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We argue for enlarging the traditional view of quantum gravity, based on ‘quantizing GR’,

to include explicitly the non-spatiotemporal nature of the fundamental building blocks sug-

gested by several modern quantum gravity approaches (and some semi-classical arguments),

and to focus more on the issue of the emergence of continuum spacetime and geometry from

their collective dynamics. We also discuss some recents developments in quantum gravity

research, aiming at realising these ideas, in the context of group field theory, random tensor

models, simplicial quantum gravity, loop quantum gravity, spin foam models.

PACS numbers:

I. INTRODUCTION

The quest for quantum gravity has undergone a dramatic shift in focus and direction in recent

years. This shift followed, and at the same time inspired and directly produced many important

results, further supporting the new perspective. The purpose of this contribution is to outline this

new perspective, and to clarify the conceptual framework in which quantum gravity should then

be understood. We will emphasize how it differs from the traditional view and new issues that it

gives rise to, and we will frame within it some recent research lines in quantum gravity.

Both the traditional and new perspectives on quantum gravity are nicely captured in terms

of a ‘diagram in the space of theoretical frameworks’. The traditional view can be outlined in

correspondence with the ‘Bronstein cube’ of physical theories [1]. The more modern perspective,

we argue, is both to a deepening of this traditional view, and a broader framework, which we will

outline using (somewhat light-heartedly) a ‘Bronstein hypercube’ of physical theories.

II. THE BRONSTEIN CUBE OF QUANTUM GRAVITY

The Bronstein cube of quantum gravity [1] is in the picture below. It lives in the cGh space,

identified by the three axes labeled by Newton’s gravitational constant G, the (constant) velocity
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of light c, or, better, its inverse 1/c, and Planck’s constant h. Its exact dimensions do not matter,

the axes all run from 0 to infinity, but its corners can be identified with the finite values that the

same constants take in modern physical theories.

The picture does not represent specific physical theories or models (despite some of the names

used in the same picture), but more general theoretical frameworks. Its conceptual meaning can

be understood by moving along its corners, starting from the simplest theoretical framework, i.e.

classical mechanics, located at the origin (0, 0, 0) (understood as hosting all theories and models

formalised within this framework, be them about fields, particles, forces). Moving from the origin

along the G-axis, we start including in our theoretical framework gravitational physics, i.e. the

effects of the gravitational interactions on the same entities dealt with in classical mechanical

models. The very moment these become non-zero, we are in the realm of classical Newtonian

gravity. If we move instead from the origin along the 1/c axis, we start taking into account

relativistic effects, i.e. due to the finite propagation speed of physical signals (information), bodies

and interactions, bounded by the velocity of light. If both relativistic effects and gravitational ones

are taken into account, we reach the corner presided by General Relativity, a classical, relativistic

mechanics including also the gravitational interactions of all mechanical systems. Historically, this

is the corner reached with the first revolution of 20th century physics. The other revolution came

with the realization that an altogether different ‘direction’exists, in the physical world: quantum

phenomena, those due (roughly) to the existence of a finite lower bound for the ‘action’of a system,

for the area it can occupy in phase space, corresponding to the Planck constant h. Thus, moving
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from the origin along the h-direction, we find quantum mechanics, the modern framework for all

physical systems, with its associated amount of weirdness and marvels, which we have not yet grown

fully accustomed to. Actually, it becomes the modern framework for all physical systems once we

take into account also relativistic features, by moving also along away from the non-relativistic side

of the cube, entering the domain of quantum field theory. This is indeed the modern framework of

physics. Or is it? Not really, of course, since we know that all systems are quantum and relativistic,

but we also know that gravity exists and that, in the more modern understanding coming from GR,

the gravitational field, the spacetime geometry that is identified with it, and thus spacetime itself,

is a physical, dynamical entity. Modern physics is somehow framed either close to the GR corner,

or around the QFT corner, but it cannot be said to correspond to any single domain within the

Bronstein cube, lacking a quantum theory of gravity. We would like then to be able to move along

both the h-direction and the G-direction, incorporating both gravitational effects (including very

strong ones) and quantum effects into a single coherent description of the world. The corner we

would reach by constructing a quantum gravity theory would be that of a ‘theory of everything’,

not in the sense of any ontological unification of all physical systems into a single physical entity

(although that is a possibility, and a legitimate aspiration for many theoretical physicists), but

simply in the sense that in such framework we could in principle describe in a formally unified way

all known types of phenomena: quantum, relativistic, gravitational.

Obviously, the above is but an extremely rough sketch of theoretical physics. It does not account

even remotely for the complexity of phenomena that are actually described by the mentioned

frameworks. And it does not say anything about the very many subtleties involved in actually

moving from one framework to the other, and back from there. One example should suffice to

illustrate these limitations: the classical limit, which naively should allow us to reduce a quantum

(description of a) system to its classical counterpart. Taking this limit and understanding how the

classical world emerges from the quantum one is a notoriously thorny topic, involving mathematical

complications and conceptual ones, including the issue of measurement, decoherence, etc Other

limitations have to do with the fact that all the quantities appearing in the picture are dimensionful,

and thus they do not correspond to directly observable/measurable quantities. Plus, no mention

is made of the actual nature of the systems considered, which however modifies greatly what can

actually be described (and how) within each framework. For example, we know that a relativistic

description of quantum interacting particles is problematic and requires to move to a field-theoretic

framework, being then understood only as an excitation of a quantum field. Thus, not every entity

can live in every corner of the Bronstein cube.
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Before we discuss how the Bronstein cube encodes the problem of quantum gravity, and what

is missing about it from a more modern standpoint, it is useful to point out what else is missing

in it, from the landscape of modern theoretical physics. Entirely missing is the whole realm of

statistical mechanics and condensed matter theory, even though this can be argued to represent

the third revolution in modern physical thinking occurred during the last century. The list of

new phenomena and surprising lessons about the natural world that this third revolution has

brought to us is very long indeed: from the whole idea of the renormalization group, to the rich

theory and phenomenology of phase transitions, including the discovery of new phases of matter;

from superfluidity and superconductivity to new materials; from the ubiquitous role of symmetry

and symmetry breaking to the role of quantum information theory in understanding quantum

many-body systems. One argument against considering all of this on the same footing as the

theoretical frameworks occupying the corners of the Bronstein cube could be that they are not

‘fundamental physics’, since they are all complicated results of simple laws corresponding to the

quantum mechanics of many atoms or electrons interacting mostly via the electromagnetic field.

