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Abstract	

	

Searching	for	information	is	critical	in	many	situations.	In	medicine,	for	instance,	careful	

choice	of	a	diagnostic	test	can	help	narrow	down	the	range	of	plausible	diseases	that	the	

patient	might	have.	In	a	probabilistic	framework,	test	selection	is	often	modeled	by	assuming	

that	people’s	goal	is	to	reduce	uncertainty	about	possible	states	of	the	world.	In	cognitive	

science,	psychology,	and	medical	decision	making,	Shannon	entropy	is	the	most	prominent	

and	most	widely	used	model	to	formalize	probabilistic	uncertainty	and	the	reduction	thereof.	

However,	a	variety	of	alternative	entropy	metrics	(Hartley,	Quadratic,	Tsallis,	Rényi,	and	

more)	are	popular	in	the	social	and	the	natural	sciences,	computer	science,	and	philosophy	of	

science.	Particular	entropy	measures	have	been	predominant	in	particular	research	areas,	and	

it	is	often	an	open	issue	whether	these	divergences	emerge	from	different	theoretical	and	

practical	goals	or	are	merely	due	to	historical	accident.	Cutting	across	disciplinary	boundaries,	

we	show	that	several	entropy	and	entropy	reduction	measures	arise	as	special	cases	in	a	

unified	formalism,	the	Sharma-Mittal	framework.	Using	mathematical	results,	computer	

simulations,	and	analyses	of	published	behavioral	data,	we	discuss	four	key	questions:	How	

do	various	entropy	models	relate	to	each	other?	What	insights	can	be	obtained	by	considering	

diverse	entropy	models	within	a	unified	framework?	What	is	the	psychological	plausibility	of	

different	entropy	models?	What	new	questions	and	insights	for	research	on	human	

information	acquisition	follow?	Our	work	provides	several	new	pathways	for	theoretical	and	

empirical	research,	reconciling	apparently	conflicting	approaches	and	empirical	findings	

within	a	comprehensive	and	unified	information-theoretic	formalism.	
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Generalized	Information	Theory	Meets	Human	Cognition:	

Introducing	a	Unified	Framework	to	Model	Uncertainty	and	Information	Search	

	

1.	Introduction	

A	key	topic	in	the	study	of	rationality,	cognition,	and	behavior	is	the	effective	search	for	

relevant	information	or	evidence.	Information	search	is	also	closely	connected	to	the	notion	of	

uncertainty.	Typically,	an	agent	will	seek	to	acquire	information	to	reduce	uncertainty	about	

an	inference	or	decision	problem.	Physicians	prescribe	medical	tests	in	order	to	handle	arrays	

of	possible	diagnoses.	Detectives	seek	witnesses	in	order	to	identify	the	culprit	of	a	crime.	

And,	of	course,	scientists	gather	data	in	order	to	discriminate	among	different	hypotheses.	

In	psychology	and	cognitive	science,	most	early	work	on	information	acquisition	adopted	a	

logical,	deductive	inference	perspective.	In	the	spirit	of	Popper’s	(1959)	influential	

falsificationist	philosophy	of	science,	the	idea	was	that	learners	should	seek	information	that	

could	help	them	falsify	hypotheses	(e.g.,	expressed	as	a	conditional	or	a	rule;	Wason,	1960,	

1966,	1968).	However,	many	human	reasoners	did	not	seem	to	believe	that	information	is	

useful	if	and	only	if	it	can	potentially	rule	out	(falsify)	a	hypothesis.	From	the	1980s,	cognitive	

scientists	started	analyzing	human	information	search	with	a	closer	look	at	inductive	

inference,	using	probabilistic	models	to	quantify	the	value	of	information	and	endorsing	them	

as	normative	benchmarks	(e.g.,	Baron,	1985;	Klayman	&	Ha,	1987;	Skov	&	Sherman,	1986;	

Slowiaczek,	Klayman,	Sherman,	&	Skov,	1992;	Trope	&	Bassok,	1982,	1983).	This	research	

was	inspired	by	seminal	work	in	philosophy	of	science	(e.g.	Good,	1950),	statistics	(e.g.	

Lindley,	1956),	and	decision	theory	(Savage,	1972).	In	this	view,	each	outcome	of	a	query	

could	modify	an	agent’s	beliefs	about	the	hypotheses	being	considered,	thus	providing	some	

amount	of	information.	For	instance,	the	key	theoretical	point	of	Oaksford	and	Chater’s	(1994,	

2003)	analysis	of	Wason’s	selection	task	was	to	conceptualize	information	acquisition	as	a	

piece	of	probabilistic	inductive	reasoning,	assuming	that	people’s	goal	is	to	reduce	

uncertainty	about	whether	a	rule	holds	or	not.	In	a	similar	vein,	researchers	in	vision	science	

have	used	measures	of	uncertainty	reduction	to	predict	visual	queries	for	gathering	
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information	(i.e.,	eye	movements;	Legge,	Klitz,	&	Tjan,	1997;	Najemnik	&	Geisler,	2005,	2009;	

Nelson	&	Cottrell,	2007;	Renninger,	Coughlan,	Verghese,	&	Malik,	2005),	or	to	guide	a	robot’s	

eye	movements	(Denzler	&	Brown,	2002).	Probabilistic	models	of	uncertainty	reduction	have	

also	been	used	to	predict	human	query	selection	in	causal	reasoning	(Bramley,	Lagnado,	&	

Speekenbrink,	2015),	hypothesis	testing	(Austerweil	&	Griffiths,	2011;	Navarro	&	Perfors,	

2011;	Nelson,	Divjak,	Gudmundsdottir,	Martignon,	&	Meder,	2014;	Nelson,	Tenenbaum,	&	

Movellan,	2001),	and	categorization	(Meder	&	Nelson,	2012;	Nelson,	McKenzie,	Cottrell,	&	

Sejnowski,	2010).	

If	reducing	uncertainty	is	a	major	cognitive	goal	and	motivation	for	information	

acquisition,	a	critical	issue	is	how	uncertainty	and	the	reduction	thereof	can	be	represented	in	

a	rigorous	manner.	A	fruitful	approach	to	formalize	uncertainty	is	using	the	mathematical	

notion	of	entropy,	which	in	turn	generates	a	corresponding	model	of	the	informational	utility	

of	an	experiment	as	the	expected	reduction	of	entropy	(uncertainty),	sometimes	called	

expected	information	gain.		

In	many	disciplines,	including	psychology	and	neuroscience	(Hasson,	2016),	the	most	

prominent	model	is	Shannon	(1948)	entropy.	However,	a	number	of	non-equivalent	measures	

of	entropy	have	been	suggested,	and	are	being	used,	in	a	variety	of	research	domains.	

Examples	include	the	application	of	Quadratic	entropy	in	ecology	(Lande,	1996),	the	family	of	

Rényi	(1961)	entropies	in	computer	science	and	image	processing	(Boztas,	2014;	Sahoo	&	

Arora,	2004),	and	Tsallis	entropies	in	physics	(Tsallis,	2011).	It	is	currently	unknown	whether	

these	other	entropy	models	would	have	potential	to	address	key	theoretical	and	empirical	

questions	in	cognitive	science.	Here,	we	bring	together	these	different	models	in	a	

comprehensive	theoretical	framework,	the	Sharma-Mittal	formalism	(from	Sharma	&	Mittal,	

1975),	which	incorporates	a	large	number	of	prominent	entropy	measures	as	special	cases.	

Careful	consideration	of	the	formal	properties	of	this	family	of	entropy	measures	will	reveal	

important	implications	for	modeling	uncertainty	and	information	search	behavior.	Against	

this	rich	theoretical	background,	we	will	draw	on	existing	behavioral	data	and	novel	

simulations	to	explore	how	different	models	relate	to	each	other,	elucidate	their	psychological	

meaning	and	plausibility,	and	show	how	they	can	generate	new	testable	predictions.		
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The	remainder	of	this	paper	is	organized	as	follows.	We	begin	by	spelling	out	what	an	

entropy	measure	is	and	how	it	can	be	employed	to	represent	uncertainty	and	the	

informational	value	of	queries	(questions,	tests,	experiments)	(section	2.).	Subsequently,	we	

review	four	representative	and	influential	definitions	of	entropy,	namely	Quadratic,	Hartley,	

Shannon,	and	Error	entropy	(3.).	These	models	have	been,	and	continue	to	be,	of	importance	

in	different	areas	of	research.	In	the	main	theoretical	section	of	the	paper,	we	describe	a	

unified	formal	framework	generating	a	biparametric	continuum	of	entropy	measures.	

Drawing	on	work	in	generalized	information	theory,	we	show	that	many	extant	models	of	

entropy	and	expected	entropy	reduction	can	be	embedded	in	this	comprehensive	formalism	

(4.).	We	provide	a	number	of	new	mathematical	results	in	this	section.	We	also	address	the	

theoretical	meaning	of	the	parameters	involved	when	the	target	domain	of	application	is	

human	reasoning,	with	implications	for	both	normative	and	descriptive	approaches.	We	then	

further	elaborate	on	the	connection	with	experimental	research	in	several	ways.	First,	we	

present	simulation	results	from	an	extensive	exploration	of	information	search	decision	

problems	in	which	alternative	models	provide	strongly	diverging,	empirically	testable	

predictions	(5.).	Second,	we	report	and	discuss	an	overarching	analysis	of	the	information-

theoretic	account	of	the	most	widely	known	experimental	paradigm	for	the	study	of	

information	gathering,	i.e.,	Wason’s	(1966,	1968)	abstract	selection	task	(6.1.).	Then	we	

investigate	which	models	perform	better	against	data	from	a	range	of	experience-based	

studies	on	human	information	search	behavior	(Meder	&	Nelson,	2012;	Nelson	et	al.,	2010)	

(6.2.).	We	also	point	out	that	some	entropy	models	from	this	framework	offer	potential	

explanation	of	human	information	search	behavior	in	experiments	where	probabilities	are	

conveyed	through	words	and	numbers,	which	to	date	have	been	perplexing	to	account	for	

theoretically	(6.3).	Finally,	we	show	that	new	models	offer	a	theoretically	satisfying	and	

descriptively	adequate	unification	of	disparate	results	across	different	kinds	of	tasks	(6.4.).	In	

the	General	Discussion	(7.),	we	outline	and	assess	the	prospects	of	a	generalized	information-

theoretic	framework	for	guiding	the	study	of	human	inference	and	decision	making.		

Part	of	our	discussion	relies	and	elaborates	on	mathematical	analyses,	including	novel	

results.	Moreover,	although	a	number	of	the	mathematical	points	in	the	paper	can	be	found	

scattered	through	the	mathematics	and	physics	literature,	here	we	bring	them	together	
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systematically.	We	provide	Supplementary	Materials	where	non-trivial	derivations	are	given	

according	to	our	unified	notation.	Throughout	each	section	of	the	text,	statements	requiring	a	

mathematical	proof	are	flagged	by	square	brackets	[Suppl	Mat],	and	the	proof	is	then	

presented	in	the	corresponding	subsection	of	the	Supplementary	Materials	file.	Among	the	

formal	results	provided	that	are	novel	to	the	best	of	our	knowledge,	the	following	we	find	

especially	important:	the	ordinal	equivalence	of	Sharma-Mittal	entropy	measures	of	the	same	

order	(proof	in	Suppl	Mat,	section	4),	the	additivity	of	all	Sharma-Mittal	measures	of	expected	

entropy	reduction	for	sequential	tests	(again	Suppl	Mat,	4),	and	the	distinctive	role	of	the	

degree	parameter	in	information	search	tasks	such	as	the	Person	Game	(Suppl	Mat	,5).	

Further	novel	results	include	the	subsumption	of	diverse	models	such	as	the	Arimoto	(1971)	

and	the	Power	entropies	within	the	Sharma-Mittal	framework	(Suppl	Mat,	3),	and	the	

specification	of	how	a	number	of	different	entropy	measures	can	be	construed	within	the	

general	theory	of	means	(Table	4).	

	

2.	Entropies,	uncertainty,	and	information	search	

According	to	a	well-known	anecdote,	the	origins	of	information	theory	were	marked	by	a	

witty	joke	of	John	von	Neumann.	Claude	Shannon	was	doubtful	how	to	call	the	key	concept	of	

his	groundbreaking	work	on	the	“mathematical	theory	of	communication”	(Shannon,	1948).		

“You	should	call	it	entropy,”	von	Neumann	suggested.	Of	course,	von	Neumann	must	have	

been	aware	of	the	close	connections	between	Shannon’s	formula	and	Boltzmann’s	definition	

of	entropy	in	classical	statistical	mechanics.	But	the	most	important	reason	for	his	suggestion,	

von	Neumann	quipped,	was	that	“nobody	knows	what	entropy	really	is,	so	in	a	debate	you	will	

always	have	the	advantage”	(see	Tribus	&	McIrvine,	1971).	Shannon	accepted	the	advice.	

Several	decades	later,	von	Neumann’s	remark	seems	even	more	pointed,	if	anything.	

Influential	observers	have	voiced	caution	and	concern	about	the	proliferation	of	mathematical	

analyses	of	entropy	and	related	notions	(Aczél,	1984,	1987).	Meanwhile,	many	applications	

have	been	developed,	for	instance	in	physics	and	ecology	(see,	e.g.,	Beck,	2009;	Keylock,	

2005).	But	recurrent	theoretical	controversies	have	arisen,	too,	along	with	occasional	

complaints	of	conceptual	confusion	(see	Cho,	2002,	and	Jost,	2006,	respectively).	
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Luckily,	these	thorny	issues	will	be	tangential	to	our	main	concerns.	Although	a	given	

formalization	of	entropy	can	be	considered	for	the	representation	and	measurement	of	

different	constructs	in	each	of	a	variety	of	domains,	we	focus	on	one	target	concept	for	which	

entropies	can	be	employed,	namely	the	uncertainty	concerning	a	variable	X	given	a	probability	

distribution	P.	In	this	regard,	the	key	question	is	the	following:	How	much	uncertainty	is	

conveyed	about	variable	X	by	a	given	probability	distribution	P?	This	notion	is	central	to	the	

normative	and	descriptive	study	of	human	cognition.	

Suppose,	for	instance,	that	an	infection	can	be	caused	by	three	different	types	of	virus,	and	

label	x1,	x2,	x3	the	corresponding	possibilities.	Consider	two	different	probability	assignments,	

such	as,	say:		

P(x1)	=	0.49,	P(x2)	=	0.49,	P(x3)	=	0.02		

and		

P*(x1)	=	0.70,	P*(x2)	=	0.15,	P*(x3)	=	0.15	

Is	the	uncertainty	about	X	=	{x1,	x2,	x3}	greater	under	P	or	under	P*?	An	entropy	measure	

enables	us	to	give	precise	quantitative	values	in	both	case,	and	hence	a	clear	answer.	

Importantly,	however,	the	answer	will	often	be	measure-dependent,	for	different	entropy	

measures	convey	different	ideas	of	uncertainty	and	exhibit	distinct	mathematical	properties	

of	theoretical	interest.	We	will	see	this	in	detail	later	on.	

Once	uncertainty	as	our	conceptual	target	has	been	outlined,	we	can	turn	to	entropy	as	a	

mathematical	object.	Consider	a	finite	set	X	of	n	mutually	exclusive	and	jointly	exhaustive	

possibilities	x1,	…,	xn	on	which	a	probability	distribution	P(X)	is	defined,	so	that	P(X)	=	{P(x1),	

…,	P(xn)},	with	P(xi)	≥	0	for	any	i	(1	≤	i	≤	n)	and	∑ "($%&'∈) ) = 1.	The	n	elements	in	X	=	{x1,	…,	

xn}	can	be	taken	as	representing	different	kinds	of	entities,	such	as	events,	categories,	or	

propositions.	For	our	purposes,	ent	is	an	entropy	measure	if	it	is	a	function	f	of	the	relevant	

probability	values	only,	i.e.:		

-./0(1) = 2[P(x1),	…,	P(xn)]		

and	function	f	satisfies	a	small	number	of	basic	properties	(see	below).	Notice	that,	in	general,	

an	entropy	function	can	be	readily	extended	to	the	case	of	a	conditional	probability	
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distribution	given	some	datum	y.	In	fact,	under	the	conditional	probability	distribution	P(X|y),	

one	has	-./0(1|4) = 2["($6|4),… , "($9|4)].	

Shannon	entropy	has	been	so	prominent	in	cognitive	science	that	some	readers	will	ask:	

why	we	do	not	just	stick	with	it?	More	specific	objections	in	this	vein	include	that	Shannon	

entropy	is	uniquely	axiomatically	motivated,	that	Shannon	entropy	is	already	central	to	

psychological	theory	of	the	value	of	information,	or	that	Shannon	entropy	is	optimal	in	certain	

applied	situations.	Each	objection	can	be	addressed	separately.	First,	a	number	of	entropy	

metrics	in	our	generalized	framework	(not	only	Shannon)	have	been	or	can	be	uniquely	

derived	from	specific	sets	of	axioms	(see	Csiszár,	2008).	Second,	although	Shannon	entropy	

has	a	number	intuitively	desirable	properties,	it	is	not	a	serious	competitive	descriptive	

psychological	model	of	the	value	of	information	in	some	tasks	(e.g.,	Nelson	et	al.,	2010).	Third,	

several	published	papers	in	applied	domains	report	superior	performance	when	other	

entropy	measures	are	used	(e.g.,	Ramírez-Reyes	et	al.,	2016).	Indeed,	Shannon’s	(1948)	own	

view	was	that	although	axiomatic	characterization	can	lend	plausibility	to	measures	of	

entropy	and	information,	“the	real	justification”	(p.	393)	rests	on	the	measures’	operational	

relevance.	A	generalized	mathematical	framework	can	increase	our	theoretical	understanding	

of	the	relationships	among	different	measures,	unify	diverse	psychological	findings,	and	

generate	novel	questions	for	future	research.	

Scholars	have	used	different	properties	as	defining	an	entropy	measure	(see,	e.g.,	Csizsár,	

2008).	Besides	some	usual	technical	requirement	(like	non-negativity),	a	key	idea	is	that	

entropy	should	be	appropriately	sensitive	to	how	even	or	uneven	a	distribution	is,	at	least	

with	respect	to	the	extreme	cases	of	an	uniform	probability	function,	U(X)	=	{1/n,	…,	1/n},	or	

of	a	deterministic	function	V(X)	where	V(xi)	=	1	for	some	i	(1	≤	i	≤	n)	and	0	for	all	other	xs.	(In	

the	latter	case,	the	distribution	actually	reflects	a	truth-value	assignment,	in	logical	parlance.)	

In	our	setting,	U(X)	represents	the	highest	possible	degree	of	uncertainty	about	X,	while	under	

V(X)	the	true	value	of	X	is	known	for	sure,	and	no	uncertainty	is	left.	Hence	it	must	hold	that,	

for	any	X	and	P(X),	-./;(1) ≥ -./0(1) ≥ -./=(1),	with	at	least	one	inequality	strict.	This	

basic	and	minimal	condition	we	label	evenness	sensitivity.	It	is	conveyed	by	Shannon	entropy	

as	well	as	many	others,	as	we	shall	see,	and	it	guarantees,	for	instance,	that	entropy	is	strictly	

higher	for,	say,	a	distribution	like	{1/3,	1/3,	1/3}	than	for	{1,0,0}.		
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Once	the	idea	of	an	entropy	measure	is	characterized,	one	can	study	different	measures	of	

expected	entropy	reduction.	This	amounts	to	considering	two	variables	X	and	Y,	and	defining	

the	expected	reduction	of	the	initial	entropy	of	X	across	the	elements	of	Y.	To	illustrate,	in	the	

viral	infection	example	mentioned	above,	X	may	concern	the	type	of	virus	actually	involved,	

while	Y	could	be	some	clinically	observable	marker	(like	the	result	of	a	blood	test)	which	is	

informationally	relevant	for	X.	Mathematically,	given	a	joint	probability	distribution	P(X,Y)	

over	the	combination	of	two	variables	X	and	Y	(i.e.,	their	Cartesian	product	X´Y),	the	actual	

change	in	entropy	about	X	determined	by	an	element	y	in	Y	can	be	represented	as	

∆-./0(1, 4) = -./0(1) − -./0(1|4).	Accordingly,	the	expected	reduction	of	the	initial	entropy	

of	X	across	the	elements	of	Y	can	be	computed	in	a	standard	way,	as	follows:1	

@0(1, A) = B ∆-./0C1, 4DE	"(4D
GH∈I

)	

The	notation	@0(1, A)	is	adapted	from	work	on	the	foundations	of	Bayesian	statistics,	where	

the	expected	reduction	in	entropy	is	seen	as	measuring	the	dependence	of	variable	X	on	

variable	Y,	or	of	the	relevance	of	Y	for	X	(see,	e.g.,	Dawid	&	Musio,	2014).		

