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Abstract

After a brief introduction to issues that plague the realization of a theory of quantum gravity,
I suggest that the main one concerns a quantization of the principle of relative simultaneity. This
leads me to a distinction between time and space, to a further degree than that present in the
canonical approach to general relativity. With this distinction, one can make sense of superpositions
as interference between alternative paths in the relational configuration space of the entire Universe.
But the full use of relationalism brings us to a timeless picture of Nature, as it does in the canonical
approach (which culminates in the Wheeler-DeWitt equation). After a discussion of Parmenides and
the Eleatics’ rejection of time, I show that there is middle ground between their view of absolute
timelessness and a view of physics taking place in timeless configuration space. In this middle
ground, even though change does not fundamentally exist, the illusion of change can be recovered
in a way not permitted by Parmenides. It is recovered through a particular density distribution
over configuration space which gives rise to ‘records’. Incidentally, this distribution seems to have
the potential to dissolve further aspects of the measurement problem that can still be argued to
haunt the application of decoherence to Many-Worlds quantum mechanics. I end with a discussion
indicating that the conflict between the conclusions of this paper and our view of the continuity of
the self may still intuitively bother us. Nonetheless, those conclusions should be no more challenging
to our intuition than Derek Parfit’s thought experiments on the subject.
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1 A summary of the construction (for the experts).

Quantum mechanics arose in the 1920’s. General relativity has been around since the 1910’s. But, as of
2018, we still have no quantum theory of the gravitational field. What is taking us so long? I believe the
most challenging obstacle in our way is understanding the quantum superposition of general relativistic
causal structures. This obstacle is couched on facets of the ‘problem of time’ [1] — an inherent difficulty
in reconciling a picture of time evolution in quantum mechanics to a ‘block time’ picture of general
relativity.

I also believe we can overcome this obstacle only if we accept a fundamental distinction between time
and space. The distinction is timid in general relativity – even in its ADM form [2] – and here I want to
push it further. In this spirit, I will consider space to be fundamental and time to be a derived concept
– a concept at which we arrive from change (a loose quote from Ernst Mach).

I will here investigate the consequences of this distinction between time and space. The distinction
only allows a restricted class of fundamental physical fields — the ones whose content is spatially relational
— and it thus also restricts the sort of fundamental theories of reality. It is consequential in that with this
view we must reassess our interpretation of quantum mechanics and its relationship to gravity. The new
interpretation is compatible with a version of timelessness that I will explain below. With timelessness,
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comes the requirement of explaining history without fundamental underlying dynamics. The role of
dynamics is fulfilled by what I define as ‘records’.

This paper will consist mainly of two parts: one justifying the timeless approach through problems
in quantum gravity, and another describing physics within a general timeless theory proposed here. The
next subsection, 1.1, gives a brief look into the justification part to come, i.e. describing the need for
different relational symmetries in the present framework. These reasons will be furthered in section 2.3,
and the symmetries explicitly presented in 2.4. In the next subsection, 1.2, I will give a brief overview of
the second part of the paper, i.e. constructing physical theories which make sense in the timeless setting.

1.1 Symmetries and relationalism

Is a non-spacetime-covariant perspective in conflict with what we have learned from classical general
relativity? Not necessarily. For instance, Lorentz invariance can be a property recovered for classical
solutions of the field equations [3]. From this point of view, Einstein’s unification of space and time
would be a property of solutions of the equations of motion rather than a foundational principle of the
theory. In fact, there are many hints that by imposing space-time covariance quantum mechanically we
might be overstepping the principle’s jurisdiction, and I will list them in section 2.3.

For now, following the ideas of Mach further, we find that general relativity falls short of his relational
demands on Nature. According to Mach, the properties of objects can have no intrinsic meaning – it
is only by comparison that we obtain objective knowledge. For example, in Newtonian mechanics, only
relative positions of particles should enter our description of the Universe. There is no objective meaning
in the absolute location of a particle, only in its relation to all the other constituents of the Universe
[4]. Similarly, scale could be argued to only be meaningful in terms of comparisons. No one has ever
measured, nor will ever measure, a fundamental scaleful quantity.

Nonetheless, in general relativity, even in vacuum, the proper length of spacetime curves sets a scale,
irrespective of any ruler with which their lengths could be compared. In more mathematical jargon, the
spacetime length of a (non-null) curve is not generally invariant under conformal transformations of the
spacetime metric.1

If we accept the ontological split of spacetime into space and time, we prioritize a different kind of
symmetry: those that act on each spatial field configuration. On the other hand, symmetries that had
previously acted naturally on spacetime lose their simplicity and their privileged status. These notions
will be expanded in section 2.4 and used to guide our search for symmetries more sympathetic to quantum
evolution.