This objection, however, rests on a reductionist attitude that has been convincingly challenged in

the past [2] and we find untenable. One can consider condensed matter theory not fundamental

when looking at purely ontological aspects, since it deals with ‘derived entities’or ‘derived laws’for

fundamental entities (and even this could be challenged, since it assumes a very rigid ontology),

but the Bronstein cube, as we presented it, is not about the ontology of the world. From a more

epistemological perspective, on the other hand, the discovery of emergent features from collective

behaviour of fundamental entities, as well as the very complexity, richness and stability of this

emergent realm of phenomena is a fundamental change in our view of the world, and should be

considered as radical and important as those corresponding to the three axes of the Bronstein

cube. This is not a new idea. For example, it had been proposed to add the Boltzmann constant

to the other three, and extend accordingly the theory space as pictured in the Bronstein cube [3].

This is not the extension that we will discuss in the following, as ours will be directly motivated

by quantum gravity considerations. However, we will see that our extension can also be seen as

incorporating the insights of this third physics revolution.

III. THE PROBLEM OF QUANTUM GRAVITY FROM THE BRONSTEIN CUBE

Before thinking about such extension, let us dig more into the perspective on quantum gravity

as encoded in the Bronstein cube. This is the straightforward view that sees quantum gravity as ob-
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tained from quantizing the geometry (metric/gravitational field) of spacetime and its dynamics, by

whatever quantization method, i.e. as ‘quantized GR’. The quantum gravity corner can be reached

by incorporating quantum effects starting from the GR corner, or by adding the gravitational as-

pects of the world (equivalently, non-trivial spacetime geometries) in a quantum description of it.

This corresponds to the strategy of all the traditional approaches to quantum gravity [4]: canonical

quantum gravity, including, at least in its original form, the connection-based version of this pro-

gramme corresponding to loop quantum gravity [5]; covariant path integral formalisms, including

discretized versions of the same like quantum Regge calculus [6] and (causal) dynamical triangula-

tions [7], to the extent in which the lattice structures are understood only as regularization tools.

It also includes the asymptotic safety programme [8], based on the non-perturbative completion of

the formulation of (perturbatively quantized) gravity as an effective field theory. It could include

also (depending on the interpretation) the non-commutative geometry programme [9], where one

quantizes the geometric structures of spacetime directly, without relying on their role as encoding

the gravitational interaction. The situation with string theory [10] is more ambiguous, due to

the huge variety of formalisms and research directions now under such umbrella label; still, the

understanding of string theory as quantized GR may at least apply to its very early perturbative

versions, since the interpretation as quantum gravity theories was due to the existence, in their

spectrum, of graviton excitations, quanta of the gravitational field from an effective quantum field

theory point of view.

This perspective makes perfect sense and exhausts the range of possibilities if the step from

classical to quantum gravity does not entail a change of fundamental degrees of freedom, i.e. if the

spacetime geometry, the metric field, gravity are primary entities and the task is to understand

their quantum properties. Even in this case, of course, understanding their quantum properties

may reveal a number of surprising and very exotic aspects of the world. The step from classical

from quantum, when dealing with such a fundamental entity like spacetime geometry, is by all

means a challenging one, both mathematically and conceptually. The issue of time, the debate

between relationalism versus substantivalism in spacetime theories, the problems with diffeomor-

phism invariance, on top of the purely technical issues faced by quantum gravity theorists are

there to testify the magnitude of the challenge. These issues are already challenging in a classical

GR context, where the theory is complete and the physics is well understood. In a ‘quantized

GR’context, what the theory is expected to involve, even leaving aside its incomplete status, raises

a host of new and even more severe difficulties [11]. One example will suffice: what is left of usual

physics, of the customary understanding of the world, in a theory with indefinite and fluctuating
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causal structures, an immediate consequence of superposing quantized geometries, even assum-

ing that each of them maintains a continuum and close-to-classical character? This explains the

difficulties in constructing a theory of quantum gravity on such basis, despite the many results

obtained over a span of decades.

IV. BEYOND THE BRONSTEIN CUBE: THE IDEA OF EMERGENT SPACETIME

The point is, however, that the above perspective does not capture the range of problems faced

by modern approaches to quantum gravity, neither at the technical not at the conceptual level. It

does not capture where quantum gravity stands with respect to the rest of fundamental physics

either. Let us explain why by first reviewing briefly a number of hints challenging the above view.

They were produced by research within the Bronstein cube, but at the same time pushing against

its walls, so to speak, noticing their fictitious nature and thus suggesting strongly that there is

more to be done and discovered outside it.

These recent results are of two different types. First, they come from research directions not

directly aiming at constructing a full theory of quantum gravity, but focusing on semi-classical

gravitational physics, and sometimes on systems that are not gravitational at all but which give

surprising insights on the possible nature of geometry and gravity. Second, they come directly

from quantum gravity approaches, often of the ‘conservative’tradition living inside the Bronstein

cube, which nevertheless end up producing challenges to the very perspective that inspired them.

The first group of results can be taken as suggesting that the continuum geometric structure

of spacetime, on which General Relativity and quantum field theory are based, is not fundamental

and that some sort of discrete quantum counterpart should replace it in a full theory of quantum

gravity. If this is the case, spacetime as we know it would be an approximate, emergent notion from

something else, which would be then not spatiotemporal in the usual sense (although it may retain

some features of the spacetime we are accustomed to). The key points here are the discrete nature

of the more fundamental degrees of freedom, and the need to see spacetime (and its geometry) as

emergent.

The second group of results offers a number of proposals for what the more fundamental degrees

of freedom could look like and for which features of continuum spacetime and geometry could

be dropped in the more fundamental description. They also explore a range of more or less

radical departures from ‘accepted behaviour’, that we may need to be accustomed to if we want to

understand the more fundamental nature of space and time (and how to understand the world in
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their absence).

