among four things, any of 

which may be connected with the notion of meaning: 

1. In use, words may denote objects and properties. Although the physical details of 

the denoting relation are complex and generally not known to us, of itself, denotation 



is supposed to be some relation (like floating or dissolving or being between) that 

aspects of the world stand in. Whatever denoting may be, there is nothing normative 

about it. 

2. Some utterances may be true, and some false. We may prefer that people speak 

the truth (sometimes), but because of the denotation relations of their language, 

whether they do speak the truth or not is a mater of fact, not a matter of norms. 

3. There are approvals or disapprovals of usages. You may disapprove of how I use 

the word “or,” which, because I am from Montana, is a little nonstandard. (Like many 

other Montanans, I would say “Butte or Missoula are in Montana.” whereas standard 

English is “Butte and Missoula are in Montana.” My usage can be understood in this 

way: pick either one, Butte or Missoula; no matter whether you pick Butte or 

Missoula, it’s in Montana.) Disapproval is a natural attitude, and no reason has been 

given in the preceding argument to believe that it is impossible to give physical or 

functional reductions of disapproval. 

4. There might conceivable be norms of usage that are distinct from facts of 

approval and disapproval and also distinct from facts of denotation and truth. Because 

of what words in fact denote and what the truth values of sentences are, over and 

above all this, some usages might be wrong. In saying that a usage is wrong in this 

sense, we are not claiming just that what is asserted is not true or just that what is 

asserted is disapproved of by other speakers of the language. In this sense, a speech 

act might be logically wrong even though what it asserted is true and even though no 

one disapproved, or was disposed to disapprove, of the act of speech. 

 Now the antireductionist argument establishes only that the fourth aspect of 

meaning cannot be reduced to physics or function. But the fourth aspect seems 

gratuitous and quite unnecessary for our understanding of the notion of meaning. 



Suppose that someone did a mathematical calculation and that because of what her 

mathematical symbols denoted, the outcome of her calculation was false. We would 

ordinarily say that she made an error, a mistake, and that sounds normative. Even if 

no one else caught her mistake, ever, we would still say that an error was made. But 

that does not mean that the notion of meaning requires some norm that we now know 

is not a matter of physics or function. When we say that she made an error, we mean 

that she intended to obtain the true result and did not do so. We do note mean that she 

failed to abide by some supernatural norm. We can understand the phenomena of 

meaning very well without the fourth aspect. So the argument that the phenomenon of 

meaning demonstrates the impossibility of physicalism or functionalism seems 

inconclusive. 

Study Question 

Reconsider Boole’s difficulty with the fact that people make errors of reasoning. 

THE PRIVATE-LANGUAGE ARGUMENT 

I began this chapter by contrasting private phenomena, the mental, with public 

phenomena, the nonmental. That very contrast assumes that each of us has features of 

his or her experience over which he or she has authority. You are the final authority 

on whether you are in pain and on whether something tastes and looks to you like 

what you call a tomato. Of course, other people might have very good evidence that 

you are in pain or, knowing you very well, might be very good judges of whether 

something tastes and looks to you like what you call a tomato. But were there to be 

conflicting opinions, your judgements of your private experience are authoritative, 

and others’ judgements defer to yours. Not only does this picture of things seem 

natural, it also seems to be morally important. If it were not true, a great deal of the 

notion of individual autonomy would be lost. 



 That the mental can be private seems to entail that there is a part of language 

that can be used to name and describe features of experience, and you are the ultimate 

authority for the correct use of that language. Wittgenstein’s most famous argument is 

that no such language is possible. Some commentators on Wittgenstein have given 

very lengthy reconstructions of Wittgenstein’s argument, but I do not believe these 

reconstructions clarify it very much or improve on a fairly simple statement of the 

idea. Here is a version of the argument that is not a quotation from Wittgenstein: 

 Let us agree that by a “private language” we will mean a language used by a 

person for which she is the sole authority about correct usage. For there to be a 

language, there must be meanings. Meanings are normative and determine standards 

for correct and incorrect use. Now a standard, norm, or criterion for anything is 

something at least possibly distinct from that thing, something against which the thing 

can, ideally, be measured. The standard for someone’s correct usage of a phrase or 

sentence cannot be just the mere fact that the person used the phrase or sentence. 

There must be something other than the mere use that provides the standard. But were 

there such a thing as a private language, the actual use of the speaker of that language 

would be the standard for use, no matter what the person might say. Hence there can 

be no private language. 

 The argument is engaging, and it captures a real tension in the notion of 

private experience. On the one hand, we think of private experiences as objective, 

about which someone can be right or wrong in describing. On the other hand, we 

think of private experiences as like conventions or stipulations in that whatever the 

speaker decides to say of her private experience counts as the truth. We cannot have it 

both ways. 



 There are at least two lines of reply, according to which side of the tension one 

prefers to endorse. One reply is to insist that sometimes a standard and what it is a 

standard of can be one and the same. A professional baseball umpire once replied to a 

protest over a called strike, “It ain’t nothin’ until I call it.” And while his remark is not 

true of pitches in general, it was indeed true of the particular pitch in question. It was 

the umpire’s saying “strike” that made the pitch it strike. The disadvantage of this 

reply is that it seems to concede that no facts can be reported in a private language 

that are facts independent of the report. 

 A second reply to the private-language argument is that it person’s authority 

over his own utterances need not rest simply on the fact that he uttered them. The 

words of the speaker of a private language denote features of her experience, and in 

virtue of what that experience really is, the statements of the speaker are true or false. 

So she could be wrong in what she says. She is the authority about her own usage of 

her own private language not because she is necessarily infallible but because she is 

the most reliable judge of correctness. No one else has access to her evidence about 

what she experiences. This reply allows that it is imaginable that circumstances could 

arise in which you are no longer the authority about usage in your hitherto private 

language. We could imagine, for example, that neuroscience becomes so detailed and 

so powerful that by monitoring your brain, it can determine how things appear to you, 

and that this determination is more reliable than even your own testimony. Some 

philosophers have accordingly reformulated Wittgenstein’s thesis as the claim that 

there could not exist a necessarily private language. But this way of putting the issue 

equivocates over the notion of possibility in a way we have seen before. In the vague, 

scientific senses of “possibility” and “necessity,” neither Wittgenstein nor anyone else 

is or has been in a position to know whether the language in which each of us 



describes his or her own experiences is necessarily private. The reformulated thesis 

might be this: there could not exist a language that could not be imagined not to be 

private. And that reformulated claim may be true, but it has lost interest, since the 

claim no longer calls into doubt the existence of private experience or individual 

autonomy. 

CONCLUSION 

Putting the phenomena of mind together with our understanding of the natural world 

is possibly the most difficult intellectual challenge to modern thought. The problem 

has, if anything, been made more difficult by twentieth-century science. On the one 

hand, through psychological and biological investigations we have come to see 

ourselves as more like biological machines; on the other hand, through developments 

in physics we have come to see the physical world as more mysterious and less 

intelligible. Essential aspects of mental life remain unexplained in physical or 

functional terms, most central among them the phenomena of consciousness and 

associated aspects of mental life. 

 We have considered only a few of the philosophical arguments that aim to 

show that no unification of the human and mental with the natural and physical is 

possible. The arguments do not seem decisive. In the next chapters I turn to giving a 

say to the reductionist, functionalist side. Right or wrong, the results of pursuing the 

reductionist idea constitute some of the great achievements of twentieth-century 

philosophy. 

Review Questions 

1. What are some of the arguments against the possibility of reducing mental 

states to physical states? 

2. Why would the private-language argument, if sound, be important? 



3. What are some of the senses of “possibility” that arise in philosophical 

argument? 

4. What is the leading idea of the causal theory of reference and denotation, and 

what problems present difficulties for the theory? 

5. What is Brentano’s mark of the mental? 
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Chapter 12 

THE COMPUTABLE* 

The theory of computation belongs as much to philosophy as to other disciplines. The 

modern form of computation arose from the application of mathematical logic to 

philosophical issues concerning the foundations of mathematics. Moreover, at least a 

rudimentary understanding of the theory of computation is essential to understanding 

important areas of contemporary philosophical concern, including theories of knowledge and 

philosophies of mind. Finally, the theory of computation forms an important part of the 

modern theory of rationality. 

 Although the word derives from Arabic mathematics, the notion of an algorithm 

seems as ancient as any idea in mathematics. Greek geometers thought of procedures for 

constructing figures with rule and compass. Thus, in translation, the first proposition of 

Euclid’s elements states a procedure for using rule and compass to construct an equilateral 

triangle on any given line segment in any given plane containing that line segment. But it was 

in the theory of arithmetic and in algebra that the idea of an algorithm became explicit. Today 

the teaching of arithmetic in elementary schools consists in large part of the teaching of 

algorithms for computing simple arithmetic functions: addition, subtraction, multiplication, 

division (although the availability of cheap electronic calculators may make such skills 

obsolete). In algebra, much of the focus of research by Arab and then Christian 

mathematicians was on finding algorithms for the solution of various classes of equations. 

Thus in algebra we learn algorithms for solving linear equations and for solving systems of 

linear equations; we learn algorithms for solving quadratic equations and for solving third-

degree equations. 

 In the seventeenth century a remarkable idea began to emerge: thought, any thought, 

is some form of computation. Thomas Hobbes articulated this idea clearly in the middle of 



the century. Others who did not take such a view of mentation nonetheless thought of 

algorithms as means to improve human rational capacities. In the same century Gottfried 

Leibniz, the great philosopher, mathematician, and diplomat, proposed the development of a 

kind of calculus in which every proposition on any subject could be stated formally and 

unequivocally and for which an algorithm would determine the truth or falsity of every 

proposition that could be so stated. Of course, Leibniz did not have such a calculus or any 

such algorithm, but he envisioned their development as a principal goal of science. 

 As we will see, the idea of an algorithm is not even yet fully understood, but roughly 

it means a mechanical or automatic procedure that, at least ideally, will compute something 

for any of an infinity of different possible cases. If the something is a function, an algorithm 

will compute the value of the function for any argument over which the function is defined. 

Such an algorithm is always an algorithm for computing some specific function or other. 

There might be many ways to compute one and the same function, and so many distinct 

algorithms that compute one and the same function. You can imagine many different ways to 

use a telephone book to find someone’s phone number; similarly, you can imagine many 

different algorithms for arithmetic functions. Rather than adding multidigit. numbers by 

forming them in columns and adding the rightmost column and carrying to the left, for 

example, you could get the same results by starting the additions with the leftmost column 

and for any column in which the sum is more than nine, backtracking to change the sum in 

the column to the immediate left. 

THE DEVELOPMENT OF COMPUTATION THEORY FROM LOGIC 

In the first chapter of this book I briefly discussed Cantor’s theory of sets and his arithmetic 

of infinites. Cantor’s mathematical work and the theories that developed from it set off a line 

of research that led to the modern theory of computation. Some mathematicians, notably 

Leopold Kronecker, did not believe Cantor’s mathematical results, and did not even regard 



them as real mathematics. Cantor’s theory, you will recall, proved the existence of certain 

infinite sets and infinite collections that are, in a well-defined sense, larger than the infinity 

constituted by the natural numbers. Although criticises of Cantor’s work were sometimes 

clothed in nineteenth-century metaphysical jargon, one theme in the criticisms was this: The 

principles of arithmetic are the most certain and sure foundation for mathematics. Any new 

mathematical theory must be proved consistent by the methods of arithmetic, and any new 

mathematical objects or functions should be computable ,from elementary arithmetic 

functions. That is, there should he arithmetic algorithms for any such novelties. Kant’s 

philosophy, which gave a special status to arithmetic, provided important support for this 

view. 

 At about the same time that the conflict between Cantor and Kronecker developed, 

Frege had published the first presentation of modern logic. We have already seen that modern 

logic permits the explicit formulation of nearly every mathematical theory, including number 

theory, geometry, and set theory. The power of Frege’s conception had already been 

exploited by many mathematicians and philosophers as early as the 1920s. David Hilbert, 

who ranked among the greatest of mathematicians of the late nineteenth and early twentieth 

centuries, saw in formal logic a means of meeting Kronecker’s objections to set theory and, 

indeed, a means of reducing the question of the consistency of any mathematical theory to 

questions of elementary arithmetic. 

 One of Hilbert’s ideas can be derived from a simple reflection on how mathematics is 

applied in the physical sciences. (it is perhaps relevant that Hilbert was also a great 

mathematical physicist and, with Einstein, the codiscoverer of the general theory of 

relativity.) When we apply mathematics, we count things, or assign numbers to things or to 

states of things. We assign numerical measures to objects when, for example, we weigh them. 



By counting and assigning measures, we are able to make inferences about things by doing 

arithmetic. 

 Consider weighing things on a scale. We do so by adopting some convention that 

correlates states of the scale with numbers. The same number is also correlated with the body 

we have weighed on the scale. The convention we use may be built into the scale (as with 

modern chemical scales that have a digital readout) or we may have to mentally assign a 

number to the state of the scale according to some rule (as with an old-fashioned pan 

balance). There are lots of different systems by which numbers can be associated with states 

of the scale: we can measure in grams or ounces or some other unit. The important thing is to 

use one such system; it doesn’t matter which. 

 When we use a scale and a standard of measurement to assign weights to objects and 

we weigh first one object and then another on the scale, we use our measurement convention 

to assign a number to the state of the scale in each case. We call that number the weight of the 

object on the scale. Now the interesting and useful thing about measurement scales is this: we 

can use arithmetic to determine what the state of the scale will be when, for example, two 

objects are placed on it. To get the answer we need do only the following: weigh each object 

separately; add the numbers representing the weights of the two objects; use our 

measurement convention to infer the state of the scale associated with the number that is the 

sum. Our measurement practice enables us to represent properties of weights as simple 

arithmetic relationships. 

 Hilbert’s idea was this: we can associate numbers with the language of a 

mathematical theory in such a way that properties of the mathematical theory, such as its 

consistency, are represented by arithmetical relationships among numbers associated with 

parts of the language. Formal properties of a theory, such as its consistency, then become 

equivalent to arithmetical properties of sets of numbers. We could then prove (or disprove) 



the consistency of a mathematical theory by using nothing but arithmetic. Since no one 

doubted arithmetic proofs, doubts about the consistency of various mathematical theories, 

such as set theory, could be resolved. (One important disanalogy with the previous example 

should be noted. It is an empirical fact, established by experiment, that weights are additive: 

the weight of two objects together is the sum of their individual weights. By assigning 

numbers to weights, that empirical fact is represented by an arithmetic relation. In contrast, 

the consistency of a theory is a logical property, not an empirical property, and one hopes to 

be able to establish consistency by an a priori proof rather than by experiment.) 

 When a mathematical theory, set theory, for example, is completely formalized, there 

is a definite vocabulary of symbols in the language of the theory. Each symbol can be 

assigned a natural number in any arbitrary but mechanically computable way. The sentences 

of the language of the theory can then also be assigned numbers, because each sentence is 

just a sequence of vocabulary elements. Suppose, for example, that a formal language had 

only nine symbols. The rules of the language specify that only certain finite sequences of 

symbols are well formed. Then we could assign one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 to 

each of the symbols of the language, and every sentence of the language consisting of a well-

formed sequence of symbols would correspond to a finite sequence of nonzero digits. Since 

every finite sequence of nonzero digits denotes a unique natural number, every sentence of 

the language would have a corresponding natural number. Similar correspondences can be set 

up even when the number of symbols is infinite. 

 If we insist that our formalized languages be constructed so that there is an algorithm 

to determine whether or not any arbitrary string of vocabulary elements is a well-formed 

formula, there is some arithmetic algorithm to determine the numbers that correspond to well-

formed formulas of the language of the formalized mathematical theory under study. 



