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PREFACE

An old story about a great teacher of philosophy, Morris Raphael Cohen, goes like this. One
year after the last lecture in Cohen’s introductory philosophy course, a student approached
and protested, “Professor Cohen, you have destroyed everything | believed in, but you have
given me nothing to replace it.” Cohen is said to have replied, “Sir, you will recall that one of
the labors of Hercules was to clean the Augean stables. You will further recall that he was not
required to refill them.”

I’m with the student. People who are curious about the subject may want a historical
view of philosophy, but they also may want to know what, other than that very history,
philosophy has left them. In fact, the history of philosophy has informed and even helped to
create broad areas of contemporary intellectual life; it seems a disservice both to students and
to the subject to keep those contributions secret. The aim of this text is to provide an
introduction to philosophy that shows both the historical development and modern fruition of

a few central questions. The issues | consider are these:

o What is a demonstration, and why do proofs provide knowledge?

o How can we use experience to gain knowledge or to alter our beliefs in a rational
way?

o What is the nature of minds and of mental events and mental states?

In our century the tradition of philosophical reflection on these questions has helped to create
the subjects of cognitive psychology, computer science, artificial intelligence, mathematical
logic, and the Bayesian branch of statistics. The aim of this book is to make these connections
accessible to qualified students and to give enough detail to challenge the very best of them. |
have selected the topics because the philosophical issues seem especially central and
enduring and because many of the contemporary fields they have given rise to are open-

ended and exciting. Other connections between the history of philosophy and contemporary



subjects, for example the connection with modern physics, are treated much more briefly.
Others are not treated at all for lack of space. | particularly regret the absence of chapters on
ethics, economics, and law.

This book is meant to be used in conjunction with selections from the greats, and
suggestions for both historical and contemporary readings accompany most chapters. The
book is intended as an introduction, the whole of which can be read by a well-educated high
school graduate who is willing to do some work. It is not, however, particularly easy.
Philosophy is not easy. My experience is that much of this book can be read with profit by
more advanced students interested in epistemology and metaphysics, and by those who come
to philosophy after training in some other discipline. | have tried in every case to make the
issues and views clear, simple, and coherent, even when that sometimes required ignoring
real complexities in the philosophical tradition or ignoring alternative interpretations. | have
avoided disingenuous defenses of arguments that | think unsound, even though this
sometimes has the effect of slighting certain passages to which excellent scholars have
devoted careers. A textbook is not the place to develop original views on contemporary
issues. Nonetheless, parts of this book may interest professional philosophers for what those
parts have to say about some contemporary topics. This is particularly true, I hope, of
chapters 10, 11, and 13.

Especially challenging or difficult sections and chapters of the book are marked with
an asterisk. They include material that I believe is essential to a real understanding of the
problems, theories, and achievements that have issued from philosophical inquiry, but they
require more tolerance for mathematical details than do the other parts of the book.
Sometimes other chapters use concepts from sections with asterisks, and | leave it to
instructors or readers to fill in any background that they omit. Each chapter is accompanied

by a bibliography of suggested readings. The bibliographies are not meant to be exhaustive or



even representative. Their purpose is only to provide the reader with a list of volumes that
together offer an introduction to the literature on various topics.

| thank Kevin Kelly for a great deal of help in thinking about how to present the
philosophical issues in historical context, for influencing my views about many topics, and
for many of the illustrations. Andrea Woody read the entire manuscript in pieces and as a
whole and suggested a great many improvements. She also helped to construct the
bibliographies. Douglas Stalker gave me detailed and valuable comments on a first draft.
Alison Kost read and commented on much of the manuscript. Martha Scheines read, revised,
and proofread a preliminary draft. Alan Thwaits made especially valuable stylistic
suggestions and corrected several errors. Versions of this hook were used in introductory
philosophy courses for three years at Carnegie-Mellon University, and | am grateful to the
students who endured them.

The third printing of this book has benefited from a reading of the first by Thomas
Richardson, who pointed out a number of errors, and by Clifton Mcintosh, who found still
others. Michael Friedman’s work led me to revise the presentation of Kant, and a review

essay by David Carrier prompted me to remove a note.
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Chapter 1
PROOFS
INTRODUCTION
Philosophy is concerned with very general questions about the structure of the world, with
how we can best acquire knowledge about the world, and with how we should act in the
world. The first topic, the structure of the world, is traditionally known as metaphysics. The
second topic, how we can acquire knowledge of the world, is traditionally called
epistemology. The third topic, what actions and dispositions are best, is the subject of ethics.
The first two studies, metaphysics and epistemology, inevitably go together. What one thinks
about the structure of the world has a lot to do with how one thinks inquiry should proceed,
and vice versa. These topics in turn involve issues about the nature of the mind, for it is the
mind that knows. Considerations of ethics depend in part on our metaphysical conception of
the world and ourselves, on our conception of mind, and on how we believe knowledge to be
acquired.

These traditional branches of philosophy no doubt seem very abstract and vague.
They may seem superfluous as well: Isn’t the question of the structure of the world part of
physics? Aren’t questions about how we acquire knowledge and about our minds part of
psychology? Indeed they are. What, then, are metaphysics and epistemology, and what are the
methods by which these subjects are supposed to be pursued? How are they different from
physics and psychology and other scientific subjects? Questions such as these are often
evaded in introductions to philosophy, but let me try to answer them.

First, there are a lot of questions that are usually not addressed in physics or
psychology or other scientific subjects but that still seem to have something to do with them.
Consider the following examples:

. How can we know there are particles too small to observe?



. What constitutes a scientific explanation?

. How do we know that the process of science leads to the truth, whatever the truth may
be?

. What is meant by “truth”?

. Does what is true depend on what is believed?

. How can anyone know there are other minds?

. What facts determine whether a person at one moment of time is the same person as a

person at another moment of time?
. What are the limits of knowledge?

. How can anyone know whether she is following a rule?

What is a proof?

What does “impossible” mean?

. What is required for beliefs to be rational?

What is the best way to conduct inquiry?

What is a computation?

The questions have something to do with physics or psychology (or with mathematics or
linguistics), but they aren’t questions you will find addressed in textbooks on these subjects.
The questions seem somehow too fundamental to be answered in the sciences; they seem to
be the kind of questions that we just do not know how to answer by a planned program of
observations or experiments. And yet the questions don’t seem unimportant; how we answer
them might lead us to conduct physics, psychology, mathematics or other scientific
disciplines very differently. These are the sorts of questions particular scientific disciplines
usually either ignore or else presume to answer more or less without argument. And they are

a sample, a small sample, of the questions that concern philosophy.



If these questions are so vague and so general that we have no idea of how to conduct
experiments or systematic observations to find their answers, what can philosophers possibly
have done with them that is of any value? The philosophical tradition contains a wealth of
proposed answers to fundamental questions about metaphysics and epistemology. Sometimes
the answers are supported by arguments based on a variety of unsystematic observations,
sometimes by reasons that ought to be quite unconvincing in themselves. The answers face
the objections that they are either unclear or inconsistent, that the arguments produced for
them are unsound, or that some other body of unsystematic observations conflict with them.
Occasionally an answer or system of answers is worked out precisely and fully enough that it
can deservedly be called a theory, and a variety of consequences of the theory can be
rigorously drawn, sometimes by mathematical methods. What is the use of this sort of
philosophical speculation? On occasion the tradition of attempts at philosophical answers has
led to theories that seem so forceful and so fruitful that they become the foundation for entire
scientific disciplines; enter our culture, our science, our politics; and guide our lives. That is
the case, for example, with the discipline of computer science, created by the results of more
than 2,000 years of attempts to answer one apparently trivial question: What is a
demonstration, a proof? An entire branch of modern statistics, often called Bayesian
statistics, arose through philosophical efforts to answer the question, What is rational belief?
The theory of rational decision making, at the heart of modern economics, has the same
ancestry. Contemporary cognitive science, which tries to study the human mind through
computer models of human behavior and thought, is the result of joining a philosophical
tradition of speculation about the structure of mind with the fruits of philosophical inquiry
into the nature of proof.

So one answer to why philosophy was worth doing is simply that it was the most

creative subject: rigorous philosophical speculation formed the basis for much of



contemporary science; it literally created new sciences. Moreover, the role of philosophy in
forming computer science, Bayesian statistics, the theory of rational decision making, and
cognitive science isn’t ancient history. These subjects were all informed by developments in
philosophy within the last 100 years.

But if that is why philosophy was worth doing, why is it still worth doing? Because
not everything is settled and there may be fruitful alternatives even to what has been settled.
In this chapter and those that follow we will see some of the history of speculation and
argument that generated a number of contemporary scientific disciplines. We will also see
that there can be reasonable doubts about the foundations of some of these disciplines. And
we will see a vast space of further topics that require philosophical reflection, conjecture, and
argument.

FORMS OF REASONING AND SOME FUNDAMENTAL QUESTIONS

Part of the process by which we acquire knowledge is the process of reasoning. There are
many ways in which we reason, or argue for conclusions. Some ways seem more certain and
convincing than others. Some forms of reasoning seem to show that if certain premises are
assumed, then a conclusion necessarily follows. Such reasoning claims to be deductive.
Correct deductive arguments show that if their premises are true, their conclusions are true.
Such arguments are said to be valid. (If an argument tries to demonstrate that a conclusion
follows necessarily from certain premises but fails to do so, the argument is said to be
invalid.) If, in addition to being valid, an argument has premises that are true, then the
argument is said to be sound. Valid deductive arguments guarantee that if their premises are
true, their conclusions are true. So if one believes the premises of a valid deductive argument,
one ought to believe the conclusion as well. The paradigm of deductive reasoning is
mathematical proofs, but deductive reasoning is not confined to the discipline of

mathematics. Deductive reasoning is used in every natural science, in every social science,



and in all applied sciences. In all of these subjects, the kind of deductive reasoning
characteristic of mathematics has an important role, but deductive reasoning can also be
found entirely outside of mathematical contexts. Whatever the subject, some assumptions
may necessitate the truth of other claims, and the reasoning that reveals such necessary
connections is deductive. We also find attempts at such reasoning throughout the law and in
theology, economics, and everyday life.

There are many forms of reasoning that are not deductive. Sometimes we argue that a
conclusion ought to be believed because it provides the best explanation for phenomena;
sometimes we argue that a conclusion ought to be believed because of some analogy with
something already known to be true; sometimes we argue from statistical samples to larger
populations. These forms of reasoning are called inductive. In inductive reasoning, the
premises or assumptions do not necessitate the conclusions.

Of the many ways in which we reason, deductive reasoning, characteristic of
mathematics, has historically seemed the most fundamental, the very first thing a philosopher
should try to understand. It has seemed fundamental for two reasons. First, unlike other forms
of reasoning, valid deductive reasoning provides a guarantee: we can be certain that if the
premises of such an argument are true, the conclusion is also true. In contrast, various forms
of inductive reasoning may provide useful knowledge, but they do not provide a comparable
guarantee that if their premises are true, then so are their conclusions. Second, the very
possibility of deductive reasoning must be somehow connected with the structure of the
world. For deductive reasoning is reasoning in which the assumptions, or premises,
necessitate the conclusions. But how can the world and language be so structured that some
claims make others necessary? What is it about the postulates of arithmetic, for example, that

makes 2 + 2 = 4 a necessary consequence of them? What is it about the world and the



language in which we express the postulates of arithmetic that guarantees us that if we count
2 things in one pile and 2 in another, then the count of all things in one pile or the other is 4?

Such questions may seem trivial or bizarre or just irritating, but we will see that
efforts to answer them have led to the rich structure of modern logic and mathematics, and to
the entire subject of computer science. If such questions could be answered, we might obtain
a deeper understanding of the relations between our words and thoughts on the one hand and
the world they are supposed to be about on the other. So some of the fundamental questions
that philosophy has pursued for 2,500 years are these:

. How can we determine whether or not a piece of reasoning from premises to a
conclusion is a valid deductive argument?

. How can we determine whether or not a conclusion is necessitated by a set of
premises? If a conclusion is necessitated by a set of premises, how can we find a valid
deductive argument that demonstrates that necessary connection?

. What features of the structure of the world, the structure of language, and the relation
between words and thoughts and things make deductive reasoning possible?

To answer these questions is to provide a theory of deductive reasoning. Any such theory will
be part metaphysics and part epistemology. It will tell us something about sorts of things
there are in the world (objects? properties? relations? numbers? sets? propositions? relations
of necessity? meanings?) and how we can know about them or use them to produce
knowledge.

The next few chapters of this book are devoted to these questions. In the remainder of
this chapter I will consider a variety of purported deductive arguments that have played an
important role in one or another area of the history of thought. The examples are important
for several reasons. They give us cases where want to be able to distinguish valid from

invalid arguments. They also provide concepts that are important throughout the history of



philosophy and that are essential to material presented later in this book. Finally, they start us
on the way to analyzing the fundamental issues of how we learn about the structure of the
world.

This chapter will present some examples of arguments that are good proofs, some
examples of arguments that are defective but can be remedied, and some arguments that are
not proofs at all. Part of what we are concerned with is to find conditions that separate valid
deductive arguments from invalid deductive arguments. Any theory of deductive reasoning
we construct should provide a way to distinguish the arguments that seem valid from the
arguments that seem invalid. To get some practice for this part of the task of theory building,
we will look at simple cases in which we want to form a theory that will include some
examples and exclude a number of other examples. The cases we will consider first don’t
have to do with the idea of deductive reasoning, but they do illustrate many aspects of what a
theory of deductive reasoning ought to provide: they separate the correct instances, the
positive examples, of a concept from the incorrect instances, the negative examples.

Here is a very simple case. Suppose you are given this sequence of numbers: 1, 2, 5,
10, 17, 26, 37, 50, 65, 82. What is the general rule for continuing the sequence? In this case
the numbers listed are positive examples to be included in a formula, and all the numbers
between 1 and
The Socratic method
Socrates was Plato’s teacher. About 399 B.C., at the age of 70, he was put to death by the
citizens of Athens, ostensibly for impiety and corrupting the youth of the city but probably in
fact for his political views and for the political actions of some of his students. Plato authored
a series of philosophical dialogues in which Socrates is always the major figure. Socrates, as
Plato depicted him, was concerned with such questions as, What is knowledge? What is

virtue? His procedure for inquiring into such questions was to collect positive cases, of virtue



for example, and negative cases as well. He then attempted to formulate conditions that will
include all of the positive examples and none of the negative examples. If further examples
were found that conflict with a proposed condition (that is, positive examples the condition
does not include or negative examples the condition does include), Socrates (or other
characters in Plato’s dialogues) then tried a new condition. Plato’s Socrates applied the
method to understanding natural objects and kinds and also moral kinds, such as virtue.

Plato held that true understanding of anything, of virtue for example, requires more
than a theory that includes all the positive examples of virtue and excludes all the negative
examples. One must also know why the positive examples of virtue are positive examples,
i.e., what ties them together.

82 not in the list are negative examples that should not be included. (The sequence can be
generated by the formulan? + i, forn =0, 1, 2, 3, and so on.)

Let’s consider a very different kind of example, one where there are again a number
of positive examples and a number of negative examples. Suppose you are given the positive
and negative examples of arches shown in figure 1.1. How could you state conditions that
include the positive examples but exclude the negative examples? You might try something
like this: ‘X is an arch if and only if X consists of two series of blocks, and in each series each
block except the first is supported by another block of that series, and no block in one series
touches any block in the other series, and there is a block supported by a block in each
series.”

Here is still another kind of example. Artificial languages, such as programming
languages or simple codes, are constructed out of vocabulary elements. A statement in such a
language is a finite sequence of vocabulary elements. But not every sequence of vocabulary
elements will make sense in the language. In BASIC or Pascal you can’t just write down any

sequence of symbols and have a well-formed statement. The same is true in natural



languages, such as English. Not just any string of words in English makes an English
sentence. Suppose you learned that the examples in table 1.1 are positive and negative
examples of well-formed sequences in some unknown code, and suppose you also knew that
there are an infinite number of other well-formed sequences in the code. What do you guess
is the condition for a well-formed sequence in this code? Can you find a general condition
that includes all of the positive examples and none of the negative examples?

For several reasons the philosophical problem with which we are concerned is more
difficult than any of these examples. We want a theory that will separate valid deductive
arguments from deductive arguments that are not valid. The problem is intrinsically difficult
because the forms of deductive argument are very complex. It is also difficult because we are
not always sure whether or not to count specific arguments as valid. And finally, this
philosophical problem is intrinsically more difficult because we not only want a theory that
will separate valid demonstrations from invalid ones, we also want to know why and how
valid demonstrations ensure that if their premises are true then necessarily their conclusions
are true.

In keeping with the Socratic method, the first thing to do in trying to understand the
nature of demonstration is to collect a few examples. The histories of philosophy, science,
mathematics, and religion are filled with arguments that claim to be proofs of their
conclusions. Unfortunately, the arguments don’t come labeled “valid” or “invalid,” and we
must decide for ourselves, after examination, whether an argument is good, bad, or good
enough to be reformulated into a valid argument. We will next consider a series of examples
of simple arguments from geometry, theology, metaphysics, and set theory. The point of the
examples is always to move toward an understanding of the three questions above.

GEOMETRY



Euclid’s geometry is still studied in secondary schools, although not always in the form in
which he developed it. Euclid developed geometry as an axiomatic system. After a sequence
of definitions, Euclid’s Elements gives a sequence of assumptions. Some of these have
nothing to do with geometry in particular. Euclid calls them “common notions.” Others have
specifically geometrical content. Euclid calls them “postulates.” The theorems of geometry
are deduced from the common notions and the postulates. Euclid’s aim is that his
assumptions will be sufficient to necessitate, or as we now say, entail, all the truths of
geometry. We aspire for completeness. This means that every question about geometry
expressible in Euclid’s terms can be answered by his assumptions if only the proof of the
answer can be found. Some of Euclid’s definitions, common notions, postulates, and the first
proposition he proves from them are given below:

Plato and Euclid

Plato, who died about 347 B.c., is recognized as the first systematic Western philosopher.
During the height of the Athenian empire Plato directed a school, the Academy, devoted to
both mathematics and philosophy. No study of philosophy was possible in the Academy
without a study of mathematics. The principal mathematical subject was geometry, although
arithmetic and other mathematical subjects were also studied. It seems likely that textbooks
on geometry were produced in Plato’s Academy and that these texts attempted to systematize
the subject and derive geometrical theorems from simpler assumptions (the Greeks called the
simple parts of a thing its elements). Euclid studied in the Academy around 300 B.c., and his
book, The Elements, is thought to be derived from earlier texts of the school. Euclid later
established his own mathematical school in Alexandria, Egypt.

Definitions

1. A point is that which has no part.

2. A line is breadthless length.



3. The extremities of a line are points.
4. A straight line is a line that lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.
7. A plane surface is a surface that lies evenly with the straight lines on itself.
8. A plane angle is the inclination to one another of two lines in a plane that meet one

another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called rectilinear.
10.  When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other is called a
perpendicular to that on which it stands.

11.  An obtuse angle is an angle greater than a right angle.

12.  Anacute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14.  Afigure is that which is contained by any boundary or boundaries.

15.  Accircle is a plane figure contained by one line such that all the straight lines falling
upon it from one point among those lying within the figure are equal to one another.

16.  And the point is called the center of the circle.

19. Rectilinear figures are those contained by straight lines, trilateral figures being those
contained by three.

20.  Of trilateral figures, an equilateral triangle is that which has its three sides equal.



23.  Parallel straight lines are straight lines that, being in the same plane and being
produced indefinitely in both directions, do not meet one another in either direction.
Common notions

1. Things that are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Postulates

1. It is possible to draw a straight line from any point to any point.

2. It is possible to produce a finite straight line continuously in a straight line.

3. It is possible to describe a circle with any center and distance.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines make the interior angles on the same side

less than two right angles, the two straight lines, if produced indefinitely, meet on the side of
the angles less than the two right angles.

Proposition 1  For every straight-line segment, there exists an equilateral triangle having
that line segment as one side.

Proof Let AB be the given finite straight line. Thus it is required to construct an equilateral
triangle on the straight line AB. Let circle BCD be drawn with center A and distance AB
(postulate 3). Again, let circle ACE be drawn with center B and distance BA (postulate 3).
And from point C, at which the circles cut one another, to points A, B, let the straight lines

CA, CB be joined (postulate 1). (see figure 1.2.) Now since point A is the center of the circle



CDB, AC is equal to AB. Again, since point B is the center of circle CAE, BC is equal to BA.
But CA was also proved equal to AB. Therefore, each of the straight lines CA, CB is equal to
AB. And things that are equal to the same thing are also equal to one another (common notion
1). Therefore, CA is also equal to CB. Therefore, the three straight lines CA, AB, BC are equal
to one another. Therefore, triangle ABC is equilateral, and it has been constructed on the
given straight line AB.* Q.E.D.

Lest we forget, the central philosophical questions we have about Euclid’s proposition
concern whether or not his assumptions do in fact necessitate that for any line segment there
exists an equilateral triangle having that segment as a side, and if they do necessitate this
proposition, why and how the necessitation occurs. We will not even begin to consider
theories that attempt to answer this question until the next chapter. For the present, note some
things about Euclid’s proof of his first proposition.

. The proof is like a short essay in which one sentence follows another in sequence.

. Each sentence of the proof is justified either by preceding sentences of the proof or by
the definitions, postulates, or common notions.

. The conclusion to be proved is stated in the last sentence of the proof.

. The proposition proved is logically quite complex. It asserts that for every line
segment L, there exists an object T that is an equilateral triangle, and that T and L stand in a
particular relation, namely that the equilateral triangle T has line segment L as one side.

. Euclid actually claims to prove something stronger. What he claims to prove is that if
his postulates are understood to guarantee a method for finding a line segment connecting any
two points (as with a ruler) and a method for constructing a circle of any specified radius (as
with a compass), then there is a procedure that will actually construct an equilateral triangle

having any given line segment as one side. Euclid’s proof that such triangles exist is



constructive. It shows they exist by giving a general procedure, or algorithm, for constructing
them.

. The proof comes with a picture (figure 1.2). The picture illustrates the idea of the
proof and makes the sentences in the proof easier to understand. Yet the picture itself does
not seem to be part of the argument for the proposition, only a way of making the argument
more easily understood.