Among the first group, the oldest results can be taken to be those establishing the existence of

singularities in gravitational physics. They may be taken to imply only that quantum corrections

to gravitational dynamics have to be taken into account, but they may also be taken as a sugges-

tion that something more radical happens: a breakdown of the continuum spacetime description

itself. The divergences of quantum field theory too admit a conservative as well as a more radical

interpretation. The correct coupling of quantum field theories for matter (and other interactions)

with a properly quantized version of GR may be all that is needed to cure them, introducing a

natural cutoff scale. Or they may be an indication that some more radical form of discreteness

replaces the continuum nature of quantum fields, including the gravitational field. Indeed, several

scenarios incorporating a minimal length (or a maximal energy scale) have been proposed [12],

as effective descriptions of quantum gravity, and they end up challenging many more aspects of

standard spacetime physics, including for example locality, which is at the root of quantum field

theory and of the whole of continuum spacetime physics. This challenge to locality is not surprising,

since the hypothesis of a minimal length was proposed from the very beginning as a consequence

of the impossibility of exact localization when the gravitational effects of quantum measurements

are taken into account. Among these scenarios, many rely on non-commutative geometry tools [9].

Thus, they also offer a first example of a quantum gravity approach that can be understood at

first in a conservative way, and that turns out to be more radical than imagined in its implications.

To this group belong also the very many results dealing with black hole thermodynamics and in

particular with black hole entropy [13]. These are far too many (and interesting) to review them

here. However, the main message, for our concerns, is simple. A black hole, in the end, is a region

of spacetime. If it has entropy, it has some microstructure. Moreover, if this entropy is finite,

this microstructure should have some in-built fundamental discreteness, and thus be of a very

different nature than ordinary spacetime (and geometry). Similarly radical are the results that

support an holographic nature for the degrees of freedom constituting a black hole, and that stem

from a combination of classical and semi-classical arguments. In turn, semi-classical black hole

physics has inspired a number of research directions investigating the more general thermodynam-

ical properties of spacetime and the possibility that spacetime/gravitational dynamics (including

the whole of GR) is itself to be understood as the thermodynamics, or hydrodynamics, in some

of the approaches, of unknown microscopic degrees of freedom [14]. In this view, the spacetime

metric, thus the gravitational field, would be a coarse-grained variable accounting for such micro-

scopic degrees of freedom, and spacetime should be understood as a sort of a fluid-like collective
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entity. Another independent research area makes implicitly the same suggestion: analogue gravity

models in condensed matter systems [15], in particular in the context of quantum fluids. These

systems reproduce, at the hydrodynamic level, several phenomena with an equivalent description

in terms of semi-classical physics on a curved geometry, including semi-classical black hole-like

physics. Thus they support the suggestion that the gravitational physics is an effective, emergent

description of a different type of physics, and spacetime indeed a fluid-like system, the result of

the collective behaviour of non-spatiotemporal entities.

Quantum many-body systems have also reserved us a different type of surprises, showing an

intriguing connection between entanglement and geometry, suggesting that the latter can be re-

duced to the former instead of being treated as fundamental [16]. For example: the entanglement

entropy associated to a region A on the flat boundary of an AdS space, computed within a simple

CFT, is proportional to the area of the minimal surface inside the bulk AdS space with the same

boundary as A; the mutual information between two spatial regions on the same flat boundary

scales inversely with the geodesic distance between the two regions, measured again in the bulk

AdS; the very connectivity between two regions of spacetime has been conjectured to be due to

the entanglement between (the quantum degrees of freedom of) the two regions.

Many of these results have been obtained in the context of the AdS/CFT correspondence [17].

This can be seen as an approach to quantum gravity (at least the sector of it corresponding to

AdS boundary conditions), that, despite relying so far mostly on standard field theory methods,

suggest a more radical view of spacetime and gravity (understood as curved geometry), in which

the latter is again emergent from a system which, while defined on a continuum flat spacetime, is

not gravitational. AdS/CFT is then also a first example of the second group of results, pointing

to a view of the quantum gravity problem beyond the Bronstein cube.

String theory [10] is often used to describe the gravitational side of the AdS/CFT correspon-

dence, and it has been another independent source of radical challenges to the conventional view of

spacetime and of quantum gravity. These range from the implications of T-duality for the notion

of spatial distance itself, to the equivalence between different spacetime topologies encoded in mir-

ror symmetry, to the generalised geometries that seem to be needed to describe various effective

configurations of string theories [18]. The upshot is that, while we do not know what sort of funda-

mental degrees of freedom underlie string theories, we know that they will not be spatiotemporal

or geometric in any standard sense, and that spacetime and geometry as we know them are both

collective and emergent notions, in such context [19].

Generalised geometries, in particular fractal geometries [20], have been studied extensively, also
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because the running of spacetime dimensions found in several quantum gravity approaches suggest

a role for them in the full theory, maybe as an intermediate regime between the fundamental,

non-spatiotemporal one and the emergent spacetime of standard field theory.

In fact, quantum gravity approaches, even when starting as conservative quantizations of GR,

ended up proposing concrete candidates for the fundamental degrees of freedom underlying space-

time which are, on their own, not spatiotemporal in the standard sense. Loop quantum gravity [5]

has fundamental quantum states encoded in spin networks, graphs labeled by group representa-

tions, with histories corresponding to cellular complexes labeled by the same algebraic data (spin

foams) [21]. The same type of quantum states (and discrete histories) are shared with group field

theories [22]. These states and histories, in appropriate regimes, can be put in correspondence

with piecewise-flat (thus discrete, and singular) geometries, but in the most general cases they will

not admit even such proto-geometric interpretation. The latter are, in turn, the building blocks

of simplicial quantum gravity approaches like quantum Regge calculus [6] and (causal) dynamical

triangulations [7], which indeed can be seen both as strictly related to group field theories and

their purely combinatorial counterparts, random tensor models [23]. In all these quantum gravity

formalisms, therefore, continuum spacetime has to emerge from structures which are fundamentally

discrete and rather singular (from the continuum geometric perspective), and in some cases, purely

combinatorial and algebraic. A different type of fundamental discreteness, not less radical, is the

starting point of the causal set approach [24].

