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Abstract

According to the Bayesian paradigm in the psychology of reasoning, the norms by

which everyday human cognition is best evaluated are probabilistic rather than logical

in character. Recently, the Bayesian paradigm has been applied to the domain of argu-

mentation, where the fundamental norms are traditionally assumed to be logical. Here,

we present a major generalisation of extant Bayesian approaches to argumentation that

(i) utilizes a new class of Bayesian learning methods that are better suited to modelling

dynamic and conditional inferences than standard Bayesian conditionalization, (ii) is

able to characterise the special value of logically valid argument schemes in uncertain

reasoning contexts, (iii) greatly extends the range of inferences and argumentative phe-

nomena that can be adequately described in a Bayesian framework, and (iv) undermines

some influential theoretical motivations for dual function models of human cognition.

We conclude that the probabilistic norms given by the Bayesian approach to rationality

are not necessarily at odds with the norms given by classical logic. Rather, the Bayesian

theory of argumentation can be seen as justifying and enriching the argumentative

norms of classical logic.
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1 Introduction

In science and in everyday life, arguments are used to convince others (as well as ourselves) of

certain statements or propositions. A good argument supports a proposition (the conclusion

of the argument) with reasons (the premises of the argument). There is a huge literature in

cognitive science, philosophy, logic, and computer science that studies argumentation. We

find, for example, classifications of argument schemes (Walton 2008, Walton 2013), theories

of defeasible reasoning and argumentation (Pollock 1967, Pollock 1987), and studies of logical

fallacies (Van Eemeren and Grootendorst 1995, Hamblin 1972, Walton 1995, Walton 2011).

More recently, philosophers and psychologists have started to study argumentation from a

Bayesian perspective (Eva and Hartmann 2018, Godden and Zenker 2016, Hahn and Hornikx

2016, Hahn and Oaksford 2007, Oaksford and Hahn 2006, Zenker 2013). This approach al-

lows for the formulation of probabilistic measures of argument strength, and it demonstrates

that many so-called ‘fallacies’ may nevertheless be very good arguments, in the sense that

they considerably raise the probability of the conclusion. That is, deductively invalid argu-

ment schemes (such as affirming the consequent (AC) and denying the antecedent (DA)) can

also provide considerable support for a conclusion. To what extent this is the case depends

partially on the specific context (i.e. the prior probability distribution), and not only on the

logical structure of the argument. Equally, we might support a conclusion with a logically valid

argument scheme such as modus ponens (MP) or modus tollens (MT), even if the premises are

uncertain. However, if the premises are not certain, then valid and invalid argument schemes

will support the conclusion, if at all, only to a certain degree. This raises the questions ‘why

should we use valid argument schemes at all?’ and ‘what is the value of logical validity if we

are in the business of making inferences with uncertain premises?’. This paper proposes a

novel answer to these questions and presents a major extension to the Bayesian approach to

argumentation, based on the idea that argumentation is learning (the premises of the argu-

ment) and that the learning in question proceeds in a conservative way via the minimization
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of some “distance” measure such as the Kullback-Leibler divergence.

The approach presented here ties in very naturally with recent advances in the psychology

of reasoning. In particular, Oaksford and Chater (2007, 2009) have developed the ‘Bayesian

approach to rationality’ (commonly referred to as the ‘new paradigm’), which contends that

‘cognition in general, and human everyday reasoning in particular, is best viewed as solving

probabilistic, rather than logical, inference problems’ (Oaksford and Chater 2009: 69). The

Bayesian approach overturns the previously dominant logical paradigm, in which the standards

by which the rationality of human cognition are evaluated are articulated in purely logical

terms. There is a wealth of experimental evidence (see Chapters 1–4 of Oaksford and Chater

2007) that appears to show that, by logical standards, humans are naturally prone to making

a range of systematically irrational inferences. Furthermore, it is well known that (classical)

logical inference is monotonic, in the sense that adding extra premises to a valid argument

can never affect the argument’s validity, i.e. ‘adding premises can never overturn existing

conclusions’ (Oaksford and Chater 2009: 72). But, as Oaksford and Chater note,

[I]n reasoning about the everyday world. . . non-monotonicity is the norm: almost

any conclusion can be overturned if additional information is acquired. Thus, con-

sider the everyday inference from It’s raining and I am about to go outside to I

will get wet. This inference is uncertain – indefinitely many additional premises

(the rain is about to stop; I will take an umbrella; there is a crooked walkway) can

overturn the conclusion, even if the premises are correct. The non-monotonicity of

everyday inference is problematic for the application of logical methods to mod-

elling thought. Non-monotonic inferences are not logically valid and hence fall

outside the scope of standard logical methods. (Oaksford and Chater 2009: 72)

The Bayesian approach solves these problems by treating everyday inference as probabilis-

tic, instead of logical. Thus, a rational inference, according to the Bayesian approach, is one

where the premises significantly increase the probability of the conclusion. Clearly, this notion
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of rationality is not monotonic, and so is able to deal naturally with the non-monotonic infer-

ences that are so characteristic of uncertain, everyday reasoning. Furthermore, the Bayesian

approach allows us to interpret the behavior that is typically observed for certain reasoning

tasks (such as the Wason selection task) as a rational form of probabilistic reasoning, whereas

the standard logical approach requires us to interpret such behaviors as irrational (see Oaks-

ford and Chater 2007). The Bayesian approach, in contrast to the logical approach, allows us

to think of human beings as being exceptionally good at everyday reasoning.1

Here, we employ the probabilistic Bayesian paradigm to provide a novel analysis of the

special role of logical validity in uncertain reasoning. In particular, we show that the argu-

mentative norms of classical logic emerge naturally from the probabilistic norms given by the

Bayesian approach. This result undermines the received wisdom that the logical and Bayesian

perspectives on human reasoning give rise to distinct and incompatible norms. Furthermore,

the fact that a general preference for logical validity emerges naturally from the Bayesian

approach to argumentation undermines one of the key motivations for dual process theories

of human reasoning, i.e. the fact that, ceteris-paribus, people tend to endorse logically valid

inferences more readily than they do invalid ones (see e.g. Evans 1983, 1993, 2000, 2003,

Singmann et al. 2016).

The remainder of the paper is organized as follows. Section 2 outlines the main idea of our

proposed theory of Bayesian argumentation, according to which argumentation is learning.

We show that this theory is consistent with classical logic (in the special case where we learn

the premises with certainty) and outline the shortcomings of some existing approaches to

argumentation in uncertain reasoning situations. We also motivate a general ‘distance based’

approach to learning conditional information, which generalises an extant account from the

1Of course, this is not the whole story, and there have been many attempts to capture the apparent non-
monotonicity of everyday reasoning in a logical framework, for example by appealing to ‘default assumptions’
(see e.g. Reiter 1978, 1980, Stenning and Van Lambalgen 2008). It is not our aim here to provide a programatic
justification of the probabilistic approach to reasoning in general, or to conduct a comprehensive analysis of
rival frameworks. For canonical defences of the Bayesian approach to scientific and everyday reasoning, readers
should consult e.g. Howson and Urbach (2005) and Oaksford and Chater (2007). For detailed explications of
the advantages of a probabilistic as opposed to logical conception of argumentative norms, see e.g. Corner and
Hahn (2013), Hahn, Harris and Oaksford (2013), Hahn and Hornikx (2016) and Hahn and Oaksford (2007).
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literature and is also compatible with standard Bayesain updating methods, before going

on to describe how the Bayesian approach to argumentation relates to experimental results

regarding the acceptability of valid and invalid inferences. Section 3 studies what happens to

the probability of the conclusion of an argument when we learn the minor premise from an

unreliable source, comparing valid and invalid argument schemes, and Section 4 connects our

approach to recent work on the non-monotonicity of dynamic conditional inferences. Section

5 considers the role of logical validity in contexts where the major premise is learned with

non-extreme probability, and Section 6 then uses the results of previous sections to analyse

the value of logical validity in argumentation involving uncertain premises, before showing

how our approach improves upon existing results from the literature. In Section 7, we then

go on to utilize these formal results to undermine some influential theoretical motivations for

dual process models of human cognition. Finally, Section 8 summarizes the main results of

this paper and outlines some open questions to be addressed in future research.

2 Argumentation as Learning

The fundamental starting point of our approach can be summarised by the slogan that ‘argu-

mentation is learning’. According to this approach, the strength of an argument is determined

entirely by the extent to which evidence for the premises counts as evidence for the conclusion.

We aim to use this basic slogan to provide a general vindication of the special role played by

valid arguments in human reasoning, even in uncertain contexts where logical validity doesn’t

appear to offer any inferential advantages. Consider, for example, MP

A→ B

A

—————–

B

Here, the truth of the conclusion follows from the truth of the premises with necessity.
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The argument is logically valid. However, we may not trust the source who provides us with

the information that A, or we may consider a disabling condition that prevents the consequent

(B) from obtaining when the antecedent (A) is instantiated. In these situations, it is not clear

how we should interpret the fact that MP is almost universally accepted as a ‘good argument’.

Certainly, the mere fact that MP is logically valid is not enough, since logical validity only tells

us that it is rational to infer the conclusion when we are certain of the truth of the premises.2

More generally, it’s unclear what these complications imply concerning the rationality of MP

inferences in situations where we are uncertain about the truth of the premises.

Here is the main idea of our proposal: First, the agent has to model the reasoning situation,

i.e. she (i) identifies the relevant variables, and (ii) specifies a prior probability distribution P

over those variables that reflects her degrees of belief regarding the respective likelihoods of

their truth/falsity. Next, the agent learns the premises of the argument from some (possibly

only partially reliable) information source. The source may, for example, utter that A is

the case or that B follows from A. This new information translates into a constraint on the

posterior probability distribution P ′, e.g.

• If the agent learns that A is the case, then P ′(A) = 1 (if the source is perfectly reliable).

• If the agent learns that “If B, then C”, then P ′(C|B) = 1 (if no disabling conditions are

considered in the agent’s model and the source is perfectly reliable).

To clarify the motivation here, we take the aim of argumentation to be to indirectly support

a given conclusion. This is done by providing evidence for the premises of an argument whose

structure then forces those considering it to increase their credence in the conclusion. This

is exactly what is captured by our slogan that ‘argumentation is learning’. To argue is to

provide evidence for the premises of arguments whose structure tells us something about the

probability of the conclusion. More generally, we take this approach to constitute an accurate

2Another way of making the same point is to note that logical norms tell us only that we are allowed to
infer the conclusions of sound arguments, i.e. valid arguments with true premises. But when we are uncertain
about the truth of the premises, logic alone will never be enough to determine the rationality of an argument.
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description of the actual practice of argumentation. If I want to convince you of a conclusion

for which we lack direct evidence, the best way for me to do this is to present you with

evidence for the premises of an argument whose structure allows you to transfer some of the

weight of that evidence towards the desired conclusion. The success of such an argument

will generally depend on a number of factors. In particular, it will depend on (i) the logical

form of the argument, (ii) the strength of the evidence given in support of the premises, and

(iii) your prior belief state (as encoded in your prior probability distribution).