Before we leave Euclid (although we will consider him and this very proof again in
the later chapters), I should note some important features of his definitions. Some of the
definitions define geometrical notions, such as “point” and “line,” that are used in the
propositions of Euclid’s geometry. These notions are defined in terms of other notions that
the reader is supposed to understand already. Definition 1 says, “A point is that which has no
part.” Unless we have a prior understanding of “part” that is mathematically exact (which is
not very likely), this definition can be of no use in Euclid’s proofs. Why is it there?
Presumably to aid our intuitions in reading the subsequent propositions and proofs. Most of
Euclid’s definitions are like this; they define a geometrical notion in terms of some other
undefined notions. (In fact, there are quite a few undefined notions used in the definitions.)
But some of Euclid’s definitions define geometric notions at least partly in terms of other
geometric notions. Thus definition 15, the definition of a circle, defines circles in terms of the
notions of figure, boundary, line, equality of straight lines, and incidence (“falling upon”) of a
straight line and a line.

We have seen in Euclid’s system and his first proposition something that is almost a
demonstration of a conclusion from premises. We have also seen that his argument has a
special structure, different, for example, from the structure a poem might have, and that it

contains features designed as psychological aids to the reader. We have also seen that it is



hopeless to try to define every term but that it is not in the least pointless to try to give

informal explanations of the meanings of technical terms used in an argument.

Study Questions
1. List the undefined terms that occur in Euclid’s definitions.
2. The key idea in Euclid’s proof is to use point C, where the circle centered at A and the

circle centered at B intersect, as the third vertex (besides A and B) of an equilateral triangle.
Does anything in Euclid’s axioms guarantee that the circle centered on A and the circle
centered on B intersect?

3. Describe an imaginary world in which proposition 1 is false. (Hint: Imagine a space
that has only one dimension.) Which of Euclid’s postulates, if any, are also false in this
world?

4. Avre there contexts in which a proof consists of nothing more than a picture? Consider
questions about whether or not a plane surface can be completely covered by tiles of a fixed
shape, hexagons or pentagons, for example.

5. One of the aims of Euclid’s formulation of geometry seems to have been to derive all
of geometry from assumptions that are very simple and whose truth seems self-evident. Do
any of Euclid’s five postulates seem less simple and less self-evident than the others? Why?
GOD AND SAINT ANSELM

From the first centuries after Christ until the seventeenth century, most civilized Europeans
believed in nothing so firmly as the existence of God. Despite the scarcity of doubters,
Christian intellectuals still sought proofs of God’s existence and wrote arguments against real
or imagined atheists. Some of these attempts at demonstrations of the existence of God are
still presented in religious schools nowadays, even though most logicians regard them as
simple fallacies. However, at least one of the medieval proofs of the existence of God, Saint

Anselm’s (1033-1109), is still of some logical interest. Let’s consider it.



Anselm gave his proof of the existence of God in several forms. Two versions of the
argument are given in the following passage:
And so, O Lord, since thou givest understanding to faith, give me to understand—as far as
thou knowest it to be good for me—that thou dost exist, as we believe, and that thou art what
we believe thee to be. Now we believe that thou art a being than which none greater can be
thought. Or can it be that there is no such being since “the fool hath said in his heart, ‘there is
no God’” [Psalms 14:1; 53:1]. But when this same fool hears what I am saying—"“A being
than which none greater can be thought”—he understands what he hears, and what he
understands is in his understanding, even if he does not understand that it exists. For it is one
thing for an object to be in the understanding, and another thing to understand that it exists.
When a painter considers beforehand what he is going to paint, he has it in his understanding,
but he does not suppose that what he has not yet painted already exists. But when he has
painted it, he both has it in his understanding and understands that what he has now produced
exists. Even the fool, then, must be convinced that a being than which none greater can be
thought exists at least in his understanding, since when he hears this he understands it, and
whatever is understood is in the understanding. But clearly that than which a greater cannot
be thought cannot exist in the understanding alone. For if it is actually in the understanding
alone, it can be thought of as existing also in reality, and this is greater. Therefore, if that than
which a greater cannot be thought is in the understanding alone, this same thing than which a
greater cannot be thought is that than which a greater can he thought. But obviously this is
impossible. Without doubt, therefore, there exists, both in the understanding and in reality,
something than which a greater cannot be thought.

God cannot be thought of as nonexistent. And certainly it exists so truly that it cannot
be thought of as nonexistent. For something can be thought of as existing, which cannot be

thought of as not existing, and this is greater than that which can be thought of as not



existing. Thus if that than which a greater cannot be thought can be thought of as not existing,
this very thing than which a greater cannot be thought is not that than which a greater cannot
be thought. But this is contradictory. So, then, there truly is a being than which a greater
cannot be thought—so truly that it cannot even be thought of as not existing.?

Anselm’s argument in the second paragraph just cited might be outlined in the
following way:
Premise 1: A being that cannot be thought of as not existing is greater than a being that can
be thought of as not existing.
Therefore, if God can be thought of as not existing, then a greater being that cannot be
thought of as not existing can be thought of.
Premise 2: God is the being than which nothing greater can be thought of.
Conclusion: God cannot be thought of as not existing.
The sentence in the reconstruction beginning with “Therefore” does not really follow from
premise 1. It requires the further assumption, which Anselm clearly believed but did not state,
that it is possible to think of a being than which nothing greater can be conceived or thought
of.

The argument of the first paragraph seems slightly different, and more complicated. |
outline it as follows:
Premise 1: We can conceive of a being than which none greater can be conceived.
Premise 2: Whatever is conceived exists in the understanding of the conceiver.
Premise 3: That which exists in the understanding of a conceiver and also exists in reality is
greater than an otherwise similar thing that exists only in the understanding of a conceiver.
Therefore, a being conceived, than which none greater can be conceived, must exist in reality
as well as in the understanding.

Premise 4: God is a being than which none greater can be conceived.



Conclusion: God exists in reality.

The arguments seem very different from Euclid’s proof. Anselm’s presentation is not
axiomatic. There is no system of definitions and postulates. In some other respects, however,
Anselm’s arguments have similarities to Euclid’s geometric proof. Note the following about
Anselm’s arguments:

. Anselm’s arguments are meant to be demonstrations of their conclusions from
perfectly uncontroversial premises. The arguments aim to show that the truth of the premises
necessitates the truth of the conclusions.

. In the first argument, the discussion of the painter and the painting is not essential to
the proof. Anselm includes the discussion of a painter and painting to help the reader
understand what he, Anselm, means by distinguishing between an object existing in the
understanding and understanding that an object exists. The painter discussion therefore plays
arole in Anselm’s proof much like the role played by the drawing in Euclid’s proof: it is
there to help the reader see what is going on, but it is not essential to the argument.

. Like Euclid’s proof, Anselm’s arguments can be viewed as little essays in which, if
we discount explanatory remarks and digressions, each claim is intended to follow either
from previous claims or from claims that every reader will accept.

Study Questions

l. Anselm seems to have thought that his arguments establish that there is one and only
one being than which none greater can be conceived. But his premises do not appear to
necessitate that conclusion; we could consistently suppose that there are many distinct beings
each of which is such that none greater can be conceived. What plausible premises might
Anselm add that would ensure that at most one being is such that none greater can be

conceived?



2. One famous objection to Anselm’s argument is this: If Anselm’s argument were valid,
then by the same form of reasoning, we could prove that a perfect island exists. But the island
than which none greater can be conceived does not exist in reality. Therefore, something
must be wrong with Anselm’s proof of the existence of God. Give an explicit argument that
follows the form of Anselm’s and leads to the conclusion that there exists an island than
which none greater can be conceived. Is the objection a good one? Has Anselm any plausible
reply?

3. Giving a convincing counterexample to an argument shows that either the premises of
the argument are false or the premises do not necessitate the truth of the conclusion. But the
“perfect island” objection does not show specifically what is wrong with Anselm’s argument.
Try to explain specifically what is wrong with your proof that there exists a perfect island.
GOD AND SAINT THOMAS

Let me add another example to our collection of demonstrations. The most famous proofs of
the existence of God are due to Saint Thomas Aquinas (ca. 1225-1274). Aquinas gave five
proofs, which are sometimes referred to as the “five ways.” They are presented in relatively
concise form in his Summa Theologica. Four of the five arguments have essentially the same
form, and the fifth is particularly obscure. I will consider only the first argument. In reading
the argument, you must bear in mind that Aquinas had a very different picture of the physical
universe than ours, and he assumed that his readers would fully share his picture. That picture
derives from Aristotle. According to the picture Aquinas derived from Aristotelian physics,
objects do not move unless acted on by another object. Further, Aristotle distinguished
between the properties an object actually has and the properties it has the potential to have.
Any change in an object consists in the object coming actually to have properties that it
previously had only potentially.

In translation Aquinas’s argument is as follows:



The existence of God can be proved in five ways.

The first and most manifest way is the argument from motion. It is certain, and
evident to our senses, that in the world some things are in motion. Now whatever
Aquinas and Aristotle
Aristotle was a student of Plato’s. After Plato’s death, Aristotle left Athens and subsequently
became tutor to Alexander of Macedonia, later Alexander the Great. When Alexander
conquered Greece, Aristotle returned to Athens and opened his own school. With the collapse
of the Macedonian empire, Aristotle had to flee Athens, and he died a year later. During his
life he wrote extensively on logic, scientific method and philosophy of science, metaphysics,
physics, biology, cosmology, rhetoric, ethics and other topics. Saint Thomas Aquinas helped
to make Aristotle’s philosophy acceptable to Christian Europe in the late Middle Ages.
Writing in the thirteenth century, Aquinas gave Christianized versions of Aristotle’s
cosmology, physics, and metaphysics. The result of the efforts of Aquinas and others was to
integrate Aristotelian thought into the doctrines of the Roman Catholic Church in the late
Middle Ages. Aristotle’s doctrines also became central in the teachings of the first
universities, which began in Europe during the thirteenth century. The tradition of Christian
Aristotelian thought that extends from the Middle Ages to the seventeenth century is known
as scholasticism.
is moved is moved by another, for nothing can be moved except it is in potentiality to that
towards which it is moved; whereas a thing moves inasmuch as it is in actuality. For motion
is nothing else than the reduction of something from potentiality to actuality. But nothing can
be reduced from potentiality to actuality, except by something in a state of actuality. Thus
that which is actually hot, as fire, makes wood, which is potentially hot, to be actually hot,
and thereby moves and changes it. Now it is not possible that the same thing should be at

once in actuality and potentiality in the same respect, but only in different respects. For what



is actually hot cannot simultaneously be potentially hot; but it is simultaneously potentially
cold. It is therefore impossible that in the same respect and in the same way a thing should he
both mover and moved, i.e., that it should move itself. Therefore, whatever is moved must be
moved by another. If that by which it is moved be itself moved, then this also must needs be
moved by another, and that by another again. But this cannot go to infinity, because then
there would be no first mover, and, consequently, no other mover, seeing that subsequent
movers move only inasmuch as they are moved by the first mover; as the staff moves only
because it is moved by the hand. Therefore it is necessary to arrive at a first mover, moved by
no other; and this everyone understands to be God.?

Aquinas’s attempted demonstration again shares many of the features of Euclid’s and
Anselm’s arguments. From premises that are supposed, at the time, to be uncontroversial, a
conclusion is intended to follow necessarily. The argument is again a little essay, with claims
succeeding one another in a logical sequence. The example of heat is another illustration, like
Anselm’s painter and Euclid’s diagram, intended to further the reader’s understanding, but it
IS not an essential part of the argument.

Aquinas’s argument illustrates that a proof (or attempted proof) may have another
proof contained within it. Thus the remarks about potentiality and actuality are designed to
serve as an argument for the conclusion that nothing moves itself, and that conclusion in turn
serves as a premise in the argument for the existence of an unmoved mover.

Neglecting Aquinas’s remarks about potentiality, which serve as a sub-argument for
premise 2, we can outline the argument in the following way:

Premise 1: Some things move.
Premise 2: Anything that moves does so because of something else.

Therefore, if whatever moves something itself moves, it must be moved by a third thing.



Therefore, if there were an infinite sequence of movers, there would be no first mover, and
hence no movers at all.

Therefore, there cannot be an infinite sequence of movers.

Conclusion: There is a first, unmoved mover.

One way to show that the premises of the argument do not necessitate Aquinas’s
conclusion is to imagine some way in which the premises of the argument could be true and
the conclusion could at the same time be false. With this argument, that is easy to do. We can
imagine that if object A moves object B, object B moves object A. In that case no third object
would be required to explain the motion of B. We can also imagine an infinite chain of
objects in which the first object is moved by the second, the second by the third, the third by
the fourth, and so on forever. Neither of these imaginary circumstances is self-contradictory
(although Aquinas would certainly have denied their possibility). So we can criticize
Aquinas’s argument on at least two counts:

. The first “therefore” doesn’t follow. The two premises are consistent with the
assumption that if one thing moves another, then the second, and not any third thing, moves
the first.

. The second “therefore” doesn’t follow. We can consistently imagine an infinite
sequence of movers without there being an endpoint, a “first mover,” just as we can
consistently imagine the infinite sequence of positive and negative integers in which there is
no first number.

Study Questions

l. If we ignore other difficulties with Aquinas’s argument, would it show that there is
one and only one unmoved mover?

2. Why should the fact that we can imagine circumstances in which the premises of the

argument are true and the conclusion is false tell against the value of the proposed proof?



Does the fact that we can imagine such circumstances show that the premises do not
necessitate the conclusion? If we could not consistently imagine circumstances in which the
premises were true and the conclusion false, would that show that the premises do necessitate
the conclusion? Why or why not?

3. Read the following argument, also from Saint Thomas. Outline the argument (follow
the examples in this chapter). Explain why the premises do not necessitate the conclusion.
(When Saint Thomas uses the term “efficient cause,” he is using an idea of Aristotle’s. You
will not misunderstand the passage if you simply read the term as meaning “cause.” By
“ultimate cause” of an effect, Aquinas means the cause that is nearest in time to the effect.)
The second way [to prove the existence of God] is from the nature of efficient cause. In the
world of sensible things we find there is an order of efficient causes. There is no case known
(neither is it, indeed, possible) in which a thing is found to be the efficient cause of itself; for
so it would be prior to itself, which is impossible. Now in efficient causes it is not possible to
go on to infinity, because in all efficient causes following in order, the first is the cause of the
intermediate cause, and the intermediate is the cause of the ultimate cause, whether
intermediate cause be several, or one only. Now to take away the cause is to take away the
effect. Therefore, if there be no first cause among efficient causes, there will be no ultimate
nor any intermediate cause. But if in efficient causes it is possible to go on to infinity, there
will be no first efficient cause, neither will there be an ultimate effect, nor any intermediate
efficient causes; all of which is plainly false. Therefore it is necessary to admit a first efficient
cause, to which everyone gives the name of God.*

INFINITY

Evidently, Aquinas had trouble thinking through the meaning of infinity. He wasn’t alone,
and the history of reasoning about infinity offers other examples for our collection. Paradoxes

and puzzles about the infinite are very ancient, predating even Plato’s writings. Some ancient



puzzles about motion are attributed to Zeno of Elea, who lived in the fifth century before
Christ. Some of Zeno’s paradoxes involve subtle difficulties about the notion of infinity that
were only resolved by mathematicians in the nineteenth century. In each case the paradox
appears to be a proof of something absurd. One of Zeno’s paradoxes, known as the Achilles
paradox, is very simple.

Suppose Achilles races a tortoise. Let the tortoise travel with speed s. The tortoise is
permitted to travel a certain distance d before Achilles begins the race. In order to catch the
tortoise, Achilles must first travel distance d, which will require time t(d). In that time the
tortoise will have moved a distance s x t(d). To catch the tortoise after reaching point d,
Achilles must first reach point d + (s x t(d)) from point d. That will take Achilles an amount
of time equal to t(s x t(d)). In that time the tortoise will have moved a further distances s x t(s
x t(d)). If we continue in this way, it always requires a finite time for Achilles to move from
where he is at a moment to where the tortoise is at that same moment. In that amount of time,
while Achilles is catching up to where the tortoise was, the tortoise will have moved a further
distance. The motions generate the sequence pictured in figure 1.3. So there is no moment at
which Achilles will catch the tortoise.

Zeno’s argument looks like a deductive proof, but since the conclusion is false, we
know that either some assumption of the argument must be false or there must be a fallacy
hidden somewhere in the argument. Since the premises are apparently banal, it seems that
there must be a fallacy: the premises don’t necessitate the conclusion. Zeno’s argument points
out that corresponding to Achilles' motion and the motion of the tortoise, there is an infinite
series of distances between Achilles and the tortoise. No distance in this series is zero, but as
the series goes on, the distances between Achilles and the tortoise get smaller and smaller.
There is a corresponding infinite sequence of temporal intervals in which each interval in the

sequence represents the time it takes for Achilles to run from the place where he is at one



moment to the place where the tortoise is at that same moment. Zeno concludes from this that
Achilles cannot catch the tortoise, and this is where the fallacy lies. We are familiar with
infinite sequences of positive quantities that add up to a finite quantity. The decimal
expansion of the fraction 1/3, for example, is equal to 0.3 + 0.03 + 0.003 + 0.0003 + , where
the sequence continues forever. With the help of modern mathematics, we would say that the
sequence of distances between Achilles and the tortoise converges to zero and the sum of the
sequence of temporal intervals is some finite number. That sum, whatever it is, represents the
time required for Achilles to catch the tortoise.

The concept of infinity also created problems for later philosophical writers interested
in the properties of God. Benedict Spinoza was a seventeenth century pantheist; he held that
God consists of everything there is. Individual minds and bodies are, in Spinoza’s terms,
modes of God’s existence.

Spinoza was troubled by the following objection to his view:

We showed that apart from God no substance can be or can be conceived; and hence we
deduced that extended substance is one of God’s infinite attributes.

However, for a fuller explanation, I will refute my opponents’ arguments, which all
come down to this. First, they think that corporeal substance, insofar as it is substance, is
made up of of parts, and therefore they deny that it can be infinite, and consequently that it
can pertain to God. This they illustrate with many examples, of which I will take one or two.
They say that if corporeal substance is infinite, suppose it to be divided into two parts. Each
of these parts will be either finite or infinite. If the former, then the infinite is made up of two
finite parts, which
Spinoza and Euclid
Spinoza (1632-1677) was the child of Spanish Jews who had moved to Holland to avoid

religious persecution. He himself was ostracized from the Jewish community for his opinions



about God. Spinoza earned his living as a lens grinder, but he was well known to his
intellectually prominent contemporaries and was offered university positions, which he
refused.

Spinoza’s major work, The Ethics, develops a view of nature in which there is a single
substance, God. Most remarkable to a modern reader, Spinoza’s Ethics is presented in the
same format as Euclid’s Elements. There are definitions, postulates, propositions, and
proof’s, or at least attempted proofs. In putting his theological views in this form, Spinoza
exemplified the view, common among the great intellects of his time, that reasoning about
metaphysical and epistemological questions should be rigorously scientific, and Euclid’s
geometry represented, even then, the ideal deductive science.
is absurd. If the latter, then there is than an infinite twice as great as another infinite, which is
also absurd.®
Spinoza was unsure whether or not this argument is valid. He responded, rather implausibly,
that even though everything corporeal is an attribute of God, God does not have parts.

The argument Spinoza must address has a special form. It sets out to prove something,
in this case that God is not corporeal. It proceeds by assuming the denial of what is to be
proved. That is, it proceeds by assuming that God is corporeal. From that assumption,
perhaps with the aid of other assumptions that are thought to be obvious, the argument then
tries to establish something thought to be false. The idea is that if the denial of a claim
necessitates something false, then the claim itself must be true. This form of argument is
known as reductio ad ubsurdum (reduction to the absurd), or more briefly, as a reductio
argument.

We can outline the argument of Spinoza’s opponents in the following way:
Assumption: God is corporeal.

Premise: Whatever is corporeal can be divided into two parts.



Premise: God is infinite.
Hence, an infinity can be divided into parts.
Premise: Every part is either infinite or finite.
Premise: The whole is the union of its parts.
Hence, either an infinity is the union of two finite parts, which is impossible, or an infinity is
the union of two lesser infinities, which is also impossible.
Conclusion: the assumption is false, i.e., God is not corporeal.
We can see that the argument is invalid, and for several different reasons, all having to do
with the next to last sentence, beginning “Hence.” First and most simply, the last step before
the conclusion omits a possible case: the infinity might be divided into two parts, one of
which is finite and the other infinite. Second, an infinite collection of objects can be divided
into two subcollections, each of which is infinite. The integers, for example, consist of all
negative integers together with all nonnegative integers. The set of all negative integers is
infinite, and the set of all nonnegative integers is also infinite.
INFINITY AND CARDINALITY*
Spinoza’s argument does raise an interesting and fundamental question about the infinite:
Can one infinity be larger than another infinity? In the nineteenth century this question
engendered a number of simple proofs that created a revolution in our understanding of
infinity, and since the question touches on an issue that runs through the history of
philosophy, it is worth considering some of the relevant ideas and arguments here.

What do we mean when we say that one set or collection is larger than another?
Consider the two collections below:
{A, B, C, D}

{X,Y,Z,U,V}



Clearly, the second set is bigger that the first set, but what makes it so? One answer is this: If
we try to match each member of the first set with a unique member of the second set, we can
do so. For example, we can match A with X, B with Y, C with Z, and D with U. But if we try
to match each member of the second set with a unique member of the first set, we run out of
distinct things. For example, we can match X with A, Y with B, Z with C, and U with D. But
then we still have V left over; whatever member of the first set we choose to match with V,
that member will already have been matched with X, Y, Z, or U. We say that there is a one-to-
one mapping from the first set into the second set, but there is no one-to-one mapping from
the second set into the first.

I will take this as our definition of “larger than” for sets:

Definition Set K is larger than set L if and only if there is a one-to-one mapping relating
each member of L to a distinct member of K but there is no one-to-one mapping relating each
member of K to a. distinct member of L.

Continuing with this idea, we can say what it means for two sets to be of the same
size. Two sets are of the same size if the first is not larger than the second and also the second
is not larger than the first. When neither of two sets is larger than the other in this sense, we
say they have the same cardinality.

Definition Any two sets K, L have the same cardinality if and only if there is a one-to-one
mapping relating each member of K to a distinct member of L and there is a one-to-one
mapping relating each member of L to a distinct member of K.

For finite sets, the notion of cardinality is just our ordinary notion of the size of a set. All sets
with 4 members have the same cardinality, all sets with 5 members have the same cardinality,
sets with 5 members are larger than sets with 4 members, and so on.