Very	much	as	for	entropy	itself,	the	expected	reduction	of	entropy	remains	as	general	and	

neutral	a	notion	as	possible.	R	measures,	too,	can	be	given	different	interpretations	in	

different	domains.	In	many	contexts,	it	is	plausibly	assumed	that	reduction	of	the	uncertainty	

is	a	major	dimension	of	the	purely	informational	(or	epistemic)	value	of	the	search	for	more	

data.	We	will	thus	consider	a	measure	R	as	providing	a	formal	approach	to	questions	of	the	

following	kind:	Given	X	as	a	target	of	investigation,	what	is	the	expected	usefulness	of	finding	

out	about	Y	from	a	purely	informational	point	of	view?	Hence,	the	notion	of	uncertainty	is	

tightly	coupled	to	the	rational	assessment	of	the	expected	informational	utility	of	pursuing	a	

given	search	for	additional	evidence	(performing	a	query,	executing	a	test,	running	an	

experiment).	(See	Crupi	&	Tentori,	2014;	Nelson,	2005,	2008.	For	more	discussion,	also	see	

Evans	&	Over,	1996;	Roche	&	Shogenji,	2016.)	

																																																								
1	For	technical	reasons,	we	will	assume	P(yj)	>	0	for	any	j.	This	is	largely	a	safe	proviso	for	our	current	purposes.	

In	fact,	in	our	setting	with	both	X	and	Y	finite	sets,	any	zero	probability	outcome	in	Y	could	just	be	omitted.	
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Formally,	X	and	Y	can	just	be	seen	as	partitions	of	possibilities.	In	this	interpretation,	

however,	they	play	quite	different	roles	in	@0(1, A).	The	first	argument,	X,	represents	the	

overall	goal	of	the	inquiry,	while	the	second,	Y,	is	supposed	to	be	directly	accessible	to	the	

information	seeker.	In	a	typical	application,	Y	will	be	more	or	less	useful	a	test	to	learn	about	

target	X,	although	unable	to	conclusively	establish	what	the	true	hypothesis	in	X	is.	

	

Table	1.	Notation	employed.	

Notation	 Description	

H	=	{h1,	…,	hn}	 A	partition	of	n	possibilities	(or	hypothesis	space).	

P(H)	 Probability	distribution	P	defined	over	the	elements	of	H.	

P(H|e)	 Probability	distribution	P	defined	over	the	elements	of	H	conditional	on	e.	

U(H)	 Uniform	probability	distribution	over	the	elements	of	H.	

V(H)	 A	probability	distribution	such	that	V(hi)	=	1	for	some	i	(1	≤	i	≤	n)	and	0	for	all	other	hs.	

H´E		 The	variable	obtained	by	the	combination	(Cartesian	product)	of	variables	H	and	E.	

P(H,E)	 Joint	probability	distribution	over	the	combination	of	variables	H	and	E.	

J ⊥0 L	 Given	P(H,E),	variables	H	and	E	are	statistically	independent.	

J ⊥0 L	|	M	 Given	P(H,E,F),	variables	H	and	E	are	statistically	independent	conditional	on	each	element	in	F.	

-./0(J)	 Entropy	of	H	given	P(H).	

-./0(J|-)	 Conditional	entropy	of	H	on	e	given	P(H|e).	

∆-./0(J, -)	 Reduction	of	the	initial	entropy	of	H	provided	by	e,	i.e.,	-./0(J) − -./0(J|-).	

@0(J,L)	 Expected	reduction	of	the	entropy	of	H	across	the	elements	of	E,	given	P(H,E).	

@0(J,L|2)	 Expected	reduction	of	the	entropy	of	H	across	the	elements	of	E,	given	P(H,E|f).	

@0(J,L|M)	 Expected	value	of	@0(J,L|2)	across	the	elements	of	F,	given	P(H,E,F).	

lnt(x)	 The	Tsallis	generalization	of	the	natural	logarithm	(with	parameter	t).	

et(x)	 The	Tsallis	generalization	of	the	ordinary	exponential	(with	parameter	t).	
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In	general,	the	occurrence	of	one	particular	element	y	of	Y	does	not	need	to	reduce	the	

initial	entropy	about	X;	it	might	as	much	increase	it,	hence	making	∆-./0(1, 4)	negative.	This	

quantity	can	be	negative	if	(for	instance)	datum	y	changes	probabilities	from	P(X)	=	{0.9,	0.1}	

to	P(X|y)	=	{0.6,	0.4}.	But	can	@0(1, A),	i.e.,	the	expected	informational	usefulness	of	Y	for	

learning	about	X,	be	negative?	Some	R	measures	are	strictly	non-negative,	but	others	can	in	

fact	be	negative	in	the	expectation;	this	depends	on	key	properties	of	the	underlying	entropy	

measure,	as	we	discuss	later	on.				

To	summarize,	in	the	domain	of	human	cognition,	probability	distributions	can	be	

employed	to	represent	an	agent’s	degrees	of	belief	(be	they	based	on	objective	statistical	

information	or	subjective	confidence),	with	entropy	-./0(1)	providing	a	formalization	of	the	

uncertainty	about	X	(given	P).	Relying	on	the	reduction	of	uncertainty	as	an	informational	

utility,	@0(1, A)	is	then	interpreted	as	a	measure	of	the	expected	usefulness	of	a	query	(test,	

experiment)	Y	relative	to	a	target	hypothesis	space	X.	From	now	on,	to	emphasize	this	

interpretation,	we	will	often	use	H	=	{h1,	…,	hn}	to	denote	a	hypothesis	set	of	interest	and	E	=	

{e1,	…,	em}	for	a	possible	search	for	evidence.	Table	1	summarizes	our	terminology	in	this	

respect	as	well	as	for	the	subsequent	sections.	

	

3.	Four	Influential	Entropy	Models	

We	will	now	briefly	review	four	important	models	of	entropy	and	the	corresponding	models	

of	expected	entropy	reduction.	

3.1.	Quadratic	entropy		

Entropy	/	Uncertainty.	Some	interesting	entropy	measures	were	originally	proposed	long	

before	the	exchange	between	Shannon	and	von	Neumann,	when	entropy	was	not	yet	a	

scientific	term	outside	statistical	thermodynamics.	Here	is	one	major	instance:	

-./0
NOPQ(J) = 1 − ∑ "(ℎ%)ST'∈U 		

Labeled	Quadratic	entropy	in	Vajda	and	Zvárová	(2007),	this	measure	is	widely	known	as	the	

Gini	(or	Gini-Simpson)	index,	after	Gini	(1912)	and	Simpson	(1949)	(also	see	Gibbs	&	Martin,	
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1962).	It	is	often	employed	as	an	index	of	biological	diversity	(see,	e.g.,	Patil	&	Taille,	1982)	

and	sometimes	spelled	out	in	the	following	equivalent	formulation:	

-./0
NOPQ(J) = ∑ "(ℎ%T'∈U )(1 − "(ℎ%))		

The	above	formula	suggests	a	meaningful	interpretation	with	H	amounting	to	a	partition	of	

hypotheses	considered	by	an	uncertain	agent.	In	this	reading,	-./NOPQ 	computes	the	average	

(expected)	surprise	that	the	agent	would	experience	in	finding	out	what	the	true	element	of	H	

is,	given	1	–	P(h)	as	a	measure	of	the	surprise	that	arises	in	case	h	obtains	(see	Crupi	&	

Tentori,	2014).2		

Entropy	reduction	/	Informational	value	of	queries.	Quadratic	entropy	reduction,	namely,	

∆-./0
NOPQ(J, -) = -./0

NOPQ(J) − -./0
NOPQ(J|-),	has	been	occasionally	mentioned	in	

philosophical	analyses	of	scientific	inference	(Niiniluoto	&	Tuomela,	1973,	p.	67).	In	turn,	its	

associated	expected	reduction	measure,	@0
NOPQ(J, L) = ∑ ∆-./0

NOPQCJ, -DE	"(-DVH∈W ),		was	

applied	by	Horwich	(1982,	pp.	127-129),	again	in	formal	philosophy	of	science,	and	studied	in	

computer	science	by	Raileanu	and	Stoffel	(2004).	

	

3.2.	Hartley	entropy	

Entropy	/	Uncertainty.	Gini’s	work	did	not	play	any	apparent	role	in	the	development	of	

Shannon’s	(1948)	theory.	A	seminal	paper	by	Hartley	(1928),	however,	was	a	starting	point	

for	Shannon’s	analysis.	One	lasting	insight	of	Hartley	was	the	introduction	of	logarithmic	

functions,	which	have	become	ubiquitous	in	information	theory	ever	since.	As	Hartley	also	

realized,	the	choice	of	a	base	for	the	logarithm	is	a	matter	of	conventionally	setting	a	unit	of	

measurement	(Hartley,	1928,	pp.	539-541).	Throughout	our	discussion,	we	will	employ	the	

natural	logarithm,	denoted	as	ln.	

																																																								
2	-./NOPQ 	also	quantifies	the	overall	expected	inaccuracy	of	probability	distribution	P(H)	as	measured	

by	the	so-called	Brier	score	(i.e.,	the	squared	Euclidean	distance	from	the	possible	truth-value	

assignments	over	H;	see	Brier,	1950;	Leitgeb	&	Pettigrew,	2010a,b;	Pettigrew,	2013;	Selten,	1998).	

Festa	(1993,	137	ff.)	also	gives	a	useful	discussion	of	Quadratic	entropy	in	the	philosophy	of	science,	

including	Carnap’s	(1952)	classical	work	in	inductive	logic.	
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Inspired	by	Hartley’s	(1928)	original	idea	that	the	information	provided	by	the	observation	

of	one	among	n	possible	values	of	a	variable	is	increasingly	informative	the	larger	n	is,	and	

that	it	immediately	reflects	the	entropy	of	that	variable,	one	can	define	the	Hartley	entropy	as	

follows	(Aczél,	Forte,	and	Ng,	1974):	

-./0
UPXYZVG(J) = [.\∑ "(ℎ%)]T'∈U ^		

Under	the	convention	00	=	0	(which	is	standard	in	the	entropy	literature),	and	given	that	

P(hi)0	=	1	whenever	P(hi)	>	0,	-./UPXYZVG 	computes	the	logarithm	of	the	number	of	all	non-null	

probability	elements	in	H.		

Entropy	reduction	/	Informational	value	of	queries.	When	applied	to	the	domain	of	reasoning	

and	cognition,	the	implications	of	Hartley	entropy	reveal	an	interesting	Popperian	flavor.	A	

piece	of	evidence	e	is	useful,	it	turns	out,	only	to	the	extent	that	it	excludes	(“falsifies”)	at	least	

some	of	the	hypotheses	in	H,	for	otherwise	the	reduction	in	Hartley	entropy,	

∆-./0
UPXYZVG(J, -) = -./0

UPXYZVG(J) − -./0
UPXYZVG(J|-),	is	just	zero.	An	agent	adopting	such	a	

measure	of	informational	utility	would	then	only	value	a	test	outcome,	e,	insofar	as	it	

conclusively	rules	out	at	least	one	hypothesis	in	H.	If	no	possible	outcome	in	E	is	potentially	a	

“falsifier”	for	some	hypothesis	in	H,	then	the	expected	reduction	of	Hartley	entropy,	@UPXYZVG ,	

is	also	zero,	implying	that	query	E	has	no	expected	usefulness	at	all	with	respect	to	H.	

	

3.3.	Shannon	entropy	

Entropy	/	Uncertainty.	In	many	contexts,	the	notion	of	entropy	is	simply	and	immediately	

equated	to	Shannon’s	formalism.	Overall,	such	special	consideration	is	well-deserved	and	

motivated	by	countless	applications	spread	over	virtually	all	branches	of	science.	The	form	of	

Shannon	entropy	is	fairly	well-known:	

-./0_TP99`9(J) = ∑ "(ℎ%)[. a
6

0(T')
bT'∈U 		

Concerning	the	interpretation	of	the	formula,	many	points	made	earlier	for	quadratic	entropy	

apply	to	Shannon	entropy	too,	given	relevant	adjustments.	In	fact,	ln(1/P(h))	is	another	
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measure	of	the	surprise	in	finding	out	that	a	state	of	affairs	h	obtains,	and	thus	-./_TP99`9	is	

its	overall	expected	value	relative	to	H.3		

	

	

Figure	1.	A	graphical	illustration	of	Quadratic,	Hartley,	Shannon,	and	Error	entropy	as	distinct	measures	of	

uncertainty	over	a	binary	hypothesis	set	H	=	{h,ℎ}	as	a	function	of	the	probability	of	h.	

	

Entropy	reduction	/	Informational	value	of	queries.	The	reduction	of	Shannon	entropy,	

∆-./0_TP99`9(J, -) = -./0_TP99`9(J) − -./0_TP99`9(J|-),	is	sometimes	called	information	gain	

and	it	is	often	considered	as	a	measure	of	the	informational	utility	of	a	datum	e.	Its	expected	

value,	also	called	expected	information	gain,	@0_TP99`9(J, L) = ∑ ∆-./0_TP99`9CJ, -DEVH∈W "(-D),	

is	then	viewed	as	a	measure	of	usefulness	of	query	E	for	learning	about	H.	(See,	e.g.,	

																																																								
3	The	quantity	ln(1/P(h))	also	characterizes	a	popular	approach	to	the	measurement	of	the	inaccuracy	

of	probability	distribution	P(H)	when	h	is	the	true	element	in	H	(so-called	logarithmic	score),	

and	-./_TP99`9 	can	be	seen	as	computing	the	expected	inaccuracy	of	P(H)	accordingly	(see	Good,	

1952;	also	see	Gneiting	&	Raftery,	2007).	
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Austerweil	&	Griffiths,	2011;	Bar-Hillel	&	Carnap,	1953;	Lindley,	1956;	Oaksford	&	Chater,	

1994,	2003,	and	Ruggeri	&	Lombrozo,	2015;	also	see	Benish,	1999,	and	Nelson,	2005,	2008,	

for	more	discussion.)	

	

3.4.	Error	entropy	

Entropy	/	Uncertainty.	Given	a	distribution	P(H)	and	the	goal	of	predicting	the	true	element	of	

H,	a	rational	agent	would	plausibly	select	h*	such	that	P(h*)	=	maxT'∈U["(ℎ%)],	and	1	–	

maxT'∈U["(ℎ%)]	would	then	be	the	probability	of	error.	Since	Fano’s	(1961)	seminal	work,	this	

quantity	has	received	considerable	attention	in	information	theory.	Also	known	as	Bayes’s	

error,	we	will	call	this	quantity	Error	entropy:		

-./0WXX`X(J) = 1 − maxT'∈U["(ℎ%)]	

Note	that	-./WXX`X	is	only	concerned	with	the	largest	value	in	the	distribution	P(H),	namely	

maxT'∈U["(ℎ%)].	The	lower	that	value,	the	higher	the	chance	of	error	were	a	guess	to	be	made,	

thus	the	higher	the	uncertainty	about	H.			

Entropy	reduction	/	Informational	value	of	queries.	Unlike	the	other	models	above,	Error	

entropy	has	seldom	been	considered	in	the	natural	or	social	sciences.	However,	it	can	be	

taken	as	a	sound	basis	for	the	analysis	of	rational	behavior.	In	the	latter	domain,	it	is	quite	

natural	to	rely	on	the	reduction	of	the	expected	probability	of	error	∆-./0WXX`X(J, -) =

-./0WXX`X(J) − -./0WXX`X(J|-)	as	the	utility	of	a	datum	(often	labelled	probability	gain;	see	

Baron,	1985;	Nelson,	2005,	2008)	and	on	its	expected	value,	@0WXX`X(J, L) =

∑ ∆-./0WXX`XCJ, -DEVH∈W "(-D),	as	the	usefulness	of	a	query	or	test.	Indeed,	there	are	important	

occurrences	of	this	model	in	the	study	of	human	cognition.4	

																																																								
4	An	early	example	is	Baron’s	(1985,	ch,	4)	presentation	of	@WXX`X ,	following	Savage	(1972,	ch.	6).	Experimental	

investigations	on	whether	@WXX`X 	can	account	for	actual	patterns	of	reasoning	include	Baron,	Beattie,	and	

Hershey	(1988),	Bramley,	Lagnado,	and	Speekenbrink	(2015),	Meder	and	Nelson	(2012),	Nelson,	McKenzie,	

Cottrell,	and	Sejnowski	(2010),	and	Rusconi,	Marelli,	D’Addario,	Russo,	and	Cherubini	(2014),	while	Crupi,	

Tentori,	and	Lombardi	(2009)	relied	on	@WXX`X 	in	their	critical	analysis	of	so-called	pseudodiagnosticity	(also	see	

Crupi	&	Girotto,	2014;	Tweeney,	Doherty,	&	Kleiter,	2010).	
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4.	A	Unified	Framework	for	Uncertainty	and	Information	Search	

The	set	of	models	introduced	above	represents	a	diverse	sample	in	historical,	theoretical,	and	

mathematical	terms	(see	Figure	1	for	a	graphical	illustration).	Is	the	prominence	of	particular	

models	due	to	fundamental	distinctive	properties,	or	largely	due	to	historical	accident?	What	

are	the	relationships	among	these	models?	In	this	section	we	show	how	all	of	these	models	

can	be	embedded	in	a	unified	mathematical	formalism,	providing	new	insight.		

	

4.1.	Sharma-Mittal	entropies	

Let	us	take	Shannon	entropy	again	as	a	convenient	starting	point.	As	noted	above,	Shannon	

entropy	is	an	average,	more	precisely	a	self-weighted	average,	displaying	the	following	

structure:	

∑ "(ℎ%)	f.2["(ℎ%)]T'∈U 		

The	label	self-weighted	indicates	that	each	probability	P(h)	serves	as	a	weight	for	the	value	of	

function	inf	having	that	same	probability	as	its	argument,	namely,	inf[P(h)].	The	function	inf	

can	be	seen	as	capturing	a	notion	of	atomic	information	(or	surprise),	assigning	a	value	to	each	

distinct	element	of	H	on	the	basis	of	its	own	probability	(and	nothing	else).	An	obvious	

requirement	here	is	that	inf	should	be	a	decreasing	function,	because	a	finding	that	was	

antecedently	highly	probable	(improbable)	provides	little	(much)	new	information	(an	idea	

that	Floridi,	2013,	calls	“inverse	relationship	principle”	after	Barwise,	1997,	p.	491).	In	

Shannon	entropy,	one	has	inf(x)	=	ln(1/x).	Given	inf(x)	=	1	–	x,	instead,	Quadratic	entropy	

arises	from	the	very	same	scheme	above.		

A	self-weighted	average	is	a	special	case	of	a	generalized	(self-weighted)	mean,	which	can	

be	characterized	as	follows:	

gh6i∑ "(ℎ%)g{f.2["(ℎ%)]}T'∈U l		

where	g	is	a	differentiable	and	strictly	increasing	function	(see	Wang	&	Jiang,	2005;	also	see	

Muliere	&	Parmigiani,	1993,	for	the	fascinating	history	of	these	ideas).	For	different	choices	of	

g,	different	kinds	of	(self-weighted)	means	are	instantiated.	With	g(x)	=	x,	the	weighted	

average	above	obtains	once	again.	For	another	standard	instance,	g(x)	=	1/x	gives	rise	to	the	
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harmonic	mean.	Let	us	now	consider	the	form	of	generalized	(self-weighted)	means	above	

and	focus	on	the	following	setting:	

g(x)	=	lnr[et(x)]	

inf(x)	=	lnt(1/x)	

where	

[.Y($) =
&(mno)h6
6hY 			

-Y& = [1 + (1 − /)$]
m
mno		

are	generalized	versions	of	the	natural	logarithm	and	exponential	functions,	respectively,	

often	associated	with	Tsallis’s	(1988)	work.	Importantly,	the	lnt	function	recovers	the	

ordinary	natural	logarithm	ln	in	the	limit	for	t	®	1,	so	that	one	can	safely	equate	lnt(x)	=	ln(x)	

for	t	=	1	and	have	a	nice	and	smooth	generalized	logarithmic	function.5	Similarly,	it	is	assumed	

that	-Y& 	=	ex	for	t	=	1,	as	this	is	the	limit	for	t	®	1	[Suppl	Mat,	section	1].	Negative	values	of	

parameters	r	and	t	will	not	need	concern	us	here:	we’ll	be	assuming	r,t	≥	0	throughout.	