 Let us suppose that when formalized, the mathematical theory we are considering is 

axioniatizable. The axioms of the theory are then in correspondence with some determinate 

set of numbers. Since there is an algorithm for determining the axioms of the theory, there is 

a numerical algorithm for determining the numbers that correspond to the axioms. 

 A proof, or derivation from the axioms of the formalized theory, according to a proof 

theory such as Frege’s, then corresponds to a finite sequence of numbers. Since, you will 

recall, one of the requirements of proof theory is that there be an algorithm to determine 

whether or not any, given sequence of formulas is a proof, there will also be a numerical 

algorithm that decides whether or not a sequence of numbers is the sequence of a proof. The 

number of the last sentence in a proof is a number of a theorem of whatever theory is being 

considered. 

Definition A theory is said to be consistent if and only if there is no sentence s such that 

both s and s are theorems of the theory. 

 Whether or not a specific theory, say set theory, is consistent thus becomes equivalent 

to a question that is purely about arithmetic: whether there are or are not pairs of sequences of 

numbers of the appropriate kinds corresponding to a proof of some sentence and its denial, 

both within the same theory. 

 If for a formalized theory there exists an algorithm that determines whether or not any 

given sentence is a theorem of the theory, then it would seem that the spirit of Kronecker’s 

objections would be fully met. One could prove a theory consistent by purely arithmetic 

means, or as Hilbert put it, by “finitary” means. One could do so by 

• formalizing the theory, 

• arithmetizing its language, 

• proving the existence of a computable number-theoretic function for deciding whether 

or not an arbitrary sentence is a theorem, 



• showing that the function has the property that no sentence and its denial are both 

theorems of the theory whose consistency is in question. 

Hilbert called this program metamathematics. It is mathematics done on the language of 

mathematics. 

CÖDEL’S THEOREMS 

In 1931 a young Viennese logician, Kurt Gödel, proved two theorems that were understood to 

mean that Hilbert’s program as originally conceived could not succeed. Gödel’s theorems 

used a generalization of Cantor’s diagonalization strategy. Gödel applied Hilbert’s program 

to arithmetic itself. If the goal of Hilbert’s program were to succeed, one could decide the 

question of the consistency of any axiomatizable theory by using nothing more than 

arithmetic. So we could in principle formalize the theory of arithmetic itself (as we already 

did in part in an earlier chapter), and in formalized arithmetic one could represent the 

sentences of the language of any formalized axiomatic theory—represent them as collections 

of numbers, or special functions on the natural numbers. Then in formal arithmetic one could 

give a formal proof of the consistency or inconsistency of the formalized theory, whatever it 

might be. 

 Gödel proved two extraordinary theorems. The first theorem implies that arithmetic 

itself cannot be represented as an axiomatizable formalized theory. That requires some 

explanation. In the nineteenth century Giuseppe Peano had developed an axiomatic system 

for arithmetic. In their first-order formulation Peano’s axioms are infinite in number, but they 

can be formalized, and they form a set of sentences for which there is an algorithm to 

determine membership. So Peano’s axioms could be the object of arithmetic study, as in 

Hilbert’s program. In fact, one can formalize Peano’s axioms for arithmetic and then, in the 

language of that formal theory, assign a numeral (a term in the language of the theory) to 



each sentence of that very language. To understand Gödel’s first theorem, it is necessary to 

recall the definition of a complete theory: 

Definition A first-order theory is complete if and only if, for every sentence s in the 

language of the theory, either s is in the theory or s in the theory. 

Gödel’s first theorem says the following: 

Gödel’s theorem Any axiomatizable theory in which the recursive functions can be 

represented and that is true in the natural numbers is incomplete. 

 What does this mean? Well, like any other structure, the structure determined by the 

natural numbers, N = [N, +, x, s, <, =], determines a complete theory, call it T, namely the set 

of all sentences true in the structure N. T includes all of the sentences that are logical 

consequences of the formalized counterparts of Peano’s axioms, but T contains much else 

besides. Gödel’s theorem says something about theory T: it is not axiomatizable. To say that 

the theory is not axiomatizable is to say something about the nonexistence of algorithms. It is 

to say that there does not exist a possible algorithm that assigns 1 or 0 to sentences so that the 

set of sentences assigned the value I consists of a set of axioms that entail all of the sentences 

true in the natural numbers (that is, in the structure [N, +, x, s, <, =]), and of no other 

sentences. 

 Gödel’s theorems actually say more than that the complete theory of arithmetic is not 

axiomatizable. They say that there is an algorithm that, if given as input a finite description 

of any axiomatizable theory that is true in Ɲ and entails Peano arithmetic, will produce as 

output a sentence that is true in Ɲ but is not a theorem of the theory. 

 Why should we care whether the theory of the natural numbers or other complete 

theories that extend Peano’s arithmetic are axiomatizable? For at least two reasons. One is 

that Hilbert’s program supposed that we could axiomatize theories that interest us. Gödel’s 

result says that we can’t always do so: the complete theory of the natural numbers is such a 



theory that cannot be axiomatized. But there is a second philosophical reason why we should 

care that the theory of the natural numbers cannot be axiomatized. If a formalized theory 

cannot he axiomatized, there exists no possible algorithm that will decide for each sentence 

of the language of the theory whether or not that sentence is in the theory. For if there were 

such an algorithm, we could let the set itself of all sentences that the algorithm says are in the 

theory be the axiomatization of the theory. Actually, something stronger is true. If a theory is 

not axiomatizable, there is not even an algorithmic means to list the theorems of the theory; 

there is no mechanical procedure that will, every now and then, output some sentence that is a 

theorem of the theory, never outputting a sentence that is not in the theory, and, for every 

sentence of the theory, eventually output it. We have no effective means of specifying a 

theory that cannot be axioniatized. 

 We all know an algorithm that, for any natural numbers n1, n2, and n3, will determine 

whether or not n1 + n2 = n3. The procedure is just the addition algorithm we learn in 

elementary school. We know algorithms that will determine the answers to other classes of 

arithmetic questions, for example, whether or not an arbitrary number is prime. So we might 

hope that there is an algorithm that will answer every question of arithmetic. Such an 

algorithm would decide the truth or falsity in the natural numbers of any proposition we 

might choose to put to it. Such an algorithm would be part of the fulfillment of Leibniz’s 

dream. Gödel’s theorem says that no such algorithm exists; it is not just that we have not 

found such an algorithm yet. Rather, no such algorithm is logically possible. 

 The notion of an axiomatizable theory was defined in terms of the notion of an 

algorithm, or alternatively in terms of a computable function (i.e., a function for which there 

is an algorithm) that assigns the number I to formulas that are in an axiom set and the number 

0 to formulas that are not in the axiom set. As I have stated it, Gödel’s theorem, thus asserts 

the nonexistence of certain kinds of algorithms; it asserts that certain functions are not 



computable. To prove his claims, Gödel therefore had to characterize the computable 

functions, and that effort, quite as much as his astonishing theorems, led to the development 

of computation theory. But rather than describe Gödel’s characterizations of the computable 

functions as recursive functions, we will instead consider the characterization provided 

shortly after by Alan Turing. 

Study Questions 

1. Gödel’s second theorem, also proved in 1931, is this: there is an algorithm that, given a finite 

description of any consistent, axiomatizable theory, entails formalized Peano arithmetic, 

outputs a sentence asserting the consistency of the theory, and that sentence cannot be proved 

in the theory. 

 Sir Ronald Fisher, the late and distinguished statistician, remarked in connection with 

the observation that a contradiction implies anything, that Gödel’s result ought not to have 

been a surprise to anyone: “After all, suppose a Ph.D. student came, breathless with 

excitement, and said, ‘Sir, I have proved that this system of axioms is free from all 

contradictions.’ You’d say, ‘Did you prove it using only those axioms?’ He might say, ‘Yes, I 

have here written out a chain of propositions which demonstrate that these axioms are free 

from all contradiction.’ Well, perhaps you’d look at him with mild surprise, and you might 

say, ‘I suppose you know that if this system of axioms did contain a contradiction, you could 

prove exactly those same propositions.’ And so you have the situation that certain 

propositions which purport to prove the truth, the truth of the theorem, could be equally well 

demonstrated by the ordinary rigorous processes of deductive reasoning if they were false. 

And I don’t know how much we would give, then, for the chain of theorems which purported 

to prove that the system of axioms was free from contradictions. It would seem a little absurd 

to imagine that such a thing was possible.”1 Consider carefully whether this passage is a 

sound attack on Hilbert’s program and on the significance of Gödel’s results. 



2 An algorithm that lists all of the theorems of a theory does something intuitively less 

difficult than does an algorithm that, for every sentence, correctly decides whether or not the 

sentence is a theorem of a theory. Suppose, however, that you had a procedure that lists all 

the theorems of a theory T and that you had another procedure that lists all the sentences that 

are not theorems of that same theory T. Explain how these two listing procedures could be 

used together to form a procedure that, for every sentence, decides whether or not the 

sentence is a theorem of T. 

TURING MACHINES 

Turing conceived of a kind of machine for computing functions, a machine whose operations 

are so simple that it would be absurd to think that they are in any way mysterious. The idea is 

that the machine somehow represents a function on the natural numbers, so that if, in a fixed 

code, you enter the representation of any number or finite sequence of numbers, the machine 

gives back the value of the function for that number or sequence of numbers. The coding of 

numbers can be done in many ways. Any number base provides a system of digits whose 

finite sequences encode all the numbers. We are used to representing numbers in base 10, 

with 10 digits; but we could just as well represent numbers in base 2 or any other base. Given 

a finite sequence of digits in some specified base, Turing’s machine would compute another 

sequence of digits, in that base, representing the value of a function for the number input. 

 The machines Turing conceived can read a square of a tape on which some number 

has been written (see figure 12.1). The machine has a finite list of instructions that tell the 

machine, when it is in a particular state reading a particular square of the tape, to erase the 

digit on the square and write some other digit in its place, or to move to the next square to the 

left or right on the tape and to change its state. The tape is unbounded; that is, should the 

machine reach the end of the tape, more tape is always added. The machine starts with its 

reading and writing device over a blank square of the tape, and all of the squares to one side 



of the read/write head, say to the left, are blank. A finite number of squares on the other side, 

to the right, contain symbols representing the input to the machine, and the rest are blank. A 

computation is carried out with such a machine by starting the machine in its start state. The 

machine reads a square and does its thing: reading, writing, moving, sometimes to the right, 

sometimes to the left, changing its internal state as it does its work. Eventually the machine 

may stop, and when it does, there will be some sequence of symbols written on the tape. That 

sequence is the output of the machine for the given input. 

 Behaviorally, a Turing machine can do just three things: 

• It can erase a symbol on a square of tape and write another symbol in its place. 

• It can move the read/write head one square to the right. 

• It can move the read/write head one square to the left. 

Internally, the machine can only do one kind of thing: change its state. 

 Such machines can be physically realized in many ways. The tape could be a 

magnetic tape or even a section of paper tape; the read/write head of the machine could be a 

simple optical scanner connected to a printer in one movable unit. The instructions in each 

state could be implemented by cogs, pulleys, and ropes, by electronic tubes as in early digital 

computers, or by silicon chips. 

 There is nothing special about numbers save that certain functions on the numbers 

form our clearest examples of computable functions. But we know that, given any finite 

alphabet, the finite sequences of letters from that alphabet, or words as they are called, can be 

systematically coded as numbers, so functions from words to words can be represented as 

numerical functions. Thus we could just as well have Turing machines that have some finite 

vocabulary other than a system of digits and that compute functions from words on that 

vocabulary to words on that vocabulary. 



 You can think of the instructions, or program, of a Turing machine as a system of 

annotated points and lines. Represent each distinct state of the machine as a point or node, 

and draw an arrow from one node to another if some inscription on a tape square will cause 

the Turing machine when in the first state to go into the second state. Annotate the arrow with 

the symbol that the machine must read when in the first state to go to the second and with the 

symbol it writes or the direction in which it moves. Figure 12.1 illustrates a machine that 

operates on the vocabulary {B, 0, l}, where B represents a blank square of tape, and that 

changes every digit to 1. 

 The machine starts, in state 1, at square 1, which is blank by convention. Then it 

moves one square to the right and changes to state 2. If the square to the right of square 1 is 

blank (no input), the machine halts and does nothing further. If that square has a 0, the 

machine writes a 1 in its place and stays in state 2. If that square has a 1, the machine moves 

to the right one square and stays in state 2. 

 To describe the sequence of states of the machine and tape, let the first number 

represent the number of the state of the machine, let the second number represent the number 

of the square that the read/write head is over, counting the square initially underneath the 

read/write head as 1 and counting positively to the right, and let the remaining sequence of 

numbers be the sequence of digits on the tape. For example, if the input tape reads B1001, the 

sequence will be as follows: 

1, 1, B1001B 

2, 2, B1001B 

2, 3, B1001B 

2, 3, B1101B 

2, 4, B1101B 

2, 4, B1111B 



2, 5, B1111B 

2, 6, B1111B 

 A Turing machine can be described as a precise mathematical object, specifically as a 

finite set of 4-tuples of numbers. The first number of such a 4-tuple simply names the state of 

the machine corresponding to that 4-tuple. (Since the 4-tuples each specify what the machine 

does when it is reading a square in a certain state, for most machine states and each possible 

digit that can occur on a square, there will be a distinct 4-tuple.) The second number of the 4-

tuple is a digit that can occur on a square, the third number is a digit that can be written on a 

square or a number representing “move right” or a number representing “move left,” and the 

fourth number is again the number naming a state of the machine. Informally, <n1 n2 n3 n4> is 

the instruction “If in state n1 reading digit n2, erase n2 and write n3, or move one square to the 

right if n3 = the special value; or move one square to the left if n3 = the other special value, 

and go into state n4.” By convention, we specify that state n1 = 1 is the start state of the 

machine. 

 We can define the computation executed by a Turing machine given by a finite set of 

4-tuples as a sequence of instantaneous states of the machine in the way illustrated in the 

previous example. Using the definition of a Turing machine as a finite set of 4-tuples, we can 

provide a precise inductive definition of a Turing-machine computation, but I leave that as a 

(difficult) exercise. 

 Turing proved that there is a single machine that will compute every function that can 

he computed by any Turing machine. Nowadays such machines are referred to as universal 

Turing machines. The idea is this. Since all Turing machines can be enumerated, we can form 

some encoding that assigns each ‘Turing machine a number. Then we can design a Turing 

machine that interprets the first number on its tape as the number of a Turing machine, some 

conventional sequence of digits following that number as a space marker, and the following 



number on its tape as the input to the machine represented by the first number on its tape. The 

universal Turing machine thus simulates the computations that the Turing machine named on 

its tape would do for the input number on its tape. So there is in a sense one universal 

algorithm that will do everything any algorithm can do. 

Study Questions 

1. Write annotated directed graphs representing Turing machines that (a) change all Os 

to 1s and erase the last 1, (b) change all 1s to 0s and add a further 0, (c) for some input, never 

halts. 

2. For exercises 1a and 1b, give a trace of the sequence of instantaneous states of your 

Turing machine for input 1001. 

CHURCH’S THESIS 

It seems indisputable that any function computed by some Turing machine or other should 

count as a computable function. Besides Turing machines, there are many other ways in 

which we could try to model the notion of computation. For example, we could imagine a 

machine with an unlimited number of registers, in each of which a number can be written. 

Suppose that we are allowed to write any finite sequence of instructions of any of the 

following kinds: 

ri := 0 (Set the number in the ith register equal to 0.) 

ri := rj (Set the number in the ith register equal to whatever number is in the jth 

register.) 

ri := ri + 1 (Set the number in the ith register equal to its successor.) 

goto(i, j, k) (If ri = rj, jump to the kth instruction in the list; otherwise, go to the next 

instruction.) 