An obvious property of finite sets is this: If K and L are finite sets and if K is a proper

subset of L (that is, every member of K is a member of L but some member of L is not a



member of K), then L is larger than K. The set {X, Y, Z}, for example, is larger than the set
{X, Y}. Infinite sets behave differently. An infinite set can have the same cardinality as one of
its proper subsets. Consider an example, the set of positive integers, and a proper subset of it,
the set of even positive integers. There is a one-to-one correspondence that takes every
positive integer to a distinct even positive integer, and the same correspondence viewed in the

other direction takes every even positive integer to a distinct positive integer:

1 2 3 4 5 6 7 8 9 10

! ! ! ! ! ! ! ! ! !

2 4 6 8 10 12 14 16 18 20

The rule of correspondence is that each positive integer n is mapped to the even positive
integer 2n. So the set of positive integers has the same cardinality as the set of even positive
integers. You can also easily show that the set of positive integers has the same cardinality as
the set of odd positive integers, and also the same cardinality as the set of all integers,
whether positive, zero, or negative. All of these distinct infinite sets have the same size.

The property of having the same cardinality as a proper subset of itself neatly
separates the finite from the infinite. Finite sets can’t have that property, whereas every
infinite set will have it for some of its proper subsets. The distinction is sometimes used to
define the notion of an infinite set:

Definition A set is infinite if and only if it can be put into one-to-one correspondence with
a proper subset of itself.

Now an obvious question raised by Spinoza’s argument is this: Are some infinities
larger than other infinities? In view of the considerations we have just discussed, we can
understand that question in the following way: Are there two infinite sets that cannot be put
into one-to-one correspondence with one another? In the nineteenth century, Georg Cantor

(1845-1918) proved that there are. | will consider simple versions of two of his proofs. One



concerns the number of subsets of any set. It is easy to see that any finite set has more distinct
subsets that it has members. The set {A}, for example, has only one member, but it has two
distinct subsets, namely itself and the empty set. The set {A, B) has two members, but it has
four distinct subsets. Given any finite set S with n members, we can count the distinct subsets
of n in the following way. Imagine forming an arbitrary subset U of S. For any member of S
there are two choices: either the member is in U or it isn’t in U. To determine U, we have to
make that choice for each of the n members of S, so we have n choices, each with 2 options.
Every distinct way of making the choices results in a distinct subset of S, so there are 2"
distinct subsets. And for all n, 2" is greater than n. Cantor extends the conclusion to sets with
infinite cardinality:
Cantor’s first theorem For any set K, the set, denoted B(K), whose members are all
subsets of K is larger than K.
Proof Suppose the theorem is false. Then there is some set W such that the set (W) of all
subsets of W is not larger than W. So B(W) can be put into a one-to-one correspondence with
W, i.e., for every member of B(W) there will be a corresponding distinct member of W. Let g
denote such a correspondence or mapping. So g maps the set of all subsets of W, B(W), one-
to-one into W. Let g~* denote the inverse of g. The inverse mapping g maps members of W
to subsets of W, and for all subsets S of W, g™* (g(s)) = S. if K is any subset of W, then K is a
member of (W), and so g puts K into correspondence with some member of W, which I
denote by g(K). Then the following subset of W, which I will call R, must exist: R = {xin W
such that x ¢ g %(x)}. Remember that because g is a one-to-one correspondence, for each x
there can be only one set S such that x = g(S).

Now consider R as defined. R is a subset of W, so R is a member of f(W). So g, which
| have assumed to exist, puts R in correspondence with some member g(R) of W. Every

member of W is either a member of R or not a member of R. Hence g(R) is either a member



of R or not a member of R. Suppose that g(R) is a member of R. Then since R is the set of all
members x of W such that x is not a member of gt (x), it must he the case that g(R) is a
member of W, which is not a member of R. So if g(R) is a member of R, then g(R) is not a
member of R, which is a contradiction. Hence g(R) cannot be a member of R. But if g(R) is
not a member of R, then since R is the set of all members x of W such that x ¢ gt (x), it
follows that g(R) is a member of R (because g(R) satisfies the necessary and sufficient
condition for being a member of R).

Hence the assumption entails that there exist a set whose existence implies a
contradiction. Since a contradiction must be false, the assumption must be false. Q.E.D.

The proof of Cantor’s first theorem is more complex than any of those we have
considered previously. It is a reductio argument; that is, the theorem is proved by assuming
its denial and deducing a contradiction. It has as an immediate corollary the result that there
are infinite sets of different size.

Cantor gave a particular example of two infinite sets one of which is larger than the
other. His example does not consider a set and the corresponding set of all subsets of that set.
Instead, it concerns the natural numbers 0, 1, 2, 3, ... and the set of all functions defined on
the natural numbers. Cantor proved that the set of all functions taking natural numbers as
arguments and having natural numbers as values is larger than the set of all natural numbers
itself. To understand his argument we need a few definitions.

Definition A function of one argument is any set of ordered pairs of objects such that for all
a, b, ¢, if <a, b> and <a, c> are both in the set, then b = c. Equivalently, a function is a set of
ordered pairs in which there arc no two ordered pairs with the same first member but different
second members.

Definition Two functions are one and the same if they arc the same set of ordered pairs.

The set of first members of ordered pairs in a function is called the domain of the function,



while the set of all second members of ordered pairs in a function is called the range of the
function.

Definition A function is one-to-one if and only if for all a, b, and ¢, if <a, b> and <c, b> are
in the function, then a = c.

Definition A function on the natural numbers is a set of ordered pairs whose domain is the
natural numbers and whose range is contained in the set of natural numbers.

Cantor’s second theorem The set F of all functions on the natural numbers is larger than
the set N of all natural numbers.

Proof Suppose that the proposition is false. Then we can form a one-to-one correspondence
between the natural numbers and the functions in F so that each function in F is assigned a
number and no two functions in F are assigned the same number. So let the functions in F be
denoted by w1 (x), w2(x), .... Consider an infinite table in which each row is infinitely long
and there are infinitely many rows. The ith row lists in order the values of the ith function for
x =1, x =2, and so on. Such a table is illustrated in figure 1.4.

I will show that there is a function z on the natural numbers that is not in this table. |
define z as follows: Make z(1), the value of z for the number 1, equal to any value different
from wi (1) (for example, z = wi(1) + 1). Make z(2) equal to any value different from w»(2).
And for every number k, make z(k) equal to a value different from wi(k). | thereby alter the
diagonal of the table in figure 1.4 to form a new counterdiagonal.

Then for every function wi in the table, the value of z differs from that function for
some argument. Hence z is a function on the natural numbers that is not in the table. But since
the table contains the supposed enumeration of the functions in F, z is not in F, which is a
contradiction. Since we cannot consistently suppose that the proposition is false, it is true.
Q.E.D.

Study Questions



1. Prove that it follows from Cantor’s first theorem that there are two infinite sets of
different size.

2. Cantor’s second theorem is called a diagonalization argument because it can be
depicted as involving a change in a diagonal. Can you picture what is going on in Cantor’s
first theorem as also involving a diagonal? (Hint: Think of a table with a list of the members
of W along the top and a list of the members of B(W) along the left-hand side. In each square,
enter a I if the member of B(W) for that row has the member of W for that column as its value
according to the assumed one-to-one correspondence g. Otherwise, enter 0 in the square.

Now explain what the argument in the proof of Cantor’s first theorem amounts to in terms of

this table.)
3. What is the point of the picture in the proof of Cantor’s second theorem?
4. Give a proof that there cannot exist a barber who shaves all and only those who do not

shave themselves. (Hint: The argument is a simplified version of the proof strategy used for
Cantor’s first theorem.) Can your proof be viewed as a diagonalization argument?
CONCLUSION

| began with a set of questions that | have not yet answered:

1. How can we determine whether or not a piece of reasoning from premises to a
conclusion is a valid deductive argument?

2. How can we determine whether or not a conclusion is necessitated by a set of
premises? If a conclusion is necessitated by a set of premises, how can we find a valid
deductive argument that demonstrates that necessary connection?

3. What features of the structure of the world, the structure of language, and the relation
between words and thoughts and things make deductive reasoning possible?

My initial approach to these questions has been Socratic: | have sought for examples of

arguments that present valid demonstrations and arguments that fail to demonstrate their



conclusions. In each example a set of assumptions, it is claimed, necessitate a conclusion.
Sometimes this claim is not correct, but it still seems plausible that the argument could be
revised so that the premises do necessitate the conclusion. Thus Euclid’s proof of his first
proposition fails to show that the two circles he constructs intersect, and for that reason his
postulates and common notions do not necessitate the first proposition. But it seems plausible
that we could add axioms to Euclid’s postulates so that the resulting system would permit us
to deduce proposition 1. Modern reformulations of Euclid’s theory do just that. On the other
hand, some attempts at proof just seem to involve fundamental mistakes of reasoning. Other
attempts at proof may leave us uncertain. Thus after reading and thinking about Anselm’s
proof of the existence of God, many people are left uncertain as to whether or not the proof is
valid. (Of course, the proof could be valid—which means that if the premises of the argument
are true, then necessarily the conclusion is true—even though the premises of the argument
are in fact false.)

| have yet to formulate a theory that will agree with, and in some sense explain, our
judgment about which demonstrations are valid and which are not. In the next chapter we will
consider the first such theory ever formulated, Aristotle’s theory of the syllogism.
Review Questions
I Why is deductive reasoning often thought to be the first kind of reasoning that
philosophy should try to understand?
2. What are three fundamental questions about deductive reasoning?
3. Explain what we want a theory of deductive reasoning to accomplish.
4. Why is finding a good theory of deductive reasoning more difficult than finding
conditions that will include the positive and exclude the negative examples in the coding
problem, the series problem, and the arch problem?

5. What is the Socratic method?



6. What features are common to the good deductive arguments considered in this
chapter?

7. What is the role of the illustrations that accompany some of the arguments given in
this chapter?

8. What was Aquinas’s relation to Aristotle?
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Figure 1.1

Positive and negative examples of arches

Figure 1.2

Figure 1.3

Achilles and the tortoise. A = Achilles, T = the tortoise, and the lines = the distance
remaining between Achilles and the tortoise.

Figure 1.4

Cantor’s diagonalization argument

Table 1.1

Sequences in a code

Positive examples (well formed) Negative examples (not well formed)
AA AAAA

BB BBBB

AABB BBBBAA

AAABB AABBBB

BBAA AAAAAA

BBAAA BBBBBB

BBAAABB AAAAAAAAABB

BBAAABBB BBAAAAAAAAA

AABBB AAAAAAAAA
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Chapter 2

ARISTOTLE’S THEORY OF DEMONSTRATION AND PROOF

ARISTOTLE AND GREEK SCIENCE

In the fourth century before Christ the entire human population consisted of perhaps 130
million people. Mediterranean civilization was spread around the coast of Greece and the
Greek islands and in areas of modern Italy, Turkey, Syria, Lebanon, Israel, and northern
Egypt. Most travel of any distance was by open boat with one or two square rigged sails and
oarsmen. Such ships carried the produce of one region to another; they also carried soldiers
for the almost perpetual wars of the area.

What was known around 400 B.C.? A wide variety of practical arts, including metal
production and metal working sophisticated enough to make good hand tools, weapons, and
armor; carpentry sophisticated enough to make sea-going boats; the principles of navigation,
architectural engineering, quarrying, and stone work; methods of manufacturing cloth and
paper; methods of animal husbandry, fishing, and peasant agriculture.

And what about science? In mathematics, knowledge consisted principally of
geometry and the theory of numbers. Many physical laws of mechanics and hydraulics were
understood and used, but astronomy was the most developed subject in the physical sciences.
Ancient astronomy was based on naked-eye observations of the positions of the stars and on
observations using simple instruments. Astronomy developed because it was easy to make a
large number of relevant observations, because the motions of the planets, moon, and sun
could be studied as applications of geometry, and because astronomy was of practical use in
navigation. Other scientific subjects like biology and medicine were also studied, and broad
speculations about the structure of the universe and the structure of matter were common.

In this setting Aristotle developed a science of biology, a theory of cosmology, a

theory of motion, and a theory of the constitution of matter. Aristotle also produced



something that proved to be far more important than his scientific contributions: a theory of
how to conduct inquiry. He provided answers to questions such as these: What is chance?
What is causality? What is a scientific explanation? What is a demonstration? How can
experience be used to provide knowledge? What is a proof?

Avristotle’s scientific contributions were surpassed in many areas. By about A.D. 100
Ptolemy had developed a theory of the motion of the planets that was more detailed and
precise than anything Aristotle suggested. Ptolemy also contributed to optics, and Arab
scientists of the Middle Ages extended optical studies. Archimedes made more enduring
contributions to physics than did Aristotle, and medieval Christian thinkers developed a
theory of motion that improved on Aristotle’s. But in contrast, Aristotle’s general conception
of how science is to he conducted influenced Western civilization almost until the eighteenth
century. For roughly 2,300 years Aristotle’s writings set the standards for scientific
explanation and for deductive arguments. Aristotle’s theory of scientific method deserves our
attention, for it is the first fully developed account of human knowledge, and it contains the
first substantial theory of proof we know of.

At the very core of Aristotle’s understanding of how inquiry should be conducted is a
theory of proof or deductive argument. Aristotle’s logical theory, which endured until late in
the nineteenth century, is still worth studying because it is comparatively easy to understand
and, from a modern point of view, it is correct in special cases. (For similar reasons,
introductory physics courses present Newton’s dynamics, even though that theory has been
superseded.) But before we turn to Aristotle’s logical theory, we should consider his general
conception of how science should be constructed and justified. That conception is in many
ways very different from our own understanding, but in other ways it is quite modern. It is
not only interesting in itself; it may also help us to understand why Aristotle thought that his

theory of proof was correct and complete.



THE PLATONIC CONCEPTION OF KNOWLEDGE

Avristotle was Plato’s pupil, and it is not surprising that these two great thinkers shared certain
views. In particular, Plato and Aristotle shared a view about the logical structure of
knowledge.

For Plato, the paradigmatic scientific question is of the form, “What is x?”” Here X
might be filled by some important moral characteristic, such as virtue or courage or justice, or
by some description of a kind of thing found in nature, such as a human or earth or water, or
even some mathematical object, such as a triangle. Plato wrote a series of dialogues in which
questions of this kind are pursued. The Meno, for example, considers the question, What is
virtue?

Plato believed that acceptable answers to such questions must have a particular form.
Any acceptable answer must give a combination of features shared by all things that are x and
by no things that are not x. In Plato’s conception, it is quite unsatisfactory to answer the
question, What is virtue? by giving a list of virtues. A proper answer to the question must
specify what it is that all things in any such list share and that makes them, and nothing else,
virtues.

How are we to answer such questions? How are we to come to know what is virtue,
what is water, what is justice? Plato held that knowledge requires certainty. By “certainty” he
did not mean simply an unalterable conviction. Someone can have an unalterable conviction
whether or not what they believe is the truth. They might simply be dogmatic or stubborn or
stupid. Certainty, as Plato understood it, requires not only that one have a belief hut also that
the belief he true and that it have been acquired by an infallible method. An infallible method
is one that never leads to a false conclusion: whenever anyone comes to a conclusion by such

a method, that conclusion is true.



Plato rightly concluded that experience can never provide us with the kind of certainty
that he required for knowledge. No matter how carefully or thoroughly we observe or
experiment, conclusions drawn from experience are not infallible. Both in science and in
everyday life we sometimes drawn erroneous conclusions from our experience. Experience,
Plato held, can form the basis of opinion, but not the basis of knowledge.

If we know anything, then, we cannot come to know it through experience. Plato held
that we really don’t ever come to know anything. Anything we know, we always knew. The
psychological process by which someone seems to come to know something, the process that
we sometimes mistake for learning from experience, is really a process of recollection,
according to Plato. Examples provided by experience stimulate us to remember truths that
were stamped on our souls before our birth. Recollection is infallible because nothing but
truth was stamped on our souls.

That is how we know, according to Plato. But what is it that. we know? We tend to
think that knowledge is about the world, about the things and events and processes and
relationships and causal powers in the world. Plato thought otherwise. The clearest examples
of knowledge available to Plato were geometry and relations among numbers. According to
Euclidean geometry, two points determine a straight-line segment, a triangle is a figure with
three straight-line segments as sides, and the sum of the internal angles of a triangle equal
two right angles. But any physical triangle we try to construct will be imperfect. Lines in
nature aren’t perfectly straight; the sum of the internal angles of the figures we make or draw
aren’t exactly the sum of two right angles. Plato in effect argued as follows: Since geometry
is known, it must he true. Accordingly, whatever geometry is about, it must be true of its
subject. But since geometry is not true of the objects of the physical world, it is not about

them. So it is about something else.



Plato called the objects of knowledge forms. In Plato’s conception, the forms aren’t in
the world, and they certainty are not parts, aspects, or properties of things in the world. They
are quite literally not of the world. Of course, the objects and properties of this world have
some relation to the forms, but the relation is obscure. Plato says that worldly things
participate in forms. The idea, very roughly, is that earthly things are crude models of forms,
the way a chalk drawing of a triangle is a crude model of a Euclidean triangle.

Avistotle shared with Plato the view that knowledge requires certainty, and also the
view that what we seek to know are combinations of properties or features that make a thing
an x—a man or a triangle or whatever may be the topic of inquiry. But Aristotle brought the
forms down to earth, and the result was a conception of nature and of scientific inquiry that is
rather different from Plato’s.

ARISTOTLE’S CONCEPTION OF NATURE

In Aristotle’s conception, if a thing changes, it acquires some new property or loses some old
property. For change to be possible, there must exist something that can be identified as one
and the same thing before and after the change. So what is the same before and after the
change must itself be unchanged. Aristotle calls substance whatever endures through change
and has properties attached to it. Attributes or properties are features that can attach to a
substance at one time and not attach to it at other times. Substance that has no properties and
is completely unformed, Aristotle calls prime matter. Aristotle’s conception of the
fundamental stuff of the universe can be very roughly pictured as gobs of stuff enduring
through time but having various attributes stuck to it at any moment. Of course, Aristotle
didn’t think of properties as literally stuck to substance, like notices on a bulletin board.

It is tempting to think that the world is put together in the same way that our
descriptions of it are assembled. In English, as in Greek, we assemble sentences from noun

phrases and verb phrases. Noun phrases typically occur as subjects in sentences. They include



common nouns such as “cat,” “dog,” “noon,” “eclipse,” “tree.” Verb phrases typically occur

as predicates that are applied to subjects; they include verbs and verbs together with
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adjectives or adverbs, such as “is black,” “is mean,” “occurs rarely,” “is deciduous.” If we put
subject terms together with predicate terms in the appropriate way and introduce extra
grammatical words (such as “the”) in the appropriate places, we get sentences:

The cat is black.

The dog is mean.

Eclipses occur rarely.

Vines are deciduous.

Avistotle thought that the fundamental distinctions in the world are indeed reflected in
fundamental distinctions in language. He held, for example, that the particular objects, such
as a mean dog, are constituted by matter and by form. A mean dog is matter formed into a
dog that is mean.

We have devices in our language for turning a sentence into a new subject for a new
predicate. We can say, for example:

The animal that is a cat is trained.

The mean dog is four-legged.

The deciduous vines are broad leafed.

According to Aristotle, the world has the same feature. When form is applied to matter, the
combination becomes the matter or substance for the application of still other forms. When
we have a black cat, for example, we have a particular object constituted by matter and form.
That object can then be the matter that we cause another form to obtain. So if we train the

black cat, the black cat is caused to acquire a further form; in other words, the black cat is

formed into a trained black cat.



Aristotle thought of nature in terms of hierarchies. In particular, he thought of
complex entities as built up by the application of a sequence of forms to bare, unformed
matter. Suppose that there is bare matter with no form of any sort. If that bare matter is
formed into something living, the result is living matter. If living matter is formed into an
animal, the result is something animate. If animate matter is given canine form, the result is a
dog. If instead animate matter is formed into something with a rational soul, the result is a
human. We can picture the process by means of a kind of diagram.

(Diagrams consisting of nodes connected by directed lines are now called directed graphs. If
the connections are just lines and not arrows, so that the order does not matter, the diagram is
simply called a graph.)

Another fundamental idea in Aristotle’s conception of nature is the distinction
between the properties that a thing has accidentally and the properties that a thing has
essentially. A thing has a property accidentally if it could possibly not have had that property.
It is an accidental property of a dog that it is a trained dog. Fido, the trained dog, would still
be Fido if it had not been trained. In Aristotle’s terms, it is an accidental feature of Ronald
Reagan that he was elected president. Ronald Reagan would still be Ronald Reagan if he had
not been elected president. Essential attributes of a thing are those features without which the
thing would lose its identity. Fido is essentially a dog. Anything that is not a dog could not be
Fido. Any creature that is by nature not furred, not four-legged, or not born of a bitch is not a
dog, and hence is not Fido. These are essential properties of Fido. Similarly, Ronald Reagan
is essentially a man, and anything that is not a man could not be Ronald Reagan.

For each part of nature, there is a hierarchy that includes only the essential attributes

or forms of objects and ignores accidental attributes. According to Aristotle, the goal of



science is to find the structure of the appropriate hierarchy for any subject, whether it is
astronomy, biology, or cosmology.

Avristotle thought that natural processes have natural ends or purposes. An acorn does
not have leaves or roots or bark, but it has the potential to acquire leaves and roots and bark,
and in the natural course of things, it will come to be an oak tree that actually has those
features. A human infant does not have language or reason, but it has the potential to acquire
both, and in the natural course of things, it will do so. Aristotle thought of all natural
processes in the same way; each has an end, and in the natural course of things, that end will
be achieved.

Avristotle’s conception of nature involves a conception of causality different from our
own. Consider questions such as “Why does the sun give warmth?” or “Why does water boil
when heated?” or “Why do stars twinkle?” or “Why are vines deciduous?” These questions
are requests for causal explanations. Often causal questions are about how something came to
be or how it came to be a certain way. In Aristotle’s view, there is not just one sort of answer
to be given to these questions; there are four different sorts, corresponding to four different
senses of “cause.” Each question asks about an object or kind of object and about an attribute
of that object or objects of that kind.

An object has a specific attribute just in case the object is obtained by imposing a
specific form on an appropriate substance. So one sort of cause is the form of the object
responsible for the attribute, and another sort of cause is the matter on which the form is
imposed. The first is called the formal cause, and the second is called the material cause.
Aristotle tended to think of formal causes as internal principles of development in natural
objects, as whatever it is, aside from matter, that determines that acorns grow up to be oak

trees rather than hemlock trees, for example.