The main lesson seems to be that continuum spacetime and geometry have to be replaced, at

the fundamental level, by some sort of discrete, quantum, non-spatiotemporal structures, and have

to emerge from them from their collective dynamics, in some approximation [25].

One could say that, since these ‘atoms of space’are assumed to be quantum entities, spacetime

is understood in all these formalisms as a peculiar quantum many-body system [26], that only at

macroscopic scales will look like the smooth (indeed, fluid-like) object we are accustomed to. There

is, therefore, an obvious general coherence between this picture of spacetime painted by quantum

gravity approaches, and the more indirect (but also more closely related to established physics)

indications obtained by the semi-classical considerations, e.g. in black hole physics.

V. THE BRONSTEIN HYPERCUBE OF QUANTUM GRAVITY

This has one general consequence for our understanding of the quantum gravity problem. Given

such fundamental (non-geometric, non-spatiotemporal) degrees of freedom, there is one new direc-
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tion to explore: from small to large numbers of such fundamental entities. We know (from quantum

many-body systems and condensed matter theory) that the physics of few degrees of freedom is

very different from that of many of them. When taking into account more and more of the funda-

mental entities and their interactions, we should expect new collective phenomena, new collective

variables more appropriate to capture those phenomena, new symmetries and symmetry breaking

patterns, etc. And it is in the regime corresponding to many fundamental building blocks that

we expect a continuum geometric picture of spacetime to emerge, so that the usual continuum

field theory framework for gravity and other fields will be a good approximation of the underlying

non-spatiotemporal physics.

Notice that the above is to a large extent independent of whether the discrete structures are

understood as physical entities or simply as regularization tools. This will affect, of course, whether

one assigns a physical interpretation to all the results of their collective behaviour or not, and

whether or not one tries to eliminate any signature of the discrete structures leading to them. But

the existence of the mentioned new direction remains a fact, as it remains true that one has to

learn to move along this new direction, if one wants to recover a continuum picture for spacetime

and geometry (and with them, a gravitational field with relativistic dynamics).

To have a better pictorial representation of what quantum gravity is about, then, the Bronstein

cube should be extended to an object with four (a priori) independent directions, to a ‘Bronstein

hypercube’, as in the picture below.

c
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The fourth direction is labeled N , to indicate the number of quantum gravity degrees of free-

dom that need to be controlled to progressively pass from an entirely non-geometric and non-

spatiotemporal description of the theory to one in which spacetime can be used as the basis of our

physics. A complete theory of quantum gravity will sit at the same corner in which it was sitting in

the Bronstein cube (which is obviously a subspace of this hypercube), but the same theory admits

a partial, approximate formulation at any point along the N-direction ending at that corner. Only,

the more one moves away from it, the less the notions of continuum spacetime and geometry will

fit the corresponding physics. One could say that the definition of a theory of quantum gravity will

be provided in the opposite corner (looking only at the two ends of the N direction, while keeping

both G, h and 1/c finite), because it is at this point that the definition of the fundamental degrees

of freedom of the theory and of their basic quantum dynamics will be put on the table. This is

sensible, but it is also true that providing a complete definition of the same theory amounts to

making sure it is well-defined up to the opposite end, even though the same theory will always be

used in some approximation or truncation.

As we had anticipated, proposing the Bronstein hypercube as the proper arena for quantum

gravity means stating that one needs to brings in the lessons and tools of statistical mechanics and

condensed matter theory, i.e. the third revolution of last century’s physics. It is in that context

that we have learnt to control the rich physics of many quantum interacting degrees of freedom. We

could label then the new direction of the Bronstein hypercube by the Boltzmann’s constant, also in

order to emphasize the above point [3]. It could be also a way to make a link with information theory

(another crucial area of developments in modern physics), with the implicit link between number

of degrees of freedom of a system and its (Bolztmann) entropy, in turn hinting at the physical

nature of such information content. This relabelling would have the advantage of charcterizing

the hypercubic extension of the Bronstein cube by the addition of a fourth fundamental constant,

in many ways on equal footing as the other three. It is indeed useful to think in these terms.

We do not use this relabelling explicitly simply because we want to maintain the focus on the

number of (quantum gravity) degrees of freedom to be controlled in different regimes of the theory,

rather than with any specific context in which the new degrees of freedom manifest their physical

nature. Another reason for not adopting a terminology directly reminiscent of statistical concepts

is the following. We should not confuse the task of ‘moving along the N direction’, that is, of

understanding the continuum limit of the fundamental degrees of freedom of quantum gravity, and

the emergence of continuum spacetime in the process, with the distinct issue, albeit related and

definitely important, of defining a general relativistic (quantum) statistical mechanics, including
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the gravitational field and its thermal fluctuations [27]. Understanding the continuum physics of

quantum gravity degrees of freedom may involve formulating a proper statistical framework for

them, and this framework would have to be covariant in the obvious sense of not depending on

any preferred spatiotemporal frame, local or global, for the simple reason that they would not be

defined in any spatiotemporal context to start with. The key distinction has to do with the nature

of the entities whose statistical framework one is considering. These fundamental quantum gravity

degrees of freedom are not smooth spacetimes (or geometries), nor their straightforward quantised

version. Thus, it is the difference between the (quantum) statistical treatment of the gravitational

field (with coupled matter fields) and the (quantum) statistical treatment of ‘non-spatiotemporal

building blocks of spacetime’(together with ‘non-spatiotemporal’building blocks of matter’) [28].

One obvious limitation of the description in terms of the ‘number of fundamental degrees of

freedom’ N is that this notion is ambiguous. Not only what counts as ‘fundamental quantum gravity

degrees of freedom’ depends inevitably on the quantum gravity formalism under consideration,

but the very notion of relevant degrees of freedom of a system is intrinsically ambiguous. For

any quantum system, in fact, it depends on the vacuum state chosen (on the chosen irreducible

representation of the fundamental algebra of its quantum observables) and on the adopted scale of

description and on the observables chosen as relevant for capturing the physics one is interested in.