A program for such an unlimited-register machine (URM) consists of a finite set of 

instructions. Input is given by numbers in a finite set of the registers, with the convention that 



any register that does not have a number in it as input is assumed to have the value 0 in it 

unless given another value in the course of the computation. Output is given by the number in 

the first register when the machine stops. 

 A computation by an URM proceeds from the first program line and the initial state of 

the registers. The registers are changed in accordance with the program line, and a new state 

of the registers and new program line result (which will be the next program line or possibly 

some other program line if the present line has a “goto” instruction.). Thus, just as with 

Turing machines, an URM computation can be described as a sequence of finite lists, where 

each list gives the program line and specifies for each i the value of ri, the number in the ith 

(nonempty) register. As with Turing machines, some URMs may never halt for certain inputs. 

Theorem A function is computable by some URM if and only if it is computable by some 

Turing machine. 

 The characterization of computable functions as recursive functions, as functions 

computable by Turing machine, and as URM-computable functions are all equivalent in the 

sense that exactly the same class of functions satisfies all three descriptions. There are many 

other characterizations of computable number-theoretic functions. Alonzo Church, who gave 

one of the very first characterizations of this class of functions (one different from any of 

those described), formulated the following thesis: 

Church’s thesis Computable number-theoretic functions are Turing-computable functions. 

 Church’s thesis is not a mathematical theorem; it is rather in the nature of a proposal. 

The proposal is that, in view of the coherence of several conceptually very different 

approaches to characterizing one and the same class of computable functions, in view of the 

evidence Turing’s work provides that the functions in this class are indeed computable by 

very simple machines, and in view of the fact that every function over the natural numbers 



that anyone is sure is computable turns out to be Turing computable, we should simply regard 

the computable functions as those computable by some Turing machine. 

 Since we know how to reduce functions defined over finite sequences of objects of 

any specified collection of types to functions over numbers, Church’s thesis has broad 

implications. It is not just about the computability of functions over numbers; it is also about 

the computability of functions over whatever can be counted or enumerated by a computable 

one-to-one mapping or coding of objects to natural numbers. Through the device of 

characteristic functions that assign the value 1 to all members of a set and the value 0 to all 

members of its complement, the computability of (countable) sets can be reduced to the 

computability of numerical functions. Since the extensions of properties and relations are 

sets, the computability of such extensions, if they arc countable, is also reduced to the 

computability of numerical functions. 

 Church’s thesis could be taken more broadly as the claim that whatever can be 

computed can be reduced to the computation of a recursive function. If the world is in some 

respects continuous, as our physical theories assume, then we can use physical systems to 

compute functions defined not just over natural numbers but over the real numbers, or at least 

the rationais. Again, we might find physical processes that compute characteristic functions 

for uncountable sets. There have been attempts to characterize the notion of computability for 

real-valued functions without reducing such computations to computations on the natural 

numbers. 

 Hereafter, whenever I talk about the computation of countable objects, I will simply 

assume that Church’s thesis is correct. 

RECURSIVE AND RECURSIVELY ENUMERABLE SETS 

Any set of numbers (or of objects that can be coded as numbers) can be represented by a 

function from the objects to {0, l}. If S is a set of numbers, then fS, the characteristic function 



of S. has the value 1 for numbers that are members of S and the value 0 for numbers that are 

not members of S. The same idea applies to sets of ordered pairs of numbers, to sets of 

ordered triples, and in general to sets of ordered n-tuples. 

 If fS is a Turing computable function, then S is said to be a recursive set. For any 

recursive set, then, there is an algorithm that will decide for any number (or object coded by 

numbers or n-tuples of numbers) whether or not it is a member of the set. It is easy to see that 

a set S is computable if and only it’ the complement of S, S', is also computable. To prove as 

much, suppose there is a Turing machine T that computes fS. Give the output of T as input to 

a Turing machine that outputs 0 when given 1 as input and outputs 1 when given 0 as input. 

When run in tandem the two machines represent a procedure for computing fS'. Since there is 

a Turing machine that computes fS', by Church’s thesis, S' is recursive. 

 The union of any finite collection of recursive sets is recursive; similarly the 

intersection of any finite collection of recursive sets is recursive. Many familiar sets of 

numbers are recursive. The even numbers are recursive, and therefore so are the odd 

numbers. The prime numbers are recursive; every finite set is recursive; the set of all natural 

numbers N is recursive. 

Definition Suppose that S is a set for which there is an algorithm that computes a function 

whose value is 1 for members of S and 0 or undefined for numbers not in S. In that case, S is 

said to be recursively enumerable. 

 Every recursive set is recursively enumerable. The converse, however, is not true: 

there are recursively enumerable sets that are not recursive. For example, if we formalize the 

Peano axioms for arithmetic, then the set of all logical consequences of these axioms is 

recursively enumerable, but it is not recursive. 

 If S and its complement S' are both recursively enumerable, they are both recursive. 

For let T be the Turing machine that computes the value 1 for all and only members of S (but 



is undefined for all numbers not in S), and let T' be the corresponding machine for the 

complement set S'. Then run T and T' together. First let T execute a computational step, then 

T', then T, then T', and so on. Since any number is either in S or S' but not both, one of T or T' 

must eventually output a 1. Stop when that happens. If T outputs a 1 on input x, then fS(x) = 1 

and fS.(x) = 0; if T' outputs a 1 on input x, then fS(x) = 1 and fS(x) = 0. So there is a procedure 

that computes the characteristic functions of S and of S'. Hence again by Church’s thesis, S 

and S' are recursive. 

 The complement of a recursively enumerable but not recursive set is therefore not 

recursively enumerable. However, the union and intersection of any two recursively 

enumerable sets are again recursively enumerable sets. 

 Sets that are recursively enumerable but not recursive are less familiar than recursive 

sets. Consider another example. Suppose that we effectively number all Turing machines and 

give to each recursive function the number of the Turing machine that computes that 

function. (One and the sane function will therefore have an infinity of different numbers 

assigned to it, since many Turing machines compute the very same function. but given a 

number, we will be able to effectively determine the function that has that number, since the 

number will describe a Turing machine that computes the function.) Some of the functions 

computed by Turing machines will be partial functions. That is, the functions will be defined 

and have a unique value for some arguments but not for other arguments. (Consider the 

function that maps each natural number n into the first digit of its reciprocal, 1/n. The 

function is not defined when n = 0.) For some inputs the Turing machines that compute a 

partial function will eventually stop and give an output, but for other inputs these Turing 

machines will never halt. 

 We denote partial recursive functions by IIx, where x is the number of a Turing 

machine that computes the particular recursive function denoted by IIx. Every partial 



recursive function has a domain, that is, a set of inputs or arguments for which the function is 

defined, or equivalently, a set of inputs for which a Turing machine that computes the 

function halts and gives an output. Since we can number the partial recursive functions, we 

can also number (or index) their domains. We let Wx denote the domain of the partial 

recursive function IIx. Consider the set 

{x : x is in Wx}. 

That set is not recursive, but it is recursively enumerable. Consider the set {x. IIx is defined 

for all natural numbers}. 

The latter set is not recursive and is not recursively enumerable either. 

 There are several equivalent characterizations of recursively enumerable sets. One of 

the most useful is that a recursively enumerable set is the range of a total recursive function 

(hence the name “recursively enumerable”). I will not prove this equivalence, but its 

significance should be noted. Suppose that a set has an associated computable function 

defined over all the natural numbers that will list the members of the set. Then and only then 

the set is recursively enumerable. Recursively enumerable sets are those that can be 

generated, or whose members can be listed, algorithmically. 

 Part of Gödel’s achievement was to show that recursive sets can be represented by 

first-order formulas of number theory. For every recursive set S of numbers, there is a 

formula S(x) in the first-order language of number theory such that under the natural 

interpretation of the language in the natural numbers, S is the set of numbers satisfying S(x). 

Similarly, for every recursive set of n-tuples of numbers, there is a formula of number theory 

with n free variables satisfied by just that set. If R is a recursively enumerable set of numbers, 

there is a formula yS(x, y) of number theory such that the extension of yS(x, y) (that is, the 

set of values of the variable x satisfying the formula) is R and the extension of S(x, y) is a 

recursive set of ordered pairs of numbers. 



Study Question 

1. Using the facts just stated, show that if R is the complement of a recursively enumerable 

set, there is a formula yS(x, y) of number theory such that the extension of yS(x, y) is R 

and the extension of S(x, y) is a recursive set of ordered pairs of numbers. 

2. Why is every recursive set recursively enumerable? 

DECISION PROBLEMS 

Every Turing machine is a finite sequence of 4-tuples. The collection of all finite sequences 

of numbers can be enumerated, and so can be put in one-to-one correspondence with the 

natural numbers themselves. So if we fix a vocabulary for input and output, the collection of 

all Turing machines for that alphabet can he enumerated, and in fact the enumeration can be 

done in a way that is intuitively computable. This is one way to see something interesting 

about the set of all computable functions: Since, by Church’s thesis, the set of computable 

functions is just the set of functions that can be computed by Turing machines, and since the 

set of Turing machines is countably infinite, the set of all computable functions over the 

natural numbers is countably infinite. Since, by Cantor’s results, the set of all functions on 

the natural numbers is uncountabty infinite, this means that the computable functions form 

only a tiny fragment of the set of all functions over the natural numbers. And that means 

something very important: for many functions and for many sets, properties, and relations for 

which we wish to have algorithms, it may be that no such algorithms are possible. 

 Let’s consider an example of an uncomputable function. Consider the function f(m, n) 

that assigns 1 to the pair (m, n) if m is the number of a Turing machine that halts on input n, 

and assigns 0 otherwise, Is this function computable? I will prove that it is not by a reductio 

argument that is reminiscent of the procedure used in Cantor’s diagonalization argument 

discussed in chapter 1. 



 Form a infinite table, listing across the top of the table the natural numbers in 

sequence and listing along the right-hand side of the table the recursive functions (or all of 

the Turing machines) in sequence. Fill in the table as follows. If the Turing machine Пi is 

defined on input number j, put a 1 in row i, column j. If, on the other hand, Пi is not defined 

on input number j, put a 0 in row i, column j. The table then looks like the one in figure 12.2. 

 What the table now records in each row is the characteristic function of the domain of 

the recursive function in that row, The ith row, for example, has an entry of 1 for each 

member of the set of numbers for which Пi is defined and an entry of 0 for each member of 

the set of numbers for which Пi is not defined. In my earlier notation, the set of numbers for 

which Пi is defined is Wi, and the set of numbers for which Пi, is not defined is the 

complement set, N – Wi. So, as I said, the ith row of the table simply gives the characteristic 

function of the set Wi. Every set that is the domain of a partial recursive function has its 

characteristic function given by one of the rows of the table. Hence, if there is a set whose 

characteristic function is not given by one of the rows of the table, that set is not the domain 

of a partial recursive function. But we know that every recursively enumerable set is the 

domain of a partial recursive function. Hence, if there is a set whose characteristic function is 

not given by one of the rows or the table, that set is not recursively enumerable. 

 Consider the diagonal of the table. If a 1 occurs in the ith row and ith column of the 

table, then Пi halts on input i. If a 0 occurs in the ith row and ith column of the table, then Пi, 

does not halt on input i. So the diagonal of the table is the characteristic function of the set 

(call it H) of indices of Turing machines that halt when given their own index as input. Now 

consider what happens if, on the diagonal of the table, we replace each 1 with a 0 and each 0 

with a 1. This new counterdiagonal is then the characteristic function of the complement of H 

(because the characteristic function of the complement of any set S is obtained from the 

characteristic function of S by interchanging the values of 1 and 0 in fS). The characteristic 



function of the complement of H therefore does not occur as any of the rows of the table, 

because where the ith row of the table has a 1 in the ith column, the counterdiagonal has a 0, 

and where the ith row of the table has a 0, the counterdiagonal has a 1. So the 

counterdiagonal differs from every row in the table somewhere. Therefore, the 

counterdiagonal, which is the characteristic function of the complement of H, is not the 

domain of any recursive function. Hence the complement of H is not recursively enumerable. 

If f (m, n) were computable, then by Church’s thesis H, and so the complement of H, would 

be recursively enumerable, which is a contradiction. 

 The halting problem gives us one example of a function that is not computable. There 

are many others. Consider the problem of deciding whether an arbitrary first-order formula is 

valid. A decision procedure for that problem is some algorithm for computing a function that 

assigns 1 to a formula if and only if it is a valid first-order formula, and 0 otherwise. Clearly 

there is such a function, but is it a function for which there exists an algorithm? Is it a 

computable function? The answer is no. There is no algorithm that will determine for us 

whether or not an arbitrary first-order formula is valid. That means also that there is no 

algorithm that will determine for us whether an arbitrary first-order argument is valid, and 

therefore we cannot have a mechanical procedure that takes as input a finite list of formulas 

and determines for us whether or not the set consisting of all but the last member of the list 

entails that last member. 

 The philosophical consequences of this result, in combination with Church’s thesis, 

are enormous. It means, for example, that the idea of solving all mathematical problems by an 

algorithm is hopeless. It means that Leibniz’s vision of a calculus in which all knowledge can 

be expressed and its consequences algorithmically obtained must fail. It also means that a 

rich and difficult question emerges that only makes sense given the fact that first-order 

validity is not decidable: Which first-order theories are decidable? That is, which sets of 



sentences have an algorithm that will determine, for any sentence, whether or not it is a 

consequence of the set. Put another way, since theories are deductively closed collections of 

sentences, which theories have computable characteristic functions? These questions form 

what is known in logic as the decision problem. 

 Consider the theory of numbers. Part. of what Gödel proved is that the set of theorems 

of Peano arithmetic is not decidable. Now consider the set of valid Boolean formulas. That 

set is computable. Consider any first-order theory that is both axiomatizable and complete. 

The set of sentences in that theory is computable, and the theory is said to be decidable. It is 

easy to see that if a complete, axiomatizable theory is decidable, then for given any sentence 

in the language of the theory, either that sentence or its denial is in the theory. Since the 

theory is axiomatizable, there is an algorithm that will decide whether or not a sentence is in 

an axiom set for the theory. We can also effectively enumerate all finite sequences of 

sentences in the language and computably determine, for any such sequence, whether or not it 

is a proof from axioms of the theory. For any sentence in the theory, such a proof will exist. 

Thus we can computably enumerate all the proofs from axioms of the theory until we find a 

proof of either a given sentence or its denial. If we find a proof of its denial, our procedure 

reports that the sentence is not in the theory; if we find a proof of the sentence, our procedure 

reports that the sentence is in the theory. So while much that we might wish to compute is not 

computable, many important functions, properties, and relationships are computable. The 

theory of elementary Euclidean geometry, for example, is axiomatizable and complete, and 

hence there is an algorithm that will decide, for any sentence in the language of geometry, 

whether or not the sentence is a theorem of Euclidean geometry. 

 These examples scarcely touch the intricate structure of the decision problem for first-

order theories, a problem that is still an active area of research. 

Study Question 



Consider any axiomatizable first-order theory T with axiom set A. A sentence S is a theorem 

of T if and only if there is a proof of S from A. There is an algorithm that effectively lists all 

of the proofs from A. Explain why the set of theorems of T is recursively enumerable. (Hint: 

consider the relation between a theorem T and a proof S of T.) 

WHAT IS A COMPUTATION? 