For an attribute to be acquired by a thing, some action must take place to impose a
further form on matter. An acorn doesn’t become a oak tree unless it is covered with earth in
a place where rain and sun fall. A block of marble does not become a statue of Venus without
the action of a chisel. For Aristotle, the efficient cause of a thing possessing a certain attribute
is the process by which the matter of the thing acquires the appropriate form. Efficient causes
are the kinds of events or processes that we nowadays think of as causes.

According to Aristotle, natural processes have purposes or ends, just as human
activities have purposes. The qualities and attributes that things take on in the normal course
of events are attributes they have so that these purposes or ends will be achieved. One aspect
of the explanation of why the sun gives warmth, for example, is the purpose or goal of that
state of affairs. One might hold, for example, that the sun gives warmth so that life can
endure on earth. Aristotle did not mean, of course, that the sun deliberately intends or plans to
make life prosper on earth. The plan is nature’s, not the sun’s. Whatever it is for the purpose
of which an object has an attribute, Aristotle calls the final cause of the thing’s having the
attribute.

The doctrine of four causes forms one of the centerpieces of Aristotle’s conception of
science. Scientific inquiry is an attempt to answer “why” questions. When such questions are
about why something comes to be, they are ambiguous, according to Aristotle: their meaning
depends on whether one is asking for the material, efficient, final, or formal cause.

Aristotle’s conception of causality and his conception of scientific explanation as the
statement and demonstration of causes formed a framework for understanding scientific
inquiry that lasted until the eighteenth century. Together with his theory of proof, these
conceptions make up an important part of the background against which modern philosophy

was formed. | will return to them again in the next chapter when | describe seventeenth-



century approaches to the idea of a proof, and | will consider them yet again in later chapters
when | take .up the subject of inductive inference.

Study Questions

1. Does the sentence “Sam and Suzy love one another” consist of a predicate applied to
a subject? What about the sentence “Equals added to equals are equal?

2. Biological taxonomy describes hierarchies of species, genera, and so on. Do such
classifications exemplify Aristotle’s conception of nature?

3. Use your own judgement to determine which of the following attributes of water are
essential properties of water and which are accidental properties of water.

. It covers most of the surface of the earth.

It is composed of molecules having two atoms of hydrogen and one atom of oxygen.

J It can be obtained from wells.

o It boils at 100 degrees centigrade at one atmosphere pressure.

o It is sold in bottles by Perrier.

o It is sometimes drunk with scotch.

o It is of two kinds, salt and fresh.

4. What do you suppose are the four Aristotelian causes that explain why mammals give
milk?

ARISTOTLE’S CONCEPTION OF SCIENCE

Avistotle thought that the science of any subject should constitute a system of knowledge
claims. Fundamental claims, or axioms, could be used to deduce less fundamental claims.
The scientific explanation of a general fact about the world consists in a valid deductive
argument that has a description of that general fact as its conclusion and has true,
fundamental claims as its premises. Different sciences might have quite different axiomatic

systems; there is one theory for biology, another for the constitution of matter, another for



astronomy, and so on. These diverse theories may share certain fundamental assumptions, but
they will also have postulates that are peculiar to their respective subject matters. Aristotle
supposed that the axioms of a scientific subject would be divided more or less as Euclid
divided his axioms into common notions and postulates of a peculiarly geometric character.

Avristotle’s conception of scientific explanation can be illustrated with a simple
example.

Each link in this picture corresponds to a general truth about the generation of humans:

o All humans are animals.
o All animals are living things.
o All living things are composed of matter.

Further, each of these sentences predicates- something essential of its subject. It is not an
accidental feature of humans that they arc animals, nor is it an accidental feature of animals
that they are living things, nor is it an accidental feature of living things that they are
material. Next observe that each point in the illustration represents a kind of thing obtained
by imposing additional form on the matter that is the kind of thing at the point above it. Thus,
in Aristotle’s terms, living things result from imposing a nutritive soul upon elemental matter.
Imposing an animate soul upon a living thing results in an animal, and so on. Finally, the
imposition of a form upon matter is brought about by a characteristic kind of efficient cause.
Thus the form of a nutritive soul is imposed upon matter by mixing the elements (for
Aristotle, these were earth, air, fire, and water) in the proper proportions.

What can be demonstrated from this simple theory? An Aristotelian demonstration
might go like the following:
All humans are animals.

All animals arc living things.



Therefore, all humans are living things.

All humans are living things.

All living things are composed of matter.

Therefore, all humans are composed of matter.

This is not a very subtle or elaborate deduction, and Aristotle clearly intended that scientific
demonstration should include more intricate arguments, such as those we find in Euclid’s
geometry. A central philosophical problem for Aristotle was therefore to give an account of
the inferences that make for a valid deduction.

The axiomatic method

The idea that a good scientific theory should constitute a system in which less fundamental
claims can be deduced from more fundamental claims is not so foreign to modern science.
We still have something of that conception in modern physics. Newton’s dynamics was
originally formulated by Newton as an axiomatic system. The theory of relativity and the
theory of quantum mechanics have been formulated as axiomatic systems. Non-Euclidean
geometries have been developed as axiomatic theories. In contemporary psychology, theories
about how to measure psychological properties have been formulated as axiomatic systems.
In economics and statistics, theories of rational decision making are often expressed
axiomatically.

Theories are sometimes first formulated as axiomatic systems. More often, axiomatic
presentations are given when there is an understanding of the theory but that understanding
needs to be clarified and made rigorous. Axiomatic presentations may enable one to see
clearly the fundamental claims of a theory and to examine how other claims of the system can
be validly deduced from them.

ARISTOTLE’S LOGIC



Avistotle’s logic concerns sentences that have a simple structure consisting of a quantifier
such as “all” or “some” or “no” (as in “none”), a subject term such as “humans” or
“Socrates,” and a predicate term such as “are animals” or “is not snub-nosed” or “are mortal.”
For example, “All humans are mortal” or “Socrates is not snub-nosed” are the kind of
sentences whose logic Aristotle described.

The characteristic form of inference in Aristotle’s logic is the syllogism, which
consists of a pair of sentences that serve as premises and a sentence that serves as the
conclusion. You have seen an example of syllogistic argument in the previous section. Here
is another:

Syllogism 1

All humans are animals.

All animals are mortal.

Therefore, all humans are mortal.

This is a valid syllogism. What makes it valid is that if the premises are true, then it follows
necessarily that the conclusion is also true. If the premises happen to be false in a valid
syllogism, then the conclusion may he either true or false. What matters is that in every
conceivable case in which the premises could he true, the conclusion would also be true.

You can see why this syllogism counts as valid by drawing some circles. (This is not
a device that Aristotle used. It was first developed during the Renaissance). Suppose you
introduce a circle H to represent the set of all humans, another circle A to represent the set of
all animals, and a third circle M to represent the set of all mortal things. The first premise
says that the set of all men is contained in the set of all animals. So put circle H inside circle
A to represent the state of affairs required for the first premise to be true (figure 2.1). The
second premise says that the set of all animals is contained in the set of all mortal things. So

put circle M around circle A to represent the state of affairs required for the second premise to



be true (figure 2.2). Now consider the figure drawn (2.2). To represent the state of affairs
required to make both premises true, you had to put H inside A and A inside M. So
necessarily H is inside M, which is what the conclusion asserts. What makes a syllogism
valid is that in any way you represent circumstances so that both of the premises are true, the
conclusion is true as well.

Here is another valid syllogism:
Syllogism 2
All humans are animals.
Some humans are quiet.
Therefore, some quiet things are animals.
Represent the class of all humans by the circle H, and the class all animals by the circle A,
and the class of all quiet things by the circle Q. The first premise, as before, says that H is
contained in A. The second premise is different. It says that there are things that are both
human and quiet. This can only be represented by having circle Q, representing the set of all
quiet things, intersect circle H, representing the set of all humans. So every representation
that makes the first two premises of the syllogism both true has Q intersecting H and H
contained in A (figure 2.3). But then Q must necessarily intersect A, which is what the
conclusion asserts.

By contrast the following syllogism is not valid, even though all its premises and its
conclusion are true:
Syllogism 3
All humans are animals.
Some animals are mortal.

Therefore, all humans are mortal.



To see that the syllogism is not valid, remember that for validity there must be no possible
way of arranging the circles representing the sets of things that are human, H, animals, A, and
mortal, M, so that in that representation of possible circumstances the premises are both true
but the conclusion of the syllogism is false. The first premise says, as before, that H is
included in A. The second premise says that circles A and M intersect. One way in which the
two premises could imaginably be true is given in figure 2.4. In this figure M intersects A,
and H is included in A, but M does not include any of H. The figure represents an imaginable
circumstance in which all humans are animals, some animals are mortal, but some humans (in
fact, all humans) are immortal. The circumstances represented are not those that obtain in our
world, where in fact all humans are mortal, but they are consistently imaginable
circumstances, and they show that the truth of the premises of the syllogism do not by
themselves necessitate the truth of the conclusion of the syllogism.

That a syllogism is valid does not imply that its premises are true or that its
conclusion is true. A valid syllogism may have false premises and a true conclusion, false
premises and a false conclusion, or true premises and a true conclusion. What it may not have
is true premises and a false conclusion. What it means for a syllogism to be valid is that if its
premises were true, its conclusion would of necessity be true. So if the premises are actually
true and the syllogism is valid, then the conclusion must actually be true.

Here is an example of a valid syllogism in which the premises are in fact false but the
conclusion is true:

All humans are apes.

All apes have opposing thumbs.

Therefore, all humans have opposing thumbs.

Here is an example of a valid syllogism in which the premises are false and the conclusion is

false:



All humans are apes.
All apes are stockbrokers.
Therefore, all humans are stockbrokers.

Aristotle realized that the validity of a syllogism has nothing to do with what the
predicate terms and the subject terms mean, but has everything to do with what quantifiers
occur in the premises and the conclusion and with where one and the same term occurs in
both the premises and the conclusion. The first syllogism we considered has the following
form:

All A are B.

All B are C.

Therefore, all A are C.

Any syllogism of this form will be valid, no matter what classes A, B, and C denote. A could
be stars, B olives, C dragons. The following syllogism is silly, but valid.

All stars are dragons.

All dragons are olives.

Therefore, all stars arc olives.

By contrast, the following form is not valid.

All A are B.

Some B are C.

Therefore, some A are C.

It is easy to see that this form of syllogistic argument is not valid by considering an example
of that form in which the premises are true but the conclusion is false:

All men are mammals.

Some mammals are female.

Therefore, some men are female.



Study Questions

1. Give new examples of valid syllogisms with the following properties: (a) The
premises are false and the conclusion is true. (b) The premises are false and the conclusion is
false. (c) One premise is false, one premise is true, and the conclusion is false.

2. Give examples of invalid syllogisms with the following properties: (a) The premises
are true and the conclusion is true. (b) The premises are false and the conclusion is true.
THE THEORY OF THE SYLLOGISM

Avistotle described fourteen valid forms of syllogistic argument. Medieval logicians gave
each of them names, such as Barbara and Celerant. In Aristotle’s logical theory there are
four expressions, now called quantifiers, that can be prefixed to a subject-predicate phrase.
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The quantifiers are “all,” “no,” “some,” and “not all.” The traditional abbreviations for these
quantifiers are respectively A, E, I, and O. By prefixing one of the quantifiers to a subject-
predicate phrase, we obtain a sentence. An Aristotelian syllogism consists of three such
sentences: two premises and a conclusion. (The names of the syllogisms contain a code for
the quantifiers in the sentences in syllogisms of that form. The vowels in the names indicate
the kind of quantifier in the second premise, the first premise, and the conclusion. Thus
Darapti is a syllogism with two premises having “all” as their quantifier and a conclusion
having “some” as its quantifier.)

These syllogisms are written so that the conclusion is always “(Quantifier) A are C.”
The term that occurs in the subject place in the conclusion (A in the examples below) is called
the minor term. The term that occurs in the predicate place in the conclusion (C in the
examples below) is called the major term. The term that occurs in the premises but not in the
conclusion (B in the examples) is called the middle term.

The form of a syllogistic argument is determined entirely by the quantifiers attached

to each sentence and by the positions of the terms in the premises. If we ignore the quantifiers



for the moment, it is easy to see that there are four different patterns or figures (as they are
called) in which the major, middle, and minor terms can be distributed (table 2.1 ). The valid
Avristotelian syllogisms, with their medieval names, are listed in table 2.2. You may notice
that the table of valid syllogisms contains no syllogisms having the pattern of figure 4.
Avristotle did not include a study of syllogisms of this figure.

There are four possible quantifiers, any of which can attach to any sentence in a
syllogism of any figure. Each syllogism has three sentences, and there are four choices of
quantifier for the first sentence, four choices for the second sentence, and four choices for the
third sentence, and thus there are 4 x 4 x 4 = 64 distinct syllogistic forms in each figure. And
since there are four figures, there are 256 distinct forms of syllogistic arguments altogether.
Of the 192 syllogistic forms in the first three figures, Aristotle held that only the 14 illustrated
are valid. All others are invalid. How did Aristotle come to this conclusion?

Aristotle held that the valid syllogisms of the first figure are perfect, by which he
meant that their validity is obvious and self-evident and requires no proof. Assuming this is
true, it remains to show that the other syllogistic forms he gives are also valid and that other
syllogistic forms in the first three figures are invalid. To show the first, Aristotle assumed
certain rules of conversion, which are really logical rules for inferring one sentence from
another. Aristotle’s rules of conversion include the following:

Rule 1 From ‘“No X are Y,” infer “No Y are X.”
Rule 2 From “All X are Y,” infer “Some Y are X.”
Rule 3 From “Some X are Y, infer “Some Y are X.”

With these three rules, some of the valid syllogisms of the second and third figures
can be derived from the valid syllogisms of the first figure. Aristotle’s strategy is to start with
the premises of a second- or third-figure syllogism and to use the rules of conversion to

derive the premises of a first-figure perfect syllogism. If the perfect syllogism shares its



conclusion with the original second- or third-figure syllogism, it follows that the original
syllogism is valid (assuming the first-figure perfect syllogisms are valid and that the rules of
conversion preserve truth).

For example, Cesare can be transformed into Celarent by using the first rule of
conversion on the second premise. That is, from “No C are B” we infer “No B are C” by rule

| to obtain. Celarent.

Cesare Celarent

All A are B All Aare B
No C are B NoBare C
NoAareC NoAareC

In the same way, other valid syllogisms of the second and third figure can be converted into a
syllogism of the first figure (with the same conclusion) with the rules of conversion.

How did Aristotle show that the many syllogistic forms of the second and third
figures that do not occur in the table above are not valid? To answer that, we have to be
clearer about what it means for an argument form to be valid. The syllogistic forms in the
table above are not sentences, they are abstract schemes that would become sentences if
genuine terms were substituted for A, B, and C. An argument is valid if and only if it is not
possible for its premises to be true and its conclusion false. A syllogistic argument form is
valid provided that, however we substitute real terms for the abstract A, B, and C in the
syllogistic form, if the result is a syllogism with true premises, then the resulting conclusion is
also true. So in order to show that a syllogistic form is not valid, Aristotle needed only to find
examples of syllogisms of that form in which the premises are both true and the conclusion is
false.

Consider the following form of syllogistic argument:

No A are B



AllBareC

"NoAareC

Avristotle shows that this form is not valid by considering the following example:
No horse is a man.

All men are animals.

No horses are animals.
In this case it is obvious that both of the premises are true but the conclusion is false. Hence
the syllogistic form is not valid.
Study Questions
1. By providing an example in which the premises are clearly true and the conclusion is
clearly false, show that each of the following syllogistic forms is invalid:

No Aare B No A are B No Aare B

All B are C All B are C All Bare C

NoAareC SomeAareC NoallAareC
2. Use the valid syllogistic forms of the first figure and the rules of conversion to show
the validity of the form Camestres and the form Felapton.
3. Do the rules of conversion given in the text suffice to show the validity of the forms
Baroco and Bocardo? Why or why not?
4. Find the valid syllogistic forms in the fourth figure.*
LIMITATIONS OF ARISTOTLE’S SYLLOGISTIC THEORY OF DEDUCTIVE
ARGUMENT
Although the theory of the syllogism is an interesting and impressive theory of deductive
inference, it is not comprehensive. It does not include arguments that we and Aristotle’s
contemporaries recognize as valid. In other respects it is too comprehensive: Aristotle counts

as valid some arguments that we would not count as valid.



Avistotle developed his theory of the syllogism as part of a theory of scientific
demonstration. One of the great ironies of intellectual history is that while geometry was the
paradigmatic Greek science and Euclid lived only a generation after Aristotle, the theory of
the syllogism cannot account for even the simplest demonstrations in Euclid’s Elements.
There are several reasons why.

First, the propositions of geometry are not all of a simple subject-predicate form. In
fact, rather few of them are. Instead, geometrical propositions deal with relations among
objects. Second, the propositions of geometry do not all have just one quantifier; they may
essentially involve repeated uses of “all” and “there exists.” Third, proofs require devices for
referring to the same object in different ways within the same sentence. Recall from chapter 1
the content of Euclid’s first proposition:

Proposition 1  For every straight line segment, there exists an equilateral triangle having
that line segment as one side.

To treat this claim as the conclusion of a syllogism, Aristotle would have to treat this
sentence as having a single quantifier, “all”’; a subject, “straight line segment”; and a
predicate, “thing for which there exists an equilateral triangle having that thing as one side.”
Aristotle would therefore have to interpret the conclusion of Euclid’s first proof as of the
form

All A are C.

That is,

All straight line segments are things for which there exists an equilateral triangle having that
thing as one side.

If we look at the table of valid syllogistic forms, we see that a conclusion of this form can

only be obtained from a syllogism of the form Barbara. So for Aristotle’s theory of deductive



argument to apply, Euclid’s proof would have to provide some middle term B and axioms or
subconclusions of the following forms:

All Aare B

AllBare C

Or more concretely,

All straight line segments are B.

All B are things for which there exists an equilateral triangle having that thing as one side.

But that is not how Euclid’s proof works. Recall that if the line segment has endpoints
P and Q, Euclid constructs a circle centered on P and another circle centered on Q, each
having the line segment as a radius. One of his postulates says that for every point and every
length, a circle centered on that point having that length as radius exists (or can be
constructed). Then Euclid assumes that there is a point at which the circle centered on Q and
the circle centered on P intersect one another. This point, call it S, must be the same distance
from P as P is from Q, and also the same distance from Q as Q is from P. By the construction
and the definition of circle, the distance from Q to P is the same as the distance from P to Q,
so point S must be the same distance from Q as P is from Q. Then Euclid uses the axiom that
things equal to the same thing are equal to one another to infer that the distance from S to P is
the distance from P to Q. So the distances PQ, PS, and QS are all equal. Another axiom
guarantees that for all pairs of points there is a line segment connecting the points, and the
definition of a triangle shows that the figure thus shown to exist is a triangle.

Aristotle might let B stand for “thing with endpoints that are the centers of circles
with radii equal to the distance between the points.” Then Aristotle would need to show that
Euclid’s proof contains a syllogistic demonstration of each of the following:

All straight line segments are things with endpoints that are centers of circles with radii equal

to the distance between the points.



All things for which there exists an equilateral triangle having that thing as one side are
things with endpoints that are the centers of circles with radii equal to the distance between
the points.

Each of these will again have to be established by means of a syllogism of the form Barbara.
But however many times we compound syllogisms of the Barbara form, we will never obtain
a proof that looks at all like the argument that Euclid provided.

Avristotle’s theory also fails to cover several other types of arguments. Recall that
Avristotle proves that the syllogistic forms of the second and third figures shown in table 2.2
are valid forms. What is the form of those proofs? The proof I illustrated has the following
form:

If Celarent is valid, then Cesare is valid.

Celarent is valid.

Therefore, Cesare is valid.
This is a perfectly valid deductive argument. It has the following form:
If P then Q

P

Therefore Q

Here P and Q stand for any complete sentences that are either true or false. This argument is
not one of Aristotle s valid syllogistic forms. So Aristotle’s own proof of the properties of his
logical system uses logical principles that his system can neither represent nor account for.
The argument just sketched depends on the logical properties of “If ... then  ,” where the
ellipsis and the blank are filled by sentences. This form of argument is sometimes called a
“hypothetical syllogism.”

There is a third difficulty with Aristotle’s theory of the syllogism. Look at the first

four valid syllogisms of the third figure: Darapti, Felapton, Disamis, and Datisi. Each of them



has an existential conclusion; that is, in each case the conclusion says that something exists
having specified properties. So, for example, in Darapti we have the following inference:
All B are A

All B are C

Some Aare C
Avristotle meant “Some A are C” to be read as “There exist some things that are A and C.” So
understood, it is not clear that Darapti is a valid form of inference. Consider the following
example:

All unicorns are animals with hoofs.

All unicorns are horses with one horn.

Therefore, some animals with hoofs are horses with one horn.
This looks like an argument in which the premises are true but the conclusion is false. The
problem is with the second rule of conversion:
From “All X are Y,” infer “Some Y are X.”
We don’t think it is legitimate to infer “Some little people are leprechauns” from “All
leprechauns are little people.” We don’t think it is legitimate to infer “Some numbers that are
divisible by two are both even and odd” from “All numbers that are both even and odd are
divisible by two.” We reason all the time (both in fairy tales and in mathematics) about all
things of a certain kind, even when we don’t believe or mean to imply that things of that kind
exist. In fact, in mathematics we often reason about such things just to prove that they don’t
exist! Aristotle would have agreed with our practice, but his theory seems not to agree.
AFTER ARISTOTLE
Aristotle’s theory of deductive reasoning may have had many flaws. Yet despite minor
improvements in the theory of syllogistic reasoning and some other developments in logical

theory, no fundamental advances appeared for the next 2,400 years. Aristotle’s successors at



the Lyceum and after them the Stoic philosophers developed some of the principles of the
logic of propositions. Their principles were understood by medieval logicians. For example,
it was recognized that for any propositions P and Q, one could infer Q from premises
consisting of the assertion of P and the assertion of “If P then Q.” Medieval logicians even
gave this form of inference a name, modus ponens:

Modus ponens From “P” and “If P then Q,” infer “Q.”

Other related logical principles were also understood, for example, the principle modus
tollens:

Modus tollens From “Not Q” and “If P then Q,” infer “Not P.”