After learning new information about the premises of the given argument, the agent will

need to change their probabilistic beliefs to incorporate the learned information. Here, we

argue that they should do this by adopting the posterior probability distribution P ′ that (i) is

consistent with what the agent learned about the premises, and (ii) is obtained by minimizing

a particular kind of “distance” measure (specifically, an f -divergence) such as the Kullback-

Leibler divergence between the new probability distribution P ′ and the old probability distri-

bution P (see Diaconis and Zabell (1982)). The idea here is that the agent changes her beliefs

in a conservative way. She makes sure that the learned constraints are satisfied, but apart

from this the changes should be as minimal as possible, i.e. the posterior probability distri-

bution P ′ should be as close as possible to the prior distribution P . Other distance measures

(including other f -divergences; see Csiszár (2008)) are also possible, but we consider it to be

important that the chosen distance measure is consistent with conditionalization and Jeffrey

conditionalization3 (which holds for all f -divergences; see Csiszár (2008)). Since these norma-

tive constraints do not uniquely fix the proper distance measure, fixing the “right” measure is

(at least to some extent) also an empirical question whose answer needs to be experimentally

and philosophically justified. While this paper focuses on the Kullback-Leibler divergence

3Jeffrey conditionalization is the standard Bayesian approach to modelling learning that does not result
in certainty, i.e. to modelling situations where an agent becomes more confident in some evidence E without
becoming certain of E’s truth. Formally, it is defined as follows. Suppose that, via some learning experience,
I change my prior degree of belief P (E) in E to a posterior value of P ′(E). Then, my posterior degree of belief
in any proposition X will be given by P ′(X) = P (X|E)P ′(E) + P (X|¬E)P ′(¬E). Of course, when P ′(E) = 1,
this is equivalent to standard Bayesian conditionalization. Jeffrey conditionalization is widely used in the
Bayesian canon, and has been given a pragmatic justification by means of dynamic dutch book arguments
(see Skyrms 1987).
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(i.e. one particular f -divergence), we note that different f -divergences generally give rise to

importantly different updating procedures in some of the learning scenarios considered in this

paper. Exploring the differences in detail will be the focus of future work.

At this point, one might be tempted to ask what we hope to gain by moving to such

a general picture. In particular, what does this approach achieve that is not already done

by the standard Bayesian approaches of conditionalization/Jeffrey conditionalization? One

major motivation is the following. It is well known that Bayesian conditionalization becomes

very problematic when the evidence on which we are updating takes the form of a conditional

proposition (see e.g. Popper and Miller 1983, Douven and Dietz 2011, Douven 2012, Eva,

Hartmann and Rafiee Rad forthcoming).4 Indeed, one currently prevalent view holds that the

very idea that we should think of conditionals as propositions with determinate semantics is

inherently flawed (see e.g. Adams 1975, Eddington 1995, Bennett 2003). Our approach allows

one to update on conditional evidence in a very natural way5 that doesn’t require a proposi-

tional account of conditionals.6 Since we are interested in providing a probabilistic character-

isation of the value of deductive validity in situations where we have uncertain premises, and

arguments typically involve conditional statements, this is crucial for our current purposes

(the importance of the distance-based approach is made most apparent in Section 5, where

we discuss argumentative contexts in which the major premise is learned with non-extreme

4To illustrate some of the problems here, suppose that there is gold in one and only one of four regions of a
country: the South-West, the South-East, the North-East or the North-West. If we have no other information
about where the gold is, we will assign all four regions equal probability, i.e. P (SW) = P (SE) = P (NW) =
P (NE) = 1/4. Intuitively, the probability of the proposition ‘if the gold is in the west, then it is in the
south-west’ is 1/2 in this situation, since SW and NW are equally probable. But now suppose somebody
tells us that the probability of this conditional is 1/2. If we represent this learning experience by Jeffrey
conditionalizing to set the probability of the material conditional W ⊃ SW to 1/2, we get the disastrous result
that our probability distribution will change significantly. But this is absurd, since we already believed that
the conditional ‘If the gold’s in the west, then it’s in the southwest’ had probability 1/2. We learned something
we already knew and so should not have changed our probability distribution at all.

5Namely, by minimising the distance to some constraint on the relevant conditional probability.
6It is worth pointing out that for the purposes of this paper, we remain entirely agnostic about the

propositional status of conditionals. In particular, our approach does not commit us to the position (known
as ‘Adam’s thesis’) that the indicative conditional is a proposition whose probability is always given by the
corresponding conditional probability (although it is mainly consistent with that position (but see section 5)).
We require only that the rational response to learning an indicative conditional is to minimise an f -divergence
to a constraint on the relevant conditional probability. This is an important distinction, since it means that
our approach is not susceptible to Lewis’s (1976) triviality results.
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probability).

It should also be noted that the idea that one should always update their credence function

as conservatively as possible is not new or controversial. Indeed, this idea is commonly used to

motivate mainstream update rules such as conditionalization. The minimization of distance

measures is a natural approach to allowing for the consideration of non-propositional evidence

in a way that preserves this intuitive justification of update rules like conditionalization.7

The fact that it is possible to recapture these rules in the special case where the evidence is

propositional shows that there is nothing to lose by adopting a distance-based approach. But

in so far as purely propositional update rules are unable to guide agents in learning experiences

that involve non-propositional evidence, there is a great deal to gain. In the present case, we

are able to provide a new analysis of the value of logical validity in a way that doesn’t rely

on the philosophically dubious practice of (Jeffrey) conditionalizing on conditional evidence.

2.1 Existing Approaches

Before illustrating the formal details of our extended Bayesian approach to argumentation,

we will briefly consider a couple of existing approaches to probabilistic validity and argument

strength.

The most natural Bayesian approach to measuring argument strength is simply to define

the strength S(A) of any argument A to be the degree to which A’s premises confirm its

conclusion. But of course, this degree of confirmation will be a function of the conditional

probability of the conclusion given the premises, and we’ve already argued that conditional-

izing on conditionals is not a satisfactory approach.

According to Pfeifer (2013), S(A) should be thought of as a positive function of both (i) the

precision of the argument, i.e. how tightly the probabilistic conditions given by the premises

constrain the probability of the conclusion, and (ii) the probability of the conclusion, as given

7Of course, conditionalization has also been justified by pragmatic Dutch book arguments and arguments
from accuracy (see e.g. Pettigrew (2016)). The possibility of extending these kinds of arguments to justify
and discriminate between different f -divergences is an important one that we intend to pursue in future work.

10



by a suitably chosen average over the possible coherent probability values of the conclusion

that respect the constraints imposed by the premises. Intuitively, this means that a good

argument is one where the premises both give us a lot of information about the probability of

the conclusion and give us good reason to assign the conclusion a high posterior probability.

This approach bypasses the problem of needing to conditionalize on conditional premises8 and

allows us to quantify the strength of arguments with uncertain premises.

Crucially though, the coherence based approach to argument strength is purely synchronic.

It measures only the extent to which assigning high probabilities to the premises forces one to

assign high probabilities to the conclusion at a particular time. It tells us nothing about how

learning the premises of an argument forces an agent to change their belief in the conclusion.

In contrast, the Bayesian approach to argument strength described here is fundamentally dy-

namic. It concerns the way in which an agent is forced to change their belief in the conclusion

when they gain new evidence for the premises.

In particular, we propose to define S(A) as a positive function of P ′(C) − P (C), i.e. the

strength of the argument is just a function of the degree to which learning the premises (with

some increased probability, according to the procedure outlined in this paper) increases the

probability of the conclusion C. This is essentially identical to the intuitive Bayesian approach

of defining S(A) to be the degree to which the premises confirm the conclusion. The only

difference is that the notion of confirmation has been generalised to allow for confirmation by

conditional premises.9 Of course, there are numerous ways to measure the degree to which the

premises of an argument confirm the conclusion (see e.g. Fitelson (1999) for a detailed analysis

of different Bayesian confirmation measures), the simplest being S(A) = P ′(C)− P (C). The

question of whether this choice of confirmation measure gives the best account of argument

strength will, we contend, only be determined by experimental investigations into the way

that people actually evaluate the strength of real arguments. Corner and Hahn (2009) have

8Indeed, this is one of the primary motivations cited by Pfeifer (2013).
9To be clear, P ′(C) here does not denote the conditional probability of C on the premises, but rather the

posterior probability of C after we minimise the distance from the original probability distribution relative to
some new constraints on the probabilities of the premises.
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already used Bayesian methods to interpret the results of experiments studying the perception

of argument strength in science and everyday reasoning, so this kind of question connects

naturally with current work in the psychology of reasoning (for other experimental work

examining adherence to Bayesian norms in argumentation see also: Hahn and Hornikx 2016,

Oaksford and Hahn 2004, Hahn and Oaksford 2007, Harris et al. 2012 and Harris et al.

2016).10

Perhaps the most influential approach to probabilistic validity is forwarded by Adams

(see e.g. Adams (1998)). Adams derives some useful characterisations of the confirmatory

relationship between the premises and conclusions of valid arguments. However, these results

are not sufficiently general to constitute a full vindication of the special role played by valid

arguments in uncertain contexts. Specifically, Adams’ results only apply to the special case

in which the premises of the argument are learned with certainty. Furthermore, Adams’

approach assumes that the premises of arguments are always propositional which, as we have

already noted, is problematic. In Section 6 we show that the approach described here is able

to provide a more general, psychologically salient and philosophically principled probabilistic

elucidation of the value of logical validity in uncertain reasoning contexts.

2.2 The Simple Case

Let us now illustrate our approach to argumentation by looking at the four inference schemes

Modus Ponens (MP), Modus Tollens (MT), Affirming the Consequent (AC), and Denying

the Antecedent (DA). We introduce binary propositional variables A and B (in italic script)

which have the values A and ¬A, and B and ¬B (in roman script), respectively. Prior to

encountering an argument involving the propositions, the agent has beliefs about the proposi-

tions in question as well as about their dependencies. These beliefs are represented by a prior

probability distribution P , with the parameters

10Note that Harris et al. (2012, 2016) test detailed quantitative Bayesian models of argument strength, as
opposed to simple qualitative predictions.
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P (A) = a, (1)

P (B|A) = p , P (B|¬A) = q (2)

With this, the prior distribution over the variables A and B is given by

P (A,B) = a p , P (A,¬B) = a p

P (¬A,B) = a q , P (¬A,¬B) = a q , (3)

where we have used the shorthand notation P (A,B) for P (A ∧ B). We also use the shorthand

x for 1− x.