Once	fed	into	the	generalized	means	equation,	these	specifications	of	inf(x)	and	g(x)	yield	a	

two-parameter	family	of	entropy	measures	of	order	r	and	degree	t	[Suppl	Mat,	2]:		

-./0
_q(r,o)(J) = 6

Yh6 s1 − C∑ "(ℎ%)XT'∈U E
onm
rnmt			

The	label	SM	refers	to	Sharma	and	Mittal	(1975),	where	this	formalism	was	originally	

proposed	(also	see	Masi,	2005,	and	Hoffmann,	2008).	All	functions	in	the	Sharma-Mittal	family	

are	evenness	sensitive	(see	2.	above),	thus	in	line	with	a	basic	characterization	of	entropies	

[Suppl	Mat,	2].	Also,	with	-./_q(r,o)	one	can	embed	the	whole	set	of	four	classic	measures	in	

our	initial	list.	More	precisely	[Suppl	Mat,	3]:	

																																																								
5	The	idea	of	lnt	is	often	credited	to	Tsallis	for	his	work	in	generalized	thermodynamics	(see	Tsallis,	1988,	and	

2011).	The	mathematical	point	may	well	go	back	to	Euler,	however	(see	Hoffmann,	2008,	p.	7).	For	more	theory,	

also	see	Havrda	and	Charvát	(1967),	Daróczy	(1970),	Naudts	(2002),	Kaniadakis,	Lissia,	and	Scarfone	(2004).	
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– Quadratic	entropy	can	be	derived	from	the	Sharma-Mittal	family	for	r	=	t	=	2,	that	is,	

-./0
_q(u,u)(J) = -./0

NOPQ(J);	

– Hartley	entropy	can	be	derived	from	the	Sharma-Mittal	family	for	r	=	0	and	t	=	1,	that	is,	

-./0
_q(v,m)(J) = -./0

UPXYZVG(J);	

– Shannon	entropy	can	be	derived	from	the	Sharma-Mittal	family	for	r	=	t	=	1,	that	is,	

-./0
_q(m,m)(J) = -./0_TP99`9(J);	

– Error	entropy	is	recovered	from	the	Sharma-Mittal	family	in	the	limit	for	r	®	∞	when	t	=	

2,	so	that	we	have	-./0
_q(w,u)(J) = -./0WXX`X(J).	

	
Figure	2.	The	Sharma-Mittal	family	of	entropy	measures	is	represented	in	a	Cartesian	quadrant	with	values	of	the	

order	parameter	r	and	of	the	degree	parameter	t	lying	on	the	x–	and	y–axis,	respectively.	Each	point	in	the	

quadrant	corresponds	to	a	specific	entropy	measure,	each	line	corresponds	to	a	distinct	one-parameter	

generalized	entropy	function.	Several	special	cases	are	highlighted.	(Relevant	references	and	formulas	are	listed	

in	Table	4.)	
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Figure	3.	A	graphical	illustration	of	the	generalized	atomic	information	function	lnt(1/P(h))	for	four	different	

values	of	the	parameter	t	(0,	1,	2,	and	5,	respectively,	for	the	curves	from	top	to	bottom).	Appropriately,	the	

amount	of	information	arising	from	finding	out	that	h	is	the	case	is	a	decreasing	function	of	P(h).	For	high	values	

of	t,	however,	such	decrease	is	flattened:	with	t	=	5	(the	lowest	curve	in	the	figure)	finding	out	that	h	is	true	

provides	almost	the	same	amount	of	information	for	a	large	set	of	initial	probability	assignments.	

	

A	good	deal	more	can	be	said	about	the	scope	of	this	approach:	see	Figures	2	and	3,	Table	4,	

and	Suppl	Mat	(section	3)	for	additional	material.	Here,	we	will	only	mention	briefly	three	

important	further	points	about	R-measures	in	the	Sharma-Mittal	framework	and	their	

meaning	for	modelling	information	search	behavior.	They	are	as	follows.	

Additivity	of	expected	entropy	reduction:	For	any	H,E,F	and	"(J, L, M),	@0
_q(r,o)(J, L × M) =

@0
_q(r,o)(J, L) + @0

_q(r,o)(J, M|L).	

This	statement	means	that,	for	any	Sharma-Mittal	R-measure,	the	informational	utility	of	a	

combined	test	L × M	for	H	amounts	to	the	sum	of	the	plain	utility	of	E	and	the	utility	of	F	that	
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is	expected	considering	all	possible	outcomes	of	E	[Suppl	Mat,	4].	(Formally,	@0
_q(r,o)(J, M|L) =

∑ @0
_q(r,o)CJ, M|-DE"C-DEVH∈W ,	while	@0

_q(r,o)CJ, M|-DE	denotes	the	expected	entropy	reduction	of	

H	provided	by	F	as	computed	when	all	relevant	probabilities	are	conditionalized	on	ej.)	

According	to	Nelson’s	(2008)	discussion,	this	elegant	additivity	property	of	expected	entropy	

reduction	is	important	and	highly	desirable	as	concerns	the	analysis	of	the	rational	

assessment	of	tests	or	queries.	Moreover,	one	can	see	that	the	additivity	of	expected	entropy	

reduction	can	be	extended	to	any	finite	chain	of	queries	and	thus	be	applied	to	sequential	

search	tasks	such	as	those	experimentally	investigated	by	Nelson	et	al.	(2014).	

Irrelevance:	For	any	H,E	and	"(J, L),	if	either	E	=	{e}	or	J ⊥0 L,	then	@0
_q(r,o)(J, L) = 0.	

This	statement	says	that	two	special	kinds	of	queries	can	be	known	in	advance	to	be	of	no	use,	

that	is,	informationally	inconsequential	relative	to	the	hypothesis	set	of	interest.	One	is	the	

case	of	an	empty	test	E	=	{e}	with	a	single	possibility	that	is	already	known	to	obtain	with	

certainty,	so	that	P(e)	=	1.	As	suggested	vividly	by	Floridi	(2009,	p.	26),	this	would	be	like	

consulting	the	raven	in	Edgar	Allan	Poe’s	famous	poem,	which	is	known	to	give	one	and	the	

same	answer	no	matter	what	(it	always	spells	out	“Nevermore”).	The	other	case	is	when	

variables	H	and	E	are	unrelated,	that	is,	statistically	independent	according	to	P	(J ⊥0 L	in	

our	notation).	In	both	of	these	circumstances,	@0
_q(r,o)(J, L) = 0	simply	because	the	prior	and	

posterior	distribution	on	H	are	identical	for	each	possible	value	of	E,	so	that	no	entropy	

reduction	can	ever	obtain.	

By	the	irrelevance	condition,	empty	and	unrelated	queries	have	zero	expected	utility	—	but	

can	a	query	E	have	a	negative	expected	utility?	If	so,	a	rational	agent	would	be	willing	to	pay	a	

cost	just	for	not	being	told	what	the	true	state	of	affairs	is	as	concerns	E,	much	as	an	

abandoned	lover	who	wants	to	be	spared	being	told	whether	her/his	beloved	is	or	is	not	

happy	because	s/he	expects	more	harm	than	good.	Note,	however,	that	for	the	lover	non-

informational	costs	are	clearly	involved,	while	we	are	assuming	queries	or	tests	to	be	

assessed	in	purely	informational	terms,	bracketing	all	further	factors	(see,	e.g.,	Raiffa	&	

Schlaifer,	1961,	Meder	&	Nelson,	2012,	and	Markant	&	Gureckis,	2012,	for	work	involving	

situation-specific	payoffs).	In	this	perspective,	it	is	reasonable	and	common	to	see	irrelevance	
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as	the	worst-case	scenario	and	exclude	the	possibility	of	informationally	harmful	tests:	an	

irrelevant	test	(whether	empty	or	statistically	unrelated)	simply	can	not	tell	us	anything	of	

interest,	but	that	is	as	bad	as	it	can	get	(see	Good,	1967,	and	Goosens,	1976,	for	seminal	

analyses;	also	see	Dawid,	1998).6	

Interestingly,	not	all	Sharma-Mittal	measures	of	expected	entropy	reduction	are	non-

negative.	Some	of	them	do	allow	for	the	controversial	idea	that	there	could	exist	detrimental	

tests	in	purely	informational	terms,	such	that	an	agent	should	rank	them	worse	than	an	

irrelevant	search	and	take	active	measures	to	avoid	them	(despite	them	having,	by	

assumption,	no	intrinsic	cost).	Mathematically,	a	non-negative	measure	@0(J, L)	is	generated	

if	and	only	if	the	underlying	entropy	measure	is	a	concave	function	[Suppl	Mat,	4],	and	the	

conditions	for	concavity	are	as	follows:	

Concavity:	-./0
_q(r,o)(J)	is	a	concave	function	of	{P(h1),	…,	P(hn)}	just	in	case	t	≥	2	–	1/r.7	

In	terms	of	Figure	2,	this	means	that	any	entropy	(represented	by	a	point)	below	the	Arimoto	

curve	is	not	generally	concave	(see	Figure	4	for	a	graphical	illustration	of	a	strongly	non-

concave	entropy	measure).	Thus,	if	the	concavity	of	ent	is	required	(to	preserve	the	non-

																																																								
6	In	theories	of	so-called	imprecise	probabilities,	the	notion	arises	of	a	detrimental	experiment	E	in	the	sense	that	

interval	probability	estimates	for	each	element	in	a	hypothesis	set	of	interest	H	can	be	properly	included	in	the	

corresponding	interval	probability	estimates	conditional	on	each	element	in	E.	This	phenomenon	is	known	as	

dilation:	one’s	initial	state	of	credence	about	H	becomes	less	precise	(thus	more	uncertain,	under	a	plausible	

interpretation)	no	matter	how	an	experiment	turns	out.	The	strongly	unattractive	character	of	this	implication	

has	been	sometimes	disregarded	(see	Tweeney	et	al.,	2010,	for	an	example	in	the	psychology	of	reasoning),	but	

the	prevailing	view	is	that	appropriate	moves	are	required	to	avoid	it	or	dispel	it	(for	recent	discussions,	see	

Bradley	&	Steele,	2014;	Pedersen	&	Wheeler,	2014).	

7	This	important	result	is	proven	in	Hoffmann	(2008),	and	already	mentioned	in	Taneja	et	al.	(1989,	p.	61),	who	

in	turn	refer	to	van	der	Pyl	(1978)	for	a	proof.	We	did	not	posit	concavity	as	a	defining	property	of	entropies,	and	

that’s	how	it	should	be,	in	our	opinion.	Concavity	may	definitely	be	convenient	or	even	required	in	some	

applications,	but	barring	non-concave	functions	would	be	overly	restrictive	as	concerns	the	formal	notion	of	

entropy.	In	physics,	for	instance,	concavity	is	taken	as	directly	relevant	for	generalized	thermodynamics	(Beck,	

2009,	p.	499;	Tsallis,	2004,	p.	10).	In	biological	applications,	on	the	other	hand,	concavity	was	suggested	by	

Lewontin	(1972;	also	see	Rao	2010,	p.	71),	but	seen	as	having	“no	intuitive	motivation”	by	Patil	and	Taille	(1982,	

p.	552).	
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negativity	of	R),	then	many	prominent	special	cases	are	retained	(including	Quadratic,	

Hartley,	Shannon,	and	Error	entropy),	but	a	significant	bit	of	the	whole	Sharma-Mittal	

parameter	space	is	ruled	out.	This	concerns,	for	instance,	entropies	of	degree	1	and	order	

higher	than	1	(see	Ben-Bassat	&	Raviv,	1978).	

	

Table	4.	A	summary	of	the	Sharma-Mittal	framework	and	several	of	its	special	cases,	including	a	specification	of	

their	structure	in	the	general	theory	of	means	and	a	key	reference	for	each.	

	

(r,t)-setting	 Algebraic	form	of	entP(H)	
															Generalized	mean	construction	

	
Characteristic	function	and	its	inverse	 Atomic	information	

Sharma-Mittal		

Sharma	&	Mittal	(1975)	

r	≥	0	

t	≥	0	

1
/ − 1

⎣
⎢
⎢
⎡
1 − }B "(ℎ%)X

T'∈U

~

Yh6
Xh6

⎦
⎥
⎥
⎤
	 g($) = [.X(-Y&)	 gh6($) = [.Y(-X&)	 f.2($) = [.Y Ç

1
$É	

Effective	Numbers	

Hil	(1973)	

r	≥	0	

t	=	0	
}B "(ℎ%)X
T'∈U

~

6
6hX

− 1	 g($) = [.X(1 + $)	 gh6($) = -X& − 1	 f.2($) =
1 − $
$ 	

Rényi	

Rényi	(1961)	

r	≥	0	

t	=	1	

1
1 − Ñ [.}B "(ℎ%)X

T'∈U

~	 g($) = [.X(-&)	 gh6($) = [.(-X&)	 f.2($) = [. Ç
1
$É	

Power	entropies	

	Laakso	&	Taagepera	(1979)	

r	≥	0	

t	=	2	
1 − }B "(ℎ%)X

T'∈U

~

6
Xh6

	 g($) = [.X Ç
1

1 − $É	
gh6($) = 1 − (-X&)h6	 f.2($) = 1 − $ 	

Gaussian	

Frank	(2004)	

r	=	1	

t	≥	0	

1
/ − 1 Ö1 − -(6hY)s∑ 0(T')Ü'∈á Z9Ç 6

0(T')
Étà	 g($) = [.(-Y&)	 gh6($) = [.Y(-&)	 f.2($) = [.Y Ç

1
$É	

Arimoto		

Arimoto	(1971)	

r	≥	½	

/	 = 	2 −
1
Ñ	

Ñ
Ñ − 1

⎣
⎢
⎢
⎡
1 − }B "(ℎ%)X

T'∈U

~

6
X

⎦
⎥
⎥
⎤
	 g($) = [.X s1 + Ç

1 − Ñ
Ñ É$t

X
6hX
	 gh6($) =

Ñ
Ñ − 1 ä1 − (-X

&)
6hX
X ã	 f.2($) =

Ñ
Ñ − 1 ä1 − $

Xh6
X ã	

Tsallis	

Tsallis	(1988)	

r	=	t	≥	0	 1
/ − 1}1 − B "(ℎ%)Y

T'∈U

~	 g($) = $	 gh6($) = $	 f.2($) = [.Y Ç
1
$É	

Quadratic	

Gini	(1912)	

r	=	t	=	2	 1 − B "(ℎ%)S
T'∈U

	 g($) = $	 gh6($) = $	 f.2($) = 1 − $ 	

Shannon	

Shannon	(1948)	

r	=	t	=	1	 B "(ℎ%)
T'∈U

[. Ç
1

"(ℎ%)
É	 g($) = $	 gh6($) = $	 f.2($) = [. Ç

1
$É	

Hartley	

Hartley	(1928)	

r	=	0	

t	=	1	
[. }B "(ℎ%)]

T'∈U

~	 g($) = -& − 1	 gh6($) = [.(1 + $)	 f.2($) = [. Ç
1
$É	
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Figure	4.	Graphical	illustration	of	the	non-concave	entropy	-./_q(uv,v)	for	a	binary	hypothesis	set	H	=	{h,	ℎ}	as	a	

function	of	the	probability	of	h.	

	

4.2.	Psychological	interpretation	of	the	order	and	degree	parameter		

The	order	parameter	r:	Imbalance	and	continuity.	What	is	the	meaning	of	the	order	parameter	

in	the	Sharma-Mittal	formalism	when	entropies	and	expected	entropy	reduction	measures	

represent	uncertainty	and	the	value	of	queries,	respectively?	To	clarify,	let	us	consider	what	

happens	with	extreme	values	of	r,	i.e.,	if	r	=	0	or	goes	to	infinity,	respectively	[Suppl	Mat,	3]:	

-./0
_q(v,o)(J) = [.Y\∑ "(ℎ%)]T'∈U ^		

-./0
_q(w,o)(J) = [.Y s

6
åçéÜ'∈á[0(T')]

t			

Given	the	convention	00	=	0,	∑ "(ℎ%)]T'∈U 	simply	computes	the	number	of	all	elements	in	H	

with	a	non-null	probability.	Accordingly,	when	r	=	0,	entropy	becomes	a	(increasing)	function	

of	the	mere	number	of	the	“live”	(non-zero	probability)	options	in	H.	When	r	goes	to	infinity,	
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on	the	other	hand,	entropy	becomes	a	(decreasing)	function	of	the	probability	of	a	single	

element	in	H,	i.e.,	the	most	likely	hypothesis.	This	shows	that	the	order	parameter	r	is	an	index	

of	the	imbalance	of	the	entropy	function,	which	indicates	how	much	the	entropy	measure	

discounts	minor	(low	probability)	hypotheses.	For	order-0	measures,	the	actual	probability	

distribution	is	neglected:	non-zero	probability	hypothesis	are	just	counted,	as	if	they	were	all	

equally	important	(see	Gauvrit	&	Morsanyi,	2014).	For	order-¥	measures,	on	the	other	hand,	

only	the	most	probable	hypothesis	matters,	and	all	other	hypotheses	are	disregarded	

altogether.	For	intermediate	values	of	r,	more	likely	hypotheses	count	more,	but	less	likely	

hypotheses	do	retain	some	weight.	The	higher	[lower]	r	is,	the	more	[less]	the	likely	

hypotheses	are	regarded	and	the	unlikely	hypotheses	are	discounted.	Importantly,	for	

extreme	values	of	the	order	parameter,	an	otherwise	natural	idea	of	continuity	fails	in	the	

measurement	of	entropy:	when	r	goes	to	either	zero	or	infinity,	it	is	not	the	case	that	small	

(large)	changes	in	the	probability	distribution	P(H)	produce	comparably	small	(large)	changes	

in	entropy	values.	

To	see	better	how	order-0	entropy	measures	behave,	consider	the	simplest	of	them:		

-./0
_q(v,v)(J) = .è − 1	

where	.è = ∑ "(ℎ%)]T'∈U ,	so	.è	denotes	the	number	of	hypotheses	in	H	with	a	non-null	

(strictly	positive)	probability.	Given	the	–1	correction,	-./_q(v,v)	can	be	interpreted	as	the	

“number	of	contenders”	for	each	entity	in	set	H,	because	it	takes	value	0	when	only	one	

element	is	left.	For	future	reference,	we	will	label	-./_q(v,v) 	Origin	entropy	because	it	marks	

the	origin	of	the	graph	in	Figure	3.	Importantly,	the	expected	reduction	of	Origin	entropy	is	

just	the	expected	number	of	hypotheses	in	H	conclusively	falsified	by	a	test	E.		

To	the	extent	that	all	details	of	the	prior	and	posterior	probability	distribution	over	H	are	

neglected,	computational	demands	are	significantly	decreased	with	order-0	entropies.	As	a	

consequence,	measures	of	the	expected	reduction	of	an	order-0	entropy	(and	especially	Origin	

entropy)	also	amount	to	comparably	frugal,	heuristic	or	quasi-heuristic	models	of	information	

search	(see	Baron	et	al.’s	model,	1988,	p.	106).	Lack	of	continuity,	too,	is	associated	with	

heuristic	models,	which	often	rely	on	discrete	elements	instead	of	continuous	representations	

(see	Gigerenzer,	Hertwig,	&	Pachur,	2011;	Katsikopoulos,	Schooler,	&	Hertwig,	2010).	More	
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generally,	when	the	order	parameter	approaches	0,	entropy	measures	become	more	and	

more	balanced,	meaning	that	they	treat	all	live	hypotheses	more	and	more	equally.	What	

happens	to	the	associated	expected	entropy	reduction	measures	is	that	they	become	more	

and	more	“Popperian”	in	spirit.	In	fact,	for	order-0	relevance	measures,	a	test	E	will	deliver	

some	non-null	expected	informational	utility	about	hypothesis	set	H	if	and	only	if	some	of	the	

possible	outcomes	of	E	can	conclusively	rule	out	some	element	in	H.	Otherwise,	the	expected	

entropy	reduction	will	be	zero,	no	matter	how	large	the	changes	in	probability	that	might	

arise	from	E.	Cognitively,	relevance	measures	of	low	order	would	then	describe	the	

information	search	preferences	of	an	agent	who	is	distinctively	eager	to	prune	down	the	list	of	

candidate	hypotheses,	an	attitude	which	might	prevail	in	earlier	stages	of	an	inquiry,	when	

such	a	list	can	be	sizable.		