Focusing on space and its symmetries rather than spacetime and its symmetries, our postulates
demand complete relationalism, to the satisfaction of Mach’s demands. Then we find that there are
two types of symmetries – of scale and of position – implied by spatial relationalism. Thus both the
local scale and the spatial position are to be defined relationally – that is without ever referring to any
absolute frame of reference. These two types of transformation act ‘intrinsically’ on each spatial metric
configuration. By ‘intrinsic’, I mean that their action on a configuration should only depend on the
configuration itself, not on other configurations (even if neighboring ones), which is why I call it a ‘law
of the instant’.

In the quantum mechanical context, symmetries compatible with a timeless transition amplitude
should also be ‘laws of the instant’. Fortuitously, at least in metric variables the two relational symmetries
mentioned above represent the most general ‘laws of the instant’. Identifying configurations related by
such symmetries, the physical configuration space of a timeless theory becomes a quotient space, and
more, a ‘principal fiber bundle’ [5]. In the case of gravity, this quotient is called conformal superspace.
A curve in conformal superspace describes changes of scale-free geometry – or shapes – as it goes along.

On the other hand, symmetries that are inherited from a spacetime picture need not be laws of the
instant. For example, the usual symmetry of refoliations is a remnant of spacetime diffeomorphisms. It
is not a ‘law of the instant’ and is thus inimical to spatial relationalism as I define it here.2

There is one unintended consequence of ridding ourselves of symmetries that move time: how do we
regain time evolution? A Newtonian view of time seems outdated and stale. After the broader lessons

1The lengths of null curves are indeed invariant under conformal transformations. But even without matter the Einstein-
Hilbert action is not explicitly conformally invariant. Upon a conformal transformation the action gains a kinetic term for
the conformal factor.

2It is not enough to note that refoliations act differently on phase space than spatial diffeomorphisms (e.g. act as a
groupoid vs as a group). Both transformations have infinitesimal actions on phase space points after all, and, apart from
matters having to do with chaos [6], it is not clear why the action of one would permit a quotienting procedure, but not
the other. Here the difference is made explicit.
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of general relativity regarding relationalism, “time, of itself, and from its own nature, flowing equably
without regard to anything external”, is unconvincing. With full relationalism must come timelessness.

1.2 Timelessness

The ideas developed here have ancient roots. They are a modern version of the classical debate between
Parmenides and Heraclitus. Heraclitus held that nothing in this world is constant except change and
becoming. Parmenides on the other hand believed that the ontic changes we experience with our senses
are deceptive; behind the veil of our perceptions lies the changeless true nature of the World.

A much more recent incarnation of the Parmenidean view is found in the work of Julian Barbour
(see [7]), which I use here as a nearer port of departure. Barbour observes that timeless configuration
space should be seen as the realm containing every possible ‘now’, or instantaneous configuration of the
universe. In [8], Barbour attempts to accommodate timelessness more intuitively into our experience:

An alternative is that our direct experience, including that of seeing motion, is correlated
with only configuration in our brains: the correlate of the conscious instant is part of a
point of configuration space [...] Our seeing motion at some instant is correlated with a
single configuration of our brain that contains, so to speak, several stills of a movie that we
are aware of at once and interpret as motion. [...] Time is not a framework in which the
configurations of the world evolve. Time exists only so far as concrete configurations express
it in their structure. The instant is not in time; time is in the instant.

I almost wholeheartedly agree with Barbour. We diverge only in the attribution of experience to each
configuration alone. I believe there is no empirical access to single field configurations, therefore all
statements about experience refer to some coarse-graining, or regions of configuration space, where a
given attribute is represented. Clearly, this empirical dilution of Barbour’s radical ‘solipsism of the
instant’ does not conflict with my theoretical reasons for considering instantaneous configuration space
to be ontologically fundamental.

1.2.1 Timelessness and the relational quantum transition amplitude

When there is some underlying notion of the passage of time, we think about configuration q1 (and
possibly some neighborhood thereof) as ‘now’; it is a configuration which has evolved from earlier initial
conditions (e.g.: the Big Bang). We think of q2 as some configuration in the future, and we want to
predict the probability that our Universe will somehow become q2. Conversely, we can think of this
amplitude as saying that, having measured q1 at a previous time, closing our eyes, letting some time
elapse, we now want to calculate the probability that when we open our eyes we will find ourselves in
q2. Both alternatives represent the probability of q2 ‘conditional’ on q1, but I believe the latter is more
representative of how we actually use predictions.

In section 3, I will introduce the transition amplitude W (q1, q2), which in the timeless context is the
substitute of G((t1, q1), (t2, q2)) — the quantum transition amplitude between an initial and final config-
uration when an absolute notion of time exists. Such amplitudes have been studied in the path integral
language by Chiou [9]. According to him, W (q1, q2) represents ‘the amplitude related to measuring q2,
given that q1 was measured at a previous instance’.