The first aspect shows that the starting point adopted for describing the system is not god-given

and one should keep this ambiguity under check; but one starting point needs to be chosen and

once this is done, as in all quantum gravity approaches we know, our arguments about the need to

‘move along the N direction’ are valid. The second aspect is a good part of the difficulties that we

have to solve when moving along the N direction. The number of fundamental degrees of freedom

is a good proxy, in quantum gravity, for the usual notion of ‘scale’ in usual spacetime physics, and

the need for a change in description at different ‘scales’is exactly an important part of the notion

of ‘emergence’, including the problem of the ‘emergence of continuum spacetime’.

VI. UNDERSTANDING THE BRONSTEIN HYPERCUBE

The first point that using the Bronstein hypercube allows to emphasize is the crucial distinction

between classical and continuum limits. This is where the novelty of the new perspective on quan-

tum gravity is most apparent. In a theory of quantum gravity in which the fundamental entity

remains the gravitational field or the geometry of continuum spacetime, the problem of recovering

usual physics of GR (coupled to quantized fields) is the problem of controlling the classical approxi-
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mation of the more fundamental quantum description of the same. If the fundamental discrete and

quantum entities are not directly spatiotemporal, the usual spacetime physics should emerge after

taking some sort of continuum approximation, which may or may not be taken in conjunction with

a semi-classical approximation. In fact, we have many examples in physics in which such continuum

limit must be taken while maintaining the quantum properties of the fundamental constituents,

and in which doing otherwise misses entirely important macroscopic features of the same.

Let us give some examples. Consider some non-relativistic many-body quantum system of

interacting atoms in flat space and with gravitational interaction switched off, i.e. the side of the

Bronstein hypercube corresponding to c >> 1, G ∼ 0. This definition is of course so generic that

it includes an infinity of systems; in practice, all of condensed matter and solid state physics, and

more. In the corner corresponding to small number of quantum atoms we have a bunch of discrete

quantum entities and we can take two directions out of it. If we neglect their quantum properties

(going towards the h ∼ 0 area of the Bronstein hypercube), we obtain the classical mechanics

of a few (point) particles. If we now take a continuum approximation by increasing the number

of particles to infinity, we obtain a continuum classical system that, e.g. in the case of a fluid,

could be described by classical hydrodynamics. Starting from the same corner but taking instead

a continuum/hydrodynamic limit first, we could end up with a very peculiar continuum system

like a quantum fluid, for example a Bose condensate (if we were dealing with spinless atoms at

low temperatures), characterized by peculiar but very much physical features like superfluidity

(or superconductivity) even at the macroscopic level. Or we could end up with even more exotic

macroscopic phenomena, as in new phases of matter with topological order. All these macroscopic

physical properties would be invisible if we were to take the continuum approximation after taking

the classical approximation, or by taking the two simultaneously. Moreover, the two directions may

be, in general, ‘non-commuting’, in the sense that taking the same two approximations in different

order may give different results. The distinction between the two is therefore crucial. A similar

story can be told, starting with the same system in the same corner of the Bronstein hypercube, in

terms of its statistical treatment, noticing the differences between classical and quantum statistical

mechanics. And a similar picture can be drawn in the relativistic case, thus looking at the opposite

side of the Bronstein hypercube, corresponding to c ∼ 1.

The distinction between the two independent directions of the Bronstein hypercube correspond-

ing to h and to N is crucial also because they are travelled using very different types of mathematical

techniques and of conceptual tools, and because we encounter very different types of new physics

along the two paths. It is even more crucial in quantum gravity, for two main reasons. First, in
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the context of a theory so much under construction and so incomplete, and with so little guidance

from empirical observations, it is very dangerous to not pay enough attention to the path we are

taking or to have the wrong expectations about what we are supposed to do to make progress or

about what phenomena we should look for at each stage. Second, in the case of quantum gravity

we have really no obvious reason to expect that the two directions commute.

The specifics depend of course on the quantum gravity formalism being considered. As an

example, one can consider the relativistic and gravitational counterpart of the above atomic case,

thus with c ∼ 1 and G ∼ 1, within the context of loop quantum gravity and/or group field theories.

The corner with few quantum gravity degrees of freedom in the full quantum regime corresponds to

a description of the world in terms of simple (superpositions of) spin networks associated to graphs

with a smallish number of nodes, and with a quantum dynamics captured by amplitudes (spin foam

models or lattice gravity path integrals) associated to (superpositions of) cellular complexes with

limited combinatorial complexity (this could be increased, of course, but this description implies

that it remains limited enough that we do not need to use different, collective or coarse grained

entities and variables). The straightforward classical approximation of the same structures results

in a description in terms of classical piecewise-flat geometries (characterized, in the case of spin

networks, by first order classical variables: edge lengths or triangle areas, and discrete connection

variables), and with a dynamics encoded in solutions of discrete geometric equations, e.g. Regge

geometries, possibly coming from the discretization of some continuum gravity action. Better,

this is what we expect given the partial results we have so far [29, 30], but it is not completely

established, and it remains an interesting challenge for the community. A further continuum limit

is then needed to obtain an effective description in terms of (some possibly modified version of)

GR and matter field theories.When the correspondence with Regge geometries (or similar) is solid,

one can rely on the results obtained in that context for studying such continuum limit. When

this is done, we are back in the sector of the Bronstein hypercube corresponding to the Bronstein

cube, and we could consider quantizing our continuum gravitational theory. This already shows

the difference between classical and continuum approximations in this quantum gravity context.

Seen from the perspective encoded in the Bronstein hypercube, and given the same starting point,

i.e. the same fundamental structures, the route towards a complete quantum theory of gravity

would instead require taking into account more and more spin network degrees of freedom, at

the quantum dynamical level, reaching (at least formally) the opposite corner of the hypercube

along the N direction. This would be the regime of very large (possibly infinite) superpositions

of quantum spin network states, including very refined graphs, with correspondingly complex
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interaction processes, which would then be effectively described in terms of collective variables

like continuum fields (including the gravitational field) and field theoretic dynamics, e.g. some

modified version of GR, up to any additional quantum corrections. As we have emphasized above,

we should not expect that the result will be the same that would be obtained by quantizing GR,

and we should actually expect that this is not the case, if not under additional assumptions or

approximations. Why this is the case should be clearer in the following, once we give a deeper look

at what it is involved in moving along the N direction.