Cognitive psychologists sometimes write programs that they intend to be descriptions of the 

computational processes in the human brain. They often view the brain as a biological 

computer from the computations of which human cognitive abilities result. Often the 

psychologists’ programs are intended not only to describe people’s behavior but also to 

describe the very procedures, the very program, that people use in performing a cognitive 

task. Since the “programming language” of the brain must be very different from the LISP or 

Pascal in which the psychologists’ programs are written, the psychologist is tacitly claiming 

that a program in one computational system describes, or is algorithmically equivalent to, a 

program in another computational system. 

 What can such claims mean? We have some idea of what is required for first-order 

theories to be syntactically equivalent when they are formulated in different formal 

languages, but what does it mean for two programs to be equivalent when they are in 

different programming systems’? What makes a particular Pascal program equivalent to one 

LISP program but not to another? Clearly this is a question of fundamental importance for 

making sense of one of the most interesting applications of the computer. In this section I will 

try to sketch an answer. 

 The theory of computability began with two questions that have not been answered: 

What is a computation? What is an algorithm? Rather than answering either one of those 

questions, the development of the theory of computation proceeded by providing specific 

computational systems and then characterizing the computable as whatever can be computed 



in any one of these several systems. But this strategy does not give us any general 

characterization of a computational system, and so it does not give any general 

characterization of the notion of a computation. Nor does it give us a general account of the 

the notion of an algorithm. Each specific computational system gives us the notion of a 

program—for example, the list of instructions of an URM program or the first number on the 

input to a universal Turing machine—but we do not have any characterization of when two 

programs in different computational systems, say an URM program and a program on a 

universal Turing machine, are or are not implementations of one and the same algorithm. 

 We can get a taste of the variety of alternative computational systems by considering 

a few examples. The Pascal and LISP programming languages, when implemented on a 

computing machine, form a computational system. Moreover, they are computational systems 

capable of computing any recursive function if the machine memory can be increased 

whenever more is needed. 

 Consider what can be done with Turing machines. Rather than a Turing machine, 

which has a single tape on which the input, the intermediate work, and the output must all be 

done, we could consider a machine designed like a Turing machine but having several tapes: 

one for input, one for output, and any number for intermediate computations. For any number 

of tapes k, the class of k-tape Turing machines can compute exactly the Turing-computable 

functions, that is, the class of functions computable by a one-tape machine. A different sort of 

computational system is obtained if we introduce probabilities into Turing machines, but the 

class of computable functions is not thereby expanded. 

 It should not be thought that every imaginable computational system will be capable 

of computing the Turing-computable functions. To the contrary, there are many systems that 

can only compute a more restricted class of functions. For example, consider computational 

systems called finite-state automata. A finite-state automaton looks rather like the graph 



representing the machine-state transitions of a Turing machine. There are nodes, including a 

unique, distinguished initial node, and a nonempty set of final nodes. Each node has a certain 

number, say k, of arcs from it to other nodes (including possibly to itself), where k is the same 

number for all nodes and where the k arcs out of a node are given k distinct labels (figure 

12.3). 

 A finite-state automaton executes a computation by taking a finite string of labels as 

input. The automaton begins in the initial state and then follows the arc with the label 

corresponding to the first element of the input string, then the arc with label corresponding to 

the second element of the input string, and so on. The automaton is said to accept the input 

string s if the automaton ends tip in one of its final states. Accepting string s is the same as 

computing a function that assigns 1 to a string if it is accepted and 0 to it otherwise. In 

representations of finite-state automata a final state is represented by a double ring. There are 

Turing-computable functions that cannot be computed by any finite-state automaton. The 

automaton shown will acept any string beginning 01 followed by any finite sequence of 1s. It 

will not accept any string that begins with l or that has two or more occurrences of 0. 

 Such computational structures as finite-state automata have an important role in 

representations of problems that humans might have to solve. Consider, for example, the task 

of making a telescope lens from a glass blank. The blank must be ground, polished, and 

aluminized to make it into a lens. These actions—grinding, polishing, and aluminizing—each 

affect the state of the glass. Moreover, to obtain a suitable lens, the operations must he 

applied in the correct order. If you aluminize the glass, then polish it, then grind it, the result 

will not be a telescope lens but simply a glass ground to the correct shape. In a problem such 

as this, the various states of the glass can be represented by nodes of a finite-state automaton, 

and the alternative actions are each represented by a label (for example, g, p, and a). There is 

a start state, representing the untreated glass blank, and a final state, representing the desired 



state achieved when the appropriate sequence of actions is taken. Each node or state has three 

arcs coming out of it, one arc for each action that could possibly be applied to the glass blank 

in the state represented by the node. 

 We can also consider stochastic finite automata, in which each label corresponds to a 

probability function connecting one node with other nodes. 

 Other computational systems are modeled, at least crudely, on the neural linkages of 

the brain. For example, parallel-distributed-processing or connectionist machines consist of a 

system of nodes connected by arcs. Each node can be on or off. Except for input nodes, 

whether a node is on is a stochastic function of the on/off state of the nodes immediately 

connected to that node. Some of the nodes can record input; that is, the external environment 

determines whether they are on or off. Other nodes are designated as output nodes, and their 

final or equilibrium state after the system has been given some input is the output of the 

system. 

 Clearly, the range of systems that can intelligibly be called “computational” is very 

large and diverse; we have no characterization that provides necessary and sufficient 

conditions for something to be a computational system. Though we have nothing comparable 

to Church’s thesis, we can say something. Many of the computational systems just considered 

have the following features: 

• A finite input vocabulary and a characterization of well-formed strings from this 

vocabulary. 

• A finite output vocabulary and a characterization of well-formed strings from this 

vocabulary. 

• A finite programming vocabulary and a characterization of finite sets of well-formed 

strings, or programs, from this vocabulary. 



• Another finite vocabulary and set of well-formed strings characterizing 

“instantaneous states” of the computing process—including, for URMs, which instruction 

line is active and what numbers are in which registers and, for Turing machines, the location 

of the read/write head, the machine state, and the entries on the tape at a given moment. 

• A computable function that takes each pair consisting of a program and an 

instantaneous state into another instantaneous state. This transition function is often tacit, but 

it is the heart of the matter. In a Turing machine it is the function that executes the machine 

instruction when the machine is in a specific state in which that instruction applies. In most of 

our examples, this function is one to one. 

• A convention about how strings from the input vocabulary, together with a program, 

determine an initial instantaneous state. 

• An analogous convention giving a computable function from programs and 

instantaneous states to the output language. 

 In each case, a computation for a program P and input string s is a sequence of 

instantaneous descriptions. The first member of the sequence is the instantaneous description 

determined by the input string, the program, and the input convention. Subsequent 

instantaneous descriptions are determined by the transition function. The final instantaneous 

description, if there is one, is correlated with an output by the output convention. 

 For computational systems that have these features, we can roughly say what it is for 

two programs in different programming systems to be implementations of the same 

algorithm. Roughly, two programs are algorithmically equivalent if there is a one-to-one 

(recursive) correspondence between their input languages, between their output languages, 

and between the languages in which their instantaneous states are described, and for every 

input s, these correspondences establish a one-to-one correspondence between the 

instantaneous descriptions of the two systems in the computations for the programs and for s. 



In the case of probabilistic machines, the one-to-one correspondence between instantaneous 

state descriptions in computations should preserve the probability measure. That is, the 

probability of any finite sequence of steps in a computation by one program for a given input 

should be the same as the probability of the corresponding finite sequence of steps in a 

computation by the other program for the corresponding input. 

Study Questions 

1. Describe the set of strings that the finite-state automaton for making a telescopic lens 

will accept. 

2. Describe a finite-state automaton that will accept any input that is a sequence of an 

even number of 1s, but no other input. 

3. Describe a finite-state automaton for making a telescopic lens. 

COMPLEXITY 

A problem you are given to solve may be easy or hard, depending on your abilities and your 

knowledge. If you happen already to know the answer to the problem (say you saw the 

answer sheet), the problem is very easy. If you do not, solving the problem may require a lot 

of work. So the intuitive, informal notion we have of the difficulty of a problem makes 

difficulty a relation between persons and tasks; a task is easy or hard not in itself but only for 

some person. 

 There is an obvious notion of the difficulty of a computational task, a notion that is 

likewise relational. Suppose, for example, that we have some total function and a Turing 

machine that can compute that function. If we give a number to the Turing machine as input, 

we will get an output. 1n computing the output, the Turing machine will go through a certain 

number of steps; more exactly, if we write down the sequence of instantaneous descriptions 

of the Turing machine as it goes through the computation, that sequence will have some 

definite number of members. We can use that number, whatever it is, as a measure of the 



effort that the computation requires of the machine. If each step requires the same amount of 

time, the measure can be thought of as a measure of the time required for the computation. 

 Evidently, for one and the same input, different. Turing machines may require 

different numbers of steps. Even machines that compute the very same function may differ in 

the number of computational steps they require. Given any specific Turing machine, we can 

always form another Turing machine that computes the very same function as the first one 

but requires more steps for some inputs. In fact, we can always find a machine that requires 

more steps for every input. We simply have to tack on extra initial states and add state 

transitions that do nothing. 

 It is easy enough to say roughly how difficult it is for a particular Turing machine to 

compute its output for a specific input. But can we say something more general? Suppose we 

have two Turing machines that compute one and the same total function f. Is there some way 

to compare the difficulty they have in computing the function? There is. 

 For each machine T, we look at how the number of computational steps the machine 

takes varies with the size of the input given to the machine. Suppose, for example, that we are 

representing numbers in some base, so each number is represented by a sequence of digits. 

We can measure the size of an input by the number of digits it contains. For any given size, 

there are only a finite number of possible inputs of that size. 

 For inputs of size 1, any particular machine T will require a number of computational 

steps. T might require 10 steps if the input is 0, 15 if the input is 1. Again, for inputs of size 2, 

T will require a number of computational steps, say 12 for 00, 13 for 10, 15 for 11, and 30 for 

01. In principle, we could make a table listing the possible inputs of each size and the number 

of computational steps that T requires for each input (table 12.1). 



 Let’s get the pieces straight. We are considering a Turing machine T that computes a 

function f (x); we have a measure s(x) of the size of inputs; we have a measure c(T, x) of the 

computational cost for T to compute a value from input x. 

 Now if we have two different Turing machines, say M and N, each of which computes 

the same function, we can compare the two functions c(M, x) and c(N, x). It might be, for 

example, that for every input size, c(M, x) > c(N, x). Or it might be that for all but a finite 

number of inputs, c(M, x)> c(i , x). Or it might be that c(N, x) is never greater than c(M, x), 

but c(M, x) > c(N, x) infinitely often. Each of these conditions is distinct, but in each case we 

would be inclined to say that the computation is more difficult for machine N than for 

machine M. Of course, it might turn out that none of these conditions obtain and that we can 

say no more than that for some inputs, M has it easier, and for other inputs, N has it easier. 

 This measure of computational cost is not very precise. it might be that in a real 

machine some steps require more time than others; it might be that in a real machine some 

steps get faster (or slower) if they are repeated. But we have at least a crude way of 

comparing the time requirements of different machines, and thus of comparing the difficulty 

they have in computation. 

 Here is a more difficult issue. We have made some sense of the notion of the 

difficulty of a problem as a relation between a task and a problem solver. We have even made 

some sense of the difficulty or complexity for the infinite set of tasks involved in computing a 

function: each input presents what we might call a problem instance, and the problem as a 

whole is to be able to compute the value of a given function for every input. That task may be 

more difficult for some Turing machines that compute the function than for others. We have 

not yet, however, characterized the intrinsic difficulty of a problem. We know that some 

functions are simply not computable, but of computable functions, we still do not have a way 

to say that some are intrinsically more difficult to compute than others. We have not yet 



found a way to clarify difficulty as a property of computational tasks themselves, rather than 

as a relation between a problem and a problem solver. We can do so. 

 For each input size there is an input for which the number of computational steps that 

T requires is the largest, or at least as large as any other. For inputs of size 1, the biggest 

value of the number of computational steps T requires for inputs of that size is 15; for inputs 

of size 2, the largest value is 30. So we can construct another table (table 12.2). And we have 

a function, call it W(T, s), that measures the computational cost for T of the most difficult 

input of size s. The function W(T, s) enables us to begin to talk more systematically about the 

difficulties of computation. In general, W(T, s) will increase as s increases, but not always. 

 For a given Turing machine, W(T s) may he quite a ragged function not easy to 

describe. But we can ask about functions that hound W(T, s). That is, we can ask whether a 

given well-behaved function of s is always greater than W(T, s). For example, we can ask 

whether the function g(s) = as + c, where a and c are constants, is such that g(s) > W(T, s) for 

all s. If that is true for some a and c, then we say that W(T, s) is linearly bounded. Or we 

might ask whether there is any polynomial function of s, call it P(s), such that for all s, P(s) > 

W(T, s). If there is, we say that W(T, s) is polynomially hounded. Again, we might ask 

whether there is any exponential function, call it X(s), such that X(s) > W(T, s) for all s. If so, 

W(T, s) is exponentially bounded (see figure 12.4). We also say that T computes the function 

in polynomial time or exponential time. 

 Recall that the issue is whether there is a way to describe how difficult it is to 

compute a computable function. We are interested in a notion of difficulty that is not a 

relation between the function to be computed and the machine that computes it but is instead 

a property of the function itself. We know that if we have a Turing machine that computes a 

function with a worst-case computational difficulty given by the function W(T, s), we can 

always build a Turing machine that has a harder time of it. By adding extra steps to T that do 



nothing useful, we can always find a machine T' such that W(T, s) < W(T', s) for all s. It is 

easy enough to find a machine that computes a given function in a harder way, but it isn’t 

always easy, or even possible, to find a machine that computes a given function in a 

sufficiently easy way. There is, for example, no guarantee that for an arbitrary f we can find 

a Turing machine such that W(T, s) is polynomially bounded. Whether or not such a Turing 

machine exists depends on the function f. Similarly, whether or not there is a Turing machine 

that computes f such that W(T, s) is exponentially bounded depends on f. 

Definition We say that a computable function is computable in polynomial time if there is a 

Turing machine T that computes f and such that W(T, s) is polynomially bounded. 

Definition We say that a computable function is computable in exponential time if there is 

a Turing machine T that computes f and such that W(T, s) is exponentially bounded. 

 Clearly, every function computable in polynomial time is also computable in 

exponential time, but the converse is probably not true. This classification of computable 

functions orders them by their intrinsic difficulty. 

 If a function is computable in exponential but rrot in polynomial time, we may expect 

that no Turing machine will offer a feasible means of computing the function. Every Turing 

machine that computes such a function will require exponentially increasing time for some 

inputs as the problem instances become larger. We can see what happens with a simple 

example. Suppose that W(T, s) is of the order of l0s. Then for the most difficult instances of 

each size, the time required increases as in table 12.3, or graphically as in figure 12.5. 

 Are there any interesting computable functions of the exponential class? There are a 

great many functions whose computation is of enormous practical importance that, so far as 

we know, are in this class. Since our interest here is principally in the theory of rationality, 

consider an example germane to that theory. We know that there is an algorithm that, given 

any well-formed Boolean formula p compounded of n variables, will determine whether or 



not p is made true by any assignment of truth values to the propositional variables in p. In 

principle, we could implement any such algorithm on a Turing machine. But every known 

algorithm for this problem requires a number of steps that increases exponentially as n 

increases. 

 Something more remarkable is true. Suppose that we fix the number of simple 

sentences or sentential variables at any number k > 2, and suppose that we measure the size 

of a problem by the length of (that is, the number of symbols occurring in) a sentential 

formula. Then every known algorithm that decides the consistency of Boolean formulas (that 

is, whether or not there exists an assignment of truth values to the variables of a formula that 

makes the formula true) requires computational time that, in the worst case, increases 

exponentially with size. 

 There are thousands of other problems for which every known algorithm is worst-

case-exponential (if implemented on a Turing machine). Some of them are quite simple. 