Next, the agent learns the premises of the argument, which prompts her to update P and

obtain a posterior probability distribution P ′.11 Here we replace the variables a, p and q by

the corresponding primed variables a′, p′ and q′, respectively:

P ′(A,B) = a′ p′ , P ′(A,¬B) = a′ p′

P ′(¬A,B) = a′ q′ , P ′(¬A,¬B) = a′ q′ (4)

P ′ is constrained by the probabilistic information implied by the premises. To illustrate the

proposed analysis, we first consider MP, which has the following two premises:

Premise MP1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

11An important technical caveat needs to be made here. The agent’s prior probability distribution P will tell
us which probabilistic independencies obtain between the variables being considered. These independencies
can be represented by a Bayesian network (see e.g. Bovens and Hartmann, 2003). We assume that this
Bayesian network stays fixed across the given learning experience, i.e. the agent does not come to learn
that some variables they thought to be correlated are in fact independent or vice-versa. This assumption
plays no role here (where we consider only arguments involving two propositional variables), but it could play
an important role in more complex settings where many propositions are considered simultaneously and the
learning experiences are more complex. One might think of the fixed Bayesian network as encoding the agents’
beliefs about the causal structure of the considered variables. For Bayesian approaches to argumentation and
conditional reasoning that explicitly employ causal structure, see e.g. Ali et al. (2010, 2011), Hall et al.
(2016), Fernbach and Erb (2013) and Oaksford and Chater (2017).
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Premise MP2: A. In probabilistic terms, this amounts to P ′(A) = a′ = 1.

Here we assume that the premises are learned with certainty, and that the agent then

considers the effect of the learning process on the posterior probability of the conclusion. Thus,

this case is closely related to reasoning tasks in which the participant is asked to evaluate a

modus ponens argument from a purely deductive perspective, ignoring considerations about

the actual believability of the premises and the conclusion. This is the kind of reasoning

task that is typically associated with the ‘deductive’ or ‘old’ paradigm in the psychology of

reasoning (see e.g. Evans 2002), where participants are often explicitly instructed only to

draw conclusions that are logically entailed by the relevant premises. With this setup, the

following result holds (all proofs in supplemental online materials):

Proposition 1 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MP1 and

MP2 then implies that the new probability of B, i.e. P ′(B), equals 1.

This is in accordance with the fact that B follows deductively from MP1 and MP2. The

proposed procedure is consistent with classical logic.

Note that our premise MP1 does not require that we represent the conditional as a

proposition. We interpret the learning of the conditional A→ B as a simple constraint on the

conditional probability of B given A. We do not assume that any propositional representation

of the conditional is possible. Next, we examine MT, i.e.

A→ B

¬B

—————–

¬A

Here we encounter the following two premises:

Premise MT1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.
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Premise MT2: ¬B. In probabilistic terms, this amounts to P ′(B) = 0.

As expected, we can establish:

Proposition 2 An agent considers the propositions A and B and has a a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MT1 and MT2

then implies that the new probability of ¬A, i.e. P ′(¬A), equals 1.

Again, our procedure gives the right result, which encourages us to study arguments that

are not deductively valid but that may nevertheless have some strength. To do so, let us first

consider AC, i.e.

A→ B

B

—————–

A

This argument has the following two premises:

Premise AC1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise AC2: B. In probabilistic terms, this amounts to P ′(B) = 1.

Proposition 3 An agent considers the propositions A and B and has a a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises AC1 and AC2

(and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that the new

probability of the antecedent A, i.e. P ′(A), equals P (A|B).

As we want to infer the proposition A here, we conclude that AC is a good argument if

the conditional probability P (A|B) is large.12 This result is highly intuitive. It captures the

12An important clarification is needed here. When we say that an argument is successful or persuasive,
we mean that the probability of the conclusion increases across the learning experience. The strength of the
argument is given by the magnitude of this increase. Thus, an argument may have low strength even when
the posterior probability of the conclusion is very high, i.e. if the prior probability was already high.
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natural idea that AC is ‘missing a premise’, i.e. B→ A, and the strength of the argument

corresponds exactly to our confidence in this extra premise.

Finally, we study DA, i.e.

A→ B

¬A

—————–

¬B

This argument has the following two premises:

Premise DA1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise DA2: ¬A. In probabilistic terms, this amounts to P ′(A) = a′ = 0.

Proposition 4 An agent considers the propositions A and B and has a a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises DA1 and DA2

(and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that the new

probability of ¬B, i.e. P ′(¬B), equals P (¬B|¬A).

As we want to infer the proposition ¬B here, we conclude that DA is a good argument if the

conditional probability P (¬B|¬A) is large. Again, this is a very natural result that captures

our intuitions about when DA will be a good argument.13

Before moving on, it is worth offering a few final clarifying remarks about our approach.

With regards to the slogan, ‘argumentation is learning ’, the central idea is that a reliable

argument is one for which it is, in a certain sense, impossible to learn the premises without

learning the conclusion. In the usual case where the premises are learned with certainty,

13Oaksford et al. (2000) conducted experiments where people are asked whether they endorse each of the
four inference rules MP, MT, AC, and DA. They found that while nearly all respondents were entirely happy
to endorse MP, only around 70% endorsed MT. Surprisingly, the invalid schemes DA and AC were endorsed
by over 50% of respondents. This is an instance of a general phenomena, whereby naive reasoners tend
to unanimously accept MP as a good inference. MT generally has much lower acceptance rates (although
typically still above 50%), while AC and DA are quite often accepted as good inferences, with the acceptance
rate of AC sometimes reaching that of MT (see e.g. Evans, 1993).
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logically valid arguments are the only ones that satisfy this criterion. But in cases of ‘ineffable

learning’ where the agent becomes more confident of the premises without learning anything

for certain, the situation is rather more complicated. Our fundamental aim is to characterise

different types of arguments by studying what happens to the probability of the conclusion

when agents learn the premises in this more general way. If it is always the case that increasing

the probability of the premises necessitates an increase in the probability of the conclusion,

then the argument being considered is clearly reliable in the sense that any evidence for the

premises automatically counts as evidence for the conclusion. Note that this is a property

not of individual instances of arguments, but rather of abstract argument schemes. This

distinction is an important one, especially when it comes to the notion of argument strength.

The idea is that a particular instance of an argument is given by a particular agent with a

prior probability distribution who then obtains new evidence for the premises of the argument

and revises their probability estimates in line with that evidence to obtain a new probability

for the conclusion. The argument strength is given by the change in the probability of the

conclusion, and this change will be a function not just of the argument’s logical structure, but

also of the prior probability distribution and the new evidence. A ‘reliable’ argument scheme

for which evidence for the premises always counts as evidence for the conclusion will always

have positive argument strength, regardless of the prior distribution and the strength of the

new evidence.

Thus, when we say that ‘argumentation is learning’, we mean that the strength of any

particular instance of an argument form cannot be calculated without specifying both the

prior distribution of the agent considering the argument and the nature of the new evidence

obtained by that agent. Although the logical form can guarantee that the argument will

never have a negative effect, regardless of the agent’s prior distribution and the strength of

the evidence, the actual success of the argument can only be precisely quantified relative to a

particular learning scenario.

So far, we’ve only considered the special case where the premises are learned with certainty.
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In the following sections, we consider the more general cases where the premises are learned

with non-extreme probability (for example because the source from which the premises are

learned is not perfectly reliable). There are a number of reasons to care about these more

general cases. Firstly, as we stressed in the introduction, the vast majority of argumentation

that occurs in science and everyday life is argumentation under uncertainty. Typically, people

make arguments based on premises which are only probably true (at best), and a theory that

applies only to arguments with certain premises will be of very limited interest in this regard.

Secondly, it is unrealistic to suppose that people generally respond to learning conditionals

(for example) by setting the relevant conditional probability to 1, regardless of their prior

epistemic situation. By relaxing this kind of assumption, we are likely to be able to obtain a

much more plausible description of actual reasoning practices. For example, Stevenson and

Over (2001) conducted experiments in which participants were asked to evaluate prospective

MP and MT arguments with the major premise ‘If Bill has typhoid then he will make a quick

recovery’. They found that the acceptability of the argument depended importantly on the

reliability of the source that informed the participants of the major premise. The participants

endorsed the inferences more readily if the source was a professor of medicine, compared to

when the source was a first year medical student (related effects are discussed by e.g. Singmann

and Klauer 2011). This clearly looks like a case where the extent to which the participants

were convinced by the presented evidence for the major premise had a significant effect on the

perceived strength of the argument. If we hope to plausibly account for effects like these, then

we need to allow for the possibility that agents are only partially convinced by the presented

evidence for the premises of the relevant argument (for an experimental examination of the

role of source reliability in argumentation within a probabilistic framework, see also Hahn,

Harris and Corner, 2009). We turn now to considering the role of logical validity in this more

general setting.
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3 Uncertain Minor Premises

In Section 2, we saw that the Bayesian approach gives intuitively correct results in the special

case where we learn the premises with certainty, i.e. it allows us to infer the conclusion with

certainty for valid schemes, but not for invalid ones. Let us now consider the more general

case where the minor premise of the argument becomes more likely, but remains uncertain.

That is, the new probability of the minor premise goes up, but it does not go up to 1. In

that case, the probability of the conclusion of the argument can be smaller than 1 even if the

underlying argument pattern is valid.

This raises the question ‘what is the value of a logically valid argument in the light of

uncertain premises?’. Is the use of a logically valid argument pattern in some sense better

than using an argument pattern that is not logically valid? And if so, in which sense? This

will be the guiding question of this section.

We consider again the prior probability distribution in eqs. (3). We then learn two premises

of the given argument. As above, the posterior probability distribution P ′ is given by eqs.

(4). The additional constraints either fix one of the parameters (a′, p′ or q′) directly or some

function of these parameters. In the latter case, we add a corresponding constraint to the

respective Kullback-Leibler divergence, using the method of Lagrange multipliers. Without

the constraints, the Kullback-Leibler divergence for the cases we consider is given by

D0
KL(P ′||P ) = Φa + a′Φp + a′Φq. (5)

with

Φx := x′ log
x′

x
+ x′ log

x′

x
. (6)

The Kullback-Leibler divergence of P ′ and P is also known as the ‘relative entropy’ between

the two distributions. Intuitively, it measures how much information is lost when we try to
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approximate P ′ using P .14 The smaller it is, the better the approximation.

Let us examine MP first. Here we learn the following two premises:

Premise MP1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise MP2: A. In probabilistic terms, this amounts to P ′(A) = a′ > a.

Then the following proposition holds:

Proposition 5 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MP1 and

MP2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that

the new probability of B, i.e. P ′(B), is always greater than the prior probability P (B).

Hence, if we make a MP argument with uncertain premises, then the probability of the

conclusion increases if the probability of the minor premise increases. Intuitively, this tells us

that MP is fundamentally reliable, even in situations involving uncertain premises.

Let us now study DA. Here we learn

Premise DA1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise DA2: ¬A. In probabilistic terms, this amounts to P ′(¬A) > P (¬A) and hence

a′ < a.

Proposition 6 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises DA1 and DA2

(and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that the new

probability of ¬B, i.e. P ′(¬B), is greater than the prior probability P (¬B) iff a p+(a′−a) q < 0.