Among	entropy	measures	of	order	infinity,	we	already	know	-./_q(w,u) = 1 −

maxT'∈U["(ℎ%)]	as	Error	entropy.	What	this	illustrates	is	that,	when	r	goes	to	infinity,	entropy	

measures	become	more	and	more	decision-theoretic	in	a	short-sighted	kind	of	way:	in	the	

limit,	they	are	only	affected	by	the	probability	of	a	correct	guess	given	the	currently	available	

information.	A	notable	consequence	for	the	associated	measures	of	expected	entropy	

reduction	is	that	a	test	E	can	deliver	some	non-null	expected	informational	utility	only	if	some	

of	the	possible	outcomes	of	E	can	alter	the	probability	of	the	modal	hypothesis	in	H.	If	that	is	

not	the	case,	then	the	expected	utility	will	be	zero,	no	matter	how	significant	the	changes	in	

the	probability	distribution	arising	from	E.	Cognitively,	then,	R-measures	of	very	high	order	

would	describe	the	information	search	preferences	of	an	agent	who	is	predominantly	

concerned	with	an	estimate	of	the	probability	of	error	in	an	impending	choice	from	set	H.	

The	degree	parameter	t:	Perfect	tests	and	certainty.	Let	us	now	consider	briefly	the	meaning	of	

the	degree	parameter	t	in	the	Sharma-Mittal	formalism	when	entropies	and	relevance	

measures	represent	uncertainty	and	the	value	of	queries,	respectively.	A	remarkable	fact	

about	the	degree	parameter	t	is	that	(unlike	the	order	parameter	r)	it	does	not	affect	the	

ranking	of	entropy	values.	Indeed,	one	can	show	that	any	Sharma-Mittal	entropy	measure	is	a	

strictly	increasing	function	of	any	other	measure	of	the	same	order	r,	regardless	of	the	degree	

(for	any	hypothesis	set	H	and	any	probability	distribution	P)	[Suppl	Mat,	4].	Thus,	concerning	
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the	ordinal	comparison	of	entropy	values,	only	if	the	order	differs	can	divergences	between	

pairs	of	SM	entropy	measures	arise.	On	the	other	hand,	the	implications	of	the	degree	

parameter	for	measures	of	expected	entropy	reduction	are	significant	and	have	not	received	

much	attention.		

As	a	useful	basis	for	discussion,	suppose	that	variables	H	and	E	are	independent,	in	the	

standard	sense	that	for	any	hi	Î	H	and	any	ej	Î	E,	P(hiÇej)	=	P(hi)P(ej),	denoted	as	J ⊥0 L.	

Then	we	have	[Suppl	Mat,	4]:	

@0
_q(r,o)(L, L) − @0

_q(r,o)(J × L, L) = (/ − 1)-./0
_q(r,o)(J)-./0

_q(r,o)(L)	

If	expected	entropy	reduction	is	interpreted	as	a	measure	of	the	informational	utility	of	

queries	or	tests,	this	equality	governs	the	relationship	between	the	computed	utilities	of	E	in	

case	it	is	a	“perfect”	(conclusive)	test	and	in	case	it	is	not.	More	precisely,	the	first	term	on	the	

left,	@0
_q(r,o)(L, L),	measures	the	expected	informational	utility	of	a	perfect	test	because	the	

test	itself	and	the	target	of	investigation	are	the	same,	hence	finding	out	the	true	value	of	E	

removes	all	relevant	uncertainty.	On	the	other	hand,	E	is	not	anymore	a	perfect	test	in	the	

second	term	of	the	equation	above,	@0
_q(r,o)(J × L,L),	for	here	a	more	fine-grained	hypothesis	

set	J × L	is	at	issue,	thus	a	more	demanding	epistemic	target;	hence	finding	out	the	true	value	

of	E	would	not	remove	all	relevant	uncertainty.	(Recall	that,	by	assumption,	H	is	statistically	

independent	from	E,	so	the	uncertainty	about	H	would	remain	untouched,	as	it	were,	after	

knowing	about	E.).	With	entropies	of	degree	1	(including	Shannon),	the	associated	measures	

of	expected	entropy	reduction	imply	that	E	has	exactly	identical	utility	in	both	cases,	because	t	

=	1	nullifies	the	right-hand	side	of	the	equation,	regardless	of	the	order	parameter	r.	With	t	>	1	

the	right-hand	side	is	positive,	so	E	is	a	strictly	more	useful	test	when	it	is	conclusive	than	

when	it	is	not.	With	t	<	1,	on	the	contrary,	the	right-hand	side	is	negative,	so	E	is	strictly	less	

useful	a	test	when	it	is	conclusive	than	when	it	is	not.	Note	that	these	are	ordinal	relationships	

(rankings).	In	comparing	the	expected	informational	utility	of	queries,	the	degree	parameter	t	

can	thus	play	a	crucial	role.	Crupi	and	Tentori	(2014,	p.	88)	provided	some	simple	

illustrations	which	can	be	adapted	as	favoring	an	entropy	with	t	>	1	as	the	basis	for	the	R-

measure	of	the	expected	utility	of	queries	(here,	we	present	an	illustration	in	Figure	5).	



GENERALIZED	INFORMATION	THEORY	AND	HUMAN	COGNITION	

		
27	

	

Figure	5.	Consider	a	standard	52-card	playing	deck,	with	Suit	corresponding	to	the	4	equally	probable	suits,	

Value	corresponding	to	the	13	equally	probable	numbers	(or	faces)	that	a	card	can	take	(2	through	10,	Jack,	

Queen,	King,	Ace),	and	Suit�Value	corresponding	to	the	52	equally	probable	individual	cards	in	the	deck.	

Suppose	that	you	will	be	told	the	suit	of	a	randomly	chosen	card.	Is	this	more	valuable	to	you	if	(i)	(perfect	test	

case)	your	goal	is	to	learn	the	suit,	i.e.,	RP(Suit,	Suit),	or	(ii)	(inconclusive	test	case)	your	goal	is	to	learn	the	

specific	card,	i.e.,	RP(Suit�Value,	Suit)?	What	is	the	ratio	of	the	value	of	the	expected	entropy	reduction	in	(i)	vs.	

(ii)?	For	degree	1,	the	information	to	be	obtained	has	equal	value	in	each	case.	For	degrees	greater	than	1,	the	

perfect	test	is	more	useful.	For	degrees	less	than	one,	the	inconclusive	test	is	more	useful.	Interestingly,	as	the	

figure	shows,	the	degree	parameter	uniquely	determines	the	relative	value	of	RP(Suit,	Suit)	and	RP(Suit�Value,	

Suit),	regardless	of	the	order	parameter.	In	the	Figure,	values	of	the	order	parameter	r	and	of	the	degree	

parameter	t	lie	on	the	x–	and	y–axis,	respectively.	Color	represents	the	log	of	the	ratio	between	the	conclusive	

test	and	the	inconclusive	test	case	in	the	card	example	above:	black	means	that	the	information	values	of	the	

tests	are	equal	(log	of	the	ratio	is	0);	warm	/	cool	shades	indicate	that	the	conclusive	test	has	a	higher	/	lower	

value,	respectively	(log	of	the	ratio	is	positive	/	negative).	
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The	meaning	of	a	high	degree	parameter	is	of	particular	interest	in	so-called	Tsallis	family	

of	entropy	measures,	obtained	from	-./_q(r,o) 	when	r	=	t	(see	Table	4).	Consider	Tsallis	

entropy	of	degree	30,	that	is	-./_q(êv,êv).	With	this	measure,	entropy	remains	very	close	to	a	

upper	bound	value	of	1/(t	–	1)	≈	0.0345	unless	the	probability	distribution	reflects	near-

certainty	about	the	true	element	in	the	hypothesis	set	H.	For	instance,	for	as	uneven	a	

distribution	as	{0.90,	0.05,	0.05},	-./ëíPZZ%í(êv)	yields	entropy	0.03330,	still	close	to	0.0345,	

while	it	quickly	approaches	0	when	the	probability	of	one	hypothesis	exceeds	0.99.	Non-

Certainty	entropy	seems	a	useful	label	for	future	reference,	as	measure	-./ëíPZZ%í(êv) 	essentially	

implies	that	entropy	is	almost	invariant	as	long	as	an	appreciable	lack	of	certainty	(a	

“reasonable	doubt”,	as	it	were)	endures.	Accordingly,	the	entropy	reduction	from	a	piece	of	

evidence	e	is	largely	negligible	unless	one	is	led	to	acquire	a	very	high	degree	of	certainty	

about	H,	and	it	approaches	the	upper	bound	of	1/(t	–	1)	as	the	posterior	probability	comes	

close	to	matching	a	truth-value	assignment	(with	P(hi)	=	1	for	some	i	and	0	for	all	other	hs).	

Up	to	the	inconsequential	normalizing	constant	t	–	1,	the	expected	reduction	of	this	entropy,	

@ëíPZZ%í(êv),	amounts	to	a	smooth	variant	of	Nelson’s	et	al.	(2010)	“probability-of-certainty	

heuristic”,	where	a	datum	ei	Î	E	has	informational	utility	1	if	it	reveals	the	true	element	in	H	

with	certainty	and	utility	0	otherwise,	so	that	the	expected	utility	of	E	itself	is	just	the	overall	

probability	that	certainty	about	H	is	eventually	achieved	by	that	test.	These	remarks	further	

illustrate	that	a	larger	degree	t	implies	an	increasing	tendency	of	the	corresponding	R-

measure	to	value	highly	the	attainment	of	certainty	or	quasi-certainty	about	the	target	

hypothesis	set	when	assessing	a	test.		

	

5.	A	systematic	exploration	of	how	key	information	search	models	diverge	

Depending	on	different	entropy	functions,	two	measures	R	and	R*	of	the	expected	reduction	of	

entropy	as	the	informational	utility	of	tests	may	disagree	in	their	rankings.	Formally,	there	

exist	variables	H,	E,	and	F	and	probability	distribution	P(H,E,F)	such	that	@0(J, L) > @0(J, M)	

while	@0∗(J, L) < @0∗(J, M);	thus,	R-measures	are	not	generally	ordinally	equivalent.	In	the	

following,	we	will	focus	on	an	illustrative	sample	of	measures	in	the	Sharma-Mittal	framework	

and	show	that	such	divergences	can	be	widespread,	strong,	and	telling	about	the	specific	
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tenets	of	those	measures.	This	means	that	different	entropy	measures	can	provide	markedly	

divergent	implications	in	the	assessment	of	possible	queries’	expected	usefulness.	Depending	

on	the	interpretation	of	the	models,	this	in	turn	implies	conflicting	empirical	predictions	

and/or	incompatible	normative	recommendations.	

Our	list	will	include	three	classical	models	that	are	standard	at	least	in	some	domains,	namely	

Shannon,	Quadratic,	and	Error	entropy.	It	also	includes	three	measures	which	we	previously	

labelled	heuristic	or	quasi-heuristic	in	that	they	largely	or	completely	disregard	quantitative	

information	conveyed	by	the	relevant	probability	distribution	P:	these	are	Origin	entropy	(or	

the	“number	of	contenders”),	Hartley	entropy,	and	Non-Certainty	entropy,	as	defined	above.	

For	a	wider	coverage	and	comparison,	we	also	include	an	entropy	function	lying	well	below	

the	Arimoto	curve	in	Figure	2,	that	is,	-./_q(uv,v) ,	and	thus	labelled	Non-Concave	(see	Figure	4).		

We	ran	simulations	to	identify	cases	of	strong	disagreement	between	our	seven	measures	

of	expected	entropy	reduction,	on	a	pairwise	basis,	about	which	of	two	tests	is	taken	to	be	

more	useful.	In	each	simulation,	we	considered	a	scenario	with	a	threefold	hypothesis	space	H	

=	{h1,	h2,	h3},	and	two	binary	tests,	E	=	{e,-}	and	F	=	{f,	2}.8	The	goal	of	each	simulation	was	to	

find	a	case	—	that	is,	a	specific	joint	probability	distribution	P(H,E,F)	—	where	two	R-

measures	strongly	disagree	about	which	of	two	tests	is	most	useful.	The	ideal	scenario	here	is	

a	case	where	expected	reduction	of	one	kind	of	entropy	(say,	Origin)	implies	that	E	is	as	useful	

as	can	possibly	be	found,	while	F	is	as	bad	as	it	can	be,	and	the	expected	reduction	of	another	

kind	of	entropy	(say,	Shannon)	implies	the	opposite,	with	equal	strength	of	conviction.	

The	quantification	of	the	disagreement	between	two	R-measures	in	a	given	case	—	for	a	

given	P(H,E,F)	—	arises	from	three	steps	(also	see	Nelson	et	al.,	2010).	(i)	Normalization:	for	

each	measure,	we	divide	nominal	values	of	expected	entropy	reduction	(for	each	of	E	and	F)	

by	the	expected	entropy	reduction	of	a	conclusive	test	for	three	equally	probable	hypotheses,	

																																																								
8	We	used	three-hypothesis	scenarios	to	illustrate	the	differences	among	our	selected	sample	of	R	measures,	

because	scenarios	of	this	kind	appeared	to	offer	a	reasonable	balance	of	being	simple	yet	powerful	enough	to	

deliver	divergences	that	are	strong	and	intuitively	clear.	Note	however	that	two-hypothesis	scenarios	can	also	

clearly	differentiate	many	of	the	R	measures	(see	the	review	of	behavioral	research	on	binary	classification	tasks	

in	the	subsequent	sections).	
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that	is,	by	@;(J, J).	(ii)	Preference	Strength:	for	each	measure,	we	compute	the	simple	

difference	between	the	(normalized)	expected	entropy	reduction	for	test	E	and	for	test	F,	that	

is,	ñó(U,W)ñò(U,U)
– ñó(U,ö)ñò(U,U)

	.	(iii)	Disagreement	Strength	(DS):	if	the	two	measures	agree	on	whether	E	

or	F	is	most	useful,	DS	is	defined	as	zero;	if	they	disagree,	DS	is	defined	as	the	geometric	mean	

of	those	measures’	respective	absolute	preference	strengths	in	step	(ii).		

In	the	simulations,	a	variety	of	techniques	were	involved	in	order	to	maximize	

disagreement	strength,	including	random	generation	of	prior	probabilities	over	H	and	of	

likelihoods	for	E	and	F,	optimization	of	likelihoods	alone,	and	joint	optimization	of	likelihoods	

and	priors.	Each	example	reported	here	was	found	in	the	attempt	to	maximize	DS	for	a	

particular	pair	of	measures.	We	relied	on	the	simulations	largely	as	a	heuristic	tool,	thus	

selecting	and	slightly	adapting	the	numerical	examples	to	make	them	more	intuitive	and	

improve	clarity.9	

For	each	pair	of	R-measures	in	our	sample	of	seven,	at	least	one	case	of	moderate	or	strong	

disagreement	was	found	(Table	5).	Thus,	for	each	pairwise	comparison	one	can	identify	

probabilities	for	which	the	models	make	diverging	claims	about	which	test	is	more	useful.	In	

what	follows,	we	append	a	short	discussion	to	the	cases	in	which	Shannon	entropy	strongly	

disagrees	with	each	competing	model.	Such	discussion	is	illustrative	and	qualitative,	to	

intuitively	highlight	the	underlying	properties	of	different	models.	Similar	explications	could	

be	provided	for	all	other	pairwise	comparisons,	but	are	omitted	for	the	sake	of	brevity.		

Shannon	vs.	Non-Certainty	Entropy	(case	3	in	Table	5;	DS	=	0.30).	In	its	purest	form,	Non-

Certainty	entropy	equals	0	if	one	hypothesis	in	H	is	known	to	be	true	with	certainty,	and	1	

otherwise.	As	a	consequence,	the	entropy	reduction	expected	from	a	test	E	just	amounts	to	the	

probability	that	full	certainty	will	be	achieved	after	E	is	performed.	Within	the	Sharma-Mittal	

framework,	this	behavior	can	be	often	approximated	by	an	entropy	measure	such	as	Tsallis	of	

degree	30,	as	explained	above.10	One	example	where	the	expected	reduction	of	Shannon	and	

																																																								
9	It	is	important	to	note	that	the	procedures	we	used	do	not	guarantee	finding	globally	maximal	solutions;	thus,	a	

failure	to	find	a	case	of	strong	disagreement	does	not	necessarily	entail	that	no	such	case	exists.		

10	One	should	note,	however,	that	Tsallis	30,	unlike	pure	non-certainty	entropy,	is	a	continuous	function.	As	a	

consequence,	the	approximation	described	eventually	fails	when	one	gets	very	close	to	limiting	cases.	More	
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Non-Certainty	entropy	disagree	significantly	involves	a	prior	P(H)	=	{0.67,	0.10,	0.23}.	The	

Non-Certainty	measure	rates	very	poorly	a	test	E	such	that	P(H|e)	=	{0.899,	0.100,	0.001},	

P(H|-)	={0.001,	0.100,	0.899},	and	P(e)	=	0.74,	and	strongly	prefers	a	test	F	such	that	P(H|f)	=	

{1,	0,	0},	P(H|2)	=	{0.40,	0.18,	0.42},	and	P(f)	=	0.45,	because	the	probability	to	attain	full	

certainty	from	F	is	sizable	(45%).	The	expected	reduction	of	Shannon	entropy	implies	the	

opposite	ranking,	because	test	E,	while	unable	to	provide	full	certainty,	will	invariably	yield	a	

highly	skewed	posterior	as	compared	to	the	prior.	

Shannon	vs.	Origin	and	Hartley	Entropy	(case	5	in	Table	5;	DS	=	0.56	and	DS	=	0.48,	

respectively).	The	reduction	of	both	Origin	and	Hartley	entropy	share	similar	ideas	of	

counting	how	many	hypotheses	are	conclusively	ruled	out	by	the	evidence.	For	example,	with	

prior	P(H)	=	{0.500,	0.499,	0.001},	the	expected	reduction	of	either	Origin	or	Hartley	entropy	

assigns	value	zero	to	test	E	such	that	P(H|e)	=	{0.998,	0.001,	0.001},	P(H|-)	=	{0.001,	0.998,	

0.001},	and	P(e)	=	0.501,	because	no	hypothesis	is	ever	ruled	out	conclusively,	and	rather	

prefers	test	F	such	that	P(H|f)	=	{0.501,	0.499,	0},	P(H|2)	=	{0,	0.499,	0.501},	and	P(f)	=	0.998.	

The	expected	reduction	of	Shannon	entropy	implies	the	opposite	ranking,	because	F	will	

almost	always	yield	only	a	tiny	change	in	overall	uncertainty.	