Recall that a graph is any nonempty collection of nodes or vertices, some pairs of which may 

be connected by lines. A connected pair of vertices is said to be adjacent. Consider the 

following problem: determine for any graph whether or not each of its vertices can be given 

one of three colors so that no two adjacent vertices have the same color. So far as we know, 

in the worst case the number of steps any Turing machine will require to solve this problem 

increases exponentially. 

 Up to this point I have ignored an important question: What is special about Turing 

machines? That a function is exponential may be a property of that function, but it isn’t a 

very interesting function if some computational system other than Turing machines can 

compute the function in polynomial time. What about multitape Turing machines or Turing 

machines with several read/write heads or URMs or random-access-memory machines, like 

ordinary computers? The particular computational bound (for the worst case) for a function 



depends on the class of machines considered. For example, if a function is computed by a 

two-tape Turing machine with a worst-case time bound W(T, s), then some one-tape Turing 

machine will compute the same function with a worst-case time bound of W(T, s)2. Moreover, 

there are functions for which any Turing-machine computation requires (up to a constant 

times) the square of the time that a two-tape machine requires. 

 The fact that different kinds of computational systems will have different worst-case 

bounds for one and the same function suggests that there is no intrinsic measure of the 

complexity of a function that is independent of the computational system considered. While 

that is true, it is not as serious as it seems, since some important distinctions do appear to be 

invariant. For example, whether or not a function is computable in polynomial time seems to 

be invariant over all familiar computational systems. We can’t claim this invariance as a 

mathematical fact, since we do not know exactly what the class of computational systems 

includes, but every computational system we know of seems to have this property. 

 Another important question I have ignored has to do with the focus on the most 

difficult case in assessing the complexity of a computational task. There are algorithms that 

are used everyday without difficulty but. that are worst-case-exponential. The practical 

success of these algorithms is due not to the fact that the inputs given to them are small but 

rather to the fact that the computationally difficult cases of any large size are very rare. 

 Probability and decision theory suggest an alternative way to measure the intrinsic 

difficulty of computing a function. For a given function f, a given size measure s, and a 

Turing machine T that computes f, consider the average number of computational steps that T 

requires for inputs of size s. 

Definition Denote the average number of computational steps that T requires for inputs of 

size s by E(T s), and call it the expected complexity of T for inputs of size s. 



 E(T, s) can be regarded as a function of s. We can now ask about any computable 

function f and any function g(s), which may be a linear function, a polynomial function, an 

exponential function, etc., whether or not there exists a Turing machine such that E(T, s) < 

g(s). This mathematical apparatus enables us to compare expected computational complexity 

and worst-case computational complexity for one and the same function. If a function has a 

very low expected complexity, it may in practice be feasible to compute the function even 

though its worst-case complexity is very high. In fact, that sometimes turns out to be the case. 

 Consider again the three-color graph problem discussed earlier. Every known 

algorithm for deciding the problem is worst-case-exponential. But there is an algorithm for 

solving the problem that has constant expected complexity. The constant is not even very 

large: 192. What happens is that as the size of the graph increases, the proportion of graphs 

whose three-colorability is difficult to assess decreases exponentially. While there are always 

hard cases, they become increasingly rare. Here is another kind of problem where 

comparisons of worst-case and expected complexity can be surprising. Let me put this one in 

the form of a puzzle: 

 Consider the products of the BVD company. BVD (Bank Vaults by Dumbo) makes 

bank vaults. They make combination locks with as many dials and as many numbers on each 

dial as the buyer wishes. Their locks don’t work in the usual way, however. For a lock with 

one dial having k settings, for example, the BVD company chooses at random a subset of the 

set of all k settings and fixes the lock so that it will open if and only if the dial is set to a 

number that is in the chosen subset. All subsets are equally probable. if a lock is preferred 

that has several dials, say ten of them, the BVD company will consider the set S of all 

sequences s1, ... , s10 of dial settings, where the first number is the number of a setting of the 

first dial, the second that of the second dial, and so on. BVD then chooses a subset of S at 

random and arranges the lock so that it will open when and only when the dials are set on a 



sequence in this subset, Again, all subsets are equally probable. BVD advertises, truthfully, 

that in the worst case the difficulty in cracking its vaults increases exponentially with the 

number of dials on the vault door. For consider the cases in which the subset that opens the 

vault consists of a single sequence of dial settings. In those cases, if there are k dial settings 

and m dials, there are km sequences of settings. A safecracker who knows nothing about the 

combination other than the general procedure by which BVD makes locks cannot do any 

better than to enumerate all of the possible sequences and try them one after another. In the 

worst case (worst, that is, for the safecracker), the true combination will be the last one in the 

enumeration, and so he will have had to try km sequences. On the basis of this convincing 

argument, BVD sold a great many vaults, The Enumeration Boys, a gang of safe-crackers, 

started specializing in cracking BVD vaults using an enumeration procedure like the one 

BVD claimed to be worst-case-exponential. They attempted to crack a great many BVD 

vaults, and they preferred vaults with a large number of dials because these vaults cost more 

and usually contained more loot than cheaper vaults. On the average, how many 

combinations (that is, how many trial settings of each dial) did the Enumeration Boys have to 

test before they found one that opened a BVD vault? The answer is that on the average the 

Enumeration Boys require no more than two guesses to open. a BVD safe! 

Review Questions 

1. Define the term “algorithm.” 

2. Describe Hilbert’s conception of metamathematics. 

3. Discuss the implications of Gödel’s theorem. 

4. Characterize a Turing machine. Characterize a finite-state automaton. 

5. State Church’s thesis. 

6. Distinguish between recursive and recursively enumerable sets. 

7. What is the characteristic function of a set? 



8. What are some commonly shared characteristics of computational systems? 

9. What does it mean for one function to be bounded by another? 
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Exponential (2x) and polynomial (x2) complexity 

Table 12.1 

Numbers of computational steps required by T for various inputs 

Input No. of computational steps required by T 
0 10 
1 15 
00 12 
10 13 
01 30 
11 15 



Table 12.2 

Largest number of steps required by T for various sizes of input 

Size of input Largest no. of steps T requires for input of 

that size 

1 15 

2 30 

Table 12.3 

The computational cost for T of inputs of various sizes 

s W(T, s) = 10s 

1 10 

2 100 

3 1,000 

4 10,000 

5 100,000 

6 1,000,000 

7 10,000,000 

8 100,000,000 

9 1,000,000,000 

 

  



Chapter 13 

THE COMPUTATIONAL CONCEPT OF MIND 

INTRODUCTION 

 Thomas Hobbes didn’t think of computation as an aid to reasoning. Reasoning, he 

held, is computation. Hobbes thought of our brains as composed of particles. The particles 

somehow serve as counters, as in an abacus, and ideas, or thoughts, are represented as 

numbers by these counters. When we reason, our brains do arithmetic. 

 There were no computers when Hobbes wrote, and no theory of computation. 

Experimental methods had only begun to be applied in the natural sciences, and not at all to 

questions of psychology. Hobbes’s vision could not then constitute a project that people 

could pursue. 

 The science of psychology developed rapidly in the late nineteenth and early 

twentieth centuries. In the late nineteenth century a number of neuropsychologists and 

psychiatrists developed the notion that the brain is a kind of machine in which nerve cells 

function as computational units and in which thoughts and desires are represented by physical 

states and processes in the brain. Perhaps the most prominent figure in this tradition was 

Sigmund Freud, whose early psychological work was premised explicitly on such 

assumptions. 

 The logical revolution inaugurated by Frege toward the end of the nineteenth century 

gave Hobbes’s vision new support of a different kind. Frege’s logic showed how to make 

theories of many kinds formally explicit, and it led Gödel, Church, and Turing to the modern 

formal theory of computational procedures. Even before the work of these men, Rudolf 

Carnap had applied Frege’s system to produce an explicit procedural theory of cognitive 

states and features. 



 Hobbes’s conception was remarkably prescient. It is nearly the conception of 

contemporary cognitive psychology, or “information-processing psychology” as it is 

sometimes called. The contemporary restatement of the view was developed by many people, 

but foremost by Allen Newell and Herbert Simon. Today it is a conception endorsed by most 

people (including psychologists, linguists, philosophers, computer scientists, and engineers) 

working on the topics vaguely characterized as “cognitive science.” It forms a diverse 

intellectual project that occupies thousands of people. Our task in this chapter is to try to 

understand that project a little more fully. 

THE COMPUTATIONAL CONCEPTION OF MIND 

The description of a computational system requires a lot of structure. An input-output 

“convention” is required, a means for describing instantaneous states of the system, and a 

“transition function” that determines which states succeed which other states. In any physical 

realization of a computational system, these various formal structures must be realized by 

real, physical structures that somehow carry out the tasks formally described in the 

computational model. Any physical computer that is also to be an actor in the world will 

require transducers that turn physical effects into discrete input. It will require a mechanism 

(like the Turing machine’s tape or the URM’s registers) for storing information. It will 

require some physical means for implementing the transition function: the physical computer 

will have to make the appropriate states arise after one another. It will require other 

transducers to turn computational output into action, into motion in the physical world. 

 The project of cognitive science is to understand us as computational systems of this 

kind. To get a sense of the difficulty of the task, it may help to indulge your imagination. 

Suppose that an alien with a sophisticated understanding of computation came to study IBM 

personal computers. The alien, for whatever reasons, can’t talk to us or to IBM or read 

descriptions of IBM computers. 



 What would the alien find? Well, for one thing, IBM personal computers are pretty 

much alike physically. For another, IBM computers exhibit a considerable range of different 

behaviors. The differences are subtle and have to do with what appears on the screen when 

the keyboard is struck. The alien might reasonably conclude that the keyboard and the screen 

are transducers, devices that change physical interactions with the environment into 

computational data structures, or vice versa. On that assumption, if the alien were a pretty 

good engineer, some idea could be obtained of the input and output conventions of the 

computational system. But how could the alien explain the enormous differences in the 

behaviors of different computers? 

 From a computational point of view, different behavior is to be expected if the many 

different IBM computers have different programs. So the alien must try to separate the 

capacities and dispositions of IBM personal computers that are general from those that are 

specialized and have to do with the particular programs that have been entered into the 

various computers. 

 The cognitive psychologist’s task is roughly similar to the alien’s. We humans are 

pretty similar physically. We exhibit a wide range of different patterns of behavior. The 

psychologist has a fair idea as to which of our organs—eyes and ears and such—are 

transducers but not a very clear idea at all as to the code of the computational inputs produced 

by physical stimuli or outputs producing physical action. Each human behaves a little 

differently from every other human because of different physical capacities, but more 

important, each human behaves a little differently from other humans because of a different 

history of inputs to the computational system. The psychologist assumes that all of us are 

born with a program wired into us, as it were; psychologists sometimes call this fundamental 

computational structure our functional architecture. What our innate program does is altered 

by our experience. In the same way, the IBM personal computer is born with a kind of 



universal program determined by its computational structure, and it acquires other more 

specific capacities when other programs, such as an operating system, are entered into it. 

 From the perspective of cognitive science, then, we are like the androids of science 

fiction; the only respect in which we are unlike androids is that no one deliberately fashioned 

us. We arose through natural processes. Not surprisingly, many people do not especially like 

this view of us. We will consider some of the arguments that have been advanced against it. 

THE ARGUMENT OF LUCAS AND PENROSE 

A version of the following argument was advanced some years ago by the philosopher John 

Lucas and has been restated with a slightly different emphasis by Roger Penrose, a 

distinguished mathematical physicist. Here is the argument in Lucas’s own words. (In reading 

the argument, it may help if you understand “consistent formal system” as “consistent theory” 

and “provable-in-the-system” as “theorem of the theory.”) 

 Gödel’s theorem states that in any consistent system which is strong enough to 

produce simple arithmetic there are formulae which cannot be proved-in-the-system, but 

which we can see to be true. Essentially, we consider the formula which says, in effect, “This 

formula is unprovable-in-the-system.” If this formula were provable-in-the-system, we 

should have a contradiction: for, if it were provable-in-the-system then it would not be 

unprovable-in-the-system, so that “This formula is unprovable-in-the-system” would be false; 

equally, if it were provable-in-the-system, then it would not be false, but would be true, since 

in any consistent system nothing false can be proved-in-the-system, but only truths. So the 

formula “This formula is unprovable-in-the-system” is not-provable-in-the-system, but 

unprovable-in-the-system. Further, if the formula “This formula is unprovable-in-the-system” 

is unprovable-in-the-system, then it is true. ... 

 The foregoing argument is very fiddling, and difficult to grasp fully. The whole labor 

of Gödel’s theorem is to show that there is no catch anywhere, and that the result can be 



established by the most rigorous deduction; it holds for all formal systems which are (i) 

consistent, (ii) adequate for simple arithmetic, i.e., contain the natural numbers and the 

operations of addition and multiplication, and it shows that they are incomplete, i.e., contain 

unprovable, though perfectly meaningful formulae, some of which, moreover, we, standing 

outside the system, can see to be true. 

 Gödel’s theorem must apply to cybernetical machines, because it is of the essence of 

being a machine, that it should be a concrete instantiation of a formal system. It follows that 

given any machine which is consistent and capable of doing simple arithmetic, there is a 

formula which it is incapable of producing as being true, i.e., the formula is unprovable-in-

the-system, but which we can see to be true. It follows that no machine can he a complete or 

adequate model of the mind, that minds are essentially different from machines.1 

 The crux of Lucas’s argument is in the first sentence and the last paragraph. The stuff 

in between is to remind you of what he is talking about. 

 Many philosophical arguments that seem to establish something of great importance 

from assumptions of very little importance give that appearance by confusing the reader. The 

confusion is often in a “fudge phrase” which has no one exact sense or several exact senses 

between which the argument equivocates. In Lucas’s argument the fudge phrase is “which we 

can see to be true.” 

 Gödel did not prove that for every consistent formal system adequate for arithmetic, 

there is a sentence of arithmetic that is not a theorem of the system but that we can see to be 

true. There are no theorems of logic or mathematics about what we can see to be true. Gödel 

might have proved either of two things: 

1. For every consistent theory adequate for Peano arithmetic, there exists a sentence that is 

true of the natural numbers but is not a theorem of the theory. 



2. There exists an algorithm that, for every consistent theory adequate for Peano arithmetic, 

finds a sentence that is true of the natural numbers but is not a theorem of the theory. (This is 

the logically stronger claim.) 

 The first claim does not at all imply that, given a description of a consistent formal 

system adequate for arithmetic, we have the power to find a truth of arithmetic not entailed by 

the system. The first claim implies that such a sentence exists, not that it can be produced by 

us or by an algorithm. So if the first claim is what Gödel proved, then Gödel’s theorem 

provides no support for Lucas’s assumption that we have the power to locate, for each 

consistent theory adequate for arithmetic, a truth of arithmetic that the theory does not entail. 

Hence the first claim provides no support for his conclusion. 

 If the second claim is true and if, as Lucas says, given any theory adequate for 

arithmetic, we have the power to find a truth of arithmetic that is not a theorem of that theory, 

then a machine can do the same thing we can. The machine need only compute the algorithm 

that Gödel proved to exist.2 Either way, Gödel’s theorem does nothing to support the 

conclusion that humans are not computationally bounded. (Actually, Gödel proved the 

second, stronger claim.) 

Study Question 

Lucas says, “In any consistent system nothing false can be proved-in-the-system, but only 

truths.” By “system” he means a formal first-order theory. Explain why his claim is false. 

ARE MENTAL STATES IN THE HEAD? 

What, in the computational conception of mind, are mental states? The computational 

conception says that cognitive capacities are computational capacities and that in exercising 

those capacities, we are executing a computer program, because we are nature’s androids. 