Theophrastus, who succeeded Aristotle as the head of the Lyceum, gave conditions
for the truth of sentences compounded of simpler sentences. He proposed that any sentence of
the form “If P then Q” is false only when P is true and Q is false. In any other circumstance,
“If P then Q” is true. So in Theophrastus’ view, “If P then Q” is true if P and Q are both
false, if P is false and Q is true, and if both P and Q are true. In Theophrastus’ conception,
therefore, the truth or falsity of “If P then Q” is a function of the truth values (true or false) of
P and Q. In other words, the truth value (true or false) of “If P then Q” is uniquely
determined by the truth values of P and Q, just as the numerical value of the sum X + Y is
uniquely determined by the numerical values of X and Y. Sentences of the form “If ...
then " are now known as conditional sentences or simply conditionals. The account of
conditionals as truth functions of the simpler sentences from which they are composed was
not widely accepted by logicians of the Middle Ages. They held instead that “If P then Q” is
true only if the truth of P necessitates the truth of Q. With that understanding, the truth value
of “If P then Q” is not a function of the truth values of P and Q. It isn’t the truth or falsity of
P and Q alone that determines the truth or falsity of “If P then Q,” but whether the truth of P

necessitates the truth of Q.



Further principles about inference with quantifiers were also recognized by Aristotle’s
successors. For example, they recognized the principle that from a universal claim one may
infer any instance of it. From “Everything is such that if it is human, then it is mortal” one
may infer “If Socrates is human, then Socrates is mortal.”

Logic was extensively studied in the late Middle Ages from the twelfth through the
fourteenth centuries. The theory of the syllogism was understood and extended in minor
ways, and tracts were written on various sorts of quantifiers. Medieval logicians were
especially interested in what we call modal logic, which is the study of deductive inferences
that involve notions of necessity, possibility, and ability. Aristotle himself had written on the
subject. Aristotle had maintained the following logical principles (which he did not clearly
distinguish):

For any proposition P, “Necessarily P” is true if and only if “Not possibly not P” is true.

“A is necessarily B” is true if and only if “A is not possibly not B” is true.

Modal reasoning was of special concern to logicians of the Middle Ages because the
motivation for their studies of logic was as much religious as it was scientific. They were
concerned with features of God and with humanity’s relations with God. These subjects
involved complicated uses of claims about necessity and possibility. For example, Saint
Anselm’s proof of God’s existence seems to turn on the idea that God is an entity that could
not possibly not exist, an entity that necessarily exists. Notions of possibility and necessity
can easily lead to paradoxes, which require a logical theory to untangle.

These and other logical investigations amounted to some limited progress in
understanding valid reasoning. But at the end of the fourteenth century, Western civilization
was not substantially closer to understanding deductive inference than it had been in the
fourth century B.C. It was still not possible, for example, to give a systematic theory of proof

that would include the proofs of geometry and exclude fallacies. Although additional logical



principles had been developed after Aristotle, they had not been formed into a powerful
systematic theory. The three central questions posed in chapter 1 were not much closer to
being answered.

ARISTOTELIAN REASONING IN ARTIFICIAL INTELLIGENCE*

Although Aristotle’s theory of demonstrative reasoning is inadequate to represent most
proofs in mathematics and the sciences, a lot of simple reasoning can be represented as

syllogistic.

Two puzzles

Here are two very old puzzles about the properties of God
and God’s relation to humans. Both involve modal
reasoning. The first is concerns a claim about God that
some Christians thinkers of the Middle Ages and
Renaissance seem to have held:

(1) God is necessarily omnipotent; that is, necessarily
God can do anything.

Consider now the question, Can God make a rock he
cannot lift? Suppose God cannot make such a rock. Then

(1) is false. Suppose, on the other hand, that God can make

Recently, Aristotelian modes of reasoning have been applied in the study of artificial
intelligence. Research in artificial intelligence attempts to devise programs that will enable
computers to solve problems that require intelligence in human problem solvers. Most Al
work is not committed to making computers solve problems in exactly the same way in
which humans solve them, but the way in which humans proceed sometimes gives the
program designer useful hints about how to make a computer solve the same kind of problem.
Humans reason in solving problems, even the most elementary kinds of problems. Computers

should reason as well, or at least they should do something that looks like reasoning.



Human reasoning involves the use of an enormous amount of knowledge. If you are
told that Dumbo is an elephant, you can immediately answer such questions as “Is Dumbo a
mammal?” “Does Dumbo have a long nose?” “Does Dumbo have a tail?”” “Is Dumbo a
herbivore?” You can answer these questions because you know a great many things about
elephants. If we want to design a computer program that will have the same capacities as you
have, we will have to provide the computer with the same kind of knowledge. Equally
important, we will have to find a way to organize the knowledge so that the computer can
find relevant parts of it rapidly.

One of the earliest methods developed for organizing knowledge in a computer
program is called an is-a hierarchy. An is-a hierarchy is a graph of just the kind I used to
illustrate Aristotle’s conception of scientific knowledge. If the subject is elephants, a simple
is-a hierarchy might look like this:

o

Of course, the computer does not have this picture. What it has is a set of instructions that
link terms such as “Dumbo” and “elephant” to one another, and the links are exactly as in the
graph. Each connection in the graph represents a general statement. For example,

Dumbo is an elephant.

All elephants are mammals.

All elephants are long-nosed.

All mammals are animals.

Suppose the computer is asked, Is Dumbo an animal? To answer the question, the
computer searches for a path from “Dumbo” to “animal.” It might, for example, go from
“Dumbo” to “elephant,” to “mammal,” to “animal.” Upon reaching “animal,” it would
answer that yes, Dumbo is an animal. In this sort of procedure the computer is carrying out

the simplest sort of syllogistic inference.



One interesting thing about trying to simulate human reasoning using a computer is
that we are forced to consider logical features that might otherwise be ignored. Suppose that
instead of reasoning about elephants, the computer is to reason about birds. From the
information that Tweety is a bird, the computer should he able to answer such questions as,
“Does Tweety have feathers?” “Does Tweety have wings?” “Can Tweety fly?” “Is Tweety a
mammal?” “Is Tweety an animal?” The relevant information about birds needed to answer
these questions can be represented by a graph, just as the information about elephants is
represented. The graph would encode such information as that birds have feathers, that birds
have wings, that winged things can fly, and so on. The computer can then carry out simple
syllogistic inferences to answer these questions. Given the information that Tweety is a bird,
a person will generally answer the question, Can Tweety fly? with a yes. The computer will
answer in the same way. But if you give a person a further piece of information about
Tweety, you get a different answer. If a person is given the further information that Tweety is
an ostrich, the person will not infer that Tweety can fly. People, in other words, make the
following inference:

Tweety is a bird.

Birds can fly.

Therefore, Tweety can fly.

And they also make this inference:
Tweety is a bird.

Birds can fly.

Tweety is an ostrich.

Ostriches cannot fly.

Therefore, Tweety cannot fly.



“Tweety can fly” may look at first like the conclusion of a syllogistic inference, but actually
something much more complicated is going on. Syllogistic inference, as Aristotle and his
successors understood it, is monotonic, meaning that if a conclusion C can be validly inferred
from a set of premises, then it can also he validly inferred from any set of premises that
include the original premises. The Tweety example shows that the kind of reasoning humans
do is sometimes (in fact quite often) nonmonotonic: adding information to the premises
prevents us from drawing conclusions we would otherwise draw. One mark of the difference
is that we are inclined to agree that birds can fly, but not that all birds can fly. In the same
way, we are inclined to agree that whales give milk, but not that all whales give milk (male
whales don’t). Sentences such as “Birds can fly” are sometimes said to be generalized,
whereas sentences such as “All birds can fly” are said to be universal. While universal and
generalized sentences are sometimes synonymous, they aren’t always. When they aren’t,
reasoning that looks syllogistic may actually be nonmonotonic. To make a computer reason
as humans do in contexts where knowledge consists of generalized but not universal
sentences, the computer must make inferences according to principles of nonmonotonic logic.
The principles of nonmonotonic logic and their efficient implementation in computer

programs are major areas of contemporary research.

Study Questions
1. Write out a graph for reasoning about birds that is like the graph shown for elephants.
2. Suppose that someone reconstructed a particular deduction as a syllogism and you

wished to show that the inference principles used actually involved nonmonotonic reasoning.
How could you argue for your view? Give an example.

3. Knowledge of causes is often used to reason nonmonotonically. Give an example.

4. What is the name of the syllogistic form used in the reasoning that Dumbo is an

animal?



5. Explain why the theory of the syllogism cannot fully account for everyday reasoning
about properties of things.

Review Questions

1. What questions should a theory of deductive argument address? How well does

Aristotle’s theory of deductive arguments succeed in answering these questions?

2. What are three major difficulties with Aristotle’s theory of deductive argument?
3. What are the four senses of “cause” in Aristotle’s philosophy?
4. Do you think that syllogistic reasoning could be used to account for proofs in

arithmetic or the theory of numbers?

5. Explain Aristotle’s strategy for. justifying his theory of syllogisms.

6. Which of Aristotle’s syllogistic forms of the second and third figures can be
converted into a first-figure form without using Aristotle’s second rule of conversion?

7. What role does the theory of syllogisms play in Aristotle’s understanding of scientific
demonstration?
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Chapter 3

IDEAS, COMBINATIONS, AND THE MATHEMATICS OF THOUGHT
INTRODUCTION

From the fifteenth through the seventeenth centuries, literature, art, and science flourished in
Europe, but logic did not prosper. The careful study of the problems of deductive inference
and of the relations between words and things that make reliable inference possible came to
be replaced by rhetoric, the study of persuasive speech. Aristotle had written on rhetoric, and
logic texts in the Renaissance increasingly gave their attention to that subject rather than to
studies of valid argument. But in the seventeenth century there occurred such a revolution in
thought, and such an explosion in knowledge, that every subject, including logic, was
affected. The seventeenth century brought into vivid contrast two different ideals of reason:
on the one hand, the ideal of certainty best exemplified by Euclid’s geometry and Aristotelian
syllogistics; on the other hand, the ideal of rational belief with uncertainty, exemplified in
quantitative form by the laws of probability and the laws of nature, such as Boyle’s law of
gases and Newton’s law of gravitation, newly discovered in the seventeenth century. One
effect of this clash was to move intellectual interest away from a theory of demonstration
toward theories of rational belief and rational inference. But the new mathematics of
rationality also helped to unite the theory of deductive demonstration with the new
quantitative theories of nature. The theory of deductive proof became the quantitative theory
of ideas and of how they may be combined.

The seventeenth century saw the establishment of modern philosophy in the work of
Galileo Galilei (1564-1642), Francis Bacon (1561-1626), René Descartes (1596—-1650),
Thomas Hobbes (1588-1679), Blaise Pascal (1623-1662), Gottfried Leibniz (1646-1716),
Isaac Newton (1642-1727), and John Locke (1632-1704). The creation of modern

philosophy went hand in hand with the creation of modern science and modern mathematics.



For the most original and powerful minds of the time, science, mathematics, and philosophy
were simply different aspects of a common enterprise of knowledge. Indeed, they would have
found our separation of the subjects somewhat artificial. Galileo provided some of the most
powerful arguments for the heliocentric conception of the solar system, and he wrote
systematic attacks on the adequacy of Aristotelian physics. At the same time, his writings
contain the beginnings of new conceptions of how the mind works and how knowledge is
acquired. Francis Bacon not only articulated a new, empirically based conception of how
knowledge is acquired; he also developed the theory of heat and conducted a number of
experiments to support that theory. Descartes, except for Newton perhaps the most eminent
and influential intellect of the century, invented the study of the geometrical properties of
solutions to algebraic equations, the subject we now call analytic geometry, and also
developed an extensive (but largely erroneous) anti-Aristotelian physical theory. Hobbes,
despite many attempts, left no mathematical or scientific achievements of value, but he left
something else: the idea that the study of society can be part of natural science, and the idea
that moral conceptions can be explained and justified by scientific considerations of human
nature and of the conditions under which humans live. Pascal invented and sold a mechanical
calculator, conducted a famous experiment to demonstrate the pressure of the atmosphere,
and introduced many of the fundamental ideas in the theory of probability and the theory of
rational decision making. Leibniz invented the differential and integral calculus and promoted
a variety of social projects in the second half of the century. He too designed and built
mechanical calculators. Newton we know as the source of modern physics; his Principia and
Optics revolutionized that subject. His scientific writings, especially the Principia, also
contain a new and sophisticated philosophy of science. Locke is known for his writings on

the structure of the mind, for his theory of how knowledge is acquired, and for his account of



just government. His writings were heavily influenced by the new sciences emerging all
around him.

Except for Leibniz, seventeenth-century philosophers did not succeed in developing a
better logical theory than Aristotle’s. Of Descartes, Hobbes, Pascal, Leibniz, Newton, and
Locke, only Leibniz wrote extensively on logic, and most of what he wrote was not
published. But the seventeenth century did establish two important ideas about deductive
reasoning.

o The theory of deductive reasoning and demonstration is part of psychology. It should
provide part of the laws of thought, just as physics provides the laws of motion.

o The laws of thought have an algebraic structure, just as do the laws of arithmetic or
the laws of motion.

The first of these ideas turned out to be fundamentally in error—only when it was abandoned
did the modern understanding of deductive inference emerge—but its very falsity creates a
puzzle that we will consider at several points in this book. The second idea turned out to be
correct and profound, and two centuries later, in the middle of the nineteenth century, it
formed the basis for the first fundamental advance in logic since Aristotle. In the rest of this
chapter we will consider how these two ideas emerged from metaphysics, mathematics, and
theology in the seventeenth century.

To understand how seventeenth-century thinkers brought these views of logic and
demonstration to prominence and why they were widely thought to he true, we must consider
a little of the tradition of thought about mathematics and knowledge that the century inherited
and drew upon.

COMBINATIONS
According to both Plato and Aristotle, the objects of knowledge have a special formal

structure. The sort of thing a person may know is that one thing or kind or property is a finite



combination of other things or kinds or properties. Human is a combination of rational and
animal. Triangle is a combination of closed, rectilinear, figure, and three-sided. Plato and
Avristotle differed about the metaphysics, of course. For Plato, the elements of these
combinations are ideal objects or forms; for Aristotle, they are essential attributes of concrete
objects. For both philosophers, however, all knowledge consists of knowing such
combinations of forms or essential attributes of a thing or kind. For example, according to
Plato, knowledge of virtue is knowledge of which simple forms are combined in the form of
virtue.

This simple conjunctive view of the objects of knowledge suggests questions about
combinations of properties. Ultimately, on either the Platonic or Aristotelian view, any kind
or property that can be the object of scientific knowledge can be analyzed into a combination
of simple properties that cannot be further analyzed. The number of distinct kinds that can be
the object of knowledge then consists of the number of distinct combinations of these simple
properties, whatever they are. What is the number of pairs of distinct simple properties if
there are n simple properties altogether? What is the number of triples of distinct simple
properties if there are n simple properties altogether? What is the number of distinct
combinations of any particular number m of simple properties drawn from n simple
properties? How can these distinct combinations be enumerated and surveyed? If one has the
Platonic and Aristotelian conception of the form of knowledge, these are fundamental
questions.

In Europe just such questions gave rise to the mathematical subject of combinatorics,
the study of the numbers of possible combinations satisfying given conditions. The first
mathematical results of this kind in Europe seem to occur in a commentary en Aristotle by
Porphyry (ca. 234—ca. 305) written in the third century. Porphyry wished to comment on all

of the similarities and differences among five Aristotelian categories, and so he posed the



problem of enumerating all the distinct pairs of things that can be obtained from a collection
of five things. He observed that one might think that this number is 20, because one can
choose the first thing of a pair in any of five ways and the remaining member of the pair in
four distinct ways:
o
But Porphyry correctly argued that the number of pairings is not 20: “Such is not the case; for
though the first of the five can be paired with the remaining four, when we come to the
second, one of the pairs will already have been counted; with the third, two; with the fourth,
three, and with the fifth, four; thus there are in all only ten differences: 4 + 3+ 2 + 1.1

Roughly 250 years later, Boethius (d. 524) wrote commentaries on Porphyry’s
commentary on Aristotle, and in them he provided a more general, alternative proof. In
modern terminology, his reasoning was as follows. Twenty is the number of ordered pairs,
<X, y>, in which x is distinct from y, that can be formed from five distinct objects. With
ordered pairs, a change in the order counts as a distinct pair, so <x, y> is not equal to <y, x>.
Porphyry was interested in the number of pairs of distinct properties that could be formed
from five properties, but he did not care about order. He was concerned with the number of
unordered pairs, {x, y}. Clearly, for each ordered pair there will be another with the same
objects but in the reverse order. If these two ordered pairs are thought of as together forming
a single unordered pair, or if together they are counted as one object, then the number of
unordered pairs will be half of the number of the ordered pairs. Ten is half of twenty, for
example. The number of ways of choosing ordered pairs from n things is n(n — 1), so the
number of distinct unordered pairs that can be formed from n things is n(n — 1)/2.

In the Middle Ages, the conception of the objects of knowledge as combinations of
simple attributes that make up a kind or a complex property led to a conception of the method

for acquiring knowledge. The method, in so far as it deserves the name, consisted of trying to



“analyze” a thing into its simple properties (analysis), and then trying to put it back together
by combining those properties (synthesis). Often the analysis and synthesis were purely
mental and consisted of analyzing or synthesizing a thing only in imagination, but sometimes,
in Renaissance chemistry, for example, analysis meant physically decomposing a substance
into “simpler” substances, and synthesis meant physically reconstituting a substance of that
kind.

One would expect that Christian intellectuals would apply the methods they had
adapted from Avristotle and Plato to the study of God, and, of course, they did. God too had
fundamental properties, and one could consider the combinations of God’s attributes. In the
thirteenth century the question of how to enumerate, organize, and display God’s attributes
led to a fundamental insight, one that we nowadays take for granted. It concerns the odd life
of the great Spanish philosopher Ramon Lull (d. 1315), a thirteenth-century Franciscan
monk.

Lull grew up in a wealthy family and passed his early adulthood in the court of James
Il of Spain. He spent his time with games and pleasantries and is reputed to have made great
efforts to seduce the wives of other courtiers. Accounts have it that after considerable effort
to seduce a particular lady, she finally let him into her chambers and revealed a withered
breast. Taking this as a sign from God, Lull gave up the life of a courtier and joined the
Franciscan order. He determined that he would dedicate his life to converting Moslem
civilization to Christianity, and in a curious way, philosophy gained from that dedication.

Lull moved to Majorca, spent several years mastering the Arabic language, and
studied and wrote tracts (of which he eventually authored hundreds) against Islam and for
Christianity. About 1274 Lull had a vision of the means by which Moslems could be

converted to Christianity. Stimulated by the idea, he wrote another book, his Ars Magna.



While Lull’s fundamental style of thought is mystical and obscure, it contains one logical
gem.

In effect, Lull’s idea was that Moslems (and others) may fail to convert to Christianity
because of a cognitive defect. They simply were unable to appreciate the vast array of the
combinations of God’s or Christ’s virtues. Lull believed that infidels could be converted if
they could be brought to see the combinations of God’s attributes. Further, he thought that a
representation of those combinations could be effectively presented by means of appropriate
machines, and that was the key to his new method. Lull designed and built a series of
machines meant to be used to present the combinations of God’s virtues.

A typical Lullian machine consisted of two or more disks having a common spindle.
Each disk could be rotated independently of the others. The rim of each disk was divided into
sections or camerae, and each section bore a letter. According to the application for which
the machine was intended, the letters each had a special significance. They might denote, for
example, an attribute of God. One Lullian machine, for example, has the letters B through R
around the rims of an inner disk, and around the outer disk Latin words signifying attributes
of God: “bonitas” (B), “magnitudo” (C), “eternitas” (D), and so on. A Lullian machine was
operated by rotating the two disks independently, much as we would a star finder or (some
years ago) a circular slide rule. At any setting of the disks, pairs of God’s attributes would be
juxtaposed on the rims of the inner and outer disks. Rotating the disks would create different
pairings. One would thus discover that God is good and great, good and eternal, great and
eternal, and so forth. The heretic and the infidel were supposed to be brought to the true faith
by these revelations.

Lull lectured on several occasions at the University of Paris. He traveled throughout
Europe, attempting to raise money for missions to North Africa to convert Moslems to

Christianity. He himself is reported to have made three such trips to Africa. Tradition has it



that on his third trip, at the age of 83, he was stoned to death, but some biographers lacking in
romantic sentiment dispute this account.

This may seem a bizarre and slightly amusing story of no particular philosophical
significance. But buried within Lull’s mysticism and his machines is the seed of a collection
of powerful ideas that only began to bear fruit three hundred and fifty years later.

One of the great ideas implicit in Lull’s work is that reasoning can be done by a
mechanical process. Another equally profound idea in Lull’s thought is that reasoning does
not proceed by syllogism but by combinatorics. Reasoning is the decomposition and
recombination of representations. The decomposition and recombination of attributes can be
represented by the decomposition and recombination of symbols, and that, as Lull’s devices
illustrate, is a process that can be carried out by machines.

Lull’s work was known even in the seventeenth century, when these ideas were taken
up by Leibniz, the most eminent mind on the continent of Europe in the second half of that
century. Neither in Lull nor in Leibniz, however, do these ideas form a theory that competes
with Aristotle’s or that offers solutions to the questions developed in the first chapter of this
book. But Lull had at least taken the first step: he had an idea for a theory.

Study Questions

1. There are only two ways to order two distinct letters. How many ways are there to
order three distinct letters?

2. One of Lull’s machines had sixteen letters signifying attributes of God. How many
ordered triples of three distinct letters can be formed from Lull’s sixteen letters?

3. How many unordered triples of distinct letters can be formed from Lull’s sixteen
letters?

4. Let n! (said “n factorial) denote the numbern x (n —1) x (n — 2) x --- x 1. The

number n! is clearly the number of distinct ways that n things can be put in order, because we



have n choices for the first thing, n — 1 for the second, and so on, until there is only one thing
left. The number of ways of choosing an ordered sequence of 3 distinct things from n things
must be n x (n — 1) x (n — 2). The number of ways of choosing an ordered sequence of m
distinct things from n things (where m <n) mustbe n x (n — 1) x --- x (n — (m — 1)), or more
simply, n!/(n —m)! Use these facts to find a formula for the number of ways of choosing m
things from n things without regard to order.

5. Suppose you of have a collection of n things. How many distinct collections with 2 or
more members can be formed from the collection of n things? In the sixteenth century
Cardano gave the correct answer: 2" — 1 — n. Can you give a proof of this answer?