Shannon	vs.	Non-Concave	Entropy	(case	6	in	Table	5;	DS	=	0.26).	For	non-concave	entropies,	

the	expected	entropy	reduction	may	turn	out	to	be	negative,	thus	indicating	an	allegedly	

detrimental	query,	that	is,	a	test	where	expected	utility	is	lower	than	that	of	a	completely	

irrelevant	test.	This	feature	yields	cases	of	significant	disagreement	between	the	expected	

reduction	of	our	illustrative	Non-Concave	entropy,	-./_q(uv,v) ,	and	of	classical	concave	

measures	such	as	Shannon.	With	a	prior	P(H)	=	{0.66,	0.17,	0.17},	the	Non-Concave	measure	

rates	a	test	E	such	that	P(H|e)	=	{1,	0,	0},	P(H|-)	=	{1/3,	1/3,	1/3},	and	P(e)	=	0.49	much	lower	

than	an	irrelevant	test	F	such	that	P(H|f)	=	P(H|2)	=	P(H).	Indeed,	the	non-concave	R-measure	

assigns	a	significant	negative	value	to	test	E.	This	critically	depends	on	one	interesting	fact:	for	

																																																								
precisely,	Tsallis	30	entropy	rapidly	decreases	for	almost	certain	distributions	such	as,	say,	P(H)	=	{0.998,	0.001,	

0.001}.	In	fact,	Tsallis	30	entropy	is	sizable	and	almost	constant	if	P(H)	conveys	a	less-than-almost-certain	state	of	

belief,	and	becomes	largely	negligible	otherwise.	
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Non-Concave	entropy,	going	from	P(H)	to	a	completely	flat	posterior,	P(H|-),	is	an	extremely	

aversive	outcome	(i.e.	it	implies	a	very	large	increase	in	uncertainty),	while	the	49%	chance	of	

achieving	certainty	by	datum	e	is	not	highly	valued	(a	feature	of	low	degree	measures,	as	we	

know).	The	expected	reduction	of	Shannon	entropy	implies	the	opposite	ranking	instead,	as	it	

conveys	the	principle	that	no	test	can	be	informationally	less	useful	than	an	irrelevant	test	

(such	as	F).	

Shannon	vs.	Quadratic	Entropy	(case	8	in	Table	5;	DS	=	0.09).	Shannon	and	Quadratic	

entropies	are	similar	in	many	ways,	yet	at	least	cases	of	moderate	disagreement	can	be	found.	

One	is	with	prior	P(H)	=	{0.50,	0.14,	0.36}.	Test	E	is	such	that	P(H|e)	=	{0.72,	0.14,	0.14},	

P(H|-)	=	{0.14,	0.14,	0.72},	and	P(e)	=	0.62,	while	with	test	F	one	has	P(H|f)	=	{0.5,	0.5,	0},	

P(H|2)	=	{0.5,	0,	0.5},	and	P(f)	=	0.28.	Expected	Quadratic	entropy	reduction	ranks	E	over	F,	as	

it	puts	a	particularly	high	value	on	posterior	distributions	where	one	single	hypothesis	comes	

to	prevail.	In	comparison,	this	is	less	important	for	the	reduction	of	Shannon	entropy,	as	long	

as	some	hypotheses	are	completely	(or	largely)	ruled	out,	as	occurs	with	F.	Accordingly,	the	

Shannon	measure	prefers	F	over	E.		

Shannon	vs.	Error	Entropy	(case	9	in	Table	5;	DS	=	0.20).	A	stronger	disagreement	arises	

between	Shannon	and	Error	entropy.	Consider	prior	P(H)	=	{0.50,	0.18,	0.32},	a	test	E	such	

that	P(H|e)	=	{0.65,	0.18,	0.17},	P(H|-)	=	{0.17,	0.18,	0.65},	and	P(e)	=	0.69,	and	a	test	F	such	

that	P(H|f)	=	{0.5,	0.5,	0},	P(H|2)	=	{0.5,	0,	0.5},	and	P(f)	=	0.36.	The	expected	reduction	of	

Error	entropy	is	significant	with	E	but	zero	with	F,	because	the	latter	will	leave	the	modal	

probability	untouched.	(Note	that	it	does	not	matter	that	the	hypotheses	with	the	maximum	

probability	changed.)	However,	test	F,	unlike	E,	will	invariably	rule	out	an	hypothesis	that	was	

a	priori	significantly	probable,	and	for	this	reason	is	preferred	by	the	Shannon	R-measure.
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Table	5.	Cases	of	strong	disagreement	between	seven	measures	of	expected	entropy	reduction.	Two	binary	tests	E	and	F	are	considered	for	a	ternary	hypothesis	set	H.	Preference	strength	
is	the	difference	between	(normalized)	values	of	expected	entropy	reduction	for	E	and	F,	respectively:	it	is	positive	if	test	E	is	strictly	preferred,	negative	if	F	is	strictly	preferred,	and	null	if	

they’re	rated	equally.	The	most	relevant	preference	values	to	be	compared	are	highlighted	in	bold:	they	illustrate	that,	for	each	pair	of	R-measures	in	our	sample	of	seven,	the	table	

includes	at	least	one	case	of	moderate	or	strong	disagreement.	

n.	 P(H)	
Test	E	 Test	F	 Preference	strength	in	the	expected	reduction	of	entropy		

P(H|e)	vs.	P(H|!)	 		P(e)	vs.	P(!)	 P(H|f)	vs.	P(H|")	 	P(f)	vs.	P(")	 Non-Certainty	 Origin	 Hartley	 Non-Concave	 Shannon	 Quadratic	 Error	

1	 {0.50,	0.25,	0.25}	 {0.5,	0.5,	0}	
{0.5,	0,	0.5}	

0.5	
0.5	

{1,	0,	0}	
{1/3,	1/3,	1/3}	

0.25	
0.75	

–0.250	 0.250	 0.119	 0.250	 0.119	 0	 0	

2	 {0.67,	0.17,	0.17}	 {0.82,	0.17,	0.01}	
{0.01,	0.17,	0.82}	

0.8	
0.2	

{1,	0,	0}	
{1/3,	1/3,	1/3}	

0.49	
0.51	

–0.487	 –0.490	 –0.490	 0.394	 0.046	 0.062	 0.240	

3	 {0.67,	0.10,	0.23}	 {0.899,	0.1,	0.001}	
{0.001,	0.1,	0.899}	

0.74	
0.26	

{1,	0,	0}	
{0.40,	0.18,	0.42}	

0.45	
0.55	

–0.409	 –0.450	 –0.450	 0.342	 0.218	 0.249	 0.329	

4	 {0.6,	0.1,	0.3}	 {1,	0,	0}	
{1/3,	1/6,	1/2}	

0.4	
0.6	

{0.7,	0.3,	0}	
{0.55,	0.	0.45}	

1/3	
2/3	

0.400	 –0.100	 0.031	 0.045	 0.051	 0.155	 0.150	

5	 {0.5,	0.499,	0.001}	 {0.998,	0.001,	0.001}	
{0.001,	0.998,	0.001}	

0.501	
0.499	

{0.501,	0.499,	0}	
{0,	0.499,	0.501}	

0.998	
0.002	

0.942	 –0.500	 –0.369	 0.499	 0.617	 0.744	 0.746	

6	 {0.66,	0.17,	0.17}	 {1,	0,	0}	
{1/3,	1/3,	1/3}	

0.49	
0.51	

{0.66,	0.17,	0.17}	
{0.66,	0.17,	0.17}	

0.5	
0.5	

0.490	 0.490	 0.490	 –0.236	 0.288	 0.250	 0	

7	 {0.53,	0.25,	0.22}	 {1,	0,	0}	
{0.295,	0.375,	0.330}	

1/3	
2/3	

{0.53,	0.25,	0.22}	
{0.53,	0.25,	0.22}	

0.5	
0.5	

0.333	 0.333	 0.333	 –0.123	 0.261	 0.249	 0.080	

8	 {0.50,	0.14,	0.36}	 {0.72,	0.14,	0.14}	
{0.14,	0.14,	0.72}	

0.62	
0.38	

{0.5,	0.5,	0}	
{0.5,	0,	0.5}	

0.28	
0.72	

0	 –0.500	 –0.369	 0.293	 –0.085	 0.086	 0.330	

9	 {0.50,	0.18,	0.32}	 {0.65,	0.18,	0.17}	
{0.17,	0.18,	0.65}	

0.69	
0.31	

{0.5,	0.5,	0}	
{0.5,	0,	0.5}	

0.36	
0.64	

0	 –0.180	 –0.133	 0.213	 –0.179	 –0.024	 0.225	

10	 {0.42,	0.42,	0.16}	 {0.5,	0.5,	0}	
{0,	0,	1}	

0.84	
0.16	

{0.66,	0.24,	0.10}	
{0.10,	0.66,	0.24}	

0.57	
0.43	

0.160	 0.580	 0.470	 –0.146	 0.241	 0.115	 –0.120	
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6.	Model	comparison:	Prediction	and	behavior	

Now	that	we	have	seen	examples	illustrating	the	theoretical	properties	of	a	variety	of	

Sharma-Mittal	relevance	measures,	we	turn	to	addressing	whether	the	Sharma-Mittal	

measures	can	help	with	psychological	or	normative	theory	of	the	value	of	information.		

	

6.1.	Comprehensive	analysis	of	Wason’s	abstract	selection	task	

The	single	most	widely	studied	experimental	information	search	paradigm	is	Wason’s	

(1966)	selection	task.	In	the	classical,	abstract	version,	participants	are	presented	with	a	

conditional	hypothesis	(or	“rule”),	h	=	“if	A	[antecedent],	then	C	[consequent]”.	The	

hypothesis	concerns	some	cards,	each	of	which	has	a	letter	on	one	side	and	a	number	on	

the	other,	for	instance	A	=	“the	card	has	a	vowel	on	one	side”	and	C	=	“the	card	has	an	even	

number	on	the	other	side”.	One	side	is	displayed	for	each	of	four	cards:	one	instantiating	A	

(e.g.,	showing	letter	E),	one	instantiating	not-A	(e.g.,	showing	letter	K),	one	instantiating	C	

(e.g.,	showing	number	4),	and	one	instantiating	not-C	(e.g.,	showing	number	7).	

Participants	have	therefore	four	information	search	options	in	order	to	assess	the	truth	or	

falsity	of	hypothesis	h:	turning	over	the	A,	the	not-A,	the	C,	or	the	not-C	card.	They	are	asked	

to	choose	which	ones	they	would	pick	up	as	useful	to	establish	whether	the	hypothesis	

holds	or	not.	All,	none,	or	any	subset	of	the	four	cards	can	be	selected.	

According	to	Wason’s	(1966)	original,	“Popperian”	reading	of	the	task,	the	A	and	not-C	

search	options	are	useful	because	they	could	falsify	h	(by	possibly	revealing	a	even	number	

and	a	vowel,	respectively),	so	a	rational	agent	should	select	them.	The	not-A	and	C	options,	

on	the	contrary,	could	not	provide	conclusively	refuting	evidence,	so	they’re	worthless	in	

this	interpretation.	However,	observed	choice	frequencies	depart	markedly	from	these	

prescriptions.	In	Oaksford	and	Chater’s	(1994,	p.	613)	metaanalysis,	they	were	89%,	16%,	

62%,	and	25%	for	A,	not-A,	C,	and	not-C,	respectively.	Oaksford	and	Chater	(1994,	2003)	

devised	Bayesian	models	of	the	task	in	which	agents	treat	the	four	cards	as	sampled	from	a	

larger	deck	and	are	assumed	to	maximize	the	expected	reduction	of	uncertainty,	with	

Shannon	entropy	as	the	standard	measure.	Oaksford	and	Chater	postulated	a	foil	

hypothesis	ℎ	in	which	A	and	C	are	statistically	independent	and	a	target	hypothesis	h	under	
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which	C	always	(or	almost	always)	follows	A.	In	Oaksford	and	Chater’s	(1994)	

“deterministic”	analysis,	C	always	followed	A	under	the	dependence	hypothesis	h.	A	key	

innovation	in	Oaksford	and	Chater	(2003,	p.	291)	was	the	introduction	of	an	“exception”	

parameter,	such	that	P(C|A)	=	1	–	P(exception)	under	h.	The	model	also	requires	

parameters	a	and	g	for	the	probabilities	P(A)	and	P(C)	of	the	antecedent	and	consequent	of	

h.	We	implement	Oaksford	and	Chater’s	(2003)	model,	positing	a	=	0.22	and	g	=	0.27	

(according	to	the	“rarity”	assumption),	and	an	uniform	prior	on	H	=	{h,	ℎ},	as	suggested	in	
Oaksford	and	Chater	(2003,	p.	296).	We	explored	the	implications	of	calculating	the	

expected	usefulness	of	turning	over	each	card,	not	only	according	to	Shannon	entropy	

reduction,	but	for	the	whole	set	of	entropy	measures	from	the	Sharma-Mittal	framework.	11		

Empirical	Data.	We	first	address	how	well	different	expected	entropy	reduction	

measures	correspond	to	empirical	aggregate	card	selection	frequencies	in	the	task,	with	

respect	to	Oaksford	and	Chater’s	(2003)	model.	For	the	selection	frequencies,	we	use	the	

abstract	selection	task	data	as	reported	by	Oaksford	and	Chater	(1994,	p.	613)	and	

mentioned	above	(89%,	16%,	62%,	and	25%	for	A,	not-A,	C,	and	not-C,	respectively).		

Figure	6	(top	row)	shows	the	rank	correlation	between	relevance	values	and	empirical	

selection	frequencies	for	each	order	and	degree	value	from	0	to	20,	in	steps	of	0.25.	First	

consider	results	for	the	model	with	P(exception)	=	0	(Figure	6,	top	left	subplot).	A	wide	

range	of	measures,	including	expected	reduction	of	Shannon	and	Quadratic	entropy,	of	

some	non-concave	entropies	(e.g.,	#$%('(,'.+))	and	of	measures	with	fairly	high	degree	(e.g.,	

#$%('(,-))	correlate	perfectly	with	the	rank	of	selection	frequencies.	However,	if	a	high	

degree	measure	with	moderate	or	high	order	is	used,	the	rank	correlation	is	not	perfect.	

																																																								
11	To	fit	the	relevant	patterns	of	responses,	we	pursued	a	variety	of	methods,	including	optimizing	Hattori’s	

“selection	tendency	function”	(which	maps	expected	entropy	reduction	onto	the	predicted	probability	that	a	

card	will	be	selected,	see	Hattori,	1999,	2002;	also	see	Stringer,	Borsboom,	&	Wagenmakers,	2011),	or	taking	

previously	reported	parameters	for	Hattori’s	selection	tendency	function;	Spearman	rank	correlation	

coefficients;	and	Pearson	correlations.	Similar	results	were	obtained	across	these	methods.	Because	the	rank	

correlations	are	simple	to	discuss,	we	focus	on	those	here.	Full	simulation	results	for	these	and	other	

measures,	model	variants	with	other	values	of	P(exception),	and	Matlab	code,	are	available	from	J.D.N.	



GENERALIZED	INFORMATION	THEORY	AND	HUMAN	COGNITION	

		
36	

Consider	for	instance	the	Tsallis	measure	of	degree	20	(i.e.	#$%(.(,.()).	This	leads	to	

relevance	values	for	the	A,	not-A,	C,	and	not-C	cards	of	0.0281,	0.0002,	0.0008,	and	0.0084,	

respectively.	Because	the	relative	ordering	of	the	C	and	the	not-C	card	is	incorrect	(from	

the	perspective	of	observed	choices),	the	rank	correlation	is	only	0.8.	The	same	rank	

correlation	of	0.8	is	obtained,	but	for	a	different	reason,	from	strongly	non-concave	

relevance	measures.	#$%(.(,(),	for	instance,	gives	values	of	1.181,	0.380,	1.054,	and	0.372	

(again	for	the	A,	not-A,	C,	and	not-C	cards,	respectively),	so	that	the	not-A	card	is	deemed	

more	informative	than	the	not-C	card	by	this	relevance	measure.		

Let	us	now	consider	expected	reduction	of	Origin	entropy,	#$%((,() ,	as	an	example	of	the	0-

order	measures.	It	gives	relevance	values	of	0.527,	0,	0,	and	0.159	for	the	A,	not-A,	C,	and	not-C	

cards,	respectively.	This	is	similar	to	Wason’s	analysis	of	the	task:	only	the	A	and	the	not-C	

cards	can	falsify	a	hypothesis	(namely,	the	dependence	hypothesis	h),	thus	only	those	two	

cards	have	value.	The	other	cards	could	change	the	relative	plausibility	of	h	vs.	ℎ;	however,	
according	to	0-order	measures,	no	informational	value	is	achieved	because	no	hypothesis	is	

definitely	ruled	out.	In	this	sense,	0-order	measures	can	be	thought	of	as	bringing	elements	of	

the	original	logical	interpretation	of	the	selection	task	into	the	same	unified	information-

theoretic	framework	including	Shannon	and	generalized	entropies	(see	below	for	more	on	

this).	Interestingly,	this	does	not	imply	that	the	A	and	the	not-C	cards	are	equally	valuable:	in	

the	model,	the	A	card	offers	a	higher	chance	of	falsifying	h	than	the	not-C	card,	so	it	is	more	

valuable,	according	to	this	analysis.	Thus,	while	incorporating	the	basic	idea	of	the	importance	

of	possible	falsification,	the	0-order	Sharma-Mittal	formalization	of	informational	value	offers	

something	that	the	standard	logical	reading	does	not:	a	rationale	for	assessing	the	relative	

value	among	those	queries	(the	A	and	the	not-C	card)	providing	the	possibility	of	falsifying	a	

hypothesis.	The	Origin	entropy	values	and	the	empirical	data	agree	that	the	A	card	is	most	

useful	and	(up	to	a	tie)	that	the	not-A	card	is	least	useful,	but	disagree	on	virtually	everything	

else;	#$%((,() ’s	rank	correlation	to	empirical	card	selection	frequencies	is	0.6325.		

What	if	Oaksford	and	Chater’s	(2003)	model	is	combined	with	exception	parameter	

P(exception)	=	0.1,	rather	than	0?	In	this	case,	the	empirical	selection	frequencies	perfectly	

correlate	with	the	theoretical	values	for	an	even	wider	range	of	measures	than	for	the	

“deterministic”	model	(Figure	6,	top	right	plot).	For	instance,	Tsallis	of	degree	11,	i.e.	#$%('',''),	
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which	had	rank	correlation	of	0.8	with	P(exception)	=	0,	has	a	perfect	rank	correlation	with	

0.1.	This	is	due	to	the	relative	ordering	of	the	not-A	and	C	cards.	For	the	P(exception)	=	0	

model,	the	A,	not-A,	C,	and	not-C	cards	had	#$%('','') 	relevance	of	0.059,	0.002,	0.012,	and	

0.016,	respectively;	with	P(exception)	=	0.1,	the	cards’	respective	relevance	values	are	0.019,	

0.001,	0.007,	and	0.005.	In	addition,	a	dramatic	difference	between	P(exception)	=	0	and	

P(exception)	=	0.1	arises	for	the	0-order	measures.	If	P(exception)	>	0,	even	if	very	small,	no	

amount	of	obtained	data	can	ever	lead	to	ruling	out	a	hypothesis	in	the	model.	Therefore,	with	

P(exception)	=	0.1	all	cards	have	zero	value	for	0-order	measures,	and	the	correlation	with	

behavioral	data	is	undefined	(plotted	black	in	Figure	6).	