Although W (q1, q2) appears to be mathematically self-consistent, we are still left with a host of
questions unanswered. What ‘previous instance’? How do we know that the previous configuration
really ‘happened’, and how did it ‘become’ the present one? When Time is to be a derived concept at
which we arrive from change, what is it that promotes change itself? What is it that drives the present
to become the future? Indeed, most relational approaches to quantum mechanics based on the transition
amplitude do not address this question [10].

Again quoting Barbour [8] as our proxy for Parmenides

By analogy with Descartes’s Cogito ergo sum, we know that the present instant is actualized.
However, because we can never step out of the present instant, we can never know if any
other instant is actually experienced. For we shall never know whether other possible instants,
including what we take to be our own past, are actual or whether the present instant is unique.

Indeed, it seems undeniable that the present – not just the t =now, but each and every present – has a
preferred ontological status compared to either its past or its future. Perhaps the difficulty of assigning
ontological meaning to W (q1, q2) is a reflection of this fact.
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My answer will be that the past doesn’t become the present – it is only embedded in the present.
Every present exists, every present is unique, and some presents may be entangled with other presents.

Everything we experience at any instant, including memories, must be etched into our instantaneous
brain configuration. Records of apparent past events should exist in the present configuration and its
neighbors. This is what Barbour alludes to by saying that ‘time is in the instant’. But why do records
give a consistent picture of the past? At any moment we are in the possession of a host of redundant
records of the same event, and they had better be in mutual accord. It is from this consistent mosaic of
records that we build models of the laws of Nature. We fit the pieces together into a larger explanatory
framework we call “science”.

1.2.2 Timeless records and the volume form.

After a description of timeless quantum mechanics and its path integral formulation in section 3, I
will introduce a volume form – or probability density – in configuration space, and a notion of semi-
classical records – the key constructions to answer these questions. Roughly, the volume-form represents
a counting of possible instantaneous Universes.

Since certain spatial field configurations may also contain an observer’s conscious state, the volume
element around such a configuration expresses the amount of observers which all possess similar experi-
ences. The volume form will depend on the given Lagrangian action, and we can determine paths that
extremize this action between two configurations (if any such path exists).

The kernel of the argument lies in accepting timelessness by interpreting q2 as configuration ‘now’,
but having q2 contain records of q1.3 In other words, even if there is no concrete sense in which q1

‘previously happened’, in the presence of records of q1, the volume of configurations in the region around
q2 become tightly correlated with the volume of configurations around q1. The connection between the
two infinitesimal volume forms implies that if there aren’t many copies of an observer close to q1, there
will be even less around q2. This not only guarantees a certain notion of unitarity, but, as a conditional
probability, can be interpreted as an inference of the existence of the past: q1 can be inferred from q2.

Furthermore I can show that: If q2 has a record of q1 and there is a unique extremal path between the
two configurations – the classical limit– then the entire path has at least a granular ordering of records.
Namely, parametrizing the path, γ(t), such that γ(0) = q1 , γ(t∗) = q2, then γ(t′′) has a record of γ(t′)
iff t′ < t′′ and |t′′ − t′| >> tplanck.

In the classical limit, we are led to the idea of a complete past history, culminating always in the
present. Different lines of evidence for the objective existence of the record q1 seem to concur. There are
redundant records of the breakfast donut – both my memory of it and the jelly stain on my shirt. After
all, in this limit every aspect of our present configuration q2 is connected to q1 by a classical history of
the fields. This nesting of records is also what allows us to effectively use “repeatability” of experiments.
Even though we only have access to ‘now’, each previous run of an experiment can be encoded in a future
run, in a very redundant manner subject to checks for consistency [11]. It allows frequencies to come
into science.

From a Bayesian perspective, we are in fact completely justified in assuming that configuration q2

evolved from q1 in the classical limit, realizing every configuration in between. The reconstruction of the
past is complete, at least as a working hypothesis.

1.2.3 Interference, not superposition.

Once spacetime is nothing but the relational change of space, superposing geometries becomes a more
straightforward problem to tackle. In the path integral formalism, quantum mechanical superpositions
of three-geometries can be realized through interfering paths in physical configuration space – the space
of all relationally equivalent three-geometries.

This is a counter-intuitive view on superpositions. We instinctively believe quantum subsystems exist
within a spacetime, where they are joined by us, observers of these subsystems. Both subsystem and
observer can independently be in states of superpositions. We naturally expect therefore to see superpo-
sitions of subsystems within spacetime. But if instead we experience only instantaneous configurations
– and these include gravitational degrees of freedom – we should expect something different.