THE IDEA IDEA

The method of analysis and synthesis might be thought of as a form of reasoning. So
conceived, it is a kind of computation or calculation in which properties are added or taken
away. But in most cases those who thought of themselves as applying this method did not
really add or take away any properties of things. Instead, they added or subtracted thoughts or
ideas of properties. So viewed, the method of analysis and synthesis had to do with the

operations of the mind.

Thomas Hobbes

Thomas Hobbes was born at the end of the sixteenth century and lived almost until the
eighteenth. Educated at Oxford, he made his living by attaching himself to rich and
influential families, often serving as tutor to their children. The Civil War in England raged
during his adult years, and Hobbes spent most of his intellectual efforts on political theory.
The general view he had of the nature of politics and the foundations of government are still
influential today. Although he criticized Aristotle’s system, in many respects Hobbes
remained an Aristotelian thinker. Hobbes met on several occasions with one of the great

intellectual revolutionaries of the first part of the seventeenth century, Francis Bacon, who




along with many other figures of the period, was convinced that new empirical methods of
discovery were required in science. Hobbes disagreed, and despised the experimental method
that Bacon had championed and that by the middle of the seventeenth century was flourishing
in England and in parts of continental Europe. Hobbes was self-taught in mathematics. He is
said to have learned geometry by finding a book of Euclid’s Elements open to some advanced
proposition, which, upon reading, Hobbes did not believe. Since he did not believe the
proposition, Hobbes read the proof, which depended on still other propositions, whose proofs
Hobbes proceeded to read. In this way he worked back to Euclid’s axioms and convinced

himself of the truth of the proposition he had originally doubted.

That is just how seventeenth-century philosophers thought of it. Thomas Hobbes, for
example, wrote as follows:

By ratiocination, | mean computation. Now to compute is either to collect the sum of many
things that are added together, or to know what remains when one thing is taken out of
another. Ratiocination, therefore, is the same with addition and subtraction; and if any man
add multiplication and division, | will not be against it, seeing multiplication is nothing but
addition of equals one to another, and division nothing but a subtraction of equals one from
another, as often as is possible. So that all ratiocination is comprehended in these two
operations of the mind, addition and subtraction.

But how by the ratiocination of our mind, we add and subtract in our silent thoughts,
without the use of words, it will be necessary for me to make intelligible by an example or
two. If therefore a man see something afar off and obscurely, although no appellation had yet
been given to anything, he will, notwithstanding, have the same idea of that thing for which
now, by imposing a name on it, we call a body. Again, when by coming nearer, he sees the
same thing thus and thus, now in one place and now in another, he will have a new idea

thereof, namely that for which we now call such a thing animated. Thirdly, when standing




near, he perceives the figure, hears the voice, and sees other things which are signs of a
rational mind, he has a third idea, though it have yet no appellation, namely that for which we
now call anything rational. Lastly, when, by looking fully and distinctly upon it, he conceives
all that he has seen as one thing, the idea he has now is compounded of his former ideas,
which are put together in the mind in the same order in which these three single names, body,
animated, rational, are in speech compounded into this one name, body-animated-rational, or
man. In like manner, of the several conceptions of four sides, equality of sides, and right
angles, is compounded the conception of a square. For the mind may conceive a figure of
four sides without any conception of their equality, and of that equality without conceiving a
right angle; and may join together all these single conceptions in not one conception or one
idea of a square. And thus we see how the conceptions of the mind are compounded. Again,
whosoever sees a man standing near him, conceives the whole idea of that man; and if, as he
goes away, he follow him with his eyes only, he will lose the idea of those things that were
signs of his being rational, whilst, nevertheless, the idea of a body-animated remains still
before his eyes, so that the idea of rational is subtracted from the whole idea of man, that is to
say, of body-animated-rational, and there remains that of body-animated and a while after, at
a greater distance, the idea of animated will be lost, and that of body only will remain; so that
at last, when nothing at all can be seen, the whole idea will vanish out of sight. By which
examples, | think, it is manifest enough what is the internal ratiocination of the mind without
words.

We must not therefore think that computation, that is ratiocination, has place only in
numbers, as if man were distinguished from other living creatures (which is said to have been
the opinion of Pythagoras) by nothing but the faculty of numbering; for magnitude, body,
motion, time, degree of quality, action, conception, proportion, speech and names (in which

all the kinds of philosophy consist) are capable of addition and subtraction.?



There are at least two important thoughts in this passage. One is that reasoning is a
psychological process, so that a theory of logical inference should be a theory of the
operations of the mind. The other is that the theory of reasoning is a theory of appropriate
combinations. Just what the objects are that are combined is obscure in this passage, but other
passages suggest that Hobbes thought of the mind as composed of particles, and some of
these particles, or collections of them, serve as symbols (or as Hobbes would say, names) for
things, and it is these physical symbols that are combined or decomposed in reasoning. As we
will see later, the very same idea lies behind much of twentieth-century cognitive science.

The obvious question about the method of analysis and synthesis is why and how it
should work. How are people supposed to be able to recognize which properties are simple
and which are complex so that they can he decomposed into simpler combinations? Plato had
an answer: recollection. The forms are “stamped on the soul,” and, prompted by experience,
one has only to recollect them. Aristotle had another answer: we have a faculty of intuition
that tells us which properties are fundamental. Neither of these answers seems very
satisfactory. They don’t tell us, for example, why we should believe that intuition or
recollection reliably gives us the truth. They don’t explain why people who try to apply the
method come to very different conclusions, or how to come to agreement about who is in
error. What could the method be? How could it work? How could we be certain that it works?
René Descartes had an answer, sort of.

In Descartes’ view, as in Hobbes’s, we do not analyze and synthesize things in
themselves. We take apart our conceptions of things, our ideas of them. What we do in
thought, then, is to try to find the simple ideas of which complex thoughts are compounded.
Ideas and thoughts are mental states, not physical states. An inquiry into the basis for
knowledge must therefore be an inquiry into our psychology, into the operations of the mind,

and it must show why those operations, if properly conducted, are reliable. Descartes held



that such an inquiry should produce a method that could be shown to be perfectly reliable,
and he claimed that he himself had found such a method:
Science in its entirety is true and evident cognition. He is no more learned who has doubts on
many matters than the man who has never thought of them; nay he appears to be less learned
if he has formed wrong opinions on any particulars. Hence it were better not to study at all
than to occupy one’s self with objects of such difficulty, that, owing to our inability to
distinguish true from false, we are forced to regard the doubtful as certain; for in those
matters any hope of augmenting our knowledge is exceeded by the risk of diminishing it.
Thus in accordance with the above maxim we reject all such merely probable knowledge and
make it a rule to trust only what is completely known and incapable of being doubted.?
Moreover by a method | mean certain and simple rules, such that, if a man observe
them accurately, he shall never assume what is false as true, and will never spend his mental
efforts to no purpose, but will always gradually increase his knowledge and so arrive at a true
understanding of all that does not surpass his powers.*
The fundamental operations of the mind involved in knowledge are intuition (by which we
see directly that something is the case or that an immediate inference is necessary), deduction
(in which we move through a sequence of intuitions to obtain a necessary conclusion), and
induction (by which we infer general conclusions from particular examples). Induction does
not provide certainty, but intuition and deduction do aim at certainty, which, according to
Descartes, is the only proper goal of inquiry:
By intuition | understand, not the fluctuating testimony of the senses, nor the misleading
judgement that proceeds from the blundering constructions of imagination, but the conception
which an unclouded and attentive mind gives us so readily and distinctly that we are wholly
freed from doubt about that which we understand. Or, what comes to the same thing, intuition

is the undoubting conception of an unclouded and attentive mind, and springs from the light



of reason alone; it is more certain than deduction itself, in that it is simpler, though deduction,
as we have noted above, cannot by us be erroneously conducted. Thus each individual can
mentally have intuition of the fact that he exists, and that he thinks, that the triangle is
bounded by three lines only, the sphere by a single superficies, and so on.>

Descartes seems to think that simple deduction, as in a syllogism, requires nothing but
intuition. A chain of deductions, however, also requires memory:
Many things are known with certainty, though not by themselves evident, but only deduced
front true and known principles by the continuous and uninterrupted action of a mind that has
a clear vision of each step in the process. It is in a similar way that we know that the last link
in a long chain is connected with the first, even though we do not take in by means of one and
the same act of vision all the intermediate links on which that connection depends, but only
remember that we have taken them successively under review and that each single one is
united to its neighbour, from the first even to the last. Hence we distinguish this mental
intuition from deduction by the fact that into the conception of the latter there enters a certain
movement or does not require an immediately presented evidence such as intuition possesses;
its certitude is rather conferred upon it in some way by memory. The upshot of the matter is
that it is possible to say that those propositions indeed which are immediately deduced from
first principles are known now by intuition, now by deduction, i.e., in a way that differs
according to our point of view. But the first principles themselves are given by intuition
alone, while, on the contrary, the remote conclusions are furnished only by deduction.®

The questions for Descartes are how it is that intuition is to be used in producing
knowledge, why we should believe that the deliverances of intuition are veridical, and why
memory can be trusted.

Some thoughts, Descartes held, we perceive clearly, while others appear to us

muddled or confused. Of clear ideas, some can be distinguished in imagination from all



others, and some are indistinguishable from one another. The ideas of extension and of body,
for example, are ideas that cannot be distinguished from one another in imagination: we
cannot think of a body except by thinking of it as extended, and we cannot imagine extension
without imagining some body that is extended. We have no separate idea of mind from that
of substance that thinks. But we can form clear ideas of body and mind, and these ideas are
distinct from one another. The idea of mind is the idea of a thinking substance, while the idea
of body is the idea of an extended substance.

There is, according to Descartes, a special kind of mental state we have when we
perceive a necessary truth clearly and distinctly. For example, when we see the connection
between the premises of a valid syllogism and its conclusion, we see with a special clarity
and distinctness that if the premises are true, then necessarily the conclusion must be true,
and we do not confuse the necessary connection given by that syllogism with some other
argument. Descartes sometimes writes of this clarity and distinctness as provided by the
“natural light of reason.” What he says about it is an elaboration of Aristotle’s notion of the
faculty of intuition.

Descartes’ method rests on three principles:

o What is clearly and distinctly conceived to be true cannot be false.

o The separation of thoughts of properties is a perfect indicator of the possible
separation of the properties: properties that cannot be conceived of separately are necessarily
coextensive, and properties that can be conceived of separately are not necessarily
coextensive.

o A genuine recollection of a sequence of clear and distinct ideas cannot be false.
These are inner criteria; they do not tell you what to do to check someone else’s claim to
know something by intuition or the natural light of reason other than to perform a thought

experiment yourself. They do not even tell you very clearly what it is to clearly and distinctly



conceive something or to genuinely recollect a sequence of clear and distinct thoughts.
Descartes gives only a few examples, and his readers must try to learn from them what is a
clear and distinct idea. Thus the idea that a triangle is a three-sided figure is, Descartes holds,
a necessary truth that can be recognized by the natural light of reason. The quality, whatever
it is, of the experience you have when you think of the question “Is a triangle three-sided?” is
the mark of the natural light of reason and of a clear and distinct idea.

Why believe any of this? Supposing that we even understand what kinds of
experiences Descartes means by the “natural light of reason” or ““clear and distinct ideas” or
genuine memory, why should we believe that his three principles are correct? We can ask a
harder question, for Descartes claims that knowledge requires certainty: How can we be
certain that the three principles are correct? Descartes’ attempt to answer these questions is
given in his Meditations on the First Philosophy, in his answers to objections to that work,
and in his Principles of Philosophy.

First, Descartes argues that some thoughts, some clear and distinct ideas, are
indubitable. While we can doubt, at least momentarily, the existence of an external world and
we can doubt, at least momentarily, the truths of mathematics, we cannot doubt, even for the
moment, claims that are certain. Descartes’ example is the thought that | exist. | cannot doubt
that | exist, for in the very attempt to doubt my existence, | show myself that I exist.

To begin with, directly we think that we rightly perceive something, we spontaneously
persuade ourselves that it is true. Further, if this conviction is so strong that we have no
reasons to doubt concerning that of the truth of which we have persuaded ourselves, there is
nothing more to enquire about; we have here all the certainty that can reasonably be desired.
What is it to us, though perchance some one feigns that that, of the truth of which we are so
firmly persuaded, appears false to God or to an Angel, and hence is, absolutely speaking

false? What heed do we pay to that absolute falsity, when we by no means believe that it



exists or even suspect its existence? We have assumed a conviction so strong that nothing can
remove it, and this persuasion is clearly the same as perfect certitude.

But it may be doubted whether there is any such certitude, whether such firm and
immutable conviction exists.

It is indeed clear that no one possesses such certainty in those cases where there is the
very least confusion and obscurity in our perception; for this obscurity, of whatsoever sort it
be, is sufficient to make us doubt here. In matters perceived by sense alone, however clearly,
certainty does not exist, because we have often noted that error can occur in sensation, as in
the instance of the thirst of the dropsical man, or when one who is jaundiced sees snow as
yellow; for he sees it thus with no less clearness and distinctness than we see it as white. If,
then, any certitude does exist, it remains that it must be found only in the clear perceptions of
the intellect.

But of these there are some so evident and at the same time so simple, that in their
case we never doubt about believing them true; e.g., that I, while I think, exist; that what is
once done cannot be undone, and other similar truths, about which clearly we can possess this
certainty. For we cannot doubt them unless we think of them; but we cannot think of them
without at the same time believing them to be true, the position taken up. Hence we can never
doubt them without at the same time believing them to be true, i.e., we can never doubt
them.’

(The argument Descartes gave was not original. In the fourth century Saint Augustine [354—
430] already observed that no one can doubt his own existence.)

Second, Descartes claims that we can know with complete certainty that a benevolent

God exists. He gives two arguments. The first is that one has a clear and distinct idea of God

as a perfectly benevolent, necessary being. One cannot think of God without thinking that



God exists. The argument is essentially Saint Anselm’s, although Descartes gives him no
credit for it.

That the existence of God may be rightly demonstrated from the fact that the necessity of His
existence is comprehended in the conception which we have of Him.

When mind afterwards considers the diverse conceptions which it has and when it
there discovers the idea of a Being who is omniscient, omnipotent and absolutely perfect,
which is far the most important of all; in it it recognizes not merely a possible and contingent
existence, as in all the other ideas it has of things which it clearly perceives, but one which is
absolutely necessary and eternal. And just as it perceives that it is necessarily involved in the
idea of the triangle that it should have three angles which are equal to two right angles, it is
absolutely persuaded that the triangle has three angles equal to two right angles. In the same
way from the fact that it perceives that necessary and eternal existence is comprised in the
idea which it has of an absolutely perfect Being, it has clearly to conclude that this absolutely
perfect Being exists.®

The second argument is that the cause of our idea of God must be at least as great as
our idea itself. Since our idea is of a perfect and necessarily existing being, it must be caused
by something at least as perfect and necessarily existing, i.e., by God. The second argument
seems simply to equivocate between the perfection of an idea and the idea of something
perfect. Both arguments are obscure, but Descartes is quite firm that anyone who doubts them
is defective, someone wanting in “the natural light of reason.”
| really do not see what can he added to make it clearer that that idea [of God] could not be
present in my consciousness unless a supreme being existed, except that the reader might, by
attending more diligently to what | have written, free himself of the prejudices that perchance

overwhelm his natural light, and might accustom his mind to put trust in ultimate principles



than which nothing can be more true or more evident, rather than in the obscure and false
opinions which, however, long usage has fixed in his mind.

That there is nothing in the effect, that has not existed in a similar or in some higher
form in the cause, is a first principle than which none clearer can be entertained. The common
truth, ‘from nothing, nothing comes’, is identical with it. For if we allow that there is
something in the effect which did not exist in the cause, we must grant also that this
something has been created by nothing; again the only reasons why nothing cannot be the
cause of a thing, is that in such a cause there would not be the same thing as existed in the
effect.

It is a first principle that the whole of the reality or perfection that exists only
objectively in ideas must exist in them formally or in superior manner in their causes. It is on
this alone we wholly rely, when believing that things situated outside the mind have real
existence; for what should have led us to suspect their existence except the fact that the ideas
of them were borne in on the mind by means of the senses?

But it will become clear to those who give sufficient attention to the matter and
accompany me far in my reflections, that we possess the idea of a supreme and perfect being,
and also that the objective reality of this idea exists in us neither formally nor eminently. A
truth, however, which depends solely on being grasped by another’s thought, cannot be
forced on a listless mind.

Now, for these arguments we derive it as a most evident conclusion that God exists.
But for the sake of those whose natural light is so exceeding small that they do not see this
first principle, viz. that every perfection existing objectively in an idea must exist actually in
something that causes that idea, | have demonstrated in a way more easily grasped an
identical conclusion, from the fact that the mind possessing the idea cannot be self derived;

and | cannot in consequence see what more is wanted.®



The third step in Descartes’ argument should now be predictable. Since God is
perfect, he cannot be a deceiver. Since we are inclined to believe whatever we clearly and
distinctly perceive, whether through reflection or through experience, and since God created
us, whatever we clearly and distinctly perceive must be true. For the same reason, what we
genuinely recollect clearly and distinctly perceiving must be true, and so deduction can be
relied upon. God is what guarantees the reliability of deductive inference. Of course, people
can fail to apply the method reliably and, through acts of will, can confuse themselves. But
that is not God’s fault, nor is it Descartes’.

Descartes’ philosophy had many critics, none more determined than Pierre Gassendi.
Gassendi thought the whole thing a lot of balderdash, and he said so at length, first in
objections that Descartes included in an appendix to his Meditations and then in a book.
Gassendi revived the criticism made against Anselm: you can conceive of a perfect island,
but that does not guarantee it exists. By parity of reasoning, that you can conceive of a perfect
being, even one that necessarily exists, does not imply that such a being exists. Gassendi
thought that many of Descartes’ claims about what he clearly and distinctly perceived were
simply muddled terminology, about whose meaning Descartes had no clear conception at all:
“He who says that anything is infinite attributes to a thing which he does not comprehend a
name which he does not understand.”*® Gassendi thought that Descartes’ method was useless
and in fact no method at all. We think of a method as a procedure that is more or less
mechanical and will lead all users to the same conclusion. Descartes held that he had shown
not only this but also that his method would lead users to the truth. Gassendi didn’t believe
Descartes’ proof, and he thought that those who claimed to see things clearly and distinctly
and to know things by the natural light of reason generally contradicted each other. Descartes
replied that when they contradicted each other, it only showed that some of them had not

applied the method correctly.



The content of Descartes’ books on method read a little like old-fashioned versions of
popular books on mental improvement. Books of the latter sort are more common nowadays
than they were in Descartes’ time, and they are generally held in contempt by people who do
serious work on reasoning. Why were Descartes’ writings taken so seriously in their own
day? In part because Descartes was so vociferous and skillful at arguing; in part because his
writings addressed—even if unconvincingly to a modern mind—the essential questions about
the reliability of the procedures that the Renaissance still held dear: syllogistic reasoning and
the method of analysis and synthesis; and in part because Descartes had to his credit a
number of important mathematical discoveries. He could and did claim that his method had
led him to them.

Study Questions

1. In another passage from Rules for the Direction of the Mind, Descartes writes, “The
working of conjecture is shown, for example in this: water which is at a greater distance from
the centre of the globe than earth, is likewise less dense substance, and likewise the air which
is above the water, is still rarer; hence we hazard the guess that above the air nothing exists
but a very pure aether, which is much rarer than air itself. Moreover, nothing that we
construct in this way really deceives us, if we merely judge it to be probable and never affirm
it to be true; in fact it makes us better instructed.”*! Is this passage consistent with Descartes’
remarks about “probable knowledge”?

2. How does the following remark of Descartes’ accord with the Aristotelian conception
of scientific method? “The upshot of the matter is that it is possible to say that those
propositions indeed which are immediately deduced from first principles are known now by
intuition, now by deduction, i.e., in a way that differs according to our point of view. But the
first principles themselves are given by intuition alone, while, on the contrary, the remote

conclusions are furnished only by deduction.



3. Rules are different from descriptions of facts. What are some of the differences?
4. Suppose you tried to follow Descartes’ Rules for the Direction of the Mind. Could you
know whether or not you had succeeded in following the rules? Could you know whether or
not a conviction was an intuition guaranteed by the “natural light of reason”? If so, how, and
if not, why not?
5. Suppose someone else tried to follow Descartes’ Rules. Could you know whether or
not she was doing so correctly? If so, how, and if not, again, why not?
6. How do you know when you add two numbers together and carry that you have
followed the addition algorithm correctly? How do you know when someone else does the
addition under your observation that they have followed the algorithm correctly?
7. Is Descartes’ argument that he cannot doubt his own existence a diagonal argument?
(This is for those who did the second study question from chapter 1 in the section on infinity
and cardinality.)*
THE BINOMIAL THEOREM
We have already seen that Aristotle’s and Plato’s conception of the structure of knowledge
stimulated interest in the mathematical study of how things can be combined. By deepening
the understanding of combinations, the seventeenth century took another important step
toward fathoming the fundamental questions about deductive argument. One important
contribution to this subject was Blaise Pascal’s Treatise on the Arithmetic Triangle. It
indirectly furthered the understanding of logic and deductive reasoning, it contained one of
the first important calculations in the the theory of probability, and it helped provide the
foundations of modern decision theory.

In a later chapter I will briefly consider the importance of Pascal’s thought in creating
the theory of probability and decision theory. For present purposes, the important aspect of

his work on the arithmetic triangle is that it provided a systematic connection between the



theory of combinations and ordinary algebra. Descartes had succeeded in connecting
geometry with algebra by showing that geometrical figures such as the line and circle could
be viewed as the collections of points that satisfy certain algebraic relations. Thus any three
numbers, call them A, B, and C, determine a straight line if A and B are not both zero. The
line is the set of all points (X, y) such that Ax + By + C = 0. Conversely, for every straight line
there is some such equation. Now Pascal showed that the fundamental question of
Avristotelian combinatorics, the number of ways of choosing r things from a collection of n
things, concerned numbers that also have a purely algebraic significance. Pascal’s result is
known as the binomial theorem.