A	probabilistic	understanding	of	Wason’s	normative	indications.	Finally,	we	discuss	how	well	

the	expected	informational	value	of	the	cards,	as	calculated	using	Oaksford	and	Chater’s	

(2003)	model	and	various	Sharma-Mittal	measures,	corresponds	to	Wason’s	original	

interpretation	of	the	task.	We	thus	conducted	the	same	analyses	as	above,	but	instead	of	using	

the	human	selection	frequencies	we	assumed	that	the	A	card	was	selected	with	100%,	the	not-

A	card	with	0%,	the	C	card	with	0%,	and	the	not-C	card	with	100%	probability.	The	0-order	

relevance	measures,	again	within	Oaksford	and	Chater’s	(2003)	model	with	P(exception)	=	0,	

provide	a	probabilistic	understanding	of	Wason’s	normative	indications.	Like	Wason,	the	0-

order	measures	deem	only	the	A	and	the	not-C	cards	to	be	useful	when	P(exception)	=	0.	The	

rank	correlation	with	theoretical	selection	frequencies	from	Wason’s	analysis	is	0.94	(see	

Figure	6,	bottom	left	plot).	Why	is	the	correlation	not	perfect?	The	probabilistic	

understanding	proposed,	as	discussed	above,	goes	beyond	the	logical	analysis:	because	the	A	

card	offers	a	higher	probability	of	falsification	than	the	not-C	card	does	in	the	probability	

model,	the	0-order	relevance	measures	value	the	former	more	than	the	latter.	Recall	that	our	

hypothetical	participants	always	select	both	cards	that	entail	the	possibility	of	falsifying	the	

dependence	hypothesis;	thus,	the	correlation	is	less	than	one.	The	worst	correlation	with	

Wason’s	ranking	is	from	the	strongly	non-concave	measures,	such	as		#$%(.(,();	this	correlation	

is	exactly	zero.	
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Figure	6.	Plots	of	rank	correlation	values	for	the	expected	reduction	of	various	Sharma-Mittal	entropies	in	

Oaksford	and	Chater’s	(2003)	model	of	the	Wason	selection	task.	In	the	top	row,	models	of	expected	

entropy	reduction	are	compared	with	empirical	aggregate	card	selection	frequencies.	In	the	bottom	row,	

instead,	the	comparison	is	with	theoretical	choices	implied	by	Wason’s	original	analysis	of	the	task.	In	the	

left	vs.	right	columns	the	conditional	probability	representation	of	“if	vowel,	then	even	number”	rules	out	

expections	or	allows	for	them	(with	probability	0.1),	respectively.	
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The	Wason	selection	task	illustrates	the	theoretical	potential	of	the	Sharma-Mittal	

framework.	Whereas	other	authors	noted	the	robustness	of	probabilistic	analyses	of	the	

task	across	different	measures	of	informational	utility	(see	Fitelson	&	Hawthorne,	2010;	

Nelson,	2005,	pp.	985-986;	Oaksford	&	Chater,	2007),	the	variety	of	measures	involved	in	

those	analyses	arose	in	an	ad	hoc	way.	We	extend	those	results,	and	show	that	even	the	

traditional,	allegedly	anti-Bayesian	reading	of	the	task	can	be	recovered	smoothly	in	one	

overarching	framework.	In	particular,	the	implications	of	Wason’s	Popperian	

interpretation	can	be	represented	well	by	the	maximization	of	the	expected	reduction	of	an	

entirely	balanced	(order-0)	Sharma-Mittal	measure	(such	as	Origin	or	Hartley	entropy)	in	a	

deterministic	reading	of	the	task	(i.e.,	with	P(exception)	=	0).	Conversely,	this	means	that	

adopting	a	probabilistic	approach	to	Wason’s	task	is	not	by	itself	sufficient	to	account	for	

observed	behavior.	Even	then,	in	fact,	people’s	choices	would	still	diverge	from	at	least	

some	theoretically	viable	models	of	information	search.		

	

6.2.	Information	search	in	experience-based	studies	

Is	the	same	expected	uncertainty	reduction	measure	able	to	account	for	human	behavior	

across	a	variety	of	tasks?	To	explore	this	issue,	we	reviewed	experimental	scenarios	

employed	in	experience-based	investigations	of	information	search	behavior.	In	this	

experimental	paradigm,	participants	learn	the	underlying	statistical	structure	of	an	

environment	where	items	(plankton	specimens)	are	visually	displayed	and	subject	to	a	

binary	classification	(kind	A	vs.	B)	for	which	two	binary	features	(yellow	vs.	black	eye;	dark	

vs.	light	claw)	are	potentially	relevant.	Immediate	feedback	is	provided	after	each	trial	in	a	

learning	phase,	until	a	performance	criterion	is	reached,	indicating	adequate	mastery	of	the	

environmental	statistics.	In	a	subsequent	information-acquisition	test	phase	of	this	

procedure,	both	of	the	two	features	(eye	and	claw)	are	obscured,	and	participants	have	to	

select	the	most	informative	/	useful	feature	relative	to	the	target	categories	(kinds	of	

plankton).	(See	Nelson	et	al.,	2010,	for	a	detailed	description.)	In	our	current	terms,	these	

scenarios	concern	a	binary	hypothesis	space	H	=	{specimen	of	kind	A,	specimen	of	kind	B}	

and	two	binary	tests	E	=	{yellow	eye,	black	eye}	and	F	=	{dark	claw,	light	claw}.	In	each	
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case,	the	experience-based	learning	phase	conveyed	the	structure	of	the	joint	probability	

distribution	P(H,E,F)	to	participants.	The	test	phase,	in	which	either	feature	E	or	F	can	be	

viewed,	represents	a	way	to	see	whether	the	participants	deemed	#/(0, 1)	or	#/(0, 2)	to	
be	greater.		

	

Table	6.	Choices	between	two	binary	tests	/	experiments	(E	vs.	F)	for	a	binary	classification	problem	(H)	in	

experience-based	experimental	procedures.	Cases	1-3	are	taken	from	Nelson	et	al.	(2010,	Exp.	1);	cases	4-5	from	

Exp.	3	in	the	same	article;	case	6	is	an	unpublished	study	using	the	same	experimental	procedure;	cases	7-8	are	

from	Meder	and	Nelson	(2012,	Exp.	1).			

n.	 P(H)	
Test	E	 Test	F	 %	observed	

choices	of	E	
P(H|e)	vs.	P(H|3)	 		P(e)	vs.	P(3)	 P(H|f)	vs.	P(H|4)	 	P(f)	vs.	P(4)	

1	 {0.7,	0.3}	 {0,	1}	

{0.754,	0.246}	

0.072	

0.928	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

82%	(23/28)	

2	 {0.7,	0.3}	 {0,	1}	

{0.767,	0.233}	

0.087	

0.913	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

82%	(23/28)	

3	 {0.7,	0.3}	 {0.109,	0.891}	

{0.978,	0.022}	

0.320	

0.680	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

97%	(28/29)	

4	 {0.7,	0.3}	 {0,	1}	

{0.733,	0,.267}	

0.045	

0.955	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

89%	(8/9)	

5	 {0.7,	0.3}	 {0.201,	0.799}	

{0.780,	0.220}	

0.139	

0.861	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

70%	(14/20)	

6	 {0.7,	0.3}	 {0.135,	0.865}	

{0.848,	0.152}	

0.208	

0.792	

{1,	0}	

{0.501,	0.499}	

0.399	

0.601	

70%	(14/20)	

7	 {0.44,	0.56}	 {0.595,	0.405}	

{0.331,	0.669}	

0.414	

0.586	

{0,	1}	

{0.502,	0.498}	

0.123	

0.877	

60%	(12/20)	

8	 {0.36,	0.64}	 {0.090,	0.910}	

{0.707,	0.293}	

0.562	

0.438	

{0,	1}	

{0.501,	0.499}	

0.282	

0.118	

79%	(15/19)	

	

Overall,	we	found	eight	relevant	experimental	scenarios	from	the	experimental	

paradigm	described	above	(they	are	listed	in	Table	6)	in	which	there	was	at	least	some	

interesting	disagreement	among	the	Sharma-Mittal	measures	about	which	feature	is	more	

useful.	For	each,	we	derived	values	of	expected	uncertainty	reduction	from	Sharma-Mittal	
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measures	of	order	and	degree	from	0	to	20,	in	increments	of	0.25,	and	we	computed	the	

simple	proportion	of	cases	in	which	each	measure’s	ranking	of		#/(0, 1)	and	#/(0, 2)	
matched	the	most	prevalent	observed	choice.	

Nelson	et	al.	(2010)	devised	their	scenarios	to	dissociate	predictions	from	a	sample	of	

competing	and	historically	influential	models	of	rational	information	search.	Their	

conclusion	was	that	the	expected	reduction	of	Error	entropy	(expected	probability	gain,	in	

their	terminology)	accounted	for	participants’	behavior	and	outperformed	the	expected	

reduction	of	Shannon	entropy	(expected	information	gain,	in	their	terminology).	A	more	

comprehensive	analysis	within	our	current	approach	implies	a	richer	picture.	The	data	set	

employed	can	be	accurately	represented	in	the	Sharma-Mittal	framework	for	a	significant	

range	of	degree	values	provided	that	the	order	parameter	is	high	enough	(the	results	are	

displayed	in	Figure	7,	left	side).	Observed	choices	are	especially	consistent	with	expected	

reduction	of	a	quite	unbalanced	(e.g.,	r	≥	4),	concave	or	quasi-concave	(t	close	to	2)	

Sharma-Mittal	entropy	measure.	Importantly,	there	is	overlap	between	results	from	

modeling	the	Wason	selection	task	and	these	experience-based	learning	data,	giving	hope	

to	the	idea	that	a	unified	theoretical	explanation	of	human	behavior	may	extend	across	

several	tasks.	

	

6.3.	Information	search	in	words-and-numbers	studies	

The	experience-based	learning	tasks	discussed	above	were	inspired	by	analogous	tasks	in	

which	the	prior	probabilities	of	categories	and	feature	likelihoods	were	presented	to	

participants	using	words	and	numbers	(e.g.,	Skov	and	Sherman,	1986).	We	refer	to	such	

tasks	as	Planet	Vuma	experiments,	reflecting	the	typically	whimsical	content,	such	as	

classifying	species	of	aliens	on	Planet	Vuma,	designed	to	not	conflict	with	people’s	

experience	with	real	object	categories.	

Whereas	expected	reduction	of	Error	entropy,	and	other	models	as	discussed	above,	

gives	a	plausible	explanation	of	the	experience-based	learning	task	data,	individual	data	in	

words-and-numbers	studies	are	very	noisy,	and	no	attempt	has	been	made	to	see	whether	

a	unified	theory	could	account	for	the	modal	responses	across	these	tasks.	We	therefore	re-

analyzed	empirical	data	from	several	Planet	Vuma	experiments,	in	a	manner	analogous	to	



GENERALIZED	INFORMATION	THEORY	AND	HUMAN	COGNITION	

		
42	

our	analyses	of	the	experience-based	learning	data	above	(Figure	7).	What	do	the	results	

show?	To	our	surprise,	the	results	suggest	that	there	may	be	a	systematic	explanation	of	

people’s	behavior	on	words-and-numbers-based	tasks.	

	

Experience-based	learning	(Plankton)	 Words-and-numbers	presentation	(Planet	Vuma)	

	 	

Figure	7.	On	the	left,	a	graphical	illustration	of	the	empirical	accuracy	of	Sharma-Mittal	measures	relative	to	

binary	information	search	choices	in	8	experience-based	experimental	scenarios	(described	in	Table	6).	The	

shade	at	each	point	illustrates	the	proportion	of	choices	(out	of	8)	correctly	predicted	by	the	expected	

reduction	of	the	corresponding	underlying	entropy,	with	white	and	black	indicating	maximum	(8/8)	and	

minimum	(0/8)	accuracy,	respectively.	Results	suggest	that	an	Arimoto	metric	of	moderate	or	high	order	is	

highly	consistent	with	human	choices.	On	the	right,	illustration	of	the	empirical	accuracy	of	Sharma-Mittal	

measures	in	theoretically	similar	tasks,	but	where	probabilistic	information	is	presented	in	a	standard	

explicit	format	(with	numeric	prior	probabilities	and	test	likelihoods).	In	these	tasks,	individual	participants’	

test	choices	are	highly	noisy.	Can	a	systematic	theory	still	account	for	the	modal	results	across	tasks?	We	

analyzed	13	cases	(described	in	Table	7)	of	binary	information	search	preferences.	The	shade	at	each	point	

illustrates	the	proportion	of	comparisons	(out	of	13)	correctly	predicted	by	the	expected	reduction	of	the	

corresponding	underlying	entropy,	with	white	and	black	again	indicating	maximum	(13/13)	and	minimum	

(0/13)	accuracy,	respectively.	Results	show	that	a	wide	range	of	measures	is	consistent	with	available	

experimental	findings,	including	Shannon	entropy	as	well	as	a	variety	of	high-degree	measures	(degree	much	

higher	than	the	Arimoto	curve).	
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Table	7.	Choices	between	two	binary	tests	/	experiments	(E	vs.	F)	for	a	binary	classification	problem	(H)	in	

words-and-numbers	(Vuma	Planet)	experiments.	Cases	1-6	are	from	Nelson	(2005);	case	7	is	from	Skov	&	

Sherman	(1986),	cases	8-10	are	from	Nelson	et	al.	(2010,	Exp.	1);	cases	11-13	from	Wu	et	al.	(in	press,	Exp.	1-3).	

In	each	case,	test	E	was	deemed	more	useful	than	test	F	by	the	participants.	We	only	report	scenarios	for	which	

at	least	two	Sharma-Mittal	measures	strictly	disagree	about	which	of	the	tests	has	higher	expected	usefulness.	

(Thus,	not	all	feature	queries	involved	in	the	original	articles	are	listed	here.)	Nelson	(2005)	asked	participants	

to	give	a	rank	ordering	among	four	possible	features’	information	values.	Here	we	list	the	six	corresponding	

pairwise	comparisons,	in	each	case	labeling	the	feature	that	was	ranked	higher	as	the	favorite	one	(E).	Wu	et	al.	

(in	press)	studied	14	different	probability,	natural	frequency,	and	graphical	information	formats	for	the	

presentation	of	relevant	probabilities.	For	comparison	with	other	studies,	we	take	results	only	from	the	standard	

probability	format	here.	

n.	 P(H)	
Test	E	 Test	F	

P(e|h)	 	P(3|6)	 P(f|h)	 	P(4|6)	

1	 {0.5,	0.5}	 0.70	 0.30	 0.99	 1.00	

2	 {0.5,	0.5}	 0.30	 0.0001	 0.99	 1.00	

3	 {0.5,	0.5}	 0.01	 0.99	 0.99	 1.00	

4	 {0.5,	0.5}	 0.30	 0.0001	 0.70	 0.30	

5	 {0.5,	0.5}	 0.01	 0.99	 0.30	 0.0001	

6	 {0.5,	0.5}	 0.01	 0.99	 0.70	 0.30	

7	 {0.5,	0.5}	 0.90	 0.55	 0.65	 0.30	

8	 {0.7,	0.3}	 0.57	 0	 0	 0.24	

9	 {0.7,	0.3}	 0.57	 0	 0	 0.29	

10	 {0.7,	0.3}	 0.05	 0.95	 0.57	 0	

11	 {0.7,	0.3}	 0.41	 0.93	 0.03	 0.30	

12	 {0.7,	0.3}	 0.43	 1.00	 0.04	 0.37	

13	 {0.72,	0.28}	 0.03	 0.83	 0.39	 1.00	
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The	degree	of	the	most	plausible	measures	is	considerably	above	the	Arimoto	curve,	

although	not	as	high	as,	for	instance,	Non-Certainty	entropy	(order	30).	From	a	descriptive	

psychological	standpoint,	a	plausible	interpretation	is	that	when	confronted	with	words-

and-numbers-type	tasks,	people	have	a	strong	focus	on	the	chances	of	obtaining	a	certain	

or	near-to-certain	result,	and	are	less	concerned	with	(or,	perhaps,	attuned	to)	the	details	

of	the	individual	items	in	the	probability	distribution.	The	Sharma-Mittal	framework	

provides	potential	explanation	for	heretofore	perplexing	experimental	results,	while	also	

highlighting	key	questions	(e.g.,	how	much	preference	for	near-certainty,	exactly,	do	

subjects	have)	for	future	empirical	research	on	words-and-numbers	tasks.	

	

6.4.	Unifying	theory	and	intuition	in	the	Person	Game	(Having	your	cake	and	eating	it	too)	

In	this	section,	we	introduce	another	theoretical	conundrum	from	the	literature,	and	show	

how	the	Sharma-Mittal	framework	may	help	solve	it.	As	pointed	out	above,	the	expected	

reduction	of	Error	entropy	had	appeared	initially	to	provide	the	best	explanation	of	

people’s	intuitions	and	behavior	on	experience-based-learning-based	information	search	

tasks	(Nelson	et	al.,	2010).	But	this	model	leads	to	potentially	counterintuitive	behavior	on	

another	interesting	kind	of	information	search	task,	namely	the	Person	Game	(a	variant	of	

the	Twenty	Questions	game).	In	this	game,	n	cards	(say,	20)	with	different	faces	are	

presented.	One	of	those	faces	has	been	chosen	at	random	(with	equal	probability)	to	be	the	

correct	face	in	a	particular	round	of	the	game.	The	player’s	task	is	to	find	the	true	face	in	

the	smallest	number	of	yes/no	questions	about	physical	features	of	the	faces.	For	instance,	

asking	whether	the	person	has	a	beard	would	be	a	possible	question,	E	=	{e,7},	with	e	=	
beard	and	7	=	no	beard.	If	k	<	n	is	the	number	of	characters	with	a	beard,	then	P(e)	=	k/n	
and	P(7)	=	(n	–	k)/n.	Moreover,	a	“yes”	answer	will	leave	k	equiprobable	guesses	still	in	
play,	and	a	“no”	answer	n	–	k	such	guesses.			

Several	papers	have	reported	(see	Nelson	et	al.,	2014,	for	references)	that	people	

preferentially	ask	about	features	that	are	possessed	by	close	to	50%	of	the	remaining	

possible	items,	thus	with	P(e)	close	to	0.5.	This	strategy	can	be	labelled	the	split-half	
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heuristic.	It	is	optimal	to	minimize	the	expected	number	of	questions	needed	under	some	

task	variants	(Navarro	&	Perfors,	2011),	although	not	in	the	general	case	(Nelson,	Meder,	&	

Jones,	2016),	and	can	be	accounted	for	using	expected	Shannon	entropy	reduction.	But	

expected	Shannon	entropy	reduction	cannot	account	for	people’s	behavior	on	experience-

based	learning	information	search	tasks,	as	our	above	analyses	show.	Can	expected	Error	

entropy	reduction	account	for	these	results	and	intuitions?	Put	more	broadly,	can	the	same	

entropy	model	provide	a	satisfying	account	for	both	the	Person	Game	and	the	experience-

based	learning	tasks?	As	it	happens,	Error	entropy	cannot	account	for	the	preference	to	

split	the	remaining	items	close	to	50%.	In	fact,	every	possible	question	(unless	its	answer	is	

known	already,	because	none	or	all	of	the	remaining	faces	have	the	feature)	has	exactly	the	

same	expected	Error	entropy	reduction,	namely	1/k,	where	there	are	k	items	remaining	

(Nelson,	Meder,	&	Jones,	2016).	This	might	lead	us	to	wonder	whether	we	must	have	

different	entropy/information	models	to	account	for	people’s	intuitions	and	behavior	

across	these	different	tasks.	Indeed,	it	would	call	into	question	the	potential	for	a	unified	

and	general	purpose	theory	of	the	psychological	value	of	information.	

It	turns	out	that	the	findings	on	why	expected	Shannon	entropy	reduction	favors	

questions	close	to	a	50:50	split,	and	why	Error	entropy	has	no	such	preference,	apply	much	

more	generally	than	to	Shannon	and	Error	entropy.	In	fact,	for	all	Sharma-Mittal	measures,	

the	ordinal	evaluation	of	questions	on	the	Person	Game	is	solely	a	function	of	the	degree	of	

the	entropy	measure,	and	has	nothing	to	do	with	the	order	of	the	measure	[Suppl	Mat,	5].	

Among	other	things,	this	implies	that	all	entropy-based	measures	with	degree	t	=	1	have	

the	exact	same	preferences	as	expected	Shannon	entropy	reduction,	and	all	of	them	

quantify	the	usefulness	of	querying	a	feature	as	a	function	of	the	proportion	of	remaining	

items	that	possess	that	feature.	Similarly,	all	degree-2	measures,	and	not	only	Error	

entropy,	deem	all	questions	to	be	equally	useful	in	the	Person	Game.	The	core	of	this	

insight	stems	from	the	fact	that,	if	a	probability	distribution	is	uniform,	then	the	entropy	of	

that	distribution	depends	only	on	the	degree	of	a	Sharma-Mittal	entropy	measure.	More	

formally,	for	any	set	of	hypotheses	H	=	{h1,	h2,	…	hn}	with	a	uniform	probability	distribution	

U(H):	

789:
$%(;,<)(0) = >8?(8)	
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Figure	8.	The	expected	entropy	reduction	of	a	binary	question	E	=	{e,7}	in	the	Person	Game	with	a	
hypothesis	set	H	of	size	40	(the	possible	guesses,	that	is,	characters	initially	in	play)	as	a	function	of	the	

proportion	of	possible	guesses	remaining	after	getting	datum	e	(e.g.,	a	“yes”	answer	to	“has	the	chosen	person	

a	beard?”).		Questions	are	deemed	most	valuable	with	the	zero-degree	entropy	measures	(bottom	right	plot).	