Let me explain what is it that we should expect in the relational context of a closed Universe. Each
possible ‘spacetime’ (not necessarily of the generally-covariant sort) is identified with a curve in physical

3To me, this is related to what Barbour has called ‘time capsules’, but Barbour has objected to this connection.
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configuration space (configuration space modulo relational symmetries). In this context, the timeless
path integral formulation of gravity resembles the usual timeless path integral of quantum mechanics.

This analogy allows us to borrow from consistent histories [12] their notion of decoherence, or rather,
lack thereof – interference. In the path integral formulation of consistent histories in configuration space,
one measures superposition through the use of a mathematical object called the ‘decoherence functional’.
Given an ‘in’ and an ‘out’ configuration, q1 , q2, and a partitioning of paths between q1 and q2 (called
a coarse-graining of the paths), the decoherence functional gives a measure of interference between the
elements of the partition.

With a preferred notion of space, and the accompanying preferred choice of relational field-configuration
space, there is no need to wrap our minds around the meaning of ‘a superposition of spatial metrics’.
Instead, certain types of configurations are experienced more, or less, frequently, according to how often
they are represented in configuration space. I will clarify the meaning of this tricky word, ‘often’, in the
sequel.

Nonetheless, this new theory brings with it new questions: about locality, Bayesian probabilities,
Born rule, etc, which I tried to answer as fully as I could in [13, 14, 15] and which I will only touch on
here.

In the following section, I will introduce more technical reasons for my interest in timeless theories.
These have to do with quantum gravity. I thus start with a brief description of what would count as a
theory of quantum gravity, before moving on to the sort of problems it has, which I believe timelessness
might cure. In section 3 I discuss timelessness in earnest. I start with a little ancient history, centered on
Parmenides and Zeno, who I think already grasped important aspects of the modern discussion. I then
move on to expounding the standard timeless quantum path integral formulation, since it provides a useful
tool for many of the results and intuitions to be developed. In section 3.2.2, I develop the configuration
spaces for gravity in which this timeless formulation would be physically meaningful. Nevertheless, the
formulation does not address the question of whether one would still require a “driver” of change. This
driver becomes obsolete with the introduction of records, in section 4.2. However, records require on their
turn a notion of a global “initial state”, or Past Hypothesis, which is introduced still in section 4.2. In
section 5, I discuss psychological implications of this view on timelessness, and expand the mathematical
discrepancy between this view and the Eleatic conclusions. I then conclude.

2 The problems with quantizing gravity

I will start in section 2.1 with what I believe are the main principles of quantum mechanics and gravity.
I will then follow in section 2.2 with a brief idiosyncratic exposition of in issues in quantizing gravity in
section. Then, in section 2.3 I move on to an illustration of which of these problems signal a fundamental
difference between time and space. Finally, in section 2.4, I posit what sort of different fundamental
symmetries — i.e. to be imposed also off-shell, or at the quantum mechanical level — would assuage the
clash between dynamics and symmetry. These turn out to be the spatial relational symmetries.

2.1 A tale of two theories

General relativity is one of the pillars of our modern understanding of the Universe, deserving a certain
degree of familiarity from all those who purport to study Nature, whether from a philosophical or
mathematical point of view. The theory has such pristine logical purity that it can be comprehensively
summarized by John A. Wheeler’s famous quip [16]:

“Matter tells spacetime how to curve, and spacetime tells matter how to move.” (1)

We should not forget however, that ensconced within Wheeler’s sentence is our conception of spacetime
as a dynamical geometrical arena of reality: no longer a fixed stage where physics unfolds, it is part and
parcel of the play of existence.

In mathematical terms, we have:

Rµν −
1

2
Rgµν︸ ︷︷ ︸

spacetime curving

∝ Tµν︸ ︷︷ ︸
sources for curving

(2)

Given the sources, one will determine a geometry given by the spacetime metric gµν – the ‘ matter tells
spacetime how to curve’ bit. Conversely, it can be shown that very light, very small particles will roughly
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follow geodesics defined by the geometry of the lhs of the equation – the ‘spacetime tells matter how to
move’ part.4

A mere decade after the birth of GR, along came quantum mechanics. It was a framework that
provided unprecedented accuracy in experimental confirmation, predictions of new physical effects and a
reliable compass for the construction of new theories. And yet, it has resisted the intuitive understanding
that was quickly achieved with general relativity. A much less accurate characterization than Wheeler’s
quip for general relativity has been borrowed from the pessimistic adage “everything that can happen,
does happen”.5 The sentence is meant to raise the principle of superposition to the status of core concept
of quantum mechanics (whether it expresses this clearly or not is very much debatable).

In mathematical terms, the superposition principle can be seen in the Schrödinger equation:

Ĥψ = −i~ d
dt
ψ (3)

whose linearity implies that two solutions ψ1 and ψ2 add up to a solution ψ1 + ψ2. In the path integral
representation, superposition is built-in. The very formulation of the generating function is a sum over
all possible field configurations φ,

Z[j] =

∫
Dφ exp

[
i

∫
L(φ)/~

]
(4)

where L(φ) is the Lagrangian density for the field φ and Dφ signifies a summation over all possible values
of this field (the second integral is over spacetime).