That of itself says nothing exact about what thoughts are, or wishes or beliefs or any of the 

mental states that we attribute to ourselves and to others. 



 One proposal that fits rather naturally with the computational concept of mind is that 

mental states are computational states. Under the computational conception of mind, if we 

were fully to describe the cognitive structure of a person, we would specify an elaborate 

computer program, or perhaps a set of programs. Perhaps to each mental state of the person, 

e.g., to the desire for a pineapple, there would correspond a syntactic or formal feature of 

instantaneous descriptions of the person’s computational system. The person would be in a 

state of desiring a pineapple whenever the person was also in a computational state that had 

that feature, whatever it might be. 

 We know that a computational system, abstractly described, has many possible 

physical realizations. With Turing machines, for example, we can use paper tape or plastic 

tape; it makes no difference. A recent article in Scientific American (in an April Fools’ issue) 

shows how to make the components of digital central processing and memory units from 

ropes and pulleys. If features of a computational system that a person realizes characterize 

mental states, then perhaps the sensible view is that anything, any physical system at all, that 

realizes the same computational system as does a person will have the same mental states. 

Thus, as Ned Block, a contemporary philosopher, once pointed out, according to 

functionalism, if all the people in China got out flashlights some dark night and sent signals 

to one another, perfectly imitating the signals between neurons in a fragment of one person’s 

brain, and if those neural signals in that person’s brain constituted an instance of a mental 

state, then the system consisting of all the people of China flashing signals to one another 

would also have that mental state. 

 We already know this view of mental states as functionalism. Although it was a 

creation of philosophers (in fact, the view can be found among Christian philosophers as 

early as the fifth century A.D.), it corresponds nicely to what some artificial intelligence 

researchers like to say. John McCarthy, the inventor of LISP, was once asked whether a 



thermostat has beliefs. His reply was that the thermostat was capable of three beliefs: “Its too 

cold in here,” “Its too hot in here,” “Its just about right in here.” 

 Hilary Putnam, who was one of the first to articulate the functionalist view of mental 

states in computational terms, subsequently produced an argument to show that mental states 

cannot be computational states. The argument is as follows: 

 We can consistently imagine that there exists somewhere a planet that is the twin of 

Earth. Everything happens exactly as on Earth, but with one difference. On this planet water 

is not H2O, but something else, maybe deuterium oxide. Anyway, everything happens on 

Twin Earth as on Earth. So when I want a drink of water, my double on Twin Earth also 

wants a drink of water. When that happens, we are both in the very same computational state. 

But are we in the same mental state? Arguably not. For our mental states, in this case our 

wants, have a content, which is that some proposition be true. If we want different 

propositions to be true, then the mental states consisting of those wants must also be 

different. But the proposition that I want true is not the same as the proposition that my 

double on Twin Earth wants true when we are in the computational state that he and I both 

describe as wanting a drink of water. For my word “water” denotes H2O, while my double’s 

word “water” denotes something else. Hence the propositions we want to be true, the 

circumstances we want realized, are different. Indeed, I might be very unhappy if, instead of 

a drink of H2O, I received a drink of whatever my double calls “water.” Since the contents of 

our wants are different, we cannot be in the same mental state. But we are, by assumption, in 

the same computational state. Therefore, our mental states, my double’s and mine, are not 

identical with our computational states. But if in the actual world mental states are identical 

with computational states, then in every possible world they must also be identical, because 

identity is a relation between entities (or properties) that, if true, is necessarily true, and what 

is necessarily true is true in every possible world. 



 We might object to this argument at length. Suppose, however, that we grant it and 

allow that mental states are not, or at least not all, in the head. Mental states are not 

computational states. Instead, mental states are pairs, consisting of a computational state and 

a semantic relation of some kind. The Twin Earth argument imagines a case where the first 

element of the pair is the same but the second element is different: features of the 

computational state denote different properties for me and my double. 

 It seems a bit mean that some philosophers maintain that this result about mental 

states constitutes a difficulty for the computational conception of mind (after all, 

psychologists didn’t invent the functionalist doctrine; philosophers did!). The argument goes 

like this: Psychology is about mental life and its relation to behavior. But mental life consists 

of a sequence of mental states. Mental slates in turn are not features of people’s 

computational states, or of their computational states and behavior. The Twin Earth argument 

shows that mental states depend on semantic features, that is, on relations of denotation 

between symbols and features of the world, on relations of synonymy, and so on. Semantic 

relations in turn are at least in part a social creation. What words and phrases denote, which 

words and phrases are synonymous with each other, and so on, is at least in part (presumably 

in large part) the result of social practice. Hence the study of mental life cannot be separated 

from the study of society as a whole, and the idea of a cognitive science that confines its 

attention to individual behavior and individual computational processes rests on a mistake. 

 Should cognitive psychologists, faced with this argument, give up their enterprise and 

start doing sociology? I don’t think so. The idea is that each instantiation of a mental state has 

two parts. One part is an instantiation of a computational or functional state consisting in 

momentary (or enduring) physical features of someone’s brain, while the other part is an 

instance of a semantic relation between the person, or the physical features of the person’s 

brain that constitute the instantiation of the computational state, and the rest of the world. 



Cognitive psychology often tries to study the first part, not the second. Why shouldn’t it? 

Every psychologist is embedded in the society as fully as are her subjects. The psychologist 

knows what words mean and how to use them. Part of the competence of the psychologist is a 

social facility that does not have to be stated in an explicit theory and is not itself the subject 

of the psychologist’s study. The psychologist, simply by being a member of society, has a 

practical knowledge of the second part of mental states—the relations of denotation, 

synonymy, and so forth—in almost every case. Her interest is in discovering the functional 

architecture of the brain and the rules by which the first parts of mental states succeed one 

another and interact with behavior. Nothing in the Twin Earth argument shows that there is 

no such architecture or that there are no such rules or that the psychologist cannot find them. 

Study Question 

Does the Twin Earth argument assume the Cartesian principle that if one can imagine that p 

then p is possible? 

THE CHINESE ROOM 

Cognitive psychologists and computer scientists interested in artificial intelligence sometimes 

do the following sort of thing. They find some interesting and complex human capacity that 

requires intelligence, and they write a computer program that, when executed, simulates that 

activity. The construction of the computer program might take into account, and attempt to be 

faithful to, human accounts of how the capacity is carried out. So one might simulate chess 

players, or one might simulate the puzzle-solving activities of experts and amateurs, whether 

at games or at textbook problems; one might even simulate the kind of understanding that 

people have when they read newspaper articles on various topics. One might, for example, 

write a program that will read articles on airplane hijackings and answer questions about the 

articles, questions that require the kind of inferences that we humans make. Or one might 



write a program that knows what to say and what to expect when ordering in a restaurant. 

Programs of all of these kinds have been written. 

 The aim of these simulations is often to attempt to give an explanation of how it is 

that humans are able to do what they do. The explanation offered is that we do what we do by 

executing a computer program like the one used in the simulation. Of course, if we execute 

such a program, it is internal to us, and we may not execute it deliberately, although there 

may be elements of deliberateness, as in problem solving. Some artificial-intelligence 

workers go on to say that if the computer program correctly describes the procedure that 

humans follow when they exercise the capacity being simulated, then the computer genuinely 

has that capacity as well: the computer understands or thinks or whatever. This view goes 

quite naturally with functionalism and is even consistent with the view that a mental state is a 

pair consisting of a computational state and a semantic relation. 

 John Searle, a philosopher, produced an argument against both of the views in the 

preceding paragraph. He used as his example programs written by Roger Schank, a computer 

scientist, designed to simulate reading and understanding a story. Schank’s programs could 

answer reasonable questions about stories they were given on a particular topic. Searle denies 

(a) that the machine can literally be said to understand the story and provide answers to 

questions and (b) that what the machine and its program do explains the human ability to 

understand the story and answer questions about it. 

 Searle’s objection is not to Schank’s programs in particular but to all and any 

computer programs that, when implemented, are said to understand or to explain human 

understanding. Searle’s argument is in the form of another thought experiment. Suppose that 

he is locked in a room with a large batch of Chinese writing, which he does not understand, 

since he does not understand Chinese. After this first batch of Chinese writing (the story), he 

is given another batch of Chinese script (the questions), and a set of rules, written in English, 



for producing Chinese script in response to the second batch of Chinese writing, the 

questions. He can follow the rules, even though he has no idea what the Chinese characters 

mean, because he can recognize and copy their shapes, and that is all that the rules, written in 

English, require him to do. 

 To complicate the story a little bit, imagine that these people also give me stories in 

English which I understand, and they then ask me questions in English about these stories and 

I give them back answers in English. Suppose also that after a while I get so good at 

following the instructions for manipulating the Chinese symbols and the programmers get so 

good at writing the programs that from the external point of view—that is, from the point of 

view of somebody outside the room in which I am locked—my answers to the questions are 

indistinguishable from those of native Chinese speakers. Nobody looking at my answers can 

tell that I don’t speak a word of Chinese. ... From the external point of view, from the point of 

view of someone reading my “answers,” the answers to the Chinese questions and the 

English questions arc equally good. But in the Chinese case, unlike the English case, I 

produce the answers by manipulating uninterpreted formal symbols. As far as the Chinese is 

concerned, I simply behave like a computer. ... For the purposes of the Chinese, I am simply 

an instantiation of the computer program.3 

 Now Searle claims that it is obvious that he does not understand Chinese, even 

though he is, in this thought experiment, an instantiation of a computer program that behaves 

as though it understands Chinese. Hence it is false that a system can have mental states and 

understanding simply by instantiating the right program and exhibiting the right behavior. 

Furthermore, he claims, these examples give us good reasons to doubt that a computer 

simulation contributes anything toward explaining understanding. 

 In the Chinese case, Searle has everything that artificial intelligence can put into him 

by way of a program, and he understands nothing. In the English case, he understands 



everything, and there is so far no reason at all to suppose that his understanding has anything 

to do with computer programs, i.e., with computational operations on purely formally 

specified elements. As long as the program is defined in terms of computational operations 

on purely formally defined elements, what the example suggests is that such operations by 

themselves have no interesting connection with understanding. They are not sufficient 

conditions, and not the slightest reason has been given to suppose that they are necessary 

conditions or even that they make a significant contribution to understanding. Notice that the 

force of the argument is not that different machines can have the same input and output while 

operating on different formal principles—that is not the point at all—but rather that whatever 

purely formal principles you put into the computer will not be sufficient for understanding, 

since a human will be able to follow the formal principles without understanding anything. 

 Searle claims that the human brain has special “causal powers” that produce 

understanding, intentionality, and mental states, and we have no reason to think that any 

computer executing a program that simulates human behavior has any such powers: 

“Could a machine think?” My own view is that only a machine could think, and 

indeed only very special kinds of machines, namely brains and machines that had the 

same causal powers as brains. And that is the main reason why strong AI has had 

little to tell us about thinking: it has nothing to tell us about machines. By its own 

definition it is about programs, and programs are not machines. Whatever else 

intentionality is, it is a biological phenomenon and it is as likely to be as causally 

dependent on the specific biochemistry of its origins as lactation, photosynthesis, or 

any other biological phenomena. No one would suppose that we could produce milk 

and sugar by running a computer simulation of the formal sequences in lactation and 

photosynthesis; but where the mind is concerned, many people are willing to believe 

in such a miracle, because of a deep and abiding dualism: the mind they suppose is a 



matter of formal processes and is independent of specific material causes in the way 

that milk and sugar are not. 

 In defense of this dualism, the hope is often expressed that the brain is a digital 

computer. ... But that is no help. Of course the brain is a digital computer. ... The point is that 

the brain’s causal capacity to produce intentionality cannot consist in its instantiating a 

computer program, since for any program you like it is possible for something to instantiate 

that program and still not have any mental states. Whatever it is that the brain does to produce 

intentionality, it cannot consist of instantiating a program, since no program by itself is 

sufficient for intentionality.4 

 There are several ways to view Searle’s argument. In one perspective the argument 

might be viewed as an instance of the general argument against the reduction of meanings 

considered in chapter 10. More directly, however, Searle’s argument appears to be an 

instance of the Cartesian fallacy: I can imagine that p. Therefore, p is possible. Let us 

consider this aspect a little more fully. 

 Searle is surely correct that even if we execute procedures in the process of 

understanding, not every possible system that executes those same procedures will 

understand. But no one ever seriously thought differently. An important aspect of many 

actions is the time it takes. A system that executes the very same computational procedures 

that I carry out in catching a baseball or reading a story or solving a problem but that takes 

considerably longer than I do to carry out those procedures does not do what I do. Nor does a 

system that carries out the same procedures I do but remarkably faster. Behavioral 

equivalence implies approximate temporal equivalence. The advocates of machine 

intelligence never meant (or never should have meant) that a system that takes thousands of 

years to parse a sentence understands English. The only interesting and plausible thesis for 

artificial intelligence is that systems that carry out the appropriate formal procedures on 



symbols that have the appropriate semantic roles, and do so in such a way as to approximate 

human behavior, understand. To approximate human behavior, the procedures must be 

executed with sufficient speed. 

 We can certainly imagine that Searle in a locked room can carry out instructions fast 

enough to simulate a Chinese speaker. But that does not entail that Searle in a locked room 

can possibly carry out instructions fast enough to simulate a Chinese speaker, and in fact, it 

seems quite unlikely that Searle could possibly do so. The range of topics over which a 

Chinese speaker can converse is enormous and unbounded. We can imagine that Searle has a 

huge set of volumes that list the correspondences between questions and answers in Chinese 

script (depending, of course, in complicated ways on what exchanges took place previously). 

Searle can’t look them up fast enough to simulate a Chinese speaker. He can’t memorize 

them either, any more than a child could learn English by memorizing all of the well-formed 

English sentences he might ever meet. If by “instantiating” a program that describes human 

behavior we mean instantiating it so that it can be executed rapidly enough to simulate human 

behavior in “real” time, then Searle’s implicit claim that any program can be instantiated by 

having a human manipulate formal symbols seems to be flatly false. 

 The brain does have special causal powers. But perhaps the question about 

computation and intentionality is whether the special causal power of the brain is simply the 

power to compute certain programs rapidly enough. Perhaps nothing save an organic 

computer can compute the brain’s programs rapidly enough to produce human behavior. Or, 

to the contrary, perhaps other systems, made of silicon and optical fibers or whatever, can. 

But still, no human trying to execute such a program given as a set of deliberate instructions 

can. 

 These considerations don’t show that Searle’s thesis is false, if his thesis is that 

computational structure is not the cause of intentionality and understanding and that the 



biological features that cause intentionality and understanding merely happen to have a 

computational structure, or perhaps even cause or constitute an instance of that computational 

structure. He could be correct. It might even be the case that there are physically possible 

systems that compute as we do and as fast as we do, but that don’t feel, intend, or understand 

at all. Nothing has been established on either side. 

CHALLENGES OF THE COMPUTATIONAL CONCEPTION OF MIND 

We have looked at several arguments that attempt to show that there is something wrong with 

the very idea of cognitive science as it is now pursued, or something incoherent in the 

computational conception of mind. None of these arguments succeed, or even come close to 

succeeding. That does not show that the computational conception of mind is free of troubles: 

In fact, it has two very different challenges: there are too many possible computational 

theories of mind, and there are too few. The challenges for the computational theory of mind 

are not conceptual, they don’t have to do with some subtle puzzle that has been overlooked. 

They are empirical; they have to do with whether and how the truth about mind can be 

discovered by observation and experiment. 

 One can get a sense of how difficult it is to find a computational account of mind by 

considering what is called the frame problem. To illustrate the problem, I will use an example 

due to the contemporary philosopher Daniel Dennett. 