Although	the	shape	of	the	curve	is	similar	for	the	degree	t	=	0	and	degree	t	=	1	measures,	the	actual	

information	value	(see	the	y	axis)	decreases	as	the	degree	increases.	For	degree	t	=	2	(for	example	for	Error	

entropy),	every	question	is	equally	useful	(provided	that	there	is	some	uncertainty	about	the	answer;	bottom	

left	plot).	If	the	degree	is	greater	than	2,	then	the	least-equally-split	questions	(e.g.,	1:39	questions,	in	the	case	

of	40	items)	are	deemed	most	useful	(left	column,	top	and	middle	row).	The	order	parameter	is	irrelevant	for	

purposes	of	evaluating	questions’	expected	usefulness	in	the	Person	Game,	because	all	prior	and	possible	

posterior	probability	distributions	are	uniform	(see	text).	
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Figure	8	shows	how	possible	questions	are	valued,	in	the	Person	Game,	as	a	function	of	

the	proportion	of	remaining	items	that	possess	a	particular	feature.	We	see	that	if	t	=	1,	as	

for	Shannon	and	all	Rényi	entropies,	questions	with	close	to	a	50:50	split	are	preferred.	If	

the	degree	t	is	greater	than	1	but	less	than	2,	questions	with	close	to	a	50:50	split	are	still	

preferred,	but	less	so.	If	t	=	2,	then	1:99	and	50:50	questions	are	deemed	equally	useful.	

Remarkably,	if	the	degree	is	greater	than	2,	then	a	1:99	question	is	preferred	to	a	50:50	

question.		

While	the	choice	of	particular	Sharma-Mittal	measures	is	only	partly	constrained	by	

observed	preferences	in	the	Person	Game	alone	(and	specifically	the	value	of	the	order	

parameter	r	is	not),	nothing	in	principle	would	guarantee	that	a	joint	and	coherent	account	

of	such	behavior	and	other	findings	exists.	It	is	then	important	to	point	out	that	one	can,	in	

fact,	pick	up	an	entropy	measure	whereby	the	experience-based	data	above	follow	along	

with	a	greater	informative	value	for	50:50	questions	than	for	1:99	questions	in	the	Person	

Game.	For	instance,	medium-order	Arimoto	entropies	(such	as	789$%('(,'.@))	will	work.	

	

7.	General	discussion	

In	this	paper,	we	have	presented	a	general	framework	for	the	formal	analysis	of	

uncertainty,	the	Sharma-Mittal	entropy	formalism.	This	framework	generates	a	

comprehensive	approach	to	the	informational	value	of	queries	(questions,	tests,	

experiments)	as	the	expected	reduction	of	uncertainty.	The	amount	of	theoretical	insight	

and	unification	achieved	is	remarkable,	in	our	view.	Moreover,	such	a	framework	can	help	

us	understand	existing	empirical	results,	and	point	out	important	research	questions	for	

future	investigation	of	human	intuition	and	reasoning	processes	as	concerns	uncertainty	

and	information	search.		

Mathematically,	the	parsimony	of	the	Sharma-Mittal	formalism	is	appealing	and	yields	

decisive	advantages	in	analytic	manipulations,	derivations,	and	calculations,	too.	Within	the	

domain	of	cognitive	science,	no	earlier	attempt	has	been	made	to	unify	so	many	existing	

models	concerning	information	search	/	acquisition	behavior.	Notably,	this	involves	both	

popular	candidate	rational	measures	of	informational	utility	(such	as	the	expected	
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reduction	of	Shannon	or	Error	entropy)	and	avowed	heuristic	models,	such	as	Baron	et	al.’s	

(1988,	106)	quasi-Popperian	heuristic	(maximization	of	the	expected	number	of	

hypotheses	ruled	out,	i.e.,	the	expected	reduction	of	Origin	entropy)	and	Nelson	et	al.’s	

(2010,	962)	“probability-of-certainty”	heuristic	(closely	approximated	by	the	expected	

reduction	of	a	high	degree	Tsallis	entropy,	or	a	similar	measure).	In	addition,	once	applied	

to	uncertainty	and	information	search,	the	Sharma-Mittal	parameters	are	not	dumb	

mathematical	construals,	but	rather	capture	cognitively	and	behaviorally	meaningful	ideas.	

Roughly,	the	order	parameter,	r,	captures	how	much	one	disregards	minor	hypotheses	(via	

the	kind	of	means	applied	to	the	probability	values	in	P(H)).	The	degree	parameter	t,	on	the	

other	hand,	captures	how	much	one	cares	about	getting	(very	close)	to	certainty	(via	the	

behavior	of	the	surprise	/	atomic	information	function;	see	Figure	3).	Thus,	high	order	

indicates	a	strong	focus	on	the	prevalent	(most	likely)	element	in	the	hypothesis	set	and	

lack	of	consideration	for	minor	possibilities.	A	very	low	order,	on	the	other	hand,	implies	a	

Popperian	or	quasi-Popperian	attitude	in	the	assessment	of	tests,	with	a	marked	

appreciation	of	potentially	falsifying	or	almost	falsifying	evidence.	The	degree	parameter,	

in	turn,	has	important	implications	for	how	much	potentially	conclusive	experiments	are	

valued,	as	compared	to	experiments	that	are	informative	but	not	conclusive.	Moreover,	for	

each	particular	order,	if	the	degree	is	higher	than	the	corresponding	Arimoto	entropy	(and	

in	any	case	if	the	order	is	less	than	0.5	or	the	degree	is	at	least	2),	then	the	concavity	of	the	

entropy	measure	guarantees	that	no	experiment	will	be	rated	as	having	negative	expected	

usefulness.	

Even	according	to	fairly	cautious	views	such	as	Aczel’s	(1984),	the	above	remarks	seem	

to	provide	a	fairly	strong	motivation	to	consider	pursuing	a	generalized	approach.	Here	is	

another	possible	concern,	however.	Uncertainty	and	the	informational	value	of	tests	may	

be	involved	in	many	arguments	concerning	human	cognition.	Now	we	see	that	those	

notions	can	be	formalized	in	many	different	ways,	such	that	different	properties	(say,	

additivity,	or	non-negativity)	are	or	are	not	implied.	Thus,	the	arguments	at	issue	might	be	

valid	for	some	choices	of	the	corresponding	measures	and	not	for	others.	This	point	has	

been	labelled	the	issue	of	measure-sensitivity	in	related	areas	(Fitelson,	1999)	—	is	it	

something	to	be	worried	about?	Does	it	raise	problems	for	our	proposal?		
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It	is	not	uncommon	for	measure-sensitivity	to	foster	skeptical	or	dismissive	reactions	on	

the	prospects	of	the	formal	analysis	of	the	concept	at	issue	(e.g.	Hurlbert,	1971,	Kyburg	&	

Teng,	2001,	pp.	98	ff.).	However,	measure-sensitivity	is	a	widespread	and	mundane	

phenomenon.	In	areas	related	to	the	formal	analysis	of	reasoning,	the	issue	arises,	for	

instance,	for	Bayesian	theories	of	inductive	confirmation	(e.g.,	Brössel	2013;	Crupi	&	

Tentori,	2016;	Festa	&	Cevolani,	2016;	Glass,	2013;	Hájek	&	Joyce,	2008;	Roche	&	Shogenji,	

2014),	scoring	rules	and	measures	of	accuracy	(e.g.,	D’Agostino	&	Sinigaglia,	2010;	Leitgeb	

&	Pettigrew,	2010a,b;	Levinstein,	2012;	Predd	et	al.,	2009),	and	measures	of	causal	

strength	(e.g.,	Griffiths	&	Tenenbaum,	2005,	2009;	Fitelson	&	Hitchcock,	2011;	Meder,	

Mayrhofer,	&	Waldmann,	2014;	Sprenger,	2016).	Our	treatment	contributes	to	make	the	

same	point	explicit	for	measures	of	uncertainty	and	the	informational	value	of	

experiments.	This	we	see	as	a	constructive	contribution.	The	prominence	of	one	specific	

measure	in	one	research	domain	may	well	have	been	partly	affected	by	historical	

contingencies.	As	a	consequence,	when	a	theoretical	or	experimental	inference	relies	on	

the	choice	of	one	measure,	it	makes	sense	to	check	how	robust	it	is	across	different	choices	

or,	alternatively,	to	acknowledge	which	measure-specific	properties	support	the	conclusion	

and	how	compelling	they	are.	Having	a	plurality	of	related	measures	available	is	indeed	an	

important	opportunity.	It	prompts	thorough	investigation	of	the	features	of	alternative	

options	and	their	relationships	(e.g.,	Crupi,	Chater,	&	Tentori,	2013;	Huber	&	Schmidt-Petri,	

2009;	Nelson,	2005,	2008),	it	can	provide	a	rich	source	of	tools	for	both	theorizing	and	the	

design	of	new	experimental	investigations	(e.g.,	Rusconi	et	al.,	2014;	Schupbach,	2011;	

Tentori	et	al.,	2007),	and	it	makes	it	possible	to	tailor	specific	models	to	varying	tasks	and	

contexts	within	an	otherwise	coherent	approach	(e.g.,	Crupi	&	Tentori,	2014;	Dawid	&	

Musio,	2014;	Oaksford	&	Hahn,	2007).	

Which	Sharma-Mittal	measures	are	more	consistent	with	observed	behavior	overall?	

According	to	our	analyses,	a	subset	of	Sharma-Mittal	information	search	models	receives	a	

significant	amount	of	convergent	support.	We	found	that	measures	of	high	but	finite	order	

accounting	for	the	experience-based	(plankton	task)	data	(Figure	7,	left	side)	are	also	

empirically	adequate	for	abstract	selection	task	data	(Figure	6,	top	row)	and	results	from	a	

Twenty	Questions	kind	of	task	such	as	the	Person	Game	(Figure	8).	On	the	other	hand,	the	
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best	fit	with	words-and-numbers	(Planet	Vuma)	information	search	tasks	indicates	a	

different	kind	of	model	within	the	Sharma-Mittal	framework	(Figure	7,	right	side).	For	

these	cases,	our	analysis	thus	suggests	that	people’s	behavior	may	comply	with	different	

measures	in	different	situations,	so	a	key	question	arises	about	the	features	of	a	task	which	

affect	such	variation	in	a	consistent	way,	such	as	a	comparably	stronger	appreciation	of	

certainty	or	quasi-certainty	as	prompted	by	an	experimental	procedure	conveying	

environmental	statistics	by	explicit	verbal	and	numerical	stimuli.	

Beyond	this	broad	outlook,	our	discussion	also	allows	for	the	resolution	of	a	number	of	

puzzles.	Let	us	mention	a	last	one.	Nelson	et	al.	(2010)	had	concluded	from	their	

experimental	investigations	that	human	information	search	in	an	experience-based	setting	

was	appropriately	accounted	for	by	maximization	of	the	expected	reduction	of	Error	

entropy.	This	specific	model,	however,	exhibits	some	questionable	properties	related	to	its	

lack	of	mathematical	continuity:	in	particular,	if	the	most	likely	hypothesis	in	H	is	not	

changed	by	any	possible	evidence	in	E,	then	the	latter	has	no	informational	utility	

whatsoever	according	to	#ABBCB ,	no	matter	if	it	can	rule	out	other	non-negligible	
hypotheses	in	the	set	(see,	e.g.,	cases	1	and	6	in	Table	6).	Findings	from	Baron	et	al.	(1988)	

suggest	that	this	might	not	describe	human	judgment	adequately.	In	that	study,	

participants	were	given	a	fictitious	medical	diagnosis	scenario	with	P(H)	=	{0.64,	0.24,	

0.12},	and	a	series	of	possible	binary	tests	including	E	such	that	P(H|e)	=	{0.47,	0.35,	0.18},	

P(H|7)	=	{1,0,0}	and	P(e)	=	0.68	and	another	completely	irrelevant	test	F	(with	an	even	
chance	of	a	positive	/	negative	result	on	each	one	of	the	elements	in	H,	so	that	P(H|f)	=	

P(H|D)	=	P(H)).	According	to	#ABBCB ,	tests	E	and	F	are	both	equally	worthless	—	

#/ABBCB(0, 1) = #/ABBCB(0, 2) = 0	—	because	hypothesis	h1	Î	H	remains	the	most	likely	no	

matter	what.	Participants’	mean	ratings	of	the	usefulness	of	E	and	F	were	markedly	

different,	however:	0.48	vs.	0.09	(on	a	0-1	scale).	Indeed,	rating	E	higher	than	F	seems	at	

least	reasonable,	contrary	to	what	#ABBCB 	implies.	In	the	Sharma-Mittal	framework,	
reconciliation	is	possible:	expected	reduction	of	a	relatively	high	order	(say,	10)	entropy	

measure	from	the	Arimoto	family	would	account	for	Nelson	et	al.’s	(2010)	and	similar	

findings	(see	Figure	7),	and	still	would	not	put	test	E	above	on	a	par	with	the	entirely	

pointless	test	F.	Indeed,	given	our	theoretical	background	and	the	limited	empirical	
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indications	available,	such	a	measure	would	count	as	a	plausible	choice	in	our	view,	had	

one	to	pick	up	a	specific	entropy	underlying	a	widely	applicable	model	of	the	informational	

utility	of	experiments.	Moreover,	this	kind	of	operation	has	wider	scope.	Origin	entropy,	for	

instance,	may	imply	largely	appropriate	ratings	in	some	contexts	(say,	biological)	and	yet	

not	be	well-behaved	because	of	its	discontinuities:	a	Sharma-Mittal	measure	such	as		

789$%((.',(.') 	would	then	closely	approximate	the	former	while	avoiding	the	latter.	

Many	further	empirical	issues	can	be	addressed.	For	one	instance,	our	analysis	of	human	

data	in	Tables	6-7	and	Figure	7	provides	relatively	weak	and	indirect	evidence	against	non-

concave	entropy	measures	as	a	basis	for	the	assessment	of	the	informational	utility	of	

queries	by	human	agents.	However,	strongly	diverging	predictions	can	be	generated	from	

concave	vs.	non-concave	measures	(as	illustrated	in	cases	6	and	7,	Table	5),	and	hence	put	

to	empirical	test.	Moreover,	our	explanatory	reanalysis	of	prior	work	was	based	on	the	

aggregate	data	reported	in	earlier	articles	—	but	how	does	this	extend	to	individual	

behavior?	We	are	aware	of	no	studies	that	address	questions	of	whether	there	are	

meaningful	individual	differences	in	the	psychology	of	information.	Thus,	while	inferences	

about	individuals	should	be	the	goal	(Lee,	2011),	this	requires	future	research,	perhaps	

with	adaptive	Bayesian	experimental	design	techniques	(Kim	et	al.,	2014).	Better	models	of	

individual-level	psychology	could	also	serve	the	goal	of	identifying	the	information	that	

would	be	most	informative	for	individual	human	learners	(Gureckis	&	Markant,	2012),	

potentially	enhancing	automated	tutor	systems.	Another	idea	concerns	the	direct	

assessment	of	uncertainty,	e.g.,	whether	more	uncertainty	is	perceived	in,	say,	P(H)	=	{0.49,	

0.49,	0.02}	vs.	P*(H)	=	{0.70,	0.15,	0.15}.	Judgments	of	this	kind	are	likely	to	play	a	role	in	

human	reasoning	and	decision-making	and	may	be	plausibly	modulated	by	a	number	of	

interesting	factors.	Moreover,	an	array	of	relevant	predictions	can	be	generated	from	the	

Sharma-Mittal	framework	to	dissociate	subsets	of	entropy	measures.	Yet	as	far	as	we	know,	

and	rather	surprisingly,	no	established	experimental	procedure	exists	for	a	direct	

behavioral	measurement	of	the	judged	overall	uncertainty	concerning	a	hypothesis	set;	

this	is	another	important	area	for	future	investigation.	
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1.	Generalized	logarithm	and	exponential	

Consider	the	Tsallis	logarithm,	!"#(%) = (

()#
*%(()#) − 1-,	and	note	that	1 + (1 − /)!"#(%) = %(()#),	

therefore	% = [1 + (1 − /)!"#(%)]
2

234.	This	shows	that	the	generalized	exponential	5#6 =

[1 + (1 − /)%]
2

234	just	is	the	inverse	function	of	!"#(%).		

In	order	to	show	that	the	ordinary	natural	logarithm	is	recovered	from	!"#(%)	(x	>	0)	in	the	limit	for	
t	®	1,	we	posit	x	=	1	–	y	and	first	consider	x	≤	1,	so	that	|–y|	<	1.	Then	we	have:	

lim
#→(

{!"#(%)} = lim
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>
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By	the	binomial	expansion	of	(1 − =)(()#):	
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which	is	the	series	expansion	of	!"(1 − =) = ln	(%)	(recall	that	|–y|	<	1).	For	the	case	x	>	1,	one	can	

posit	x	=	1/(1	–	y),	so	that	again	|–y|	<	1	and	compute	lim
#→(

N
A
2

23O
I
(234)

)(

()#
P = lim

#→(
>−

(

#)(
*(1 − =)(#)() − 1-?,	

thus	getting	the	same	result	from	a	similar	derivation.		

Just	like	the	natural	logarithm,	lnt(x)	is	non-negative	if	x	≥	1,	because	if	t	<	1,	then	%(()#) ≥ %R = 1,	

therefore	 (
()#

*%(()#) − 1- ≥ 0,	while	if	t	>	1,	then	%(()#) ≤ %R = 1,	therefore	again	 (
()#

*%(()#) − 1- ≥ 0.	

If	0	<	x	<	1,	lnt(x)	is	negative	instead,	again	like	the	natural	logarithm.	

To	show	that	the	ordinary	exponential	is	recovered	from	5#(%)	(x	>	0)	in	the	limit	for	t	®	1,	we	
again	rely	on	the	binomial	expansion,	as	follows.	

lim
#→(
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>[1 + (1 − /)%]
2

234?		



	
	
63	
	

	
	

=lim
#→(

U1 + A
(

()#
I (1 − /)% + A

(

()#
I A

(

()#
− 1I

V(()#)6W
C

D!
+ A

(

()#
I A

(

()#
− 1I A

(

()#
− 2I

V(()#)6W
F

G!
+ ⋯ Y	

=lim
#→(

>1 + A
(

()#
I (1 − /)% + A

(

()#
I A

#

()#
I
(()#)C6C

D!
+ A

(

()#
I A

#

()#
I A

D#)(

()#
I
(()#)F6F

G!
+ ⋯ ?	

=1 + % + 6C

D!
+

6F

G!
+ ⋯	

= 1 +∑
6[

\!

]
\^( = 5(%)		

Just	like	the	ordinary	exponential,	et(x)	≥	1	if	x	≥	0,	because	if	t	<	1,	then	one	has	[1	+	(1	–	t)x]	≥	1	
to	a	positive	power	1/(1	–	t),	while	if	t	>	1,	then	one	has	[1	+	(1	–	t)x]	≤	1	to	a	negative	power	1/(1	–	
t).	If	0	<	x	<	1,	et(x)	<	1	instead,	again	like	the	ordinary	exponential.	
	

2.	Sharma-Mittal	entropies	

First	we	will	derive	the	Sharma-Mittal	formula	from	its	generalized	mean	form.	We	have	g(x)	=	
lnret(x)	and	inf(x)	=	lnt(x).	Let	us	find	g–1(x),	by	solving	y	=	g(x)	for	x,	as	follows.	

= = !"_5#(%)	
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Therefore:	
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So	g–1(x)	=	lnter(x).	Now	we	have	all	the	elements	to	derive	the	Sharma-Mittal	formula.	
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Vhi
(_)() − 1WJ?

2

23`		
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= !"#s1 + ∑ hijk∈m
hi
(_)() − ∑ hijk∈m

t

2

23`		

= !"#s∑ hi
_

jk∈m
t

2

23`		= (

()#
qV∑ hi

_
jk∈m

W

234

23` − 1r =
(

#)(
q1 − V∑ hi

_
jk∈m

W

432

`32r		

Let	us	note	that	5"/cd(`,4)	satisfies	the	basic	properties	of	entropy	measures.	As	pointed	out	above,	

Tsallis	logarithm	lnt(x)	is	always	non-negative	if	x	≥	1,	therefore	so	is	∑ hijk∈m
!"_ A

(

pk
I.	Moreover,	

er(x)	≥	1	if	x	≥	0	(see	above),	so	5_ >∑ hijk∈m
!"_ A

(

pk
I? ≥ 1	and	finally	!"#5_ >∑ hijk∈m

!"_ A
(

pk
I? ≥ 0.	