Unfortunately, for the past 90 years, general relativity and quantum mechanics have not really gotten
along. Quantum mechanics soon claimed a large chunk of territory in the theoretical physics landscape,
leaving a small sliver of no-man’s land also outside the domain of general relativity. In most regimes,
the theories will stay out of each other’s way - domains of physics where both effects need to be taken
into account for an accurate phenomenological description of Nature are hard to come by. Nonetheless,
such a reconciliation might be necessary even for the self-consistency of general relativity: by predicting
the formation of singularities, general relativity “predicts its own demise”, to borrow again the words
of John Wheeler. Unless, that is, quantum effects can be suitably incorporated to save the day at such
high curvature regimes.

2.2 The problems of quantum gravity

At an abstract level, the question we need to face when trying to quantize general relativity is: how to
write down a theory that includes all possible superpositions and yet yields something like equation (2)
in appropriate classical regimes? Although the incompatibility between general relativity and quantum
mechanics can be of technical character, it is widely accepted that it has more conceptual roots. In the
following, I will describe only two such roots.

2.2.1 Is non-renormalizability the only problem?

The main technical obstacle cited in the literature is the issue of perturbative renormalizabilty. Gravity
is a non-linear theory, which means that geometrical disturbances around a flat background can act as
sources for the geometry itself. The problem is that unlike what is the case in other non-linear theories,
the ‘charges’ carried by the non-linear terms in linearized general relativity become too ‘heavy’ —the
gravitational coupling constant has negative mass dimensions— generating a cascade of ever increasing
types of interactions once one goes to high enough energies. This creates problems for treating such
phenomena scientifically, for we would require an infinite amount of experiments to determine the strength
of these infinite types of interactions. This problem can be called ‘loss of predictability’.

There are theories, such as Horava-Lifschitz gravity [19], which seem to be naively perturbatively
renormalizable. The source of renormalizability here is the greater number of spatial derivatives as
compared to that of time derivatives. This imbalance violates fundamental Lorentz invariance, breaking
up spacetime into space and time. Unfortunately, the theory introduces new degrees of freedom that
appear to be problematic (i.e. their influence does not disappear at observable scales).

4This distinction is not entirely accurate, as the rhs of equation (2) usually also contains the metric, and thus the
equation should be seen as a constraint on which kind of space-times with which kind of matter distributions one can
obtain, “simultaneously”. I.e. it should be seen as a spacetime, block universe, pattern, not as a causal relation (see [17]).

5Recently made the title of a popular book on quantum mechanics [18].
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And perhaps perturbative non-renormalizability is not the only problem. Indeed, for some time
we have known that a certain theory of gravity called ‘conformal gravity’ (or ‘Weyl squared’) is also
perturbatively renormalizable. The problem there is that the theory is sick. Conformal gravity is not a
unitary theory, which roughly means that probabilities will not be conserved in time. But, which time?
And is there a way to have better control over unitarity? This can be called ‘the problem of unitarity’.6

2.2.2 A dynamical approach

In covariant general relativity, the fundamental field, gµν , already codifies causal relations, whether or
not the equations of motion (the Einstein equations) have been imposed. So a first question to ask is if
we can give a formulation of quantum gravity which reflects the fundamental distinction between causal
and acausal. One way of approaching this question is to first use a more dynamical account of the theory.
We don’t need to reinvent such an account – it is already standard in the study of gravity, going by the
acronym of ADM (Arnowitt-Deser-Misner) [2]. The main idea behind a dynamical point of view is to
set up initial conditions on a spatial manifold M and construct the spacetime geometry by evolving in a
given auxiliary definition of time.7 Indeed most of the work in numerical general relativity requires the
use of the dynamical approach. Such formulations allow us to use the tools of the Hamiltonian formalism
of quantum mechanics to bear on the problem of quantizing gravity. With these tools, matters regarding
unitarity are much easier to formulate, because there is a time with respect to which probabilities are to
be conserved.

However, since the slicing of spacetime is merely an auxiliary structure, the theory comes with a
constraint – called the Hamiltonian constraint – which implies a freedom in the choice of such artificial
time slicings. The metric associated to each equal time slice, gab, and its associated momenta, πab, must
be related by the following relation at each spatial point x ∈M :

H(x) := R(x)− 1

g

(
πabπab −

1

2
π2

)
(x) = 0 ∀x ∈M (5)

where g stands for the determinant of the metric.