Consider the expression (x + y)". For different values of n we can expand this
expression:
n=1: x+y
n=2: x2+2xy+y>?
n=3: x3+3x% + 3xy? +y*
n=4: x*+4x% + 6x%y? + 4xy> + y*
We can rewrite each expansion this way (remember that x° = 1):
n=1: xhy®-1 4 x(-Lyn
n=2: xX"y"-2 4+ 2x0 -y -1) 4 yn
n=3: XY0-3 4 3K - Dy -2 4 34(-2yM-1) 4 yn
Each term in the sum is a binomial coefficient multiplied by a product consisting of a power
of x and a power of y. The products of the powers of x and y are always either of the form
X"y =" or of the form x"~"y" where r is some number between 0 and n, inclusive. So for n =
2, for example, the first term, x, has the binomial coefficient 1 and has r = 0, while the
second term, 2xy, has the binomial coefficient 2 and has r = 1. The binomial coefficients for n

= 1to n = 4 are therefore the following:



n=1 1,1

n=2:1,2,1

n=3: 1331

n=4: 1,4,6,4,1

Binomial theorem For a positive integral n, the binomial coefficient of x" -~ "y" (or of x'y" -
N is exactly the number of ways of choosing r things from n things. In other words, the
binomial coefficient is n!/(r!'(n — r)!) Remember that 0! = 1.

Pascal’s Treatise helped to make it evident that the analysis of combinations arising
from the Aristotelian and Platonic traditions was an aspect of algebraic relations among
numbers. Descartes’ mathematical work had shown that geometry, the traditional
mathematical language of the sciences, also has an algebraic side and that important
geometrical properties could be characterized algebraically. By the middle and later parts of
the seventeenth century, algebraic relations, usually presented as geometrical statements of
ratios, had become the form in which natural science expressed the laws of nature. Kepler’s
third law was essentially such a relation. So were Boyle’s and Mariotte’s law of gases and the
inverse square law of gravitation. It was only natural to suppose that the actions of the mind,
thought, must also have laws that can be described by such relations, and that the
combinatorics of analysis and synthesis are a hint of them. Gottfried Leibniz came to that
very conclusion.

Study Questions
1. Below are the first few rows of the arithmetic triangle listing the coefficients of the
monomials in the expansion of (a + b)™:

What is the next row of the triangle?



2. The first row in the triangle gives the monomial coefficient for the expansion of (a +
b)°, which equals 1. The second row gives the two coefficients, (1, 1), for the expansion of (a
+ b), which is just a + b. The third row gives the usual quadratic coefficients, (1, 2, 1), for the
expansion of (a + b)? = a? + 2ab + b?, and so on. Let (n, r) denote the coefficient of a'b™ - in
the expansion of (a + b)". What is the formula for expressing (n, r) as a functionof (n—1, r —
1)and (n—1,r)?

3. Verify for n = 6 that (n, r) = n![rl(n — )!].

LEIBNIZ AND THE MATHEMATICS OF REASON

Pascal’s Treatise was published in 1665. The next year Leibniz, then 19 years of age,
published his first work, a Latin treatise on logic and combinatorics, De Arte Combinatoria.
He did not yet know of Pascal’s work, but he learned of it subsequently, and in later years
when he journeyed to Paris, he tried unsuccessfully to meet with Pascal, who had retreated to
religious quarters at Port Royal. Pascal had shown that the same combinatorial numbers or
binomial coefficients also arise in relations between the terms of certain infinite series, and
reflection on the properties of series eventually helped lead Leibniz to the discovery of the
differential and integral calculus.

Leibniz’s first work was really a combinatorial study of logic in the Aristotelian
tradition. It is the only work on logic that Leibniz ever published. Over the course of the rest
of his life, Leibniz wrote a long series of unpublished and uncompleted papers on logic. They
show the formation of some of the key modern ideas about deductive inference and proof,
and they also show how very difficult the issues were for one of the greatest philosophers and
mathematicians of the century. Leibniz’s logical theory is not consistent and thorough
(Leibniz had a difficult time completing anything), but it contains many ideas that were
successfully elaborated in later centuries, and it also shows clearly the limitations of the

Aristotelian framework.



Leibniz’s viewpoint can be thought of as what you get if you do the following:

o You take the Platonic and Aristotelian view of the formal structure of what is known.
o You combine it with the method of analysis and synthesis.
o You abolish the distinction between properties that a thing has accidentally and

properties that a thing has essentially and assume instead that every property something has,
it has necessarily.

Following tradition, Leibniz assumed that every proposition consists of a predicate
applied to a subject, and that in this regard the structure of language reflects the structure of
the world. In the world, substances have attributes. But Leibniz gave this a twist. Substances
don’t, in his view, have attributes in the sense that one and the same substance could have an
attribute or not have it. A substance just is a combination of attributes. You, for example, are
nothing but the combination of all of the properties that you have. So there is no property that
you in fact have that you could not have. An entity that didn’t have some property of yours
wouldn’t be you. So every property you have, you have necessarily. The same holds of any
other substance in the world. Whatever properties a substance has, it has necessarily.

In Leibniz’s view, the propositions that we assert and believe and perhaps know are
about concepts. A proposition, “Socrates is snub-nosed,” for example, asserts a relation
between the concept of the subject, Socrates, and the concept of the predicate, snub-nosed. It
doesn’t assert anything about Socrates himself. The proposition is true if and only if the
concept of Socrates, which is really a combination of primitive, unanalyzable concepts,
contains the concept of snub-nosed, which is also a combination of primitive concepts.
Suppose, for example, that the concept of Socrates contains the concept of a nose less than 2
inches long, and the concept of snub-nosed just is the concept of a nose less than 2 inches
long. Then the concept of Socrates contains the concept of snub-nosed, and so it is true that

Socrates is snub-nosed. Similarly, the proposition “All perfect people are happy” is about the



concept of perfect people and the concept of happiness, it is not about perfect people or about
happy things. Leibniz had a reason for thinking that propositions are about concepts rather
than about objects. The sentence “All perfect people are happy” may be true even though
there are no perfect person. Unlike Aristotle, Leibniz did not think that a universal sentence
such as “All perfect people are happy” entails that there exist perfect people. But if “All
perfect people are happy” is true even though there exist no perfect person, the sentence
cannot be about perfect people, for there are none. The sentence must be about something,
however, and the proposal that it is about a mental entity, the concept of perfect men, seems
to solve the problem.

In Leibniz’s theory, every concept just is a list or combination of primitive concepts.
All true propositions are true because the list of primitive concepts of the subject term is
appropriately related to the list of primitive concepts of the predicate term. Leibniz says that
every true proposition is true because it is an instance of the identity A = A. He meant that if a
proposition is true, the subject and predicate lists will be such that by eliminating irrelevant
parts of one or the other, the same combination of concepts of attributes is found in the
subject as is found in the predicate. So every true proposition can be given a proof. The proof
of a proposition consists of the following:
1. Producing the combinations of simple concepts denoted by the predicate of the
proposition and the subject of the proposition.
2. Showing that the concept of the predicate is included in the concept of the subject.
Leibniz wrote extensively about these two steps. He never succeeded in making clear just
how the analysis of concepts was to be obtained. Of course, neither had Aristotle nor the
Scholastic tradition of analysis and synthesis. Leibniz envisioned the creation of an enormous
dictionary or encyclopedia, and he attempted to get various people to actually assemble such

dictionaries.



Once a universal dictionary has been assembled that expresses each concept in terms
of the simplest concepts, Leibniz thought that the production of scientific knowledge would
become mechanical. He thought an algorithm or mechanical procedure could be found to
carry out the second part of the procedure for giving proofs. The way to formulate such a
procedure is to treat the problem as a part of algebra. Each simple term and each complex
term should be given a letter or other symbol (Leibniz sometimes suggested using numbers as
symbols for concepts), and then one would use algebraic methods to search for algebraic
identities. On other occasions he suggested representing concepts with geometrical figures,
such as lines, and trying to carry out step 2 by geometrical procedures. The essential thing is
that there is a mathematics of reason (in fact, that is the title of one of the logical papers
Leibniz completed), and this mathematics can be carried out mechanically.

You can get the flavor of what Leibniz was up to from a fragment of one of many
“Logical Calculi” he developed:

1) “A =B”is the same as “ ‘A = B’ is a true proposition.”

2 “A #B” is the same as “ ‘A = B’ is a false proposition.”

3) A = AA; i.e., the multiplication of a letter by itself is here without effect.

4) AB = BA, i.e., transposition makes no difference.

(5) “A = B” means that one can be substituted for the other, B for A or A for B, i.e., that
they are equivalent.

(6) “Not” immediately repeated destroys itself.

(7) Therefore A = not-not-A.

(8) Further, “A = B” and “A not # B” are equivalent.

9) That in which there is “A not-A” is a “non-entity” or a “false term” e.g., if C=AB
not-B, C would be a non-entity.

(10) “A#B”and “B # A” are equivalent. This follows from 5.



(11) “A=B”and “not-A = not-B” are equivalent. [Leibniz gives a proof of this claim.)
(12) If A=B, AC =BC. This is proved from 5.1?

Leibniz goes on to state seven more claims of this kind. Clearly this looks like algebra, but it
is an algebra for propositions rather than for numbers.

Leibniz was correct that the task of deciding whether all of the members of one list
are members of another list can be done machanically. He was wrong in thinking that
determinations of this kind are adequate for all (or even very much) of logic or of a theory of
proof. He had difficulty, for example, giving an account in these terms of even the
Avristotelian quantifiers. He could not give an account of reasoning that involves “or” or that
involves “if ... then __ ” (although in principle he could have expanded his framework to
account for reasoning that depends on those connectives). Most important of all, Leibniz
could not give any account of reasoning with relations.

We have already noted that Aristotle could not account for proofs in geometry
because he could not incorporate reasoning about relations between individual objects.
Leibniz had the same problem. From a logical point of view, he had no satisfactory solution.
His papers contain some attempts to reduce reasoning involving relations to reasoning that
involves no more than propositions of subject-predicate form. Leibniz seems instead to have
adopted a metaphysical solution, and that may have led him to one of the strangest
metaphysical positions in the history of philosophy.

The absence of a theory about how to reason with relations would be less bothersome
if relations could not be the subject of knowledge. Real relations, according to the conception
of the time, would have to be relations between two different substances. One way to avoid
real relations, therefore, is to suppose that there is only one substance. That was Spinoza’s
solution. According to Spinoza, there is only one substance, God, and what can be known are

his attributes. Another way to solve the problem is to suppose that there are lots and lots of



substances, but none of them stand in any relations to one another, or at least not in any
relations that are the subject of scientific knowledge. That was Leibniz’s solution.

Leibniz claimed that the world is constituted of monads. Each monad is a little
universe by itself. No monad has any causal relations with any other monad, so in the
Avristotelian tradition the relations between monads are not subjects of scientific inquiry,
since science is about causes. Some monads, such as we, have souls and so can be aware of
themselves. Although each monad is separate from all others, each monad is a mirror of
every other monad; some monads, those with souls, mirror one another more clearly and in
more detail than do other monads. | am a monad, and so are you. We have no causal relations
with one another, but Cod, who, being perfectly benign, has created the best of all possible
worlds, has so created us that our perceptions are in perfect harmony. It appears to each of us
that we live in a common world and have causal relations with one another. But appearance is
not reality.

Leibniz’s logic was never adequate, which may explain why he published so little of
it, and his metaphysics was not much comfort, although he intended it to be. He did,
however, accomplish several things.

o He formulated the notion of a decision procedure for logic: a mechanical or
algorithmic procedure that will determine whether or not an inference is valid. He even
attempted to give such a procedure for the theory of the syllogism.

o He made clear the notion of an incomplete axiomatic theory. An axiomatic theory is
incomplete provided there is some sentence in its language that can be neither proved nor
disproved from its axioms.

o He introduced the idea that pieces of language can be coded by abstract symbols,
including numbers, and that logical relations among the propositions can be studied by

considering relations among the symbols or numbers.



o He introduced and furthered the idea that logical relations among propositions have an
algebraic structure.

o He developed the thought that universal subject-predicate propositions do not
presuppose the existence of things satisfying their predicate or subject terms.
CONCLUSION

Although we look to the seventeenth century as the period when both modern science and
modern philosophy began, it was also a time still captivated by the Aristotelian conceptions
of reason and scientific knowledge. Many of the great works of seventeenth-century
philosophy, especially on the continent, still assumed that the method for acquiring
knowledge consists of analysis and synthesis and that real scientific knowledge requires some
kind of proof analogous to the proofs of geometry. Almost all of the philosophical writers of
the time assume, wrongly, that with one or another advance in these methods it will be easy
to complete all of scientific knowledge. (In one of his last works’ Descartes chides the public
for not providing him with the means to conduct a few experiments by which, he is sure, he
could complete all of human knowledge.)

Even though seventeenth-century philosophers, except for Leibniz, made no
fundamental advances in logic beyond the state in which Aristotle had left it, they did
succeed in creating the intellectual framework for radical changes that began in the
nineteenth century. Part of that framework consisted in treating logic as the theory of the
operation of the faculty of reason, a faculty that acted to synthesize and analyze ideas. The
mathematics of combinations became the formal basis for studying reasoning, which
combined both logic and psychology, and it placed that study among the other new natural
sciences. Geometry could be systematically connected with algebra, and the theory of
combinations, which was the mathematical basis for whatever method there was to analysis

and synthesis, could also be systematically connected with algebra. These connections were



brought together in Leibniz’s notion that deductive inference could be studied and understood
through the application of algebraic methods to abstract symbols representing propositions.
One hundred and fifty years later, George Boole, a professor of mathematics at the University
of Cork, turned this idea into a real theory of reasoning.

Review Questions

1. Describe the method of analysis and synthesis.

2. How many ordered quadruples can be formed from seven distinct objects? How many
unordered quadruples can be formed?

3. In your own words, state two significant ideas implicit in the philosophy of Ramon
Lull. Explain why these ideas should be considered significant.

4. Discuss the validity of Descartes’ belief that “properties which cannot be conceived
separately are necessarily coextensive; and properties which can be conceived separately are
not necessarily coextensive.”

5. Outline Descartes’ argument for the existence of God.

6. Produce the binomial coefficients for n = 5.

7. What is a monad? What role does it play in Leibniz’s philosophy?
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Chapter 4

THE LAWS OF THOUGHT

INTRODUCTION

In the middle of the nineteenth century, George Boole, a professor of mathematics at the
University of Cork in Ireland, tried to realize Leibniz’s conception of an algebra of thought.
Boole’s work was the most important advance in logic since Aristotle, and it prepared the
foundations for the emergence of modern logic some thirty years later. Boole’s thought is
interesting not only because of its advance in formal understanding, but also because it
illuminates a fundamental difficulty in thinking of logic, the theory of perfect, deductive
rationality, also as a theory of how the human mind, or some part of it, functions.

Boole’s conception of logic was similar to Leibniz’s:

. Logic consists of a set of laws, like the laws of physics or the laws of geometry.
. The laws have an algebraic form.
. The laws have to do with the correct operation of the mind.

One can well imagine that people think through visual images. Instead, Boole held that
thinking is a way of talking to oneself in an unvoiced speech. According to Boole, rational
thought is carried out in language. When we have a thought, we think a sentence. The laws of
rational thought are therefore also the laws governing the use of language in reasoning. The
rules of reasoning are at the same time both rules for the correct performance of various
mental operations and also rules for the correct use of language. Boole’s theory, like
Aristotle’s, therefore depends on an analysis of the structure of language. Boole’s own
presentation of his views about the logical structure of language was not entirely clear, and
perhaps not entirely coherent. We will study a somewhat simplified version of his theory
while remaining as faithful as we can to his ideas.

THE UNIVERSE OF DISCOURSE AND FIELDS OF SETS



According to Boole, every discussion, every conversation, is about some domain, or universe
of discourse. The domain may be real or imaginary, the subject may be real mountains or
fairy-tale mountains, but for the purposes of any specific human conversation, objects not in
the domain are ignored.

In every discourse, whether of the mind conversing with its own thoughts, or of the
individual in his intercourse with others, there is an assumed or expressed limit within which
the subjects of its operation are confined. The most unfettered discourse is that in which the
words we use are understood in the widest possible application, and for them the limits of
discourse are co-extensive with those of the universe itself. But more usually we confine
ourselves to a less spacious field. Sometimes, in discoursing of men we imply (without
expressing the limitation) that it is of men only under certain circumstances and conditions
that we speak, as of civilized men, or of men in the vigour of life, or of men under some
condition or relation. Now, whatever may be the extent of the field within which all the
objects of our discourse are found, that field may properly be termed the universe of
discourse.!

Consider a particular domain of discourse. Suppose the topic is cats. The domain of
discourse is the collection or set of all cats. For every conceivable property of cats, there is
then a subset of the domain of discourse consisting of all of the cats that have that property.
The property of being a Manx cat, for example, determines the subset of the domain of
discourse that consists of Manx cats. The property of being a tailless cat determines the
subset that consists of tailless cats. The property of being a black cat determines the subset
that consists of black cats. | can make the idea clear with the same kinds of diagrams that I
used in our study of the theory of the syllogism (Boole himself did not use such diagrams, but

they were used by another nineteenth-century logician, John Venn).



If we conceive of two properties of cats, black and Manx for example, we can
conceive of those properties holding of one and the same kind of thing, namely cats. We can
conceive, for example, of cats that are black and Manx. That conception also corresponds to a
subset of the domain of discourse: the set of all cats that are black and Manx, or to say the
same thing, the intersection of the set of black cats and, the set of Manx cats. | will always
write the intersection of two sets M and B (for the set of Manx cats and the set of Black cats,
respectively) as M n B (figure 4.1).

We can also conceive of cats that are black or Manx. The corresponding set of all cats
that are either black or Manx (or both) we call the union of the set of black cats and the set of
Manx cats. | will always write the union of any two sets M and B as M U B.

If we can conceive of any property, we can conceive of its absence (what would Saint
Anselm say about that claim?). Since a property such as being black corresponds to a subset
of the domain of discourse, namely the set of all things in the domain that have the property
black, the absence of black will correspond to the set of all things in the domain that are not
black. If U is the domain of discourse, cats in this case, and B is the subset of black things in
U, the subset of nonblack things in U will be written as B’. B’ is said to be the complement of
B in U, or the complement of B relative to U. When the context makes the universe of
discourse clear, | will simply say that B and B’ are complements of one another.

Boole assumed that we can conceive of any number of compoundings of properties,
and there are corresponding set operations that determine compound descriptions of sets. We
can, for example, conceive of all of the cats that are not either black or Manx but are tailless.
That corresponds to the subset of the domain of cats given by (B w M)’ n T, where B is the
set of all black cats, M the set of all Manx cats, and T the set of all cats with tails.

Suppose that a piece of discourse or reasoning has to do with some definite universe

of discourse U and some finite list of properties that things in that domain may or may not



have. Suppose that the subsets of U corresponding to these properties are denoted by P,

P2, ..., Pn. The sets U and Py, P2, ..., Pn implicitly determine the collection of all subsets of U
that can be obtained by forming the intersections, unions, and complements of U, Py, P>, ...,
Pn forming the intersections, unions, and complements of those sets, forming the
intersections, unions, and complements of those sets, and so on. If we consider the collection
of all subsets of U that can be formed in this way, that collection is called a field of sets over
U. A more formal formulation is the following:

Definition A field of sets over a nonempty set U is any collection of subsets of U that
contains U, contains the complement relative to U of any set it contains, contains the
intersection of any two sets it contains, and contains the union of any two sets it contains.

It is easy to visualize simple finite fields of sets. Suppose, for example, that we are
talking about cats, but (for whatever reason) we are only concerned with one property of cats,
namely whether or not they have tails. Then the universe of cats divides into two kinds, those
with tails and those without tails, and there are exactly four sets in the corresponding field of
sets, namely the set of all cats (because U is always in a field of sets over U), the empty set
(because the complement of U relative to U is the empty set), the set of cats with tails, and
the set of cats without tails (figure 4.2).

It can be shown that there are no other distinct sets in this field of sets. For example, if
we take the union of the set of all cats with tails and U, we get U again, which is a set we
already have. If we take the intersection of U with the set of all cats with tails, we get the set
of all cats with tails again, which is a set we already have. In the same way, any other
intersection, union, or complement of these four sets generates one or another of the same
four sets.

We can represent a field of sets, as in figure 4.2 on the right, by a graph with U at the

top and the empty set & at the bottom. A line in the graph connecting two sets means that the



lower set is included in the upper set.2 A set and its complement are never connected in such
a graph, because neither set is contained in the other.

It is easy to construct other fields of sets. Simply let U be any nonempty finite set and
list all of the subsets of U. The resulting collection, called the power set of U, is always a
field of sets. If U has a single member, we get the simplest possible field of sets, consisting
only of U and &J:
The fields of sets obtained when U has three members and when U has four members are
shown below:
Study Questions
1. Explain why the power set of any nonempty set U is a field of sets over U. Write your
explanation as a proof of that fact.
2. In the figures above, which elements of the field of sets are complements of other
elements of the field?
3. Give an example of a domain of discourse and two distinct properties such that all
members of the domain that have one property also have the other and vice versa.
4. Explain why there cannot exist a field of sets consisting of exactly three sets.
LANGUAGE AND THE WORLD
One of Boole’s central ideas was that we can regard the world, aspects of the world, or even
imaginary worlds as structured like a field of sets. Although he did not explicitly introduce
the notion of a field of sets as | have defined it, he held that for any discourse, there is a
domain of objects with properties and combinations of properties. Together, the set of objects
in the domain and the sets of objects with any particular property or combination of

properties make up a field of sets. This proposal is really a metaphysical idea, just as



Aristotle’s notion of objects with essential properties was a metaphysical idea. Like Aristotle,
Boole proposed that language is structured to reflect metaphysics.

As a mathematical idealization of real language, Boole considered a language
structured in the way in which the language of algebra is structured. Boole’s mathematical
language contains variables, just as ordinary algebra does. In ordinary algebra the variables
range over some system of numbers; we say that the variables take numbers as values. The
variables in Boole’s language instead range over the sets that are in some field of sets. The
context of the discourse or conversation determines the relevant field. Boole’s variables take
sets in this field as values. So, to continue the example above, the domain might consist of the
set of all cats, and possible values of Boole’s variables might include the set of all cats with
tails, and the complement of that set would be the set of of all cats without tails.

In ordinary algebra we can write expressions that contain operation symbols and
variables; we can write x +y, for example, and the result is a well-formed expression in the
language of algebra. We understand that the plus sign signifies the operation of addition on
numbers. Boole’s system also allows expressions to be formed by combining his variables
with symbols for operations. He allows us to write x - y, X +y, and (1 — x). In Boole’s
formulas, the symbol “-” signifies set intersection, the symbol + signifies set union, and
expression (1 — x) signifies the relative complement of x in U. Just as we can build up
arbitrarily complex expressions in ordinary algebra by combining operations and variables as
often as we wish (with parentheses to make our meaning clear), so we can build complex
expressions in the algebra of logic.