 Imagine a robot that must get its spare battery from a room. It enters the room and 

finds its battery, and a bomb, both on a wagon. So it pulls the wagon from the room. The 

battery comes along, but so does the bomb. Result: no robot. The robot’s problem is that it 

does not understand the consequences of its actions. It understands that pulling the wagon 

will bring the battery along, but not that it will bring along any other medium size object 

resting stably on the wagon. So we might give the robot a complete theory of the 

consequences of its actions. Let us suppose the theory specifies, for any action the robot 



might take, all of the circumstances that will change in consequence and all of the 

circumstances that will not change because of that action. The new robot enters the room and 

considers whether or not to pull the wagon with the battery (and the bomb) on it from the 

room. Before acting, it must compute the consequences of the action. One of the 

consequences is that the Earth will continue to rotate; another is that the stars will continue to 

shine; 2 plus 2 will still equal 4. The robot computes away until the bomb goes off. The 

problem with the second robot is that it did not compute the relevant consequences of its 

actions. So design a third robot that has, in addition to a theory of the consequences of its 

actions, a theory of relevance. It can tell which consequences are relevant and which 

consequences are not relevant to its interests. It isn’t interested in the fact that the stars 

continue to shine; it is interested in the fact that if it pulls the wagon, both the battery and the 

bomb come along. Now the third robot enters the room and starts to compute relevant 

consequences of pulling the wagon out. It computes that a consequence is that the Earth will 

continue to turn, and that that fact is not relevant to its interests at the moment; it computes 

that the stars will continue to shine, and that is not relevant; it computes that 2 plus 2 will 

equal 4, and that is not relevant. And the bomb goes off again. 

 One moral to this story about the frame problem is about the difficulty of reliable 

prediction. From limited evidence where we have observed or manipulated physical systems 

of various kinds, we are able to form theories about the effects of our actions. Infants have a 

sophisticated capacity to learn enough very quickly about the everyday physical principles 

governing our world so that by the age of four or so they get around just fine. Scientists have 

a capacity to predict the effects of policies or actions from observations and experiments. 

Most of the relevant inferences in these cases have to do somehow with causal relations 

among events and properties. The question is whether there are general, reliable principles 



about causal inference that a computational system, whether infant or scientist or digital 

computer, can use to predict the effects of actions. 

 Another moral to the story is that to give a computational account of any human 

capacity, we must explain how it is possible for a computational system to generate and 

consider only relevant hypotheses or consequences. Philosophy has traditionally been 

concerned with characterizing relevance. Ideas of confirmation, explanation, responsibility, 

causation, and so on can all be thought of as ideas about particular kinds of relevance. But it 

is one thing to define or characterize a relevance relation and quite another to show how, 

from a given A, a relevant B or all and only the relevant Bs can be found by a computational 

process. That is what the computational theory of mind must do. Moreover, it must do it for 

the kind of computer we appear to be. So finding any computational theory that accounts for 

our behavior is very difficult, and it is fair to say that for really complicated human 

capacities, we as yet have no such theory. There is, for example, no artificial computational 

system that will learn a human language from the kind of data available to a child. At the 

same time, there are too many possible theories of how we do what we do, and it may be that 

the evidence we have, or normally use, is insufficient to decide among them. 

 Suppose that we are trying to figure out how an android works, knowing that the 

android’s cognitive behavior is produced by computational processes. We can get lots of 

copies of basically similar androids, although each android may have a slightly different 

history than every other android and so will behave slightly differently. We can observe the 

android’s actions, subject it to whatever psychological experiments we please. We can 

measure the time it takes for the android to do various tasks. Can we discover the truth about 

how the android works? To see how difficult the task is, let’s consider a simpler problem and 

assume that we (somehow) already have relevant prior knowledge. Suppose that there is a 

huge box we cannot open; a tape feeds into the box (input) and another tape feeds out of the 



box (output). The box eats trees, which it internally turns into more tape. Suppose that there 

is a limitless supply of these boxes and that we know they all have the same program. We 

know that the box is some kind of Turing machine. Can we determine the program of that 

Turing machine? 

 The boxes represent a discovery problem. All of the boxes compute the same 

function. Our task is to determine how they compute it. We can put whatever we want on the 

input tape to one of the boxes and see what the output is. We can do so for as many inputs as 

we wish, conjecturing some program at each step. Is there a procedure that will reliably 

identify the program of the boxes? Not if by “reliably” we mean that for every possible 

program for the box that computes a total function, when given a sequence of evidence from 

that function (that is, given argument, value, or input-output pairs for that function, in any 

order) the procedure eventually conjectures the correct program and conjectures it ever after. 

Let us say that a procedure identifies a collection of programs if it can, in this sense, discover 

each of them. Recall that a function is total if it is defined for every input value. Then if we 

think of each program as given by a Turing machine, we have the following: 

Theorem Let K be the collection of all Turing machines that compute total functions. No 

computable procedure identifies K. 

 We need only consider computable procedures, because the very assumption of the 

computational conception of mind is that we, the would-be discoverers, are computational 

systems. If we cannot succeed in this rather weak, long-run sense of “function,” we cannot 

succeed in stronger senses either. Success is possible only if we have prior knowledge that 

will restrict the set of possible programs (in fact, restrict it considerably) or if we have access 

to some further form of evidence. 

 Cognitive psychologists have access to additional evidence besides the input-output 

behavior of people. One thing they can determine in addition is the time required to process 



various inputs and produce an output in response. So the data really consist of a triple: an 

input, an output, and a real number representing the time required to get the output from the 

input. Time measurement is more useful if we know a bound on the time required for any 

computational step. If we know, for example, that the Turing machine inside the box requires 

at least 103 seconds to carry out the instructions in any state, we can use that information to 

reduce the number of alternative programs consistent with the data. What we get from the 

black boxes is input and output data and the time required to produce the output from the 

input. The time, together with the bound on the time required for each individual 

computational step, gives us a bound on the number of steps in sequence that the program can 

have executed in computing the output from the input. We need never conjecture any 

program that requires (for the input-output data we have already seen) more steps than the 

bound allows. Clearly, this provides us with a lot of information restricting the alternative 

Turing-machine programs. 

 The psychologist’s problem is in some ways more difficult than the problem of the 

android boxes, because the psychologist must also identify what counts as input and output. 

Consider a psychologist doing research in which subjects are given oral instructions and an 

example and then are asked to carry out some problem-solving task that requires perception, 

reasoning, and some mechanical skills. Do the instructions constitute an input to a program 

instantiated in a subject’s brain, and does the subject’s consequent behavior constitute the 

output? Or do the instructions constitute a mixture of inputs to several different programs, 

and the behavior the output of these several distinct programs? Perhaps these programs are 

not completely distinct, and in the task assigned they interact. The psychologist’s task is more 

difficult than in the case of the android boxes, because the psychologist has to identify the 

input and the output as well as the program. That task goes hand in hand with determining 

which human “faculties” are carried out by autonomous programs, which are identical, and 



which are carried out by programs that interact with one another. Vision, for example, might 

be carried out by a program in us that interacts with the program that carries out imagining; it 

might be that data structures that arise in the execution of one program have an effect on 

concurrent (or subsequent) executions of the other program. 

 I can illustrate this problem simply enough with the android boxes. Suppose that you 

can examine the input tape and the output tape that results from any android box, but you 

don’t know whether the box contains one Turing machine that reads all of the symbols on the 

input tape and writes all of the symbols on the output tape or whether the box instead 

contains several Turing machines, some of which read and write some of the symbols and 

others of which read and write other symbols. Indeed, the symbol sets (or vocabularies) for 

the several Turing machines that might be in the box need not be completely disjoint. The 

space of possibilities is larger, and the identification problem more difficult. 

 Actually, the psychologists’ problem is even harder. I have assumed throughout that 

the android box is a Turing machine or a collection of Turing machines. But what if we don’t 

know that? Suppose that the android box can be an instantiation of any computational system 

whatsoever, so long as it is consistent with certain time bounds. It can be a multitape Turing 

machine. It can consist of several nondistinct Turing machines. They may share tapes or 

maybe just have some tape squares in common. It may be that some of the Turing machines 

in the box share symbols and parts of tape, so they can (internally) write over one another. It 

may he that the state transitions of one are influenced by the instantaneous states of another 

(two read/write heads can’t be over the same square at once, for example). Or the box might 

contain a URM or a RAM machine or a production system or any of an infinite number of 

alternative computational systems. The bound on the number of steps that a computation can 

take between a given input and the output is not of much use in identifying the program 

inside the box. We know, for example, that if a function is computable by a two-tape Turing 



machine in time that is proportional to the size of the input, then it is computable by a one-

tape Turing machine in time that is proportional to the square of the size of the input. Parallel 

results hold for three-tape, four-tape, and n-tape Turing machines. So if there is a Turing-

machine program that meets the time bounds for given input-output behavior, there is an 

infinity of different programs (in different programming systems, namely Turing machines 

with different numbers of tapes) that do so. 

 The psychologist’s task begins to look very hard indeed. Finding a computer program 

that, when run on a digital computer, simulates a piece of human behavior begins to look like 

very weak evidence that the program describes just how the human mind executes that 

behavior. We might begin to think that Searle’s skepticism is warranted, but for different 

reasons than those he gives. There are, however, some reasons for optimism about the 

possibility of a successful cognitive science. 

 When people are asked to do a task, they are often able to report how they do it. In 

solving a puzzle or playing a game, one can describe at each moment the move one is 

considering. Sometimes one can even say why a particular move is under consideration. So it 

is as if we were android boxes that can describe some of their own computational steps. We 

are able to give away major pieces of our own program. Of course, that sort of information 

makes the task of finding the program much more feasible. 

 But perhaps not feasible enough. It might be objected that the parts of our internal 

program that we are able to articulate are, in a sense, superficial. We can articulate what we 

can deliberate on. But a lot of our cognitive capacity is not deliberate at all. When you see a 

sign written in English, you don’t deliberately grasp what it says; you can’t help yourself. If 

you are struck by a ball, or bitten by a horse, you may not deliberate the next time a ball or a 

horse comes by. If you deliberate when you learn a first language, we certainly don’t know 

how you deliberate, even in those rare cases (as with Helen Keller) in which a first language 



is acquired at a comparatively mature age. The ways in which we deliberate seem likelier to 

be learned, and thus to he variable from person to person, than the ways in which we do 

things without deliberation (or in spite of it). One might reasonably doubt that the strategy of 

collecting introspective reports of deliberations will provide enough information to enable 

psychologists to characterize the functional architecture of the mind. 

 There is something further that can be done: open up the box. It would be a great deal 

more feasible to figure out how an IBM personal computer works if one could take the 

computer apart to determine its physical properties and components and how they function. It 

would be easier to determine how our imaginary android boxes work if we could open the 

boxes. According to the computational conception of mind, our brains constitute biological 

computers, and it would seem more feasible to determine our functional architecture if we 

discover how the pieces of our brains work, how they function in cognition. Much of the 

work on the physiology of the brain tells us very little about cognition and behavior, but 

increasingly there are examples of scientific arguments about human capacities that tell us 

more because in one respect or another they open up the box. 

CAN THE COMPUTATIONAL CONCEPTION OF MIND BE WRONG? 

I have left out some possibilities. They are not possibilities that will reassure those of us who 

want humans to have a. special place a little outside of nature, but they are possibilities that 

are quite serious and contrary to the computational conception of mind. That conception has 

taken form within the confines of Church’s thesis. It assumes, at least tacitly, that 

computation is discrete and limited to Turing-computable functions, and that an appropriate 

theory of humans is thus a theory of a device for computing Turing-computable functions. 

But there need be nothing supernatural or mystical in supposing that we are not such a 

device. 



 Consider the system of the planets. If you do certain things to that system, you get 

certain results. If for example, you shoot a space ship off the Earth with a certain thrust, the 

spaceship will follow a particular trajectory through the planets, depending on where the 

planets were located when the rocket took off. We can call input and output whatever we 

choose. If we think of the thrust and mass of the rocket and the positions of the planets as 

input, and the trajectory of the spaceship as output, this system does not look like a Turing 

machine, nor does the dependence between input and output look like a recursive function. 

For one thing, the inputs and outputs are continuous variables; the functional dependence 

between input and output is not given by a function on the natural numbers but by a function 

on systems of real numbers to systems of real numbers. The solar system is a dynamic 

systerm. Perhaps we are as well, although, of course, a very different dynamic system than 

the system of the planets. Perhaps the dependencies in our nervous system and between our 

nervous system and the external world are properly described not by Turing-computable 

functions but by functions over other number systems besides the natural numbers. Not only 

is this imaginable, it seems plausible. We could not do physics very well if we confined our 

physical descriptions to Turing-computable functions. Since we ourselves are physical 

systems, it would be surprising if we could describe ourselves adequately by Turing-

computable functions. 

 If we are dynamic systems, we may still be computational systems, of course. An 

instantiation of a Turing machine is a dynamic system that is a computational system as well. 

So is the computer on which I wrote this book. The point is that, while being dynamic 

systems, we might have cognitive capacities that are explained not by any computational 

system we instantiate but instead by the kind of dynamic system we are—just as the behavior 

of the spaceship after leaving the Earth is explained by the dynamic properties of 

gravitational systems generally and by the configuration of the solar system in particular. 



 Perhaps we should generalize the notion of computation and consider the solar system 

as a kind of computer: you put the rocket in, and the system gives you its trajectory out. So if 

the mass and thrust of the rocket code any other real-valued quantities and the trajectory of 

the rocket codes still other real-valued quantities, the solar system serves as a kind of analog 

computer. Considering ourselves as dynamic systems is thus something like considering 

ourselves as continuous, analog computers. The very idea raises questions about the general 

characterization of analog computation, about the connections between computation on the 

real numbers and on the rational numbers, and about the computational properties of various 

kinds of dynamic systems. Unfortunately, I must leave these issues to more advanced texts. 

BOUNDED RATIONALITY 

In the first chapters of this hook we thought through the implications of a very banal fact: one 

doesn’t always see what is entailed by a sentence, even though one understands it perfectly 

well. Later, in the discussion of probability, we also considered the implications of the fact 

that one does not usually simply believe a claim entirely or reject it entirely, but instead one 

puts some stock in it, gives it some credence, and the confidence one has varies from claim to 

claim. One result of these inquiries was a theory of meaning and a theory of entailment that 

together provide a normative theory of belief. That theory says what you ought to believe if 

you wish to believe all and only the necessary consequences of what you believe. These 

theories were presented as the logic of sentences and the logic of quantifiers, tied together in 

the theory of the logic of first-order languages. A further result of these inquiries was the 

theory of subjective probability, understood as a theory about how degrees of belief ought to 

be distributed. 

 Each of these theories is, in its way, very tolerant. Neither the logicians nor the 

Bayesians try to tell us very much about what we ought to believe. Instead, these theories 

impose constraints on our beliefs and partial beliefs. Logic tells us that if we have certain 



beliefs, we are obliged to have certain other beliefs as well. It doesn’t tell us much about 

which initial beliefs to have or about what to do if our beliefs have consequences that we 

don’t believe. Subjective probability theory tells us constraints on how our degrees of belief 

should be distributed. It doesn’t tell us that any particular proposition must be believed to a 

particular degree, except, of course, that logical truths must he given a degree of belief of 1 

and logical contradictions must be given a degree of belief of 0. Decision theory doesn’t tell 

us what to do; it tells us what to do given a specification of our utilities and degrees of belief. 

 Together these theories constitute the core of the best normative theory we have, the 

theory of rationality. It would, then, be a shock to discover that the theory does not apply to 

us and that, as it stands, the theory of rationality gives us no guidance in belief and in action. 

if, as cognitive science assumes, we reason by computation, that is the conclusion that seems 

to follow. 