2.3 Problems of Time

The constraints (5) are commonly thought to guarantee that observables of the theory should not depend
on the auxiliary ‘foliation’ of spacetime. As we will see in this section, there are multiple issues with
this interpretation. Famously, (5) also contains the generator of time evolution. In other words, time
evolution becomes inextricably mixed with a certain type of gauge-freedom, leading some to conclude
that in GR evolution is “pure gauge”. This is one facet of what people have called “the problem of time”
(see e.g. [21, 22]). It is related to the picture of “block time” – the notion that the object one deals with
in general relativity is the entire spacetime, for which the distinction between past, present and future
is not fundamental. The worry is that the Hamiltonian formalism might be freezing the bathwater with
the baby still inside. What can we salvage in terms of true evolution?

Even in the simplest example, it is not clear that the “refoliation invariance” interpretation is tenable,
as shown by Torre et al [23]. For a scalar field propagating in Minkowski spacetime between two fixed
hypersurfaces, different choices of interpolating foliations will have unitarily inequivalent Schroedinger
time evolutions.

But what about more broadly? What can we say about the attempt to represent relativity of
simultaneity in the Hamiltonian — both classical and quantum mechanical — setting? In this section
I will investigate this question. The conclusion will be that, at least from the quantum mechanical
perspective, it might make little sense to implement refoliation invariance. I contend that this is because
local time reparametrization represents an effective, but not fundamental symmetry. I.e. I contend
that invariance under refoliation is not present at a quantum mechanical level, but should be recovered
dynamically for states that are nearly classical.

In the following two subsection, I will expand first on obstacles for a quantization of refoliation
symmetry in the Hamiltonian setting, and then in the Lagrangian setting. I will expound on how these
two types of obstacles point to timelessness as a possible resolution.

6Another approach to quantum gravity called Asymptotic Safety [20] also suffers from such a lack of control of unitar-
ity. This approach also explores the possible existence of gravitational theories whose renormalization will only generate
dependence on a finite number of coupling constants, thus avoiding the loss of predictibility explained above.

7 In this constructed space-time, the initial surface must be Cauchy, implying that one can only perform this analysis
for space-times that are time-orientable.
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2.3.1 Hamiltonian evolution.

Using the ‘covariant symplectic formalism’, one can geometrically project symmetries of the Lagrangian
theory onto the Hamiltonian framework [24]. Using this formalism, one can precisely track how La-
grangian symmetries in the covariant field-space are represented as Hamiltonian flows in phase space.
As shown by Wald and Lee [24], for this projection to be well-defined in the case of non-spatial diffeo-
morphism invariance (acting as a spacetime Lagrangian symmetry), one needs to restrict the Lagrangian
theory to consider only those fields which satisfy the equations of motion. Once restricted, indeed there
exists a projection of the non-spatial diffeomorphism symmetry to the symplectic flow of the standard
scalar ADM constraint (5). But otherwise, there isn’t such a correspondence. In other words, the
Hamiltonian formalism embodies the sacred principle of relativity of simultaneity only on-shell.

In fact, because the ADM Hamiltonian is purely made of constraints, satisfying the constraints
at every time and point in space means that the resulting data, (gab(t, x), πab(t, x) (and Lagrange
multipliers), satisfy all the equations of motion. In sum, imposing the Hamiltonian symmetries im-
plies one must also impose (in Hamiltonian form) the Einstein equations of motion. Schematically,
H(x, t) = 0 ∀x, t ⇒ π̇ab = {H,πab} and ġab = {H, gab}. Once the dynamics of the gravitational field
are included in the Hamiltonian formalism (home of canonical quantum mechanics), it is impossible to
enforce relativity of simultaneity without also enforcing the gravitational equations of motion.

This is worth repeating: for generic off-shell spacetimes, the Hamiltonian constraint does not represent
relativity of simultaneity. But symmetries should hold at the quantum level irrespectively of the classical
equations of motion. Which brings forth the question: what would it even mean to naively quantize (5)?
What property would we be trying to represent with its quantization?

If one nonetheless ignores these issues and pushes quantization, one gets the infamous Wheeler-DeWitt
equation:

Ĥψ[g] = 0 (6)

where ψ[g] is a wave-functional over the space of three-geometries. Following this route, we see the
classical ‘problem of time’ transported into the quantum regime:8 One could look at equation (6) as
a time-independent Schrödinger equation, which brings us again to the notion of “frozen time”, from
(3). A solution of the equation will not be subject to time evolution; it will give a frozen probability
wave-function on the space of three-geometries. Other canonical approaches have so far similarly found
insurmountable problems with the quantization of this constraint. I contend that it should simply not
be quantized, as it does not represent a fundamental symmetry principle of the quantum theory.