VII. HOW TO MOVE ALONG THE N DIRECTION

The N direction is the path along which emergence of spacetime and geometry should take

place. The notion of emergence itself is a thorny topic in philosophy of science. The possibility

that spacetime is not a fundamental but an emergent notion, and that the emergence process

should then be understood in a non-spetiotemporal manner, raises a host of conceptual puzzles at

both ontological and epistemological level. Some of them have been discussed in earlier work [25].

Here we want to focus more on the physical aspect of this idea. That is, we want to discuss how

we move along the N -direction, technically, and what we could expect to find, when we do so.

So, first, how do we move along the N -direction, from less to more degrees of freedom? One

main technical tool is the renormalization group, which is usually phrased as mapping a theory seen

at a given scale to its counterpart at a different scale (this requires us to go beyond the naive view

of renormalization as a way to ‘cure’or ‘hide’the theory’s divergences). It is accompanied by several

approximation schemes, by which we can extract suitable descriptions of the theory, capturing the

key observables we are interested in, at the given scale. As mentioned earlier, the notion of scale in

usual spacetime physics, e.g. in ordinary quantum field theory, intertwines the number of degrees

of freedom of the system with some geometric or spatiotemporal quantity, like energy or distance,

simply because such theories deal with degrees of freedom which are localised in spacetime and

are associated to a well-defined notion of energy. In quantum gravity, while the specifics of any

renormalization scheme will depend on the approach being considered, we should expect only a

more abstract notion of scale, more or less reduced to a counting of degrees of freedom, to be

available. This does not mean that such notion of scale cannot be tentatively interpreted in some

proto-spatiotemporal manner, but it means that such interpretation will be fully justified only in

the regime of the theory where continuum spacetime and geometry are shown to emerge.

Computing the full renormalization group flow of a given theory, in fact, amounts (formally)
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to defining the full (quantum) dynamics of the same; this means removing (again, formally) any

truncation that may initially be applied to it to have mathematically well-defined quantities, in

particular any truncation to a finite (small) number of its fundamental degrees of freedom. In this

sense, it contains both a continuum limit (usually associated with the limit large momenta and

small distances) and a thermodynamic limit (usually corresponding to large volumes and infinite

number of atoms or field values), when the two notions both make sense but differ, as in usual

spacetime physics. We do not know if this is the case in quantum gravity, in general, and the

question can be addressed only by considering specific quantum gravity formalisms and providing

a definition of both limits. We conflate the two, referring simply to the ‘continuum limit’.

The renormalization group flow is always computed within some approximation scheme. This is

a technical necessity, but it also contains an important physical insight: what matters at each step

is to control the (approximate) behaviour of key observables, and only the aspects of the theory

which are most relevant to them, neglecting the rest. The important insight is that a lot of what

the theory contains, in principle, does not affect the relevant physics, at least not significantly. The

relevant collective variables and observables may differ from those in the initial definition of the

same theory (and that enter the computation of the same collective quantities). Such approximate,

coarse grained description, alongside other forms of truncation, is thus not just a technical tool

that physicists have to adopt for lack of computational power or skills, but actually it is where they

show or test their physical understanding of the system. These approximations, moreover, are both

a pre-requisite for the understanding of the renormalization group flow of the theory and directly

suggested by it, since the renormalization group flow itself gives indications on which dynamics

and which observables (e.g. order parameters) are relevant in different regimes (scales).

Next, we ask the second question: what should we expect to find, once we move along the

N -direction via renormalization group tools, and as we approach the full quantum gravity corner

of the Bronstein hypercube? A continuum spacetime and geometry is the goal, of course. And it is

what we should find if our quantum gravity formalism is to be physically viable. But we should also

expect to find much more than that. Physical quantum systems, when they are interacting (thus

non-trivial) and possess an infinite (or very large) number of degrees of freedom, do not have a

unique continuum limit. How they organize themselves when large numbers of their constituents are

taken into account depends on the value of their fundamental coupling constants (or other external

parameters). Their collective behaviour leads to different macroscopic phases, separated by phase

transitions. The effective, emergent physics of different continuum phases can be very different,

and they are also stable (by definition) under moderate changes of their defining parameters and,
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of course, under the dynamics of the system. They are in many ways different possible worlds,

inequivalent collective realizations of what we were initially considering a single physical system,

when focusing on small numbers of its fundamental constituents. The questions in any quantum

gravity approach, once the fundamental entities and their quantum dynamics are identified, and

the renormalization group flow can be, in principle, set rolling, become: what are the macroscopic

phases? is any of them effectively described in terms of smooth geometry (with matter fields)

and spacetime? With these new questions come many others, for example concerning the physical

meaning of the phase transition(s) separating a non-geometric from a geometric phase, that of

the different geometric phases themselves, if more than one such phase appears, and the possible

observational signatures of this potentially new physics.

Before we survey briefly recent progress on the above issues, let us draw two general consequences

of the above line of reasoning. First, moving along the N -direction, i.e. towards the full definition

of the theory, brings potentially new physics and requires, possibly, a change in description of

the system, at each step. Second, the result of such journey is not unique but it be given by

different possible ‘continuum limits’, different continuum theories with different effective physics.

In this sense, the Bronstein hypercube should not be expected to ‘close’to form an hypercube at

all, but a multiplicity of possible hypercubes at best. And this is assuming that moving along the h

direction starting from the GR corner (or the one corresponding to some other continuum classical

gravitational theory) gives any consistent result at all, and that, in addition, the h and N direction

commute. This is also the point, however, where our attitude towards the non-spatiotemporal

structures that our quantum gravity formalism is built on, whether we regard them as physical

or mere mathematical (e.g. regularization) tools becomes crucial. In the latter case, in fact, only

the continuum phase(s) with a geometric interpretation will be deemed physical, and the others

ignored, and the result of quantizing the classical theory will have to be the same by definition,

since the extension from the Bronstein cube to the hypercube would be a mere technical expedient,

with the true physics remaining captured by the perspective associated with the Bronstein cube.

VIII. A BRIEF SURVEY OF RECENT RESULTS ALONG THE N DIRECTION

The renormalization of quantum gravity models is a very active area of research, in many of

the quantum gravity formalisms based on non-spatiotemporal, discrete building blocks.