Note that a p is always positive while (a′ − a) q is always negative as now a′ < a. Hence

the sum of both may be positive or negative and hence the probability of ¬B may go up or

14Note that despite being widely described as a ‘probability distance measure’ the KL divergence is actually
not a metric, since it is not a commutative.
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down as a result of a DA argument, depending on the context (i.e. on the prior probability

distribution). Thus, DA, unlike MP, is not reliable in the sense that evidence for the premises

of the argument need not count as evidence for the conclusion. Note, however, that our

approach doesn’t simply categorise DA as a ‘fallacious’ argument scheme. Rather, it provides

us with precise conditions for when the argument can be used to provide legitimate support

for the conclusion.

Next, we study MT. Here we learn

Premise MT1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise MT2: ¬B. In probabilistic terms, this amounts to P ′(¬B) ≥ P (¬B).

Proposition 7 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MT1 and

MT2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that

the new probability of ¬A, i.e. P ′(¬A), is always greater than the prior probability P (¬A).

So MT, like MP, is characterized as being ‘reliable’ by our approach, in the sense that

evidence for the premises always counts as evidence for the conclusion. Finally, we consider

AC. Here we learn

Premise AC1: A→ B. In probabilistic terms, this amounts to P ′(B|A) = p′ = 1.

Premise AC2: B. In probabilistic terms, this amounts to P ′(B) ≥ P (B).

Proposition 8 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises AC1 and AC2

(and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that the new

probability of A, i.e. P ′(A), is greater than the prior probability P (A) iff a p− δ P (A|B) < 0

with δ := P ′(B)− P (B) > 0.

Again, the invalid argument scheme has been characterized as unreliable. We have specific

conditions for when the argument can be legitimately used to support the conclusion, but it
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is generally possible to obtain evidence for the premises that doesn’t count as evidence for

the conclusion.

In closing this section, we show that the results of Propositions 5 to 8 also hold if the

material conditional is used instead of minimizing the Kullback-Leibler divergence.

Proposition 9 The results of Propositions 5 to 8 also hold if one conditionalizes on the

material conditional ¬A ∨ B and Jeffrey-conditionalizes on the corresponding minor premise.

Hence, Propositions 1 to 4 also hold for the material conditional (cf. Suppes (1966)).

So it seems that one obtains the intuitively correct verdicts for the reliability of valid and

invalid arguments in argumentative contexts where the major premise is learned with certainty

regardless of whether one represents the learning of conditional premises according to the

distance-based approach or by simply conditioning on the material conditional. In Section

5 we turn to considering more general argumentative contexts where the way in which one

represents the learning of conditional premises makes an important difference.

4 Dynamic Non-Monotonicity and Rigidity

At this stage, it is instructive to connect the Bayesian approach to argumentation described

here to some existing work on the relationship between non-monotonic inferences and dynamic

reasoning with conditionals. As we noted in section 2, the non-monotonicity of everyday

inference constitutes one of the most powerful motivations for the Bayesian paradigm in the

psychology of reasoning. It turns out that the dynamic nature of our Bayesian theory of

argumentation is particularly well suited to analysing the role of non-monotonicity in human

reasoning. Oaksford and Chater themselves note that ‘a dynamical approach is required to

deal with the central outstanding problems of providing a psychological theory of everyday

conditional inference’. (Oaksford and Chater 2013: 348)

The following example (from Adams 1998) provides an illustrative starting point. Suppose

that an agent has reason to believe with certainty that a given student either studies psychol-
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ogy (A) or quantity surveying (B), i.e. they are certain that A ∨ B is true. If they subsequently

learn with certainty that ¬A is true (the student does not study psychology), they will be

able to apply the classically valid inference of disjunctive syllogism to conclude that B is true,

i.e. the student studies quantity surveying. The situation is of course more complicated when

uncertainty is introduced into the picture. Specifically, suppose that the agent, instead of

being certain of the truth of the disjunction A ∨ B, rather has a prior probability distribution

given by P (A ∧ B) = 0.5, P (A ∧ ¬B) = 0.4, P (¬A ∧ B) = 0.01, P (¬A ∧ ¬B) = 0.09. Then

their prior belief in the disjunction will be high, P (A ∨ B) = 0.91. However, it is easy to see

that P (A ∨ B|¬A) = 0.1 = P (B|¬A), and so the agent’s posterior belief in B after learning

¬A will be low (much lower than the prior value P (B) = 0.51). So when the agent learns ¬A,

one of the premises of the disjunctive syllogism inference, she will subsequently become less

confident of the conclusion of that inference. As Oaksford and Chater put it ‘learning that the

student does not study psychology makes it less likely that she studies quantity surveying.

This is non-monotonic reasoning behaviour, i.e., learning new information has potentially

lost a conclusion that was available before this information was lost’ (Oaksford and Chater

2013: 349). One way of diagnosing the source of this non-monotonicity is to note that after

learning ¬A, the agent becomes less confident of the disjunctive premise A ∨ B. Most of the

formal results in this paper assume that the learning experience does not cause the agent to

become less confident in any of the premises of the relevant argument. But of course, we

need to say something about the more general situation where the learning experience leads

to non-monotonic reasoning of the type illustrated by the previous example.

The first thing to note is that the monotonicity or non-monotonicity of an inference is not

generally indicative of its strength. For example, suppose that an agent gains evidence for the

major premise of an MP inference, A→ B and is unsure how the learned evidence affects the

probability of the minor premise A. This prompts them to raise the conditional probability

P (B|A) while leaving the probability of A unconstrained. Typically, this will result in the

probability of A decreasing and the probability of B increasing, i.e. the probability of the
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conclusion increases over the update while the probability of the minor premise decreases.15

So the mere fact that the learning experience undermines one of the premises does not imply

that the argument is unsuccessful. It can still have significant strength, although there is no

guarantee that will always be the case.16

Another important issue concerns the relationship between non-monotonicity and the

Bayesian ‘rigidity’ assumption. Consider a dynamic MP inference where the minor premise is

learned by Bayesian conditionalization. Recall that this learning method satisfies the so called

‘rigidity assumption’ according to which the conditional probability of the conclusion given

the minor premise remains unchanged over the update. Psychologically, this means that the

degree of belief that agents assign to B after learning A is equal to their prior degree of belief

in B under the assumption that A is true, i.e. that P (B|A) = P ′(B), where P ′ is the posterior

distribution after learning A. However, Zhao et al. (2012) performed experiments in which the

probabilities that participants assigned to B under the assumption that A is true were differ-

ent to the probability they assigned to B when they actually learned that A is true. Supposing

the truth of A was observed to generally have a lower impact on participant’s estimation of

the truth of B than actually learning the truth of A, i.e. |P (B|A)− P (B)| < |P ′(B)− P (A)|.

In a sense this is unsurprising. For, as Zhao et al. write,

Suppose that lions are discovered roaming your neighborhood; can you anticipate

the probabilities you would attach to other events if such startling circumstances

actually came to pass? (Zhao et al. 2012: 377)

This all suggests that models of conditional inference of the type proposed by e.g. Oaks-

ford et al. (2000) may rest on a psychologically unrealistic assumption (rigidity). Oaksford

and Chater (2007) took this limitation into account and considered a model where the new

15Oaksford and Chater (2013) consider a more radical illustration of this phenomenon. Specifically, they
note that learning the conclusion of an MT inference (¬B) will typically lead an agent to completely reject the
major premise (A → B) if they update by Bayesian conditionalization, since P(B|¬B,A) = 0. But if the prior
value of P(B|A) is high, the inference will still be strong in the sense that the probability of the conclusion
(¬A) will increase.

16This is in contrast to the case we focus on in this paper, where it is assumed that the learning experience
does not undermine the premises, and one can give guarantees about the success of valid arguments.
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conditional probability value P ′(B|A) obtained after updating on the minor premise is used in

the update, instead of the original conditional probability P (B|A).17 The new model outper-

formed its predecessor when it came to predicting the acceptance rates of MP, MT, DA and AC

inferences (see Oaksford and Chater 2007, 2009), which suggests that a psychologically plau-

sible model of conditional inference will need to take possible rigidity violations into account.

Happily, the distance based Bayesian approach to argumentation described here is perfectly

able to model these violations. For, one can always impose as a constraint that the posterior

conditional probability P ′(B|A) takes a psychologically plausible value with respect to the

prior distribution and the learned information, so that the relevant update is no longer simple

conditionalization. In more complicated argumentative scenarios, this will have a significant

impact (which will depend importantly on the prior distribution and which f -divergence is

used) on the strength of the relevant argument. Furthermore, this approach opens up an en-

tirely new perspective on non-monotonic dynamic conditional inference. For, consider again a

standard MP inference such as ‘If the key is turned, the car starts. The key is turned. There-

fore the car starts’. Given Zhao et al. (2012)’s results, it is perfectly plausible that people

could reason in such a way that their conditional credence P (the car starts|the key is turned)

is less than the credence that they would assign to the car starting after they actually learned

that the key has been turned.18 If we took this into account by imposing the constraint that

the posterior probability of the car starting after learning that the key is turned is less than

P (the car starts|the key is turned), we would be modelling a new form of non-monotonicity

where learning the minor premise of the inference interferes with belief in the major premise.

This form of non-monotonicity is entirely different to the well known ‘strengthening of the

antecedent’ and can only be modelled dynamically using the kinds of distance minimization

methods proposed here. Thus, our extended Bayesian theory of argumentation is able to

17Actually, the new model assumes that the update is rigid in the case of MP, but that rigidity is violated
in this way for MT, AC and DA.

18Zhao et al. discuss mainly cases where the posterior degree of belief in the consequent after learning
the antecedent is greater than the corresponding prior conditional probability, but of course this implies that
there will also be propositions (e.g. the negation of the consequent) whose posterior probability is less than
the original conditional probability.
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provide novel models of non-monotonic conditional inference that do not rely on the psycho-

logically implausible condition of universal rigidity.

5 Uncertain Major Premises

In Section 3, we saw that valid arguments seem to be distinguished by their reliability in

situations where we learn the minor premise with non-extreme probability. It is natural to

wonder whether the same is true in situations where the we learn the major premise with

non-extreme probability. For example, it might be that the agent learns the conditional ‘If A

then B’ from a partially reliable source or is aware of the possibility of disabling conditions

(see e.g. Over and Stevenson 2001, Singmann and Klauer 2011). In cases like this, the agent

will generally be inclined to increase the conditional probability P (B|A), but not all the way

to 1. A number of new technical and conceptual subtleties arise in this kind of situation.

Firstly, note the conditional A→ B is (according to most accounts) logically equivalent to

the contrapositive form ¬B→ ¬A. Until now this equivalence has been perfectly preserved

since P (B|A) = 1 if and only if P (¬A|¬B) = 1. It makes no difference whether one imposes

the constraint P (B|A) = 1 or P (¬A|¬B) = 1 since they are equivalent. Thus all the results so

far hold regardless of whether we represent the conditional in the major premise as A→ B or

¬B→ ¬A. However, things change when we consider the case where the conditional is learned

with non-extreme probability. For, the conditional probabilities P (B|A) and P (¬A|¬B) are

generally very different. So, when an agent learns the conditional ‘If A then B’ from a

partially reliable source, they have a choice about which conditional probability constraint

to impose. They can either increase P (B|A) or P (¬A|¬B), and they will generally obtain

different constraints on their posterior distribution depending on what they choose. This

means that in the uncertain argumentative context where the agent learns the major premise

with non-extreme probability, the argument forms we’ve been considering actually admit of

two distinct interpretations: one where the major premise imposes a constraint on P (B|A)
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and one where it imposes a constraint on P (¬A|¬B). We will shortly see that the choice of

conditional probability constraint has significant implications for the reliability of the relevant

argument.