2.3.2 Covariant quantum gravity

At a more formal level, to combine (2) with our principle of superposition one should keep in mind
that space-times define causal structures, and it is far from clear how one should think about these in a
state of superposition. For instance, which causal structure should one use in an algebraic quantum field
theory approach when declaring that space-like separated operators commute? Quantum field theory is
formulated in a fixed spacetime geometry, while in general relativity spacetime is dynamical. Without a
fixed definition of time or an a priori distinction between past and future, it is hard to impose causality
or interpret probabilities in quantum mechanics.

In quantum mechanics, we have time-evolution operators e−iĤt, taking us from an initial physical
state to a final one. In the language of path integrals, it is more convenient to express evolution in terms
of a gauge-fixed propagator (the inversion of the quantum mechanical propagator requires gauge-degrees
of freedom to have already been gauge-fixed) W (φ1, φ2), where φ (e.g. φ = (x, t)) is deemed to at least
contain all the gauge-invariant information.9 This simple characterization already raises two types of
difficulties.

The first is that there is no known local parametrization of physical (observable) Lorentzian 4-
geometries, [(4)g] (global obstructions — e.g. the Gribov problem [27] — also exist, but are less concern-

8 For the expert readers, I should note that a derivation of (6) exists from the path integral formalism [25]. But that
derivation already assumes that the Hamiltonian symmetries act on all the variables in the path integral, and thus it does
not resolve the problem Wald and Lee pointed to. Even ignoring all of these issues, equation (6) has some further problems
of its own. It has operator ordering ambiguities, functional derivatives of the metric acting at a singular point, no suitable
inner product on the respective Hilbert space with respectable invariance properties, etc. One could also attempt to
interpret (6) as a Klein-Gordon equation with mass term proportional to the spatial Ricci scalar, but unlike Klein-Gordon,
it is already supposed to be a quantized equation. Furthermore, the problem in defining suitable inner products are an
obstacle in separating out a positive and negative spectrum of the Klein-Gordon operator [22].

9One can parametrize observables by families of gauge-fixings; as in e.g.: partial observables, in the sense of Rovelli [26].
Their inclusion does not change the discussion.
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Figure 1: A ‘gauge-slice’ in the field-space of a field theory with gauge-symmetry.

ing). To understand what this means, we need to introduce the notion of a ‘slice’. A ‘slice’ is a split
between the physically equivalent (or gauge-equivalent) field configurations and the physically distinct
ones. A local slice is one that performs this split only locally in field space, and it is equivalent to a
local gauge-fixing if gauge-transformations form well-defined gauge-orbits (see figure 1). Finding a slice
theorem is relatively straightforward in the case of Riemannian metrics (Euclidean signature), for any
dimension. To make a long story short, what goes wrong in the Lorentzian case involves the lack of
invertibility of certain second order differential operators, which are elliptic in the Riemannian case. In
the case of Lorentzian metrics, the analogous operators are hyperbolic, invalidating the construction of
the slice. It is the sign of Time that gets in the way.

Indeed, a local parametrization, or slice for Lorentzian metrics has only been constructed (by Isen-
berg and Marsden) for those Lorentzian metrics which i) satisfy the Einstein equations and ii) which
furthermore admit a particular kind of time-foliation [28]. This choice — Constant Mean Curvature
(CMC) — corresponds to synchronizing clocks so that they measure the same expansion rate of space
everywhere (i.e. same local Hubble parameter).

Of course, this is sub-optimal, to say the least. Quantization requires that we consider metrics
which are off-shell, i.e. which do not obey the classical equations of motion. This issue is similar to
the previously mentioned one, also surrounding relativity of simultaneity — it only has a Hamiltonian
representation for spacetimes satisfying Einstein equations.

One source of problems is that, in GR, gauge-symmetries are spacetime diffeomorphisms, and the
gravitational degrees of freedom that are (non-perturbatively) gauge-invariant thus can correspond to
the entire spacetime, e.g.

Diff-invariant quantities:

∫
d4x
√

(4)g(4)R,

∫
d4x
√

(4)g (4)Rµν (4)Rµν , etc

Naively combining the two properties would require us to associate a quantum “time-evolution” between
two different complete spacetimes, not between observables within time. For instance, the fundamental
transition amplitude would be of the form W ([(4)g1], [(4)g2]), where the square-brackets [(4)g] signify
the quotient of the spacetime metric by all possible gauge-transformations (the spacetime geometry
corresponding to the 4-metric (4)g).

To perhaps bluntly summarize the issue, it seems that non-locality in time requires prescience of
what is to come. Although this non-locality could be compatible with a fully deterministic evolution, it
is incompatible with the type of indeterminism inherent in quantum theory.

2.3.3 Gluing transition amplitudes for spacetime regions.

The previous argument assumes that spacetime does not possess boundaries, where the gauge-symmetries
can be fixed. If one would like to have a piecewise approach — that is, considering spacetime regions
and then gluing them — other types of questions arise about how to glue different transition amplitudes
in gauge-theories, for instance, questions about the compatibility of gauge-fixing the degrees of freedom
at the boundaries [29, 30] (which is problematic for a variety of reasons, including the previous one of a
lack of slice).