It has been a central research topic in simplicial quantum gravity approaches since their very

inception, also because in these approaches the discrete structures are usually seen as unphysical
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regularization tools so that the continuum limit is mandatory before thinking of any physics. In

quantum Regge calculus [6] one fixes the triangulation at the onset and has its edge lengths as

dynamical variables, weighted by the (exponential of the) Regge action (a discretization of the

Einstein-Hilbert action for GR). The strategy for taking the continuum limit, usually limited to

Euclidean geometries, is then analogous to the lattice gauge theory one, adapted to a varying

lattice geometry, in which lattices are progressively refined by increasing their complexity while

keeping some macroscopic quantity fixed, e.g. the total ‘spacetime volume’. There is no consensus

on whether a continuum phase with a smooth geometry is found, and some of the phases identified

so far are consistently interpreted as rather degenerate or singular from the continuum spacetime

perspective, on the basis of simple indicators like dimension estimators (e.g. spectral or Hausdorff

dimension). In dynamical triangulations one takes a complementary approach and, with the same

starting point, it restricts attention to equilateral triangulations, which are summed over with the

same Regge weight. The continuum limit is amounts to computing the full sum over triangula-

tions concentrating it on the finer ones (sending the fixed edge length to zero while keeping the

total volume fixed). The results are consistent (and inconclusive) in the Euclidean setting, but

become much more interesting when Lorentzian discrete geometries are considered and additional

‘causality’conditions are imposed, basically providing the triangulations summed over with a fixed

foliation structure. Then, one finds strong indications that (at least) one smooth geometric phase

is produced in the continuum limit, as it can be detected by dimension estimators and rather coarse

geometric quantities, like the total spatial volume.

Random tensor models [23] produce in their perturbative expansion (around the fully degenerate

configuration, corresponding to no spacetime at all) the same type of dynamical configurations,

equilateral triangulations, and with the same weight, as the Euclidean dynamical triangulations

approach. They provide a generating functional for them and, accordingly, offer a new set of

statistical and field-theoretical tools to study their continuum limit. The results are so far broadly

consistent with what has been found from the pure simplicial gravity perspective, in the simple

large-N limit of the tensors. The new set of tools, however, promises more and it has already

hinted at a deeper level of analysis, with many preliminary results on double scaling limits, phases

beyond what has been found in the large-N, etc.

In canonical loop quantum gravity, maybe due to its traditional understanding as a straightfor-

ward quantization of continuum GR, the issue of renormalization and continuum limit has received

less attention. A canonical renormalization group scheme at the full dynamical level has been pro-

posed [31], but most of the results have been so far limited to the kinematical setting, neglecting
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the quantum dynamics of the theory. These include the continuum limit that is used to define the

kinematical Hilbert space of the theory and that singles out the so-called Ashtekar-Lewandowski

vacuum as the basis for constructing spin network excitations [5]. Its construction is a non-trivial

mathematical achievement, but its physical nature is dubious. From the continuum perspective, it

is a state corresponding to a totally degenerate geometry and a highly fluctuating connection, thus

far away from anything resembling our spacetime. This prompts to look for the sector of the theory

corresponding to highly excited states over such vacuum, and encoding many of the fundamental

spin network degrees of freedom. It also suggests that, when this is done, the relevant description

of the same theory will be very different, and possibly will involve a phase transition to a new,

more geometric phase. Lacking a full renormalization group analysis, the issue of possible new

vacua/phases could be studied only at the kinematical level, but produced already very interesting

results. New kinematical vacua with a non-degenerate (constant) geometry, but still with highly

fluctuating connection, were constructed and analysed in some detail [32], shown to define inequiv-

alent representations (thus genuinely new phases) and to offer already a more sensible physical

interpretation in terms of continuum spacetime geometries. They can be understood as a sort of

condensate of spin networks excitations, thus resonating with earlier[33] and more recent [34] work

in the group field theory (re-)formulation of spin network dynamics. Even more recently, a differ-

ent, complementary type of new vacua have been constructed [35], corresponding instead to a fixed

curvature and fluctuating geometry (triad/flux variables), and with excitations corresponding to

curvature defects. The simplest such vacuum can be associated to a simple BF topological field the-

ory and zero curvature, while vacua corresponding to non-zero constant curvature (a cosmological

constant?) seem to be given by condensates of curvature defects.

Spin foam models [21] can be understood as a covariant dynamics for canonical loop quantum

gravity states, i.e. spin networks, thus they are an alternative setting to define the renormalization

group flow and the continuum limit of the theory, encoding also the quantum dynamics. They can

also be understood as lattice gravity path integrals in first order (tetrad+connection) variables, thus

in direct relation with simplicial quantum gravity approaches. Renormalization of spin foam models

has been tackled in two (complementary) frameworks. The first [36] treats them as analogous

to lattice gauge theories on a fixed lattice, thus in line with the way the continuum limit of

quantum Regge calculus is studied. However, it brings on board mathematical methods and insights

of canonical loop quantum gravity and it also takes advantage of the direct resemblance with

gauge theories. More recently, also key tools from quantum information theory and many-body

systems, like tensor networks, have started to play an important role. Coarse graining steps and
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renormalization are encoded in maps between spin foam amplitudes associated to different scales,

where the notion of scale here is tied to the combinatorial complexity of the underlying lattice, and

they provide therefore a dynamical counterpart of the kinematical continuum limit that defines

the Hilbert space of the canonical theory. The results are so far mostly confined to simplified

models, rather than with the full-fledged amplitudes proposed for 4d quantum gravity, but they

are already very interesting, and possibly indicative of more general lessons. For example, one finds

hints of a non-trivial phase diagram with a degenerate geometric phase and a non-trivial phase

of topological nature, thus tentatively supporting the kinematical results on possible vacua in the

canonical theory. The other way to tackle spin foam renormalization is to see them as Feynman

amplitudes of group field theory models and to focus on the renormalization of the latter.