The first natural setting to consider is where the agent learns the minor premise with

certainty but learns the major premise with non-extreme probability. In this case, modus

ponens has the following premises:

Premise MP1: A→ B. In probabilistic terms, this amounts to P ′(B|A) > P (B|A).

Premise MP2: A. In probabilistic terms, this amounts to P ′(A) = 1.

By analogy with the results of Section 3, one would expect that the constraints implied by

MP1 and MP2 would guarantee that P ′(B) ≥ P (B), which would ensure the reliability of

MP in this kind of argumentative context. Surprisingly, it turns out that the probability of

B can go up, down or stay the same, depending on the details of the prior distribution.19 So

logical validity does not ensure reliability in argumentative contexts where the agent learns the

minor premise with certainty but only learns the major premise with non-extreme probability.

The fact that logical validity is not sufficient for reliability in this particular context does

not mean that logical validity is generally useless in argumentative contexts where we learn

the major premise with non-extreme probability. We turn now to considering contexts where

the agent learns the major premise with some increased non-maximal probability but learns

nothing about the minor premise. First, consider again MP. In these argumentative contexts,

modus ponens takes the following form:

Premise MP1: A→ B. In probabilistic terms, this amounts to either (i) P ′(B|A) ≥ P (B|A),

or (ii) P ′(¬A|¬B) ≥ P (¬A|¬B).

19This is easy to see: MP1 and MP2 imply that P ′(B) = p′. Hence, using eqs. (3), we find that
P ′(B)−P (B) = a (p′− p) +a (p′− q), which can be negative if p < p′ < q. Specifically, if (i) A has a low prior
probability, (ii) there is a strong negative correlation between A and B, and (iii) the increase in the conditional
probability P (B|A) is small, it is possible that increasing MP1 and MP2 can lead to a decrease in P (B).
This makes intuitive sense. For, if A and B are strongly anti-correlated and we increase the probability of
A, that will of course lead to a decrease in the probability of B. If the corresponding increase in P (B|A) is
sufficiently small, it won’t be sufficient to overcome the effect created by the negative correlation in the prior
distribution.
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Premise MP2: A. In probabilistic terms, this amounts to P ′(A) = P (A).

The constraint implied by MP2 represents the fact that nothing is learned about the minor

premise. Note that MP1 now has two possible interpretations, one corresponding to the

standard conditional form, one corresponding to the contrapositive.

Proposition 10 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MP1(i) and

MP2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that the

new probability of B, i.e. P ′(B), is always greater than the prior probability P (B). However,

if the agent learns MP1(ii) rather than MP1(i), P ′(B) < P (B) can hold.

Thus, modus ponens is reliable in the argumentative context where the major premise is

learned with non-maximal probability (and nothing is learned about the minor premise),

when the conditional is given a non-contrapositive reading. If the conditional is interpreted in

a contrapositive form, MP will not be reliable in such a setting. So the success and reliability

of argument schemes in contexts where the major premise is uncertain depends crucially on

whether or not one adopts a contrapositive reading of the conditional. These considerations

simply don’t arise in the special case where the major premise is learned with certainty.

Let us now turn to MT. In this case, we learn:

Premise MT1: A→ B. In probabilistic terms, this amounts to either (i) P ′(B|A) ≥ P (B|A),

or (ii) P ′(¬A|¬B) ≥ P (¬A|¬B).

Premise MT2: ¬B. In probabilistic terms, this amounts to P ′(¬B) = P (¬B).

Proposition 11 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises MT1(ii) and

MT2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then implies that

the new probability of ¬A, i.e. P ′(¬A), is always greater than the prior probability P (¬A).

However, if the agent learns MT1(i) rather than MT1(ii), P ′(¬A) < P (¬A) can hold.
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So MT is exactly analogous to MP in these kinds of argumentative contexts, i.e. it is a

reliable argument scheme under one interpretation of the conditional probability constraint

given by the major premise. Specifically, MT is reliable when one adopts the contrapositive

interpretation of the major premise. Next, consider the invalid scheme AC. Here we learn:

Premise AC1: A→ B. In probabilistic terms, this amounts to either (i) P ′(B|A) ≥ P (B|A),

or (ii) P ′(¬A|¬B) ≥ P (¬A|¬B).

Premise AC2: B. In probabilistic terms, this amounts to P ′(B) = P (B).

Proposition 12 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises AC1(i) (or

AC1(ii)) and AC2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then

allows for the possibility that the new probability of A, i.e. P ′(A), can be less than the prior

probability P (A).

So AC is unreliable in these argumentative contexts, under either interpretation of the major

premise. This suggests an important a-symmetry between valid and invalid arguments in

contexts where the major premise is learned with non-extreme probability (and nothing is

learned about the minor premise). Specifically, we conjecture that, for any valid argument,

there is at least one legitimate construal under which the argument is reliable in these contexts.

The same is not true for invalid arguments, which will be unreliable under any construal of

the major premise.

Finally, consider DA. Here, we learn

Premise DA1: A→ B. In probabilistic terms, this amounts to either (i) P ′(B|A) ≥ P (B|A),

or (ii) P ′(¬A|¬B) ≥ P (¬A|¬B).

Premise DA2: ¬A. In probabilistic terms, this amounts to P ′(¬A) = P (¬A).

Proposition 13 An agent considers the propositions A and B and has a prior probability

distribution P according to eqs. (3) defined over them. Learning the premises DA1(i) (or
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DA1(ii)) and DA2 (and minimizing the Kullback-Leibler divergence between P ′ and P ) then

allows for the possibility that the new probability of ¬B, i.e. P ′(¬B), can be less than the prior

probability P (¬B).

Again, this is in line with the conjecture. The invalid scheme DA is unreliable under either

interpretation of the major premise. So it seems that valid arguments can be distinguished

from their invalid counterparts in contexts where the major premise is uncertain.

It is also worth noting that this analysis would be impossible if we represented the change in

the probability of the major premise by Jeffrey conditionalizing on the material conditional.

For, Jeffrey conditionalizing on the material conditional will generally affect the posterior

probability of both the antecedent and the consequent. In the argumentative contexts that we

are considering, the agent learns nothing about the plausibility of the minor premise, and this

is represented by the constraint that the probability of the minor premise stays fixed across

the update. Such a constraint is generally incompatible with increasing the probability of

the material conditional via Jeffrey conditionalization. Furthermore, the material conditional

does not allow for any distinction between the contrapositive and non-contrapositive forms.

Thus a proper analysis of logical validity in situations where the major premise is uncertain

clearly requires a distance-based approach to probabilistic updating of the type advocated

here.

The idea, commonly referred to as ‘Adams’ thesis’ that we should interpret a conditional

A→ B as imposing a constraint on the conditional probability P (B|A) has been hugely influ-

ential in logic, philosophy, and the psychology of reasoning. However, the results presented

here suggest that there exist argumentative contexts in which the major premise A→ B is

more naturally interpreted as imposing a constraint on the contrapositive conditional proba-

bility P (¬A|¬B). Thus, if we want to maintain both Adam’s thesis and the position that MT

is reliable in the same argumentative contexts as MP, we are forced to conclude that agents

interpret the indicative conditional contrapositively when making MT style inferences.20 We

20We conjecture that this insight may be useful in responding to some of the recent criticisms of Adam’s
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leave the detailed philosophical analysis of this suggestive idea for another day.21

6 The Value of Logical Validity

Let us summarize what we have shown so far. First, in Section 3 we showed the following.

Theorem 1 (Summary) An agent considers the premises A and B and entertains a prior

probability distribution P according to eqs. (3) defined over them. If the probability of the

minor premise increases and the probability of the major premise goes to 1, then the new

probability of the conclusion will always be greater than the prior probability of the conclusion

for logically valid argument schemes MP and MT. For the logically invalid argument schemes

AC and DA, the probability of the conclusion can be smaller or larger than the corresponding

prior probability.

This suggests the following conjecture.

Conjecture 1: For any valid argument scheme, increasing the probability of at least one mi-

nor premise, ensuring that the probability of no other minor premise goes down and imposing

the conditional probability constraints implied by the major premises guarantees that the prob-

ability of the conclusion will increase. For logically invalid argument schemes, the conclusion

can either increase or decrease in probability, depending on the prior distribution.

However, it is not hard to see that Conjecture 1 is false. Consider the simple valid argument

forms of disjunction introduction and conjunction elimination. These both satisfy Conjecture

thesis in the literature (see e.g. Douven 2017, Douven and Verbrugge 2010, 2012, 2013, Skovgaard Olsen et
al. 2016). For instance, one powerful criticism of Adams’ thesis is that it implies that the conditional has a
high probability/acceptability when P (B|A) is high but sill less than P (B|A), i.e. when B has a high prior
probability that is slightly reduced by conditioning on A. In this case A is negatively relevant for B, i.e. it
makes it more likely to be false, but Adams’ thesis still requires that the conditional ‘If A then B’ has high
probability, which seems strange. One might be able to solve this problem by arguing that the probability of
the conditional goes not by P (B|A) but rather by P (¬A|¬B) (which will typically be lower in these cases).

21Of course, a staunch advocate of Adam’s thesis could simply reject the idea that the probability of the
conditional ever goes by the contrapositive conditional probability. If one takes this stance, then the results
in this section can be seen as highlighting a new formal a-symmetry between MP and MT. As we noted in
section 2, Oaksford et al. (2000) have already highlighted a significant a-symmetry between the acceptance
rates of these argument schemes, so this view may also possess some merit.
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1 unproblematically (proof omitted). However, their invalid counterparts, disjunction elimi-

nation (DE) and conjunction introduction (CI), both violate it. In particular, consider DE,

which has the form A ∨ B, therefore A. We have the following result:

Proposition 14 Increasing the probability of A ∨ B and minimizing the Kullback-Leibler di-

vergence to the prior guarantees that the probability of A also increases. So DE violates

Conjecture 1.

The situation is just the same with CI, so it looks like our attempts to distinguish between

valid and invalid arguments with uncertain minor premises is bound to fail. Valid arguments

might have the desirable property that evidence for their minor premises always counts as

evidence for their conclusion, but this condition is only necessary, it is not sufficient. There

are also invalid arguments that are reliable in this important sense.