Rationality and Computationally Bounded Systems 

With a little imagination, many of the things we do can be thought of as determining values 

of a function. For example, we recognize certain sequences of symbols as grammatical 

sentences of English, and we recognize certain other sequences as ungrammatical English. In 

doing so, we can be thought of as determining values for a function, the characteristic 

function of the set of grammatical English sentences. When we do arithmetic in our heads, or 

even with the help of a pencil and paper, we can again be thought of as evaluating a function, 

namely the arithmetic function in question. On any occasion when we are involved in a 

problem-solving task with a variety of discrete, sequential possible steps, say playing tic-tac-

toe or playing chess or carrying out the actions required to make an omelet or to make a 

telescope lens, we can be thought of as evaluating a function, In these cases the function 

gives our moves in various positions (in games), or the actions we take at each step in the 

relevant states (in making an omelet or making a telescope lens). 



 What functions can we determine or evaluate, and how quickly can we determine or 

evaluate them? One view, which I will call the computational thesis, is this: Given any 

“natural” decomposition of the actions a human can perform and any “natural” description 

of the selection of a sequence of actions as the evaluation of a function defined on discrete, 

finite objects and having discrete finite objects as values, all functions that humans evaluate 

are Turing-computable. Because of the use of the phrase “natural description,” this is quite 

vague, and it may not be possible to make the thesis a lot more precise. When someone is 

given, for example, a pair of natural numbers to add together, she produces a number in 

response. We understand the function she evaluates to be the arithmetic function over the 

natural numbers. When someone plays chess, we understand the function evaluated to be a 

function from positions to moves. Of course, when someone makes a move in chess, a lot 

more happens than simply the making of the move. The player may rub his chin, groan, move 

his arm in a certain fashion, put the piece down delicately, furrow his brow, wink, change the 

center of mass of the solar system, and on and on. We ignore all this. 

 The theory of computation is not a normative theory; it doesn’t tell us what we ought 

to do. But if the computational thesis is true, the theory of computation tells us many things 

that are beyond our power to do. On that assumption, it is beyond our power to evaluate a 

function that is not Turing-computable; it is beyond our power to evaluate, in polynomial 

time, a function that has no polynomial-time algorithm. All the results of the previous chapter 

about the limits of computability, and many others not described in that chapter, are limits on 

us. 

 Suppose that people are computationally bounded systems. From this assumption it 

follows that there are certain things we cannot do. In particular, we cannot evaluate the 

validity of all deductive arguments in a first-order language if the language contains even a 

single binary predicate. Furthermore, we cannot determine, for every sentence in such a 



language, whether or not it is consistent. We cannot determine the set of all theorems of any 

theory adequate for arithmetic. If, as computational theorists generally believe (but have not 

yet proved), there is no polynomial-time algorithm that computes the characteristic function 

for the set of consistent formulas of sentential logic (with three or more atomic sentences), 

then we cannot determine the consistency of such formulas in polynomial time. Since a 

nondogmatic probability function must give a probability of 0 only to the inconsistent 

sentences of the language over which it is defined, it follows that we cannot evaluate a 

nondogmatic probability function over a first-order language, no matter how much time we 

take, and we cannot evaluate a nondogmatic probability function over Boolean formulas in 

polynomial time. 

 There are further limitations we should expect if we are computationally bounded 

systems. I have talked about computational complexity in terms of time, but there are also 

considerations of space that arise in computation. Any probability distribution over a set of 

propositions formed from sentences in a language for sentential logic is determined uniquely 

by the value of the probability function over the propositions that are conjunctions 

containing, for each atomic sentence in the language, either that sentence or its negation (but 

not both). These conjunctions are sometimes called state descriptions. If the language has n 

atomic sentences, there are 2n different state descriptions. That is, there are 2n logically 

nonequivalent sentences of this kind. So if we consider a relatively simple language in which 

there are only 50 atomic sentences, there are 250 logically distinct state descriptions. 

 To represent an arbitrary probability distribution, we must specify the value of the 

probability function for each of the state descriptions. So with 50 atomic sentences, for many 

probability distributions we must store 250 numbers to represent the entire distribution. Of 

course, there are particular distributions that can be characterized with many fewer 



parameters, but in the worst case, the amount of space required to represent a probability 

distribution increases exponentially with the number of atomic sentences in the language. 

 We cannot keep 250 parameters in our heads, let alone 2 raised to the power of a few 

thousand, which is what would be required to represent a probability distribution over a 

realistic language. So if we can maintain probability distributions in our heads at all (as we 

must in some form if we are to compute their values), we can do so only for a very limited 

class of probability distributions. We cannot determine validity, consistency, and logical 

equivalence for all propositional formulas in time that inceases as a polynomial function of 

the length of the sentences, and we cannot take extremely long times to make decisions. 

Therefore, if we must make decisions in realistic time, we cannot be consistent, and we 

cannot be probabilistically coherent over sentences that are very long. We cannot determine 

validity, consistency, and logical equivalence for all sentences in a first-order language. For 

such a language, therefore, there will be cases in which our beliefs are inconsistent and our 

degrees of belief incoherent. 

 So we are in the following odd philosophical situation. We have normative theories 

that tell us what we ought to do, and perhaps we recognize the force of these theories. At the 

same time, we recognize that it is not in our power to act as the normative theories require. 

We simply cannot do it, any more than we can jump over the moon. But then, of what force is 

the nonnative theory? What is the point of a normative theory that tells us that we ought to do 

things that we cannot possibly do? 

 One answer is this: The normative theory of rationality imposes constraints on 

collections of beliefs and degrees of belief. We recognize that those constraints cannot be 

satisfied everywhere in the collection of beliefs and partial beliefs of computationally 

bounded humans. But they can be satisfied locally. The normative theory of rationality tells 

us what a mistake is. When we discover that a particular belief we hold is inconsistent, we 



can give up that belief. When we discover that a particular subset of probability numbers 

attached to propositions violate the axioms of probability, we can change some of those 

degrees of belief until our degrees of belief in those propositions no longer violate the axioms 

of probability. Whenever we find a mistake, we can correct that mistake. Moreover, 

whenever we find a mistake in our degrees of belief or our beliefs, we ought to correct the 

mistake. We cannot correct all possible mistakes, because we are computationally bounded, 

but we can correct any mistake we recognize, and we should. 

 Is this a good answer? Why, exactly, should a computationally bounded agent correct 

his logical and probabilistic mistakes when he finds them? It cannot be because correcting the 

mistakes will make the agent perfectly rational. If he is computationally bounded, it won’t. 

Can it be that, by correcting our mistakes, we become, not perfectly rational, but more 

rational? That we move closer to the ideal of rationality? Perhaps, but we don’t know what 

“closer” means. What is it for one inconsistent set of beliefs to be closer to a consistent set of 

beliefs, or “less inconsistent,” than another inconsistent set of beliefs? What does it mean for 

one distribution of degrees of belief that violates the axioms of probability to be “closer” to a 

coherent distribution of degrees of belief than is another distribution that also violates the 

probability axioms? There are as yet few answers to these questions. There is no developed 

theory of approximate rationality. That does not mean that there could not be a theory of 

approximate rationality; it means only that no one has fully developed such a theory and 

given persuasive reasons for it. (In fact, there are scarcely any attempts at such a theory.) So 

we don’t know what it means to get closer to being rational or to increase our degree of 

rationality. 

 If we did know what it meant to be a better or worse approximation to rationality, it 

still might not be the case that we ought to correct our mistakes. It might very well be, for 

example, that since we are computationally bounded systems, correcting one mistake will 



only cause us to make another mistake. Perhaps the mistake we make somewhere else by 

correcting a first mistake is worse than the first mistake itself. Perhaps the policy of 

correcting our mistakes will make us less rational rather than more. Or perhaps the best thing 

to do is to correct certain kinds of mistakes and not others. (I, for example, have never 

become expert in the word-processing system in which this book is written, even though I 

have written two books and dozens of articles using it. I have not done so because I think that 

the formatting errors I make are of minor consequence, and on the occasions when they are 

not, I can get help from others, and also because I think that the time required to become fully 

expert would cause me to make other mistakes of more consequence in other parts of my 

professional life. If I am correct in this, is it irrational for me not to correct my formatting 

mistakes?) The answers to these questions will depend not only on having a theory of 

approximate rationality but also on our understanding of ourselves, on what science may 

reveal about the particular limitations we have. 

Study Question 

Explain why no “computable” probability distribution can assign probability zero to all and 

only the logically contradictory sentences in a rich first-order language.* 

CONCLUSION: ANDROID EPISTEMOLOGY AND ANDROID NORMS 

The computational concept of mind is partly the fruit of a long tradition of philosophical 

work. Cognitive science itself has provided, and continues to provide, a rich source of 

philosophical issues, problems, and perplexities. The very idea that cognition is computation 

has prompted attempts at refutation that, if not convincing, are at least interesting. The 

practice and ambition of cognitive science present an abundance of conceptual problems that 

have attracted the attention of philosophers, psychologists, and computer scientists. But the 

richest lode of issues lies in two related questions. First, how can a computationally bounded 

agent possibly do what humans do? We might regard this question as the fundamental issue 



of android epistemology. It is remarkably like the kind of question that Kant posed, and it is 

an a priori question, not an empirical one. It is a question about how computation can be 

organized so that cognitive competence at least equal to that of humans is possible; it is not 

the more restricted empirical question about how we humans are actually able to do what we 

do. The issue of android epistemology is typically philosophical. 

 The other fundamental question posed by cognitive science has to do with normative 

principles of rationality for computationally bounded agents, in other words, with the 

principles of android rationality. For a computationally bounded agent, our standard 

normative theories of rationality do not provide a guide in life, or any set of standards that the 

agent ought to live up to. In the present state of our understanding of these normative 

theories, there is not even a good argument that a computationally bounded agent ought to 

correct particular violations of the norm when those violations are recognized. 

Review Questions 

1. Paraphrase the argument of Lucas and Penrose that no machine can be a complete or 

adequate model of the mind. 

2. What is meant by the term “transducer”? 

3. What is functionalism, and how does this perspective interpret mental states? 

4. Define “functional architecture.” 

5. In your own words restate Putnam’s argument to show that mental states cannot be 

computational states. 

6. Discuss Searle’s ideas concerning the intentionality and causal powers of human cognition. 

How do time constraints on procedures fit into this computational conception of mind? 

7. What is a normative theory of belief? 

8. Discuss some current problems facing the computational conception of mind. 



9. State the computational thesis presented in this chapter. How is it related to the idea of 

approximate rationality? 
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Part IV 

CONCLUSION 



Chapter 14 

THE ENTERPRISE OF PHILOSOPHY 

A philosopher is someone who has no laboratory, performs no experiments, usually collects 

little data of any kind, has no resources except the knowledge others have provided together 

with her own perspicacity and powers of reasoning. With so little, the philosopher 

nonetheless claims to be engaged in an enterprise that furthers human understanding. The 

claim may seem unlikely, but in many cases it is nonetheless true. How can that be? Part of 

the reason, of course, is that the world is always full of foolishness, and anyone with a mind 

to can try to further understanding by debunking silly claims and projects. But philosophers 

claim to do more than that. How can they? 

 While philosophy is an a priori enterprise, it is not really separated from empirical 

knowledge, or at least it should not be. Great philosophical inquiry has always been informed 

by empirical understanding of nature and ourselves, and by mathematical knowledge. The 

problems of bounded rationality illustrate the point. But that is still only a fragment of the 

answer. The better part is that a great deal of what we need to understand our world, 

ourselves, and other creatures, actual or possible, involves thinking through the implications 

of fundamental concepts and assumptions. 

 The chapters in this book have considered some of the background of philosophical 

thought that led to branches of contemporary knowledge, including mathematical logic, 

computer science, cognitive psychology, artificial intelligence, and statistics. There are other 

subjects, such as economics, for which the philosophical tradition has been equally important 

but that we have not considered at all. Even for the subjects we have considered, only a few 

of the more prominent contributions of philosophy have been described. Other pieces of 

philosophical work have been of real importance to the sciences, and still other works of 



great importance are in the making. A few examples, chosen simply because I know of them, 

can serve as illustrations. 

 Some years ago Donald Davidson and Patrick Suppes carried out empirical studies of 

how people actually make decisions. Davidson later gave fascinating, nontechnical accounts 

of familiar human phenomena, such as weakness of will, by supposing that each of us has an 

internal decision-theoretic framework. Suppes, among many other things, helped to develop 

the mathematical theory of psychological measurement. The best philosophical work on the 

foundations of physics has formed a part of physics itself. For example, David Malament at 

the University of Chicago and John Earman at the University of Pittsburgh have made 

interesting contributions to our understanding of the structure and implications of modern 

space-time theories. In recent years the mathematical structure of reliable inference has been 

pursued by Scott Weinstein, a logician and philosopher, in collaboration with Michael Stob, a 

mathematician, and Daniel Osherson, a psychologist; and also by Kevin Kelly, a young 

philosopher and logician at Carnegie-Mellon University. Some of the most interesting present 

work on causal inference and prediction is being carried out by Peter Spirtes, a philosopher 

and computer scientist. The project of investigating how probabilistic and decision-theoretic 

norms may be adapted to agents whose rationality is bounded in one way or another has been 

pursued by Teddy Seidenfeld, a philosopher-statistician, and in a quite different way by Brian 

Skyms, a philosopher at the University of California at Irvine. There are too many 

philosophers to name who have contributed and continue to contribute to the development of 

logical systems for representing formal aspects of our theories of belief, obligation, and 

necessity. Still others, such as Donald Nute at the University of Georgia, John Pollock at the 

University of Arizona, and Wilfried Sieg at Carnegie-Mellon have worked in different ways 

toward developing logical systems for computationally bounded systems. 



 What Makes any of this and other contemporary work philosophy rather than 

statistics, physics, economics, computer science, or something else? One thing that marks 

philosophical work is the attempt to make sense of entire enterprises that on reflection seem 

profoundly puzzling or obscure in some fundamental respect. That, for example, is part of 

what distinguishes the work of such philosophers as Jerry Fodor, Daniel Dennett, and Paul 

and Patricia Churchland, who have worked for decades to clarify the enterprise of cognitive 

science. It is also what distinguishes some of the best philosophical work on the foundations 

of physics. There is no reason, of course, why the philosophical business of making sense of 

an enterprise must be done by professional philosophers. Zenon Pylysyn is a psychologist 

who has given a great deal of thought to how to make sense of the idea of a computational 

theory of mind, and more physicists than philosophers have worried about the interpretation 

of quantum mechanics. 

 Another mark of philosophical work is that, while addressing a discipline, it 

deliberately and self-consciously violates the assumptions of that discipline, not from 

ignorance or incompetence but for good reason. Thus Seidenfeld’s work denies some of the 

axioms of the usual theory of probability to better represent the human situation, or simply in 

the interest of working out a possible case. 

 A third mark of philosophical thought is that it brings to bear rational standards that 

may, for accidental reasons, be ignored within a discipline. John Rawls’s work on the theory 

of justice, for example, provided a decision-theoretic realization of ideals of fairness to argue 

for constraints on political and economic institutions in a way that was rather foreign to 

economics and political science. Again, Spirtes’s work applies to causal inference the 

standards of reliability that statisticians have used for other sorts of inference problems but 

have failed to apply to the problem of determining causes. 



 Finally, philosophical work has its peculiar motives: it asks who we are and how we 

stand in the world, how it is possible for there to be creatures like us, what we can and cannot 

know, and how we can best conduct our lives. 

 These marks are the good effects of considering the history of philosophical 

perplexity, theory, and argument, free from the conventions of any particular contemporary 

scientific discipline but informed nonetheless by scientific and mathematical knowledge. 
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