Group field theory renormalization has been in fact a very active and rapidly growing research

direction for almost ten years, now, with many results [37]. The strategy is to rely on the close-

to-standard field theoretic formulations of these models as field theories on Lie group manifolds

(not interpreted, of course, as spacetimes) and use their intrinsic notion of scale as a ‘distance

on the group manifold’or, conversely, the conjugate momentum/resolution scale. Indeed, on such

premises one can apply standard renormalization group techniques, suitably adapted to the peculiar

combinatorially non-local nature of the GFT interactions. The trivial Fock vacuum of the theory,

around which one sees spin network excitations and develops the perturbative expansion of a given

group field theory model, is again a fully degenerate one, with no topological nor proto-geometrical

excitations, thus it is in the non-perturbative sector of the theory that one looks for continuum

spacetime, geometry and physics. Perturbative renormalization is is however where one can find

a consistency check of the quantum theory, a way to constrain model-building ambiguities, and

deal more directly with spin foam amplitudes. This activity relied heavily on the parallel results

on random tensor models, in particular the large-N expansion, and has been also focused on

simplified models. It has produced rigorous proofs of renormalizability of a wide range of tensorial

GFTs via multi-scale methods: abelian and non-abelian, with local gauge invariance, thus having

Feynman amplitudes corresponding to lattice gauge theories (and spin foam models) and without

it, in low (e.g. 3d) as well as higher (e.g. 6d) topological dimensions. More recently, work on

non-perturbative renormalization has gained traction, with the development of the Functional

Renormalisation Group formalism for GFTs. The same range of models studied perturbatively

has been studied by the FRG method, and there is by now a large body of results establishing

renormalizability as well as non-trivial phase diagrams for many tensorial GFTs, their asymptotic

freedom or safety in the UV, but also solid hints of Wilson-Fisher type fixed points in the IR,



21

suggesting the existence of a condensate phase in the continuum limit. This phase would be directly

relevant for the extraction of effective spacetime physics, especially in the cosmological setting, as

we discuss below. For full-blown GFT models for 4-dimensional spacetime, we have mainly partial

results on radiative corrections [38], but the mathematical technology at our disposal is improving

fast, and we can rely also on related analyses of GFT models on homogeneous spaces, and on

existence proofs of phase transitions in the GFT formulation of topological BF theories in any

dimension (the basis of a lot of model building for 4d quantum gravity models) [39].

While the renormalization analysis of quantum gravity models has grown in attention and

results, comparatively little work has been done so far on the extraction of continuum physics

from them. By this we intend the extraction of effective dynamics for collective observables with

a spatiotemporal and geometric interpretation, in the regime in which large numbers (possibly

infinite) of the fundamental constituents are accounted for, and thus employing a set of explicit

approximations and coarse graining operated at the level of the fundamental theory itself. We do

not refer here to the many works in which tentative physics is extracted from either simple models

of continuum spacetime and gravitational dynamics that are only inspired, but not derived from the

fundamental theory (e.g. loop quantum cosmology, and several models of quantum black holes), or

truncations of the fundamental theory dealing with very small numbers of the fundamental entities

(e.g. restricted to simple spin network graphs, or simple spin foam or simplicial gravity lattices).

One example of this type of work is the extraction of an effective minisuperspace dynamics

and of a De Sitter-like (spatial) volume profile from the causal dynamical triangulations approach,

obtained by explicit numerical evaluation of this (very coarse-grained) observable [7].

Another example of recent work in this direction is GFT condensate cosmology [40], based on

two main assumptions, one of perspective, one more technical. The first is that cosmology has to be

looked for in the hydrodynamics of the fundamental theory, as the most suitable approximation for

close-to-equilibrium and most coarse-grained dynamics, in the continuum limit. The second is that

the relevant class of continuum states (implicitly, the relevant continuum phase of the theory) for

the extraction of gravitational physics is that captured by condensates of the microscopic building

blocks (GFT quanta, i.e. spin network vertices or basic simplices). The first assumption suggests

concepts and technical tools to be used. The second, supported also by the hints coming from

the renormalization analysis of GFT models, makes it possible to go directly from the microscopic

definition of the quantum dynamics of any given model, including the more promising 4d gravity

ones, to an effective dynamics for cosmological observables in the continuum limit. For quantum

condensates, in fact, the continuum hydrodynamics corresponds, in the simplest (mean field, Gross-
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Pitaevskii) approximation, to the classical equations of motion of the underlying field theory for

the ‘atoms’, and the same happens in GFT models. This strategy led to many results, over the

last five years. They include: the extraction of a modified Friedmann dynamics for homogeneous

and isotropic geometries (and scalar matter), whose physics is captured by relational observables,

with the correct classical limit at late times; a quantum bounce replacing the classical big bang

singularity, as long as one remains within the hydrodynamics approximation of the full theory;

the possibility of a long-lasting accelerated phase of expansion after such bounce (a sort of purely

quantum gravity induced inflation) without the need for introducing any inflaton-like field; some

preliminary study of the dynamics of anisotropies, showing their natural suppression as the universe

grows; the first extensions of the formalism to cosmological perturbations, that seems to indicate

how a scale invariant spectrum is the natural outcome of the dynamics, as long as one remains close

to homogenous condensate states. To these, one could add the first generalization of the scheme to

spherically symmetric geometries and black hole horizons [41], with more interesting results. We

are just at the beginning of the exploration of the emergent continuum physics of GFT models

(and of their spin foam counterpart), clearly, but the path seems promising.

Conclusions

We have argued that the proper setting for thinking about quantum gravity, and for exploring

the many issues it raises (mathematical, physical, conceptual), is broader than the traditional

one of ‘quantizing GR’, well captured by the Bronstein cube. It is best pictured as a Bronstein

hypercube, in which the non-spatiotemporal nature of the fundamental building blocks suggested by

most quantum gravity formalisms (and even by semi-classical physics), and the need to control their

collective dynamics, are manifest. This allows the proper focus on the problem of the emergence of

continuum spacetime and geometry from such non-spatiotemporal entities. We have also argued

that modern quantum gravity approaches are well embedded into this conceptual scheme, and

have already started producing many results on the issues that are put to the forefront by it.

The quantum gravity world is therefore even richer, more complex but also more exciting than

traditionally thought, and we are already actively exploring it. More surprises should be expected.
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