However, there is something special about CI and DE that appears to be crucial to their

violation of the conjecture. Specifically, they are arguments whose conclusion entails all

of the premises. They attempt to convince us of a hypothesis (conclusion) by providing

evidence for its logical consequences. Thus, these arguments can be seen as instantiations

of the hypothetico-deductive form of reasoning that Hempel took to be characteristic of the

scientific method (see e.g. Hempel 1943, Sprenger 2011). Perhaps then it should not be

surprising that these kinds of argument, despite being logically invalid, share with logically

valid arguments an important form of reliability. This reflects the crucial role that such

arguments are often thought to play in science. So we now have two fundamentally reliable

types of argument: logically valid arguments and (possibly invalid) hypothetico-deductive

arguments whose conclusions imply their premises. The following result suggests a natural

generalisation of the conjecture:

Theorem 2 Let Γ be the set of premises of a valid or hypothetico-deductive argument, with

conclusion φ. Then, if we learn the premises of the argument with probability P ′(Γ) ≥ P (Γ)

and update by Jeffrey conditionalization, this learning will necessitate a corresponding increase
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in the probability of the conclusion, i..e P ′(φ) ≥ P (φ). However, if the argument is invalid

and not hypothetico-deductive, it will always be possible to find cases where P ′(φ) < P (φ), as

long as the conclusion of the argument does not imply all of the premises.

Now, this result is not adequate for our purposes, since it assumes that the premises of the

arguments are always propositional, which is not the case for arguments with conditional ma-

jor premises. However it does suggest a natural generalisation to our approach. In particular,

we forward the following conjecture.

Conjecture 2: For any valid argument or hypothetico-deductive argument schemes, increas-

ing the probability of at least one minor premise, ensuring that the probability of no other

minor premise goes down and setting the conditional probability constraints implied by the

major premises to 1 guarantees that the probability of the conclusion will increase. For logi-

cally invalid non-hypothetico-deductive argument schemes, the conclusion can either increase

or decrease in probability, depending on the prior distribution.

This conjecture may not come as a surprise and one may wonder whether Ernest Adams

didn’t prove all this already in his book A Primer of Probability Logic (1998). In this book,

Adam defines the uncertainty of a proposition φ as u(φ) := 1−P (φ) and proves the following

two theorems:

Theorem 3 (Adams’ Static Uncertainty Sum Rule) If φ1, φ2, . . . , φn are ‘prior

premises’ and φ is a logical consequence of φ1, φ2, . . . , φn, then u(φ) ≤ u(φ1) + · · ·+ u(φn).

This theorem applies to our probability functions P and P ′. Note, however, that we do not

assign a probability to the conditional A→ B. All we assume is that learning the conditional

implies a certain probabilistic constraint on the new probability distribution P ′, i.e. P ′(B|A) =

1. Hence, the theorem is not relevant for our purposes.

Theorem 4 (Adams’ Dynamic Uncertainty Sum Rule) If φ1, φ2, . . . , φn are ‘prior

premises’, ι is a new premise, and φ is a logical consequence of φ1, φ2, . . . , φn and ι, then
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u(φ) ≤ u(φ1|ι) + · · ·+ u(φn|ι).

This theorem assumes that the updating, i.e. the move from P to P ′, proceeds via conditional-

ization. However, conditionalization does not provide a satisfactory account of the learning of

conditionals, which is why this theorem is also inapplicable to our project. So our conjecture

can be seen as a generalisation of Adams’ dynamic uncertainty rule to allow for the represen-

tation of conditional probabilistic constraints, where the conditional is not represented as a

truth functional proposition. It should also be noted that Adams’ dynamic rule assumes that

one learns the evidence with certainty. Thus, it is not able to capture evidential uncertainty,

where we learn the premises of the argument with non-maximal probability, which is exactly

the kind of case we are interested in. The characterisation of logically valid arguments given

by Conjecture 2 is extremely natural. It says that valid and hypothetico-deductive arguments

are characterized by the property that evidence for the minor premises always counts as ev-

idence for the conclusion. This provides a highly intuitive vindication of the special role of

valid arguments in uncertain reasoning. Surprisingly, we’ve seen that the Bayesian approach

to argumentation also identifies hypothetico-deductive arguments as a special class of reliable

arguments. This suggests an interesting connection to the analysis of scientific reasoning and

argumentation, where hypothetico-deductive arguments are thought to play a particularly

important role (for detailed discussions of the confirmatory power of hypothetico-deductive

reasoning, see e.g. Gemes (1998), Schurz (1991) and Sprenger (2011)). Finally, recall that in

Section 5 we proved the following:

Theorem 5 (Summary) An agent considers the premises A and B and entertains a prior

probability distribution P according to eqs. (3) defined over them. If the probability of the

minor premise stays the same and the probability of the major premise goes up, then the new

probability of the conclusion will always be greater than the prior probability of the conclusion

for logically valid argument schemes MP and MT, under one of the two possible interpretations

of the major premise. For the logically invalid argument schemes AC and DA, the probability
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of the conclusion can be smaller or larger than the corresponding prior probability, for both of

the two possible interpretations of the major premise.

This suggests the following conjecture:

Conjecture 3: For any valid argument scheme, increasing the probability of at least one

major premise and holding fixed the probability of all the minor premises guarantees that the

probability of the conclusion will increase, under at least one construal of the relevant major

premises. For logically invalid non-hypothetico deductive argument schemes, the conclusion

can either increase or decrease in probability (depending on the prior distribution), under

either construal of the relevant major premises.

7 Implications for Dual-Process Accounts of Reasoning

The results described above have significant implications for the currently popular dual-

process accounts of reasoning. According to dual-process accounts, human reasoning is

grounded in two distinct cognitive systems. System 1 processes22 are typically assumed to

be fast and automatic and only their final results are consciously registered. It is commonly

conjectured that System 1 is shared with humanity’s evolutionary ancestors and primarily

utilizes long term memory. In contrast, System 2 processes are typically construed as slow,

deliberative and distinctively human. System 2 is thought to be constrained by working mem-

ory capacity, and seems to be correlated with measures of general intelligence (see e.g. Evans

(2000), Stankovich and West (1997)).

22In recent years, some authors have adopted the terminology of ‘type 1’ and ‘type 2’ processes (see e.g.
Evans and Stanovich 2013), but here we stick with the traditional language of ‘system 1’ and ‘system 2’
processes.
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7.1 Bayesian Argumentation and the Single Function View of Hu-

man Cognition

It has been argued that ‘single-level probabilistic treatments’ of human reasoning such as that

given by the Bayesian paradigm are fundamentally incompatible with dual-process accounts,

since they construe human reasoning as being governed by a single cognitive system (Evans

2007). This view is rejected by Oaksford and Chater (2012), who argue that the Bayesian

paradigm is consistent with a particular interpretation of dual-process models. Specifically,

they contend that a single function probabilistic model of human cognition is perfectly compat-

ible with a dual process model of the implementation of reasoning. Although the fundamental

objective of human reasoning may be to solve probabilistic inference tasks, it is still possible

that the implementation of this central function is best explained by a dual process model

which posits two distinct systems of the type described above. The dual-process model is only

incompatible with the Bayesian approach to reasoning if one takes System 1 and System 2 to

serve distinct cognitive functions. It is with this version of dual-process accounts of reasoning

that we are presently concerned.

A central motivation for positing a dual-process account of reasoning comes from experiments

in which participants untrained in formal logic are asked to assess the validity of particular

instances of logical argument schemes. The crucial result is the observation of a ‘belief-bias

effect’ in the participants’ assessment of the arguments. Evans et al. (1983) introduced a

methodology whereby participants are presented with syllogisms of the following four types.

Type 1: Valid Argument and Plausible Conclusion

• Example: No police dogs are viscious, some highly trained dogs are viscious, therefore

some highly trained dogs are not police dogs.

Type 2: Valid Argument and Implausible Conclusion
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• Example: No nutritional things are inexpensive, some vitamin tablets are inexpensive,

therefore some vitamin tablets are not nutritional.

Type 3: Invalid Argument and Plausible Conclusion

• Example: No addictive things are inexpensive, some cigarettes are inexpensive, therefore

some addictive things are not cigarettes.

Type 4: Invalid Argument and Implausible Conclusion

• Example: No millionaires are hard workers, some rich people are hard workers, therefore

some millionaires are not rich people.

In the experiments, participants are explicitly instructed to treat the problem as a logical

reasoning task, i.e. they should only accept the conclusions that follow with necessity from

the relevant premises. Despite this instruction, participants (undergraduate students) consis-

tently demonstrate significant ‘belief bias’, i.e. their assessments of the acceptability of the

conclusion are strongly influenced by the independent plausibility of the conclusion, not only

by the logical form of the argument. Evans et al. (1983) observed that acceptance rates for

the conclusions of type 1 syllogisms were typically significantly higher than they were for type

2 syllogisms. Similarly, the acceptance rates for type 3 syllogisms were typically far higher

than for type 4 syllogisms, and commonly higher than for type 2 syllogisms. Thus, we see

that the independent plausibility of the conclusion tends to make a major difference to partic-

ipants’ assessments of the arguments. For both valid and invalid arguments, participants are

significantly more likely to endorse the conclusion if it is independently plausible. Further-

more, participants are sometimes more willing to endorse invalid arguments with plausible

conclusions than they are valid arguments with implausible conclusions. As Evans puts it, ‘It

is clear that participants are substantially influenced by both the logic of the argument and

the believability of its conclusion, with more belief-bias on invalid arguments’ (Evans, 2003).

It is subsequently argued that this belief-bias is best explained by a dual-process account: ‘It
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appears that both logical and belief-based processes are influencing the task and may be in

competition with one another. In the dual-process account, these are attributed to Systems

2 and 1, respectively’ (Evans, 2003).

This line of argument seems to explicitly support a dual-function view according to which

System 1 and System 2 are engaged in fundamentally different cognitive functions. While

System 1 attempts to solve probabilistic ‘belief-based’ inference tasks, System 2 is concerned

with solving deductive logical inference tasks. Since logical form and independent plausibility

both seem to play a crucial role in participants’ assessments of argument instances, it takes

both systems to adequately account for human reasoning behavior, or so the argument goes.

But this line of reasoning can be resisted in light of the results presented in this paper.

Belief-bias effects demonstrate that (1) ceteris-paribus, people endorse valid arguments over

invalid ones, but this preference can be overridden if the valid argument has an implausible

conclusion and the invalid argument has a plausible conclusion, (2) ceteris-paribus, people

endorse arguments with plausible conclusions over arguments with implausible ones, but this

preference can be overridden if the first argument is valid and the second is invalid. While it

may seem that in order to account for both (1) and (2), it is necessary to postulate two separate

cognitive systems, one governed by inductive probabilistic norms and the other governed by

deductive logical norms, there is another alternative. Specifically, if it is the case that a

ceteris-paribus preference for logically valid arguments emerges naturally from a preference

for arguments with plausible conclusions, then both (1) and (2) can be easily explained by

a single-function model of cognition of the type offered by the Bayesian paradigm. For, in

this case, the observed preference for logically valid arguments, far from being incompatible

with the Bayesian paradigm, is actually explained by participants treating the problem as a

probabilistic inference task. In this paper, we have demonstrated that the Bayesian approach

to human reasoning is perfectly capable of characterising and explaining the special role of

logically valid arguments. Thus, the preference for logical validity is a natural and expected

side effect of a preference for arguments with believable conclusions. We do not need to
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posit two distinct sets of norms governing the human reasoning in order to explain the belief-

bias effects. The preference for logical validity is a natural side effect of the probabilistic

norms given by the Bayesian paradigm. Thus, the Bayesian approach to argumentation

described here undermines one of the fundamental motivations for the dual-process approach

to human reasoning (under the interpretation whereby Systems 1 and 2 perform distinct

cognitive functions).