In ordinary algebra we can give explicit rules for how to evaluate expressions,
although we don’t usually state them explicitly, because they are so obvious. For example,
for any algebraic formulas x and y (where X, y stand not just for variables but for well-formed

expressions of any complexity), the value of x +y is the sum of the value of x and the value



of y, and the value of x - y is the product of the value of x and the value of y. Similarly, in
Boole’s theory we can evaluate expressions in the algebra of logic by using explicit rules. For
any formulas x, y, the value of x - y is the intersection of the value of x and the value of y, the
value of x + y is the union of the value of x and the value of y, and the value of (1 — x) is the
relative complement of the value of x in U, the universe of discourse.

In ordinary algebra we use the identity or equals sign, =, to say that the value of one
formula is the same as the value of another. Boole does the same thing, except that his values,
as before, are not numbers but sets in a field of sets. In ordinary algebra we have names for
some special numbers. In Boole’s mathematical model of language we always have a name
for the universe of discourse and a name for the empty set. Boole uses the numeral 1 to
denote the universe of discourse and the numeral 0 to denote the empty set, &.

In ordinary algebra particular sentences about particular numbers can be obtained by
replacing the variables in a formula with the names of numbers. For example, the true
sentence 1 + 2 =2 + 1 can be obtained by substituting 1 for x and 2 for y in the formula x +y
=y + X. Similarly, in Boole’s system many ordinary sentences can be obtained by substituting
terms for particular properties in place of variables and interpreting - as and, + as or, and (1 —
X) as not x. For example, the sentence “Black and tailless cats are tailless and black cats” can
be obtained by substituting “black” for X, and “tailed” fory inx - (1 —y) = (1 —y) - x, where
the set of cats comprises the domain of discourse.

With some rearranging, many ordinary sentences can be represented by general
expressions in Boole’s logic. Variables are substituted for names of particular properties, and
operation symbols are substituted for English (or Chinese or Martian) connectives. Consider
the sentence “Manx cats are tailless.” That is the same as saying, “No cats are Manx cats and

cats with tails.” If we understand that the set of cats is the domain of discourse, and take “no



cats” to designate the empty set, this sentence can be regarded as an instance of the formula 0
=X - Y, obtained by substituting “Manx cats” for X and “cats with tails” fory.

THE LAWS OF BOOLEAN ALGEBRA

In ordinary algebra we are interested in finding equalities among formulas that are true for all
possible values of the variables in the formulas. For example, in the algebra of real numbers
we know that

X -y =Yy - x (commutative law of multiplication),

X +y =y + x (commutative law of addition),

X (y+2z)=(x-y)+(x-2z) (distributive law),

—(—X) =X.

What distinguishes these equations from many other equations one might write down (e.g., X
— 1 =0) is that these equations are true no matter what numbers the variables take as values.
Equations with this property are important because they represent fundamental laws of the
algebra of real numbers.

Similarly, Boole was interested in finding the laws of the algebra of thought. He
posed the question, What equations in Boole's algebra will be true for all values of their
variables and in every field of sets for every (nonempty) domain of discourse? This is really
the fundamental question about Boole’s logic. The following equations are true in every field
of sets and for all values given to the variables. They form some of the laws of Boole’s
system:
x+ty=y+x (1)
x-y=y-x  (2)

X-@+)=(CY+K-2) @)
x+t(y-2)=(x+y)-x+2) (4)

X+0=x (5)



X-1=x (6)

X-(l-x)=0andx+(1-x)=1 @)

Xxt(y+z)=(x+y)+z (8)

x-(y-2)=(x-y)-z (9

0=1 (10)

In modern mathematics any system of objects and operations in which all ten of these
equations hold for all values of the variables is called a Boolean algebra. Every field of sets
is a Boolean algebra.

It is easy enough to verify that these laws must hold in any field of sets. In most cases,
verifying that these laws are true amounts to nothing more than saying what the operations
involved mean. For example, the first of these equations says that for any set X (a value of the
variable x) and any set Y (a value of the variable y), the union of X and Y is the union of Y and
X. But the union of set X and set Y is the set whose members are in X or in Y, which is the
same as the set whose members are in Y or in X. Again, the sixth equation says that for any
set X in any field of sets over a set U, the intersection of X and U is X itself. Since by
definition a set X is in a field of sets over U only if X is a subset of U, every member of X
must be a member of U. The intersection of X and U, which is the set of all things that are
members of X and also members of U, is therefore exactly the set of all members of X.

Study Questions

1. Show that x - x = x is a law in Boole’s algebra. You may derive it from equations (1)
through (10) above or from the definition of a field of sets.

2. Show that x + x = x is a law in Boole’s algebra.

3. What characteristic distinguishes a law in Boole’s system from an equation that is not
a law? Give an example of an equation that is not a law.

TRUTH, PROPOSITIONS, AND BOOLEAN ALGEBRA



One of Boole’s principal aims was to show that language has the same structure as do
algebraic formulas; he aimed to provide a metaphysical but clear account of the structures of
those formulas; he aimed to find the formulas that constitute the laws of such structures; and
he aimed to show that reasoning in natural language could be evaluated in the same way that
we evaluate reasoning in ordinary algebra. If the last of these aims could be achieved, we
would be able to use the laws of Boole’s algebra to determine whether or not a particular
sentence can be validly derived from other sentences, just as we can use our knowledge of the
laws of ordinary algebra to determine whether or not one formula of ordinary algebra can be
validly derived from a collection of other formulas.

To achieve his aims, Boole gave a second interpretation of his algebra. To understand
this second interpretation, note that not every sentence that occurs in reasoning looks like an
instance of one of Boole’s equations. This is because of a point that should be familiar by
now: not all declarative sentences are compounded out of sentences of subject-predicate
form. Boole’s first analysis of language works well enough for such sentences as “Tailless
black cats are Manx cats” (which becomes an instance of X - y = z), but it doesn’t seem to
apply at all to such a sentence as “Children love their parents, and parents love their
children.” The problem in this case is that “loves” is not a property hut a relationship, and
that in the context of the sentence, the term “parent” involves a relation between a child and
the people that are the child’s parents. In previous chapters we learned, you will recall, that
an important defect of traditional logic was its inability to represent reasoning with relations.

Boole had no theory about how to analyze sentences that involve relations, and except
in simple cases (such as “no cats”), he had no theory of quantifiers either. But he nonetheless
had a clever idea for analyzing some of the logical properties of such sentences within his

algebra. The idea is this: Consider the sentence “Children love their parents.” That sentence is



true if and only if the sentence ““Children love their parents’ is true” is true. Trivial though
this observation may sound, Boole made excellent use of it.

Consider again the simplest possible field of sets consisting of a non-empty set U and
the empty set. Recall that Boole denotes U with 1 and the empty set with 0. Instead of
thinking of 1 as a name for U and 0 as a name for the empty set, however, think of the
numeral 1 as a name for the number 1, and think of the numeral 0 as a name for the number
0. Now the ordinary numbers 1, 0 will satisfy the laws of Boole’s algebra if we give + and - a
new interpretation. We let Boole’s symbol - denote the function of ordinary multiplication,
but restricted to the numbers 0 and 1. In Boole’s algebra, 1 - 1=1,and1-0=0,and0-0 =
0, just as in ordinary algebra. We let Boole’s expression (1 — X) denote the very same
function it denotes in ordinary algebra, but with x restricted to the numbersOand 1. So 1 -1
=0,and 1 -0 =1. And we let x + y denote the ordinary sum of x and y restricted to 1 and O,
with one modification. The modification is that 1 + 1 is defined to be equal to 1 (not 2, as in
ordinary arithmetic). So1+0=1,and0+0=0,and I +1=1.2

In modern mathematics the described system consisting of the ordinary numbers 0
and 1 related by the functions just defined is called the two-element Boolean algebra. Its
structure is exactly like that of the field of sets consisting only of U and the empty set &. We
say the two structures are isomorphic, by means that if we adopt the following
correspondence, each structure is transformed into the other.

In sciences besides logic, it is perfectly routine to code properties of things by
numbers. Different numerical scales are used in different sciences for different purposes.
Similarly, Boole proposed to use 0 and 1 as a simple numerical scale in logic. In Boole’s
scale the numerical values register properties of sentences. Sentences are things that are true

or false. We can think of truth and falsity as possible properties that sentences can have, and



so we can think of the number 1 as the value a sentence has on a numerical scale when the
sentence is true, and we can think of the number 0 as the value a sentence has on a numerical
scale when the sentence is false. Just as we use a kilogram scale to assign particular numbers
to objects according to a property, their weight, Boole proposes a scale that assigns numbers
to sentences according to whether they are true or false.

Let us return now to Boole’s algebraic language. Previously the variables x and y
ranged over subsets of the domain of discourse, and a sentence could be obtained from an
algebraic formula by replacing variables with terms for properties. Now the variables receive
a different interpretation, and accordingly, sentences are obtained from algebraic formulas in
a different way. The variables range over the two-element Boolean algebra. Each variable can
have 1 or 0 as its value, but no other values are allowed. Ordinary sentences receive an
algebraic structure in the following way. Consider the sentence
Children love their parents and parents love their children.

Replace the original sentence by the sentence that says that the original sentence is true:
“Children love their parents and parents love their children” is true.

Since 1 1s the value on Boole’s numerical scale for the property a sentence has when it is true,
replace the phrase “is true” by “=1".

“Children love their parents and parents love their children” = 1

Replace “and” with -, “or” with +, and “not” with (1 — ---):

“Children love their parents - parents love their children” = 1

Finally, replace each distinct simple sentence (that is, each sentence not compounded out of
others with “and,” “or,” and “not”) with a distinct variable. This gives us the following:
X-y=1

The result is the Boolean algebraic form corresponding to the original sentence.



In this way any declarative sentence can be represented in Boole’s algebra. The
generality is obtained at a cost, however. There is no longer any analysis of the structure of
sentences except insofar as the structure involves sentential connectives, that is, words such
as “and,” “or,” and “not,” which can be used to build compound sentences from simpler
sentences.

USE OF BOOLEAN LOGIC

Boole meant for his logical algebra to be used in settings that are quite different from the
contexts in which we use ordinary algebra. He meant his algebra to apply to all deductive
reasoning. To show the applicability of his algebra, he attempted to use it to reconstruct
several famous philosophical arguments and to determine whether or not they are valid.
Boole considered arguments from Plato, Samuel Clarke (a contemporary of Isaac Newton),
and Spinoza. However, only Boole’s analysis of the argument from Plato really works.

To understand Boole’s account of that argument, we need to make one more concept
precise. One of Boole’s equations entails another equation if every assignment of the values 0
or 1 to the variables of the first equation that makes it true also makes the second equation
true. Similarly, a set of Boolean equations, the premises, entails another Boolean equation,
the conclusion, if every assignment of values 0 or 1 to the variables that makes all equations
in the premise set true simultaneously also makes the conclusion true. A mathematical fact,
which we will not prove, is that if an inference from premises to a conclusion is valid when
the variables take their values in any finite field of sets, it is also valid when the variables
take their values in the 2-element Boolean algebra {0, 1}. Thus, to verify that an inference is
valid (in any or all fields of sets) it is sufficient to check for validity in the 2-element algebra.

In The Republic, Plato gives the following argument (Socrates asks the questions and

states the conclusions; others in the dialogue give answers to Socrates’ questions):



Must not that which departs from its proper form be changed, either by itself or by another
thing?

Necessarily so.

Are not things which are in the best state least changed and disturbed, as the body by
meats and drinks and labours, and every species of plant by heats and winds, and such like
affections? Is not the healthiest and strongest the least changed?

Assuredly.

And does not any trouble from without least disturb and change that soul which is
strongest and wisest? And as to all made vessels, and furnitures, and garments, according to
the same principle, are not those which are well wrought, and in a good condition, least
changed by time and other accidents?

Even so.

And whatever is in a right state, either by nature or by art, or by both these, admits of
the smallest change from any other thing.

So it seems.

But God and things divine are in every sense in the best state.

Assuredly.

In this way, then, God should least of all bear many forms?

Least, indeed, of all.

Again, should He transform and change Himself?

Manifestly, He must do so, if He is changed at all.

Changes He then Himself to that which is more good and fair, or to that which is
worse and baser?

Necessarily to the worse, if he be changed. For never shall we say that God is indigent

of beauty or of virtue.



You speak most rightly, said I, and the matter being so, seems it to you, O Adimantus,
that God or man willingly makes himself in any sense worse?

Impossible.

Impossible, then, it is, that a god should wish to change himself; but ever being fairest
and best, each of them ever remains absolutely in the same form.*

Boole took Plato’s argument to be the following:
Premise 1: If the Deity suffers change, then the Deity is changed either by the Deity or by
another.
Premise 2: If the Deity is in the best state, then the Deity is not changed by another.
Premise 3: The Deity is in the best state.
Premise 4: If the Deity is changed by the Deity, then the Deity is changed to a worse state.
Premise 5: If the Deity acts willingly, then the Deity is not changed to a worse state.
Premise 6: The Deity acts willingly.
Conclusion: The Deity does not suffer change.
Using his algebra, Boole aimed to show that the conclusion is a necessary consequence of the
premises, that is, if the premises are true, then the conclusion is true. To show that, he
demonstrated that the algebraic form of the premises is such that whenever they are true, the
conclusion is true. First he assigned variables to the simple sentences of which the premises
are composed:
X: The Deity suffers change.
y: The Deity is changed by the Deity.
z: The Deity is changed by another.
s: The Deity is in the best state.
t: The Deity is changed to a worse state.

w: The Deity acts willingly.



Boole represented sentences of the form “If A then B” as “not (A and not B),” or in other
words, by equations of the form “A - (1 -B) =0.”
Boole’s formulas for the six premises and conclusion of Plato’s argument are as

follows:

x-(1-y)-(1-2=0

Now it is easy to show algebraically that the conclusion must follow from the

premises. (Recall laws (4.1) to (4.10) of Boole’s algebra.)

Sincew=1andw - t=0, t must equal 0.

Sinces=1ands-z=0,zmustequal 0.
Sincet=0,0=y-(1-t)=y-(1-0)=y.Soy=0
Sincey=0andz=0,0=x-(1-y)-(I-z)=x-(1-0) - (1-0)=x. Hence, x =0.

In the twentieth century Boole’s algebra has found applications that he could not have
imagined. His theory is used every day by electrical engineers who design microchips. Every
computer you have ever used was designed using principles of Boole’s algebra. Electrical
current (on or off) can be used to code the Boolean values of propositions, 1 and 0. The
presence of a current stands for the value 1, and the absence of a current stands for the value
0. In Boole’s formulas, if you put in values 0 or 1, you get a value of 0 or 1 for the entire
formula. Bits of circuitry behave exactly as do Boolean formulas. For example, suppose an

electrical device, a little bit of a microchip, has two input leads and one output lead, as in



figure 4.3. If the device behaves so that the current arrives at z when and only when the
device receives current from x and y at the same time, then the device is a physical realization
of the Boolean formula z = x - y. Systems of such devices function together to do binary
arithmetic in a pocket calculator or a computer. The central processing unit of such devices
can thus be described a system of Boolean formulas, and knowledge of the properties of such
formulas is important in designing the devices and in diagnosing their flaws.

SOME LIMITATIONS OF BOOLE’S LOGICAL THEORY

In the first chapter of this book | argued that a theory of deduction should answer at least
three questions:

. How can we determine whether or not a piece of reasoning from premises to a
conclusion is a valid deductive argument?

. How can we determine whether or not a conclusion is necessitated by a set of
premises? If a conclusion is necessitated by a set of premises, how can we find a valid
deductive argument that demonstrates that necessary connection?

. What features of the structure of the world, the structure of language, and the relation
between words and thoughts and things make deductive reasoning possible?

Boole did not give us a theory that says whether a piece of reasoning is or is not a genuine
proof. Instead, he relied on our understanding of an algebraic proof. He had no real answer to
the first question, but his theory does tell us when a proof is possible and how to find one if it
exists. He in effect offers an answer to the second question. There are algorithms that will
determine, for any finite set of Boolean formulas (the premises) and any other Boolean
formula (the conclusion), whether or not the premise set entails the conclusion. So once we
have represented a set of premises and a conclusion as Boolean equations, there is a

completely mechanical process to determine entailment. If the results of such a procedure say



that the premises do entail the conclusion, then the application of the algorithm itself will
constitute a proof of that fact.

Boole also gave an answer to the third question, but the answer does not seem
satisfactory. Boole’s problem was that he had represented logic as a kind of physics of the
mind. Logic, he assumed, describes the laws by which the mind moves, just as physics
describes the laws by which bodies move. But we know that everyone makes errors in
reasoning. So Boole’s theory cannot possibly describe how we reason, because in fact we
don’t always reason that way. Instead, Boole’s theory seems to prescribe how we ought to
reason. Theories that prescribe standards are normative. The laws of physics are not
normative: they don’t say how bodies ought to move; they say how bodies do move in
various circumstances.

Here is what Boole himself says on this and related issues:

The truth that the ultimate laws of thought are mathematical in their form, viewed in
connexion with the fact of the possibility of error, establishes a ground for some remarkable
conclusions. If we directed our attention to the scientific truth alone, we might be led to infer
an almost exact parallelism between the intellectual operations and the movements of
external nature. Suppose any one conversant with physical science, but unaccustomed to
reflect upon the nature of his own faculties, to have been informed, that it had been proved,
that the laws of those faculties were mathematical; it is probable that after the first feelings of
incredulity had subsided, the impression would arise, that the order of thought must,
therefore, be as necessary as that of the material universe. We know that in the realm of
natural science, the absolute connexion between the initial and final elements of a problem,
exhibited in the mathematical form, fitly symbolizes that physical necessity which binds

together effect and cause. The necessary sequence of states and conditions in the inorganic



world, and the necessary connexion of premises and conclusion in the processes of exact
demonstration thereto applied, seem to be coordinate. ...

Were, then, the laws of valid reasoning uniformly obeyed, a very close parallelism
would exist between the operations of the intellect and those of external Nature. Subjection to
laws mathematical in their form and expression, even the subjection of an absolute
obedience, would stamp upon the two series one common character. The reign of necessity
over the intellectual and the physical world would be alike complete and universal.

But while the observation of external Nature testifies with ever-strengthening
evidence to the fact, that uniformity of operation and unvarying obedience to appointed laws
prevail throughout her entire domain, the slightest attention to the processes of the intellectual
world reveals to us another state of things. The mathematical laws of reasoning are, properly
speaking, the laws of right reasoning only, and their actual transgression is a perpetually
recurring phenomenon. Error, which has no place in the material system, occupies a large one
here. We must accept this as one of those ultimate facts, the origin of which it lies beyond the
province of science to determine. We must admit that there exist laws which even the rigour
of their mathematical forms does not preserve from violation. We must ascribe to them an
authority the essence of which does not consist in power, a supremacy which the analogy of
the inviolable order of the natural world in no way assists us to comprehend.®
In this passage Boole has reluctantly and halfheartedly come to the conclusion that the
conception of logic as a kind of physics of thought, a conception inherited from the
seventeenth century, is in error. Logic is a normative theory and a metaphysical theory. It is
metaphysical in telling us which propositions are necessary consequences of others. It is
normative in telling us that if we believe certain things (the premises), then we ought to
believe other things (the necessary consequences of things we believe). But it doesn’t

describe how our minds work.



There is another kind of difficulty with Boole’s theory. The first aim of a logical
theory is to distinguish the arguments that are valid deductions from the arguments that are
not valid deductions. Can Boole’s theory really do that? Clearly, his theory includes many
arguments that we would regard as valid, but it does not include all of them.

As we have seen, Boole really had two theories. The first theory supposes that a
sentence is of subject-predicate form or is compounded out of simple sentences of subject-
predicate form with “and,” “or,” and “not.” With this theory Boole can account for the
validity of many syllogistic inferences. For example, we can represent the premises and the
conclusion of the syllogistic form Camestres as Boolean equations, and the result is a valid
argument in Boole’s system:

No Aare B A-B=0

AllCareB C-(1-B)=0

No Aare C A-C=0
It is easy to see that the Boolean argument is valid: Use the fact that an inference is valid in
any finite algebra if it is valid in the 2-element Boolean algebra. Since it is assumed as a
premise that A - B =0, (i) either A= 0 or B =0 or both. Since it is assumed that C - (1 - B) =
0, (i) either C =0 or B = 1 or both. Necessarily, either B=1or B =0. If B = 1, then by (i), A
=0,50A-C=0.1fB=0,then by (ii), C=0,s0A - C=0. Hence, in either case A - C =0.

Boole’s second theory does not assume that sentences have a subject-predicate form,

but it only accounts for logical properties that depend on sentential connectives, such as
“and,” “or,” and “not.” Neither of Boole’s theories can account for logical inferences that
depend on quantifiers and relations. For example, Boole’s theories do not explain why the
following simple inference is valid:
Someone loves everyone.

Therefore, everyone is loved by someone.



Boole’s theories are not sufficient to reconstruct the arguments in Euclid’s Elements or in any
other mathematically sophisticated work. Nonetheless, in several respects Boole’s work
provided a real improvement on all preceding logical theories. Boole showed that logic really
could be studied by modern mathematical methods, and he helped to distinguish logic from
psychology. But he was not yet very close to an adequate theory of deductive reasoning. That

achievement was begun thirty-five years later by Gottlob Frege.

Study Questions
1. Using an inequality, how could you represent “Not all A are B” in Boole’s theory?
2. Consider the Aristotelian form Darapti and its Boolean representation:

All B are A B-(1-A)=0

AllBareC B-1-C)=0

SomeAareC A-C=#0
Darapti does not correspond to a valid Boolean argument: if B is the empty set (or 0 in a 2-
element Boolean algebra), the premises will be true no matter what values A and C may have,
and in particular, A - C may be 0 or &. For each of the Aristotelian syllogistic forms in the
third figure, determine whether or not the corresponding arguments are valid in Boolean
logic.
3. For each of the valid Aristotelian forms in the first and second figures, construct a
parallel argument using Boolean equations (or inequalities), and show that the Boolean
argument is valid.

Review Questions

1. In what ways might Boole’s logical theory be considered a continuation of Leibniz’s
ideas?
2. Explain the differences between Boole’s two theories. Is it a good objection to

Boole’s work that he does not provide a single, unified theory?



3. What is a simple sentence in Boole’s logic? What is a compound sentence?

4. How did Boole think that the truth or falsity of simple sentences determines the truth
or falsity of compound sentences?