This	proves	that	non-negativity	holds	for	5"/cd(`,4).	Let	us	then	consider	evenness	sensitivity.	We	
already	know	that		5"/cd(`,4)	is	non-negative;	also,	∑ hi

_ = 1jk∈m
	in	case	pi	=	1	for	some	i,	so	that	

5"/
u

cd(`,4)
(f) = 0.	As	a	consequence,	for	any	H	and	P(H),	5"/

b

cd(`,4)
(f) ≥ 5"/

u

cd(`,4)
(f) = 0.	In	order	

to	complete	the	proof	of	evenness	sensitivity,	we	will	now	study	the	maximization	of	5"/cd(`,4)	by	

means	of	so-called	Lagrange	multipliers.	We	have	to	maximize	∑ hijk∈m
!"_ A

(

pk
I =

(

()_
*∑ (hi)

_
jk∈m

− 1-,	so	we	study	o(%(, … , %\) = (

()_
[∑ (%i)

_
(wiw\ − 1]	under	the	constraint	

∑ (%i)(wiw\ = 1.	By	the	Lagrange	multipliers	method,	we	get	a	system	of	n	+	1	equations	as	follows:	

⎩
⎪
⎨

⎪
⎧

a

1 − a
%(

(_)() = |

…
a

1 − a
%\

(_)() = |

%( + ⋯+ %\ = 1

	

where	x1	=	…	=	xn	=	1/n	is	the	only	solution.		This	means	that	∑ hijk∈m
!"_ A

(

pk
I	is	either	maximized	or	

minimized	for	the	uniform	distribution	U(H).	But	actually	5"/
}

cd(`,4)
(f)	must	be	a	maximum,	so	that,	

for	any	H	and	P(H),	5"/
}

cd(`,4)
(f) ≥ 5"/

b

cd(`,4)
(f).	In	fact,	5"/

}

cd(`,4)
(f)	is	strictly	positive,	because	

∑ hijk∈m
!"_ A

(

pk
I = !"_(")	is	(recall	that	n	>	1).	Hence,	for	any	H,	5"/}

cd(`,4)
(f) > 5"/

u

cd(`,4)
(f) = 0,	

and	evenness	sensitivity	is	shown	to	hold.	
	
3.	Some	special	cases	of	the	Sharma-Mittal	family	

Given	the	above	analysis	of	generalized	logarithms	and	exponentials,	we	have	Rényi	(1961)	
entropy	as	a	special	case	of	the	Sharma-Mittal	family	as	follows:	

5"/
b

cd(`,2)
(f) = !" >5_ @∑ hijk∈m

!"_ A
(

pk
IJ?		

= !" �@1 + (1 − a)
(

()_
V∑ hi

_
jk∈m

− 1WJ

2

23`
Ä		

= !" U*∑ hi
_

jk∈m
-

2

23`Y =
(

()_
!"V∑ hi

_
jk∈m

W =	5"/
b

Åé\Bi(`)
(f)	
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For	Shannon	entropy,	in	particular,	one	only	needs	to	note	that	5"/
b

cd(2,2)
(f) =

!" >5 @∑ hijk∈m
!" A

(

pk
IJ? = ∑ hijk∈m

!" A
(

pk
I.		

For	Tsallis	(1988)	entropy,	we	have:	

5"/
b

cd(4,4)
(f) = !"#5# >∑ hijk∈m

!"# A
(

pk
I? = ∑ hijk∈m

!"# A
(

pk
I =

(

#)(
*1 − ∑ hi

#
jk∈m

- = 5"/
b

ÉÑÖÜÜiÑ(4)
(f)		

For	another	generalization	of	Shannon	entropy,	i.e.	Gaussian	entropy	(Frank,	2004),	we	have:	

5"/
b

cd(2,4)
(f) = !"#5 >∑ hijk∈m

!" A
(

pk
I? =

(

()#
�5

(()#)q∑ pkák∈à
Ü\â

2

äk
ãr
− 1Ä = 	5"/

b

åÖçÑÑ(4)
(f)		

The	way	in	which	5"/åÖçÑÑ(4)	recovers	Shannon	entropy	for	t	=	1	again	follows	by	the	behavior	of	

the	generalized	logarithm,	because	5"/
b

åÖçÑÑ(2)
(f) = !" >5 @∑ hijk∈m

!" A
(

pk
IJ? = ∑ hijk∈m

!" A
(

pk
I.	

For	Power	entropies,	5"/
b

cd(`,C)
(f) = 5"/

b

béèê_(`)
(f)	follows	immediately	from	5"/

b

cd(`,4)
(f) =

(

#)(
q1 − V∑ hi

_
jk∈m

W

432

`32r,	and	the	same	for	Quadratic	entropy,	i.e.,	5"/
b

cd(C,C)
(f) = 5"/b

ëçÖí
(f).	

If	we	posit	t	=	2	–	1/r,	we	have	5"/
b

cd
(`,C3

2

`
)
(f) =

_

_)(
q1 − V∑ ì(ℎi)

_
jk∈m

W

2

`r,	which	happens	to	be	

precisely	Arimoto’s	(1971)	entropy,	under	an	inconsequential	change	of	parametrization	(Arimoto,	
1971,	used	a	parameter	b	to	be	set	to	1/r	in	our	notation).	

For	Effective	Number	measures	(Hill,	1973),	we	have:		

5"/
b

cd(`,ï)
(f) =

(

)(
q1 − V∑ hi

_
jk∈m

W

32

`32r = V∑ hi
_

jk∈m
W

2

23` − 1 = 5"/
b

ñó(`)
(f)		

As	a	further	point	concerning	Effective	Numbers,	consider	a	Sharma-Mittal	measure	5"/
b

cd(`,4)
(f) =

!"#5_ >∑ hijk∈m
!"_ A

(

pk
I?,	for	any	choice	of	r	and	t	(both	non-negative).	We	ask	what	is	the	number	N	

of	equiprobable	elements	in	a	partition	K	such	that	5"/
b

cd(`,4)
(f) = 5"/

}

cd(`,4)
(ò).	We	note	that	

5"/
}

cd(`,4)
(ò) = !"#5_{!"_(ô)} = !"#(ô),	thus	we	posit:		

5"/
b

cd(`,4)
(f) = !"#5_ >∑ hijk∈m

!"_ A
(

pk
I? = !"#(ô)		

ô = 5_ >∑ hijk∈m
!"_ A

(

pk
I?		

= @1 + (1 − a)
(

()_
V∑ hi

_ − 1jk∈m
WJ

2

23`		

= V∑ hi
_

jk∈m
W

2

23` = 5"/
b

ñó(`)
(f) + 1		
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This	shows	that,	regardless	of	the	degree	parameter	t,	for	any	Sharma-Mittal	measure	of	a	specified	

order	r,	5"/
b

ñó(`)
(f) + 1	computes	the	theoretical	number	N	of	equally	probable	elements	that	

would	be	just	as	entropic	as	H	under	that	measure	and	given	P(H).	

The	derivation	of	the	form	of		5"/cd(ï,4)	is	as	follows:	

5"/
b

cd(ï,4)
(f) =

(

#)(
q1 − V∑ hi

R
jk∈m

W

432

32 r	= (

()#
*("K)(()#) − 1-	= !"#("

K)		

where	"K	is	the	number	of	elements	in	H	with	a	non-null	probability	according	to	P(H)	(recall	that	
we	apply	the	convention	00	=	0,	common	in	the	entropy	literature).	Hartley	entropy,	
5"/b

mÖ_#ÜêB
(f) = !"("K),	immediately	follows	as	a	special	case	for	t	=	1,	just	as	Origin	entropy,	

5"/b
ö_iõi\

(f) = "K − 1,	for	t	=	0.	t	=	2	yields	5"/
b

cd(ï,C)
(f) = −[("K))( − 1] =

\ú)(

\ú
.		

For	the	case	of	infinite	order,	we	posit		h∗ = max
jk∈m

(hi)	and	note	the	following	(n	is	again	the	

overall	size	of	H):	

(h∗)
_ ≤ ∑ hi

_ ≤jk∈m
"(h∗)

_		

Assuming	#)(
_)(

≥ 0	involves	no	loss	of	generality	in	what	follows:	

((h∗)
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432
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W
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`32 ≤ ("(h∗)
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W
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W
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>
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>!" @((h∗)
_)

432

`32J?		

Therefore:	
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W
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`32rY = lim
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432

`32J? = lim
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`

`32I
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rY	 	 	 	

The	limit	for	r	®	¥	of	the	argument	of	the	ln	function	exists	and	is	finite:	 lim
_→]

qA(h∗)
`

`32I
#)(

r =

h∗
(#)().	For	this	reason,	we	can	conclude:	
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W

432

`32rY = !" U lim
_→]

qA(h∗)
`

`32I
#)(

rY		

lim
_→]

qV∑ hi
_

jk∈m
W

432

`32r = h∗
(#)()		



	
	
67	
	

	
	

(

()#
q lim
_→]

V∑ hi
_

jk∈m
W

432

`32 − 1r =
(

()#
*h∗

(#)() − 1-		

lim
_→]

q
(

()#
âV∑ hi

_
jk∈m

W

432

`32 − 1ãr =
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I
()#

− 1ã		

lim
_→]
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b

cd(`,4)
(f)J = !"# A

(

p∗
I		

Error	entropy	is	a	special	case	for	t	=	2,	because	!"D A (p∗I = −âA
(

p∗
I
)(

− 1ã = 1 − h∗ = 1 −max
jk∈m

(hi).	

t	=	1	yields	!" † (

°¢£
ák∈à

(pk)
§,	while,	for	t	=	0,	one	immediately	has		 (

°¢£
ák∈à

(pk)
− 1.	

	
4.	Ordinal	equivalence,	additivity,	and	concavity	

The	ordinal	equivalence	of	any	pair	of	Sharma-Mittal	measures	5"/cd(`,4)	and	5"/cd(`,4∗)	with	the	
same	order	r	and	different	degrees,	t	and	t*,	is	easily	proven	on	the	basis	of	the	inverse	relationship	
of	lnt(x)	and	et(x).	In	fact,	for	any	r,	t,	t*,	and	any	H	and	P(H),	5"/cd(`,4)	is	a	strictly	increasing	function	
of	5"/cd(`,4∗):	

5"/
b

cd(`,4)
(f) = !"#5_ @∑ hijk∈m

!"_ A
(

pk
IJ		

= !"#5#∗ >!"#∗5_ @∑ hijk∈m
!"_ A

(

pk
IJ?		

	= !"#5#∗ >5"/b
cd(`,4∗)(f)?	

For	degrees	t,	t*	≠	1,	this	implies	that:	

5"/
b

cd(`,4)
(f) =

(

()#
�@1 + (1 − /∗)5"/

b

cd(`,4∗)
J

234

234∗

− 1Ä		

whereas	when	t	=	1	and/or	t*	=1,	the	limiting	cases	of	the	ordinary	exponential	and/or	natural	
logarithm	apply.	This	general	result	is	novel	in	the	literature	to	the	best	of	our	knowledge.	
However,	a	well-known	special	case	is	the	relationship	between	Rényi	entropies	and	the	Effective	
Number	measures	(see	Hill,	1973,	p.	428,	and	Ricotta,	2003,	p.	191):	

5"/
b

Åé\Bi(`)
(f) = 5"/

b

cd(`,2)
(f)		

= !" >5R @5"/b
cd(`,ï)

(f)J?	

= !" >1 + 5"/
b

cd(`,ï)
(f)?	

= !" >5"/
b

ñó(`)
(f) + 1?	

Another	neat	illustration	involves	Power	entropy	measures	and	Rényi	entropies:	
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5"/
b

béèê_(`)
(f) = 5"/

b

cd(`,C)
(f)		

= !"D >5 @5"/b
cd(`,2)

(f)J?	

= 1 − 5)ê\#•
¶é[Ok(`)

(m)	

We	will	now	derive	the	general	additivity	rule	for	Sharma-Mittal	entropies	concerning	independent	
variables,	i.e.,	when	ß ⊥b ©	holds.	To	simplify	notation,	below	we	will	use	∑(ß)	as	a	shorthand	for	

V∑ ì(%i)
_

6k∈™
W

432

`32	(the	same	for	Y,	and	so	on)	and	we	will	use	5"/(ß)	as	a	shorthand	for		

5"/
b

cd(`,4)
(ß)		(the	same	for	the	expected	reduction	of	entropy,	R).	

5"/(ß) + 5"/(©) − (/ − 1)5"/(ß)5"/(©)		
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=
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−
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_
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=
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#)(
Æ1 − A∑ ∑ ìV%i ∩ =´W

_

B¨∈≠6k∈™
I

432

`32
Ø =	5"/(ß × ©)	

This	additivity	rule	in	turn	governs	the	relationship	between	the	expected	entropy	reduction	of	a	
test	in	case	it	is	a	perfect	(conclusive)	experiment	and	in	case	it	is	not.	More	precisely,	it	implies	
that	for	independent	variables	E	and	H:	

≤(≥, ≥) − ≤(f × ≥, ≥) = (/ − 1)5"/(f)5"/(≥)	

In	fact:	

≤(≥, ≥) − ≤(f × ≥, ≥) = 5"/(≥) − ∑ *5"/V≥|5́ W-ìV5́ Wê¨∈ñ
− 5"/(f × ≥) + ∑ *5"/Vf × ≥|5́ W-ìV5́ Wê¨∈ñ

		

= 5"/(≥) − 0 − 5"/(f) − 5"/(≥) + (/ − 1)5"/(f)5"/(≥) + ∑ *5"/Vf × ≥|5́ W-ìV5́ Wê¨∈ñ
		

= −5"/(f) + (/ − 1)5"/(f)5"/(≥) + ∑ *5"/Vf|5́ W + 5"/V≥|5́ W − (/ − 1)5"/Vf|5́ W5"/V≥|5́ W-ìV5́ Wê¨∈ñ
		

= −5"/(f) + (/ − 1)5"/(f)5"/(≥) + ∑ *5"/Vf|5́ W + 0 − (/ − 1)V5"/Vf|5́ W × 0	W-ìV5́ Wê¨∈ñ
		

= −5"/(f) + (/ − 1)5"/(f)5"/(≥) + 5"/(f) = (/ − 1)5"/(f)5"/(≥)	
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Sharma-Mittal	measures	of	expected	entropy	reduction	are	also	generally	additive	for	a	
combination	of	experiments,	that	is,	for	any	H,E,F	and	ì(f, ≥, µ),	it	holds	that	≤(f, ≥ × µ) =
≤(f, ≥) + ≤(f, µ|≥).	To	see	this,	let	us	first	consider	the	entropy	reduction	of	a	specific	datum	e,	
∆5"/(f, 5) = 5"/(f) − 5"/(f|5).		∆5"/	is	clearly	additive	in	the	following	way:	

∆5"/(f, 5 ∩ o) = 5"/(f) − 5"/(f|5 ∩ o)	
= 5"/(f) − 5"/(f|5) + 5"/(f|5) − 5"/(f|5 ∩ o)	
= ∆5"/(f, 5) + ∆5"/(f, o|5)	

But	this	pattern	carries	over	to	the	expected	value	≤(f, ≥ × µ):	

	≤(f, ≥ × µ) = ∑ ∑ *∆5"/Vf, 5́ ∩ o∑W-ìV5́ ∩ o∑W∏π∈∫ê¨∈ñ
	

= ∑ ∑ *∆5"/Vf, 5́ W + ∆5"/Vf, o∑|5́ W-ìVo∑|5́ WìV5́ W∏π∈∫ê¨∈ñ
		

= ∑ ∑ *∆5"/Vf, 5́ W-ìVo∑|5́ WìV5́ W +∏π∈∫ê¨∈ñ
∑ ∑ *∆5"/Vf, o∑|5́ W-ìVo∑|5́ WìV5́ W∏π∈∫ê¨∈ñ

		

= ∑ *∆5"/Vf, 5́ W-ìV5́ Wê¨∈ñ
+ ∑ s∑ *∆5"/Vf, o∑|5́ W-ìVo∑|5́ W∏π∈∫

tìV5́ Wê¨∈ñ
		

= ≤(f, ≥) + ∑ s≤Vf, µ|5́ WtìV5́ Wê¨∈ñ
		

= ≤(f, ≥) + ≤(f, µ|≥)	

This	result	is	novel	in	the	literature	to	the	best	of	our	knowledge.		

Finally,	we	will	show	that,	for	any	H,E,	and	P(H,E),	≤(f, ≥) ≥ 0	if	and	only	if	ent	is	concave.	Let	
ªb(º)	be	the	expected	value	of	a	variable	v	for	some	probability	distribution	P	=	{p1,	…,	pm},	i.e.	
ªb(º) = ∑ ºi

Ω
i^( hi.	According	to	a	multivariate	version	of	Jensen’s	inequality,	g(%(, … , %\)	is	a	

concave	function	if	and	only	if	g	of	the	expected	values	of	its	arguments	is	greater	than	(or	equal	to)	
the	expected	value	of	g,	that	is:	

g[ªb(%(), … , ªb(%\)] ≥ ªb[g(%(, … , %\)]	

Now	we	set	g(%(, … , %\) = 5"/(f|5)	and	we	posit	that	ªb(%)	be	computed	on	the	basis	of	P(E),	i.e.	
ªb(º) = ∑ ºiìV5́ Wê¨∈ñ

.	Assuming	that	ent	is	concave,	we	have:	
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∑ 	∆5"/(f, 5)ìV5́ Wê¨∈ñ
≥ 0		

≤(f, ≥) ≥ 0	
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5.	Expected	entropy	reduction	in	the	Person	Game	

To	analyze	the	expected	entropy	reduction	of	one	binary	query	in	the	person	game,	we	will	posit	H	
=	{h1,	…,	hn}	(the	set	of	possible	guesses	as	to	who	the	randomly	selected	character	is)	and	E	=	{e,	5}	
(the	yes/no	answers	to	a	question	such	as	“does	the	selected	character	have	blue	eyes?”;	recall	that	
“5”	denotes	the	complement	or	the	negation	of	e).	The	joint	probability	distribution	P(H,E)	is	
defined	as	follows:	P(hiÇe)	=	1/n	in	case	i	≤	k	(with	1	≤	k	<	n)	and	P(hiÇe)	=	0	otherwise;	P(hiÇ5)	=	
0	in	case	i	≤	k	and	P(hiÇ5)	=	1/n	otherwise.	This	implies	that	P(hi)	=	1/n	for	each	i	(all	guesses	are	
initially	equiprobable),	P(hi|e)	=	1/k	for	each	i	≤	k	(the	posterior	given	e	is	a	uniform	distribution	
over	k	elements	of	H),	and	P(hi|5)	=	1/(n	–	k)	for	each	i	>	k	(the	posterior	given	5	is	a	uniform	
distribution	over	n	–	k	elements	of	H).		Moreover,	P(e)	=	k/n.		Given	the	general	fact	that		
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Algebraic	manipulations	yield:	
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In	the	special	case	t	=	2,	one	then	has	≤
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,	so	that	the	expected	usefulness	of	query	E	is	

constant,	regardless	of	the	value	of	P(e).	More	generally,	however,	the	first	derivative	of	≤
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which	equals	zero	for	P(e)	=	P(5),	so	that	≤
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(f, ≥)	has	a	maximum	or	a	minimum	for	P(e)	=	½.	

The	second	derivative,	in	turn,	is:	
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which	is	strictly	positive	[negative]	in	case	t	is	strictly	higher	[lower]	than	2.	So,	in	the	person	game,	
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(f, ≥)	is	a	strictly	concave	function	of	P(e)	when	t	<	2,	and	P(e)	=	½	is	then	a	maximum.	

When	t	>	2,	on	the	contrary,	≤
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(f, ≥)	is	a	strictly	convex	function	of	P(e),	and	P(e)	=	½	is	then	a	

minimum.	This	general	result	is	novel	in	the	literature	to	the	best	of	our	knowledge.	
	

	