7.2 Response to Singmann et al. (2016)

Singmann et al. (2016) developed a formal dual-source model (DSM) of reasoning with

conditionals that employs a weighted sum whose components correspond to belief-based and

logic-based (or ‘content-based’ and ‘form-based’) information. Thus, we read

[T]here are content-independent effects of different argument forms that are not

adequately captured by Bayesian models. Hence we propose that reasoning is

influenced by two different and independent cognitive processes – a probabilistic

process in line with extant Bayesian models, which we call knowledge-based, and

a content-independent process driven by the form of the argument, which we call

form-based. In this view, reasoners’ evaluations actually reflect a mixture of form-

based and knowledge-based information. (Singmann et al. 2016: 62).

Singmann et al. go on to apply the DSM to provide a reanalysis of a study by Markovits

et al. (2016). In the study, participants were first asked to either assess an AC inference

(Experiment 1) or a DA inference (Experiment 2). The contents involved in the inferences

were entirely fictitious (involving an alien planet), which ensured that the participants had no

strong prior beliefs about the truth of the premises/conclusion. After assessing the assigned

inferences in Experiment 1/2, the participants were then given relative frequency information

about the occurrence of either A ∧ B and ¬A ∧ B (in Experiment 1) or ¬A ∧ B and ¬A ∧ ¬B

(in Experiment 2). They were then asked to assess the same inference they had previously
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assessed for a second time. For both of the experiments, some of the participants were given

a high probability condition prompting a high value for the relevant conditional probability

(P (A|B) for Experiment 1 and P (¬B|¬A) for Experiment 2) and some of them were given a

low probability condition prompting a low value for the relevant conditional probability. As

one would expect, it was observed that the acceptance rate for the initial inferences decreases

for both high and low probability conditions when the participants are instructed to evaluate

them from a deductive perspective, since even the high probability condition suggests the

possibility of counterexamples. In contrast, when participants were instructed to evaluate the

inferences from a probabilistic perspective, the acceptance rates were observed to decrease

only when the low probability condition was given, which is also a natural result. Singmann

et al. (2016) used a DSM model to describe the data and achieved a goodness of fit index of

R2 = 0.86. They then performed a meta-analysis in which they compared the performance

of the chosen DSM model to three competing Bayesian models, each one corresponding to

a different updating rule for learning the new conditional probability value. One of the

models they considered corresponded to the learning rule whereby the agent minimised the

Kullback-Leibler divergence using the learned conditional probability value as a constraint.

They showed that the DSM model outperformed all of the considered Bayesian models, which

had goodness of fit indices of around 0.79− 0.8. This suggests that the DSM may provide a

better account of human reasoning than its Bayesian counterparts, including the minimization

of the Kullback-Leibler divergence. It is not our aim here to provide a detailed analysis of

this argument, but we would like to note that the approach developed in this paper may be

able to contribute to a Bayesian response. Specifically, as we noted in section 2, the Kullback

Leibler divergence is just one of a large family of probabilistic distance measures (the ‘f -

divergences’), all of which are compatible with Bayesian conditionalization, and all of which

will give different results when updating on conditional information. The Kullback-Leibler

divergence has no special status here, and we believe that it will be partly an empirical matter

to determine which f -divergence gives the best account of human reasoning. And since there
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are many alternative f -divergences (e.g. the inverse KL-divergence, the Hellinger distance,

the total variation distance, α-divergence, etc) it is reasonable to expect that some of them

may be able to outperform the Kullback-Leibler divergence in matching people’s evaluation

of inferences. Furthermore, it should be noted that although the formal results described

here all concern the Kullback-Leibler divergence, there are strong indications that the same

or closely analogous results will be obtainable for other f -divergences.23

To summarise, the Bayesian approach to argumentation described here allows for a Bayesian

model that explains the ceteris-paribus preference for logically valid arguments, thereby un-

dermining one of the main motivations for the dual function view of human cognition. Fur-

thermore, by utilising alternative f -divergences, the Bayesian can hope to improve on the

empirical adequacy of their existing models of dynamic conditional inference (as described by

e.g. Singmann and Klauer (2016)).

8 Conclusion

In this paper, we have presented a major extension to the Bayesian approach to argumentation

that (amongst other things):

1. Utilizes a new class of learning rules that are better suited to modelling conditional

inferences than standard Bayesian methods.

2. Demonstrates how a preference for logically valid arguments arises naturally from prob-

abilistic reasoning norms, thereby undermining one of the most important theoretical

motivations for dual-function models of human cognition.

3. Allows for the definition of precise and well motivated measures of argument strength

whilst taking seriously philosophical concerns about (Jeffrey) conditionalizing on indica-

tive conditionals.

23This is a topic of ongoing research.
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4. Explicates the special role of logical validity in uncertain reasoning contexts, whilst

also justifying the privileged status of hypothetico-deductive arguments in scientific and

everyday reasoning, and accounting for the fact that invalid arguments can often have

significant strength.

5. Opens the possibility of significantly extending the Bayesian approach to the psychology

of reasoning by comparing the ability of different f -divergences to adequately model

reasoning patterns.

6. Allows the Bayesian to naturally model failures of rigidity and thereby provide a more

psychologically plausible model of argumentation and dynamic non-monotonicity.

More generally, the approach outlined here supports a dialogical view of argumentation, ac-

cording to which argumentation is a dynamic process in which interlocutors attempt to con-

vince each other of certain conclusions (see Hahn and Oaksford 2007, Van Eemeren and

Grootendorst 2004).24 The success of these arguments will depend not only on their logical

form, but also on the epistemic context of the interlocutors (as encoded in their prior beliefs),

the argumentative context and the strength of the evidence given in support of the premises.

By utilising the distance based approach to learning, we have also greatly extended the range

and variety of argumentative phenomena that fall under the ambit of the Bayesian approach

to argumentation. Crucially, we now have a general framework for studying a far wider range

of argumentative contexts than those that have previously been considered.

Finally as well as raising many important theoretical questions, the newly extended Bayesian

theory of argumentation opens a number of novel avenues for empirical research, including

for example:

1. Studying which generalised Bayesian learning rules provide the best account of the way

that people update their beliefs upon learning conditional information, particularly in

dynamic argumentation contexts such as that described in Markovits et al. (2016).

24In this sense, our approach shares a certain affinity with the influential view of argumentation forwarded
by Mercier and Sperber (2011).
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2. Studying whether people evaluate the reliability of general argument schemes and the

strength of individual arguments in line with the norms developed here, i.e. whether

subjects exhibit a general preference for hypothetico-deductive as opposed to other

kinds of invalid arguments and whether presenting the major premises of arguments

in a contrapositive form makes an important difference to the assessment of argument

strength.
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Appendix

Proofs

We begin with a definition. Let S1, . . . , Sn be the possible values of a random variable S over

which probability distributions P ′ and P are defined. Then the Kullback-Leibler divergence
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between P ′ and P is given by

DKL(P ′||P ) :=
n∑
i=1

P ′(Si) log
P ′(Si)

P (Si)
. (7)

In the remainder, we use the abbreviation “KL” for the Kullback-Leibler divergence. If a

constraint is added via a Lagrange multiplier, we use the letter “L” for the function which we

minimize.

In several of the following proofs we use the abbreviation

Φx := x′ log
x′

x
+ x′ log

x′

x
(8)

Note that

∂Φx

∂x′
= log

(
x′ x

x′ x

)
(9)

and that ∂Φx/∂x
′ = 0 implies x′ = x.

Proposition 1

We conclude from MP1 that p′ = 1, and from MP2 that a′ = 1. Hence, the posterior

distribution P ′ is given by

P ′(A,B) = 1 , P ′(A,¬B) = 0

P ′(¬A,B) = 0 , P ′(¬A,¬B) = 0 , (10)

from which we see immediately that P ′(B) = 1. Note that, in this case, no distance measure

needed to be minimized to obtain the result.
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Proposition 2

To determine the posterior probability distribution P ′, we assume again that the Bayesian

Network does not change as a result of learning the two premises and replace the variables a, p

and q by the corresponding primed variables a′, p′ and q′. With this, we conclude from MT1

that p′ = 1, and from MT2 that P ′(B) = a′ p′ + a′ q′ = a′ + a′ q′ = 0. Hence, a′ = q′ = 0,

which leads to the posterior distribution

P ′(A,B) = 0 , P ′(A,¬B) = 0

P ′(¬A,B) = 0 , P ′(¬A,¬B) = 1 . (11)

From this we see immediately that P ′(A) = 0 and hence P ′(¬A) = 1 (again without minimiz-

ing a distance measure), in accordance with the fact that ¬A follows deductively from MT1

and MT2.

Proposition 3

AC1 entails that p′ = 1 and AC2 entails that

P ′(B) = a′ + a′ q′ = 1. (12)

Hence, we have to minimize

L = Φa + a′ log
1

p
+ a′Φq + λ(a′ + a′ q′ − 1) . (13)

We differentiate L with respect to q′ and obtain

∂L

∂q′
= a′

(
log

(
q′ q

q′ q

)
+ λ

)
. (14)
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Setting this expression equal to zero yields

q′ =
q

q + q x
, (15)

with x := eλ. We insert eq. (15) into eq. (13) and obtain:

L = Φa + a′ log
1

p
− a′ log(q + q x) (16)

Next, we differentiate this expression with respect to a′, set the result equal to zero and obtain

a′ =
a p

a p+ a (q + q x)
. (17)

Next, we insert eqs. (15) and (17) into eq. (12) and conclude that x = 0. Hence,

a′ =
a p

a p+ a q

=
P (A,B)

P (B)

= P (A|B) . (18)

The posterior probability distribution is then given by

P ′(A,B) = P (A|B) , P ′(A,¬B) = 0

P ′(¬A,B) = P (¬A|B) , P ′(¬A,¬B) = 0 . (19)
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Proposition 4

DA1 entails that p′ = 1 and DA2 entails that a′ = 0. Hence, the posterior probability

distribution is given by

P ′(A,B) = 0 , P ′(A,¬B) = 0

P ′(¬A,B) = q′ , P ′(¬A,¬B) = q′ . (20)

To find q′, we minimize the Kullback-Leibler divergence between P ′ and P , which is given by

KL = q′ log
q′

a q
+ q′ log

q′

a q

= Φq − log a . (21)

Hence,

∂KL

∂q′
= log

(
q′

q′
q

q

)
. (22)

Setting the expression on the RHS equal to zero and solving for q′ yields q′ = q = P (B|¬A).

Hence, the posterior probability distribution is given by

P ′(A,B) = 0 , P ′(A,¬B) = 0

P ′(¬A,B) = P (B|¬A) , P ′(¬A,¬B) = P (¬B|¬A) . (23)

Finally, we compute P ′(¬B) = P (¬B|¬A).
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Proposition 5

As a′ and p′ are now fixed, we only have to minimize KL = D0
KL(P ′||P ) with respect to q′,

i.e.

∂KL

∂q′
= a′

∂Φq

∂q′

= a′ log

(
q′

q′
q

q

)
. (24)

Setting this expression equal to zero yields q′ = q. Hence

P ′(B) = a′ + a′ q . (25)

Noting that P (B) = a p+ a q we conclude that

∆MP
B := P ′(B)− P (B)

= a p+ (a′ − a) q . (26)

As both terms in this sum are greater than zero (note that a′ > a), we obtain that P ′(B) >

P (B).

Proposition 6

The proof proceeds as the previous proof with ∆DA
B := P ′(¬B)− P (¬B) = −∆MP

B . However,

as a′ < a, we see that ∆DA
B may be smaller or larger than zero, depending on the parameters

that characterize the prior probability distribution.
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Proposition 7

The second premise implies P ′(B) ≤ P (B) with

P (B) =: b = a p+ a q , P ′(B) =: b′ = a′ p′ + a′ q′ .

Hence the new probability distribution P ′ has to satisfy the constraint

a′ + a′ q′ − a p− aq + δ = 0, (27)

with some positive number δ := b− b′. We therefore have to maximize

L = Φa + a′Φp + a′Φq + λ (a′ + a′ q′ − a p− aq + δ), (28)

with a Lagrange parameter λ. We differentiate L with respect to q′ and set the resulting

expression equal to zero. From this we get

q′ =
q

q + q x
, (29)

with x := eλ. Inserting this into eq. (28), we get

L = Φa + a′ log
1

p
+ a′ log

1

q + q x
+ λ (1− a p− aq + δ). (30)

We differentiate L from eq. (30) with respect to a′ and obtain:

∂L

∂a′
= log

(
a′

a′
· a (q + q x)

a p

)
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Setting this expression equal to zero, we obtain:

a′ =
a p

a p+ a (q + q x)
(31)

We insert eqs. (29) and (31) into eq. (27) and obtain:

a p+ a (q + q x) =
a p+ a q

a p+ a q − δ
(32)

Hence,

a′ =
a p (a p+ a q − δ)

a p+ a q

= P (A|B)P ′(B) . (33)

With a bit of algebra we see that

∆MT
¬A := P ′(¬A)− P (¬A)

= a− a′

= a p+ δ · P (A|B)

= a p+ (b′ − b) · P (A|B) . (34)

As δ = b′ − b > 0, we conclude that ∆MT
¬A > 0.

Proposition 8

The proof proceeds as the previous proof. The only difference is that the sign of δ flipped,

which makes it now possible that the LHS of the inequality mentioned in the theorem is

greater than zero or smaller than zero, depending on the context (i.e. on the prior probability

distribution).
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Proposition 9

Consider MP first. Using Jeffrey Conditionalization, we calculate

P ∗(B) = π1 · P ′(A) + π2 · P ′(¬A),

with

π1 := P (B|¬A ∨ B,A) =
P (A,B,¬A ∨ B)

P (A,¬A ∨ B)
=
P (A,B)

P (A,B)
= 1

π2 := P (B|¬A ∨ B,¬A) =
P (¬A,B,¬A ∨ B)

P (¬A,¬A ∨ B)
=
P (¬A,B)

P (¬A)
= P (B|¬A).

Hence,

P ∗(B) = a′ + a′ · q,

which is identical with P ′(B) from eq. (25). Hence, the results of Theorems 5 and 6 follow.

Next, we consider MT and calculate

P ∗(A) = π3 · P ′(¬B) + π4 · P ′(B),

with

π3 := P (A|¬A ∨ B,¬B) =
P (A,¬B,¬A ∨ B)

P (¬A ∨ B,B)
= 0

π4 := P (A|¬A ∨ B,B) =
P (A,B,¬A ∨ B)

P (¬A ∨ B,B)
=
P (A,B)

P (B)
= P (A|B).

Hence,

P ∗(A) = P (A|B) · P ′(B),

which is identical with P ′(A) from eq. (33). Hence, the results of Theorems 7 and 8 follow.
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Proposition 10

Consider the case MP1(i) first. We then have to find q′ such that KL = aΦp + aΦq is

minimized. We obtain q′ = q. Hence, as p′ > p, it follows that P ′(B) = a p′+a q > a p+a q =

P (B).

Next, consider the case MP1(ii). The constraint P ′(¬A|¬B) > P (¬A|¬B) implies that

p q′ − q p′ − δ = 0, (35)

with δ > 0. We therefore have to find p′ and q′ such that

L = aΦp + aΦq + λ (p q′ − q p′ − δ)

is minimized. Differentiating L with respect to p′ and q′ and setting the resulting expressions

equal to zero yields

p′ p

p′ p
=

(
1

x

)q/a
and

q′ q

q′ q
= xp/a,

with x := eλ. Hence, (
p′ p

p′ p

)p/a
·
(
q′ q

q′ q

)q/a
= 1. (36)

We now set p = a and q = a and obtain from eq. (36) that q′ = p′. Using eq. (35) we obtain

p′ = a + δ and therefore q′ = a − δ. Hence, in this case, P (B) = a p + a q = a2 + a2 and

P ′(B) = a p′+ a q′ = a2 + a2 + δ · (a− a) = P (B) + δ · (a− a). We conclude that, for MP1(ii),

P ′(B) can be less than P (B), e.g. if a < 1/2, p = a and q = a.
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Proposition 11

Here it is more convenient to use the following parameterization of the prior distribution P

(and accordingly for P ′):

P (B) = b , P (A|B) = p , P (A|¬B) = q. (37)

Consider the case MT1(ii) first. The constraint P ′(¬A|¬B) > P (¬A|¬B) implies that q′ < q.

We then have to find p′ such that KL = bΦp + bΦq is minimized. We obtain p′ = p. Hence,

P ′(A) = b p+ b q′ < b p+ b q = P (A).

Next, consider the case MT1(i). The constraint P ′(B|A) > P (B|A) implies that

p′ q − p q′ − δ = 0, (38)

with δ > 0. We therefore have to find p′ and q′ such that

L = bΦp + bΦq + λ (p′ q − p q′ − δ)

is minimized. Differentiating L with respect to p′ and q′ and setting the resulting expressions

equal to zero yields

p′ p

p′ p
=

(
1

x

)q/b
and

q′ q

q′ q
= xp/b,

with x := eλ. Hence, (
p′ p

p′ p

)p/b
·
(
q′ q

q′ q

)q/b
= 1. (39)

We now set p = b and q = b and obtain from eq. (39) that q′ = p′. Using eq. (38) we

obtain p′ = b + δ and therefore q′ = b − δ. Hence, in this case, P (A) = b p + b q = 2 b b and

P ′(A) = b p′ + b q′ = 2 b b + δ · (b − b) = P (A) + δ · (b − b). We conclude that, for MT1(i),

P ′(¬A) can be less than P (¬A), e.g. if b > 1/2, p = b and q = b.
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Proposition 12

The proof follows from the proof of Theorem 10.

Proposition 13

The proof follows from the proof of Theorem 11.

Proposition 14

We note that P (A ∨ B) = P (A) + P (¬A,B) = P (A) + P (B|¬A)P (¬A) and similarly for

P ′(A ∨ B). Hence the following constraint applies:

a′ + a′ q′ − a− a q − δ = 0, (40)

with δ > 0. We therefore have to minimize

L = Φa + a′Φp + a′Φq + λ(a′ + a′ q′ − a− a q − δ). (41)

We differentiate L by p′, set the resulting expression equal to zero and obtain

p′ = p. (42)

Similarly, we obtain

q′ =
q

q + q x
, (43)

with x := eλ. Inserting eqs. (42) and (43) into eq. (41), we obtain

L = Φa − a′ log(q + q x) + λ (a q − δ). (44)
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We differentiate L with respect to a′, set the resulting expression equal to zero and obtain

a′ =
a

a+ a (q + q x)
. (45)

Inserting eqs. (43) and (45) into eq. (40) finally yields

a′ =

(
1 +

δ

a+ a q

)
a . (46)

Hence a′ > a iff δ > 0. Not surprisingly, the same result obtains if we Jeffrey-conditionalize

on ¬A ∨ B (proof omitted).

Theorem 2

Let Γ ` φ be a valid argument scheme, and suppose we learn Γ with probability P ′(Γ) ≥ P (Γ),

and let α = P ′(Γ)− P (Γ). Then,

P ′(φ) = P (φ|Γ)P ′(Γ) + P (φ|¬Γ)P ′(¬Γ)

=
P (φ,Γ)

P (Γ)
P ′(Γ) +

P (φ,¬Γ)

P (¬Γ)
P ′(¬Γ)

= P ′(Γ) +
P (φ,¬Γ)

P (¬Γ)
P ′(¬Γ)

= P (Γ) + α +

(
P (φ,¬Γ)

P (¬Γ)

)
(P (¬Γ)− α)

= P (Γ) + α + P (φ,¬Γ)− αP (φ,¬Γ)

P (¬Γ)
.
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So,

P ′(φ)− P (φ) = P ′(φ)− P (Γ)− P (φ,¬Γ)

= P (Γ) + α + P (φ,¬Γ)− αP (φ,¬Γ)

P (¬Γ)
− P (Γ)− P (φ,¬Γ)

= α− αP (φ,¬Γ)

P (¬Γ)

≥ α− αP (¬Γ)

P (¬Γ)

= 0.

Next, suppose that the argument is hypothetico-deductive, i.e φ entails Γ. Then,

P ′(φ) = P (φ|Γ)P ′(Γ) + P (φ|¬Γ)P ′(¬Γ)

=
P (φ,Γ)

P (Γ)
P ′(Γ) +

P (φ,¬Γ)

P (¬Γ)
P ′(¬Γ)

=
P (φ,Γ)

P (Γ)
P ′(Γ)

=
P (φ,Γ)

P (Γ)
(P (Γ) + α)

= P (φ,Γ) + α
P (φ,Γ)

P (Γ)

= P (φ) + α
P (φ)

P (Γ)

≥ P (φ).

Finally, suppose that the argument is neither valid nor hypothetico-deductive. In this case,

it is easy to see that we can have a prior distribution for which P (Γ) = P (Γ,¬φ) = 0.9 and

P (φ) = P (φ,¬Γ) = 0.1. As usual, we calculate P ′(φ) = P (φ|Γ)P ′(Γ) + P (φ|¬Γ)P ′(¬Γ).

Now, P (Γ) = 0.9. So, if we set α = 0.1, then P ′(¬Γ) = 0 and P ′(φ) = 0 < P (φ). So for any

invalid argument, P ′(Γ) ≥ P (Γ) doesn’t guarantee P ′(φ) ≥ P (φ), as desired. This completes

the proof.
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