In a 3+1 decomposition, at least two related difficulties arise for the path integral. One could take
Ṅ = 0 = Ni , for lapse N and shift Ni. This is part of the standard gauge-fixing taken for transition
amplitudes in GR, such as for Hartle-Hawking [31]. But these won’t cover generic spacetimes; such
coordinates generically form caustics. This is related to the problem mentioned above: there is no
(known) slice theorem for Lorentzian metrics [28].
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Moreover, as mentioned before (in footnote 8), the proof that such transition amplitudes obey the
Hamiltonian invariance equations, (6), assumes invariance under the actions of the constraints, i.e. it
assumes phase space invariance, not spacetime (Lagrangian) invariance. Thus the argument expounded
above with regards to the Wheeler-DeWitt equation applies also here: it is unclear if the transition
amplitude expresses relativity of simultaneity [24].

The second difficulty is that the spacetime corresponding to each gauge-fixed path is taken to have
boundaries (at least the initial and final time-slices), and, again, the fate of diffeomorphisms in the
presence of boundaries is a very current matter of discussion in the community.10 At least in the
presence of degrees of freedom which are not strictly topological in nature, that is.

Indeed, many approaches to quantum gravity, such as spin foams (see [10] and references therein) are
inspired by an approach to topological quantum field theory (TQFT) originated by Atyiah and Segal
[33]. These approaches depict a transition amplitude from (co)boundaries of a manifold. The boundaries
host states, and the interior of the manifold encodes the transition amplitude between these states. The
transition amplitude can be obtained by a path integral of all field histories between the two boundaries.
And it is true that there are many examples for which we understand quantization of TQFT’s with
diffeomorphism symmetry, including gravity in 2+1 spacetime dimensions (see [34]). However, being
topological in nature, in none of these theories is there a discrepancy between the full field space and
that subset which satisfies the equations of motion; the equations of motion are trivially satisfied by
using gauge transformations; in this case indeed there is no difference between implementing symmetries
on-shell or off-shell. Therefore, in these theories, the counter-arguments outlined in this section are not
valid; it requires a gap between what is kinematical and what is dynamical.

2.3.4 Many problems...

Let us take stock of the many problems related to time in GR which we have mentioned: first, ‘dynamics’
— the Einstein equations – has little to do with causality properties; even kinematically, the field gµν
already carries causal relations.11 Second, the Hamiltonian only relates to redefinitions of simultaneity
when the Einstein field equations are met [24]. Relatedly, there is no middle ground: if the Hamiltonian
constraint is satisfied everywhere then the full equations of motion are also satisfied; the lines between
symmetry and evolution are completely blurred. In other words, within the Hamiltonian formalism – the
most natural formalism for quantum mechanics – one cannot implement the symmetries off-shell, that
is, in a truly quantum mechanical manner. Indeed, as mentioned in the beginning of the section, even
the simplest example field-theory (with local degrees of freedom) testing invariance under refoliations in
the quantum mechanical realm is problematic [23]. Thirdly, in the covariant approach, no generic (i.e.
also off-shell) gauge-fixing is known. This is again a problem of the signature of operators related to the
time direction.

2.4 Symmetries, relationalism and ‘laws of the instant’

Many of the problems in the previous section seem to point in the same direction: parametrizing physical
degrees of freedom in the presence of relativity of simultaneity is a difficult task. Perhaps restricting
the fundamental symmetries of the theory to disallow this mixing with evolution would cure some of
these issues. As I have emphasized, we only need to recover refoliation invariance on-shell, i.e. only after
the equations of motion have been imposed. This frees up the theory to accept different fundamental
symmetry principles, and delegate the fulfillment of refoliation invariance to on-shell properties. In this
section, we will uncover what this new sort of symmetries can be.

2.4.1 A silver lining.

There are makeshift patches to the problems of time we have mentioned, and in them, we can find a
silver lining. For instance, as I mentioned, a very weak form of a slice theorem — essentially generic
gauge-fixings— exists for GR [28]. It requires that the spacetime satisfy the Einstein equations and admit
a constant-mean-curvature (CMC) foliation, i.e. synchronizing clocks so that the expansion of space is
constant everywhere. Moreover, going to the 3+1 framework to study dynamics, one finds that most

10These concerns have resurfaced due to the study of entanglement entropy [32].
11As a background, that is. One can move to the 3+1 context, in which, after gauge-fixing, one finds hyperbolic

equations of motion propagating field disturbances. But then, one is back to the other issues I have mentioned: first,
regarding generic gauge-fixings of the 4-diffeomorphisms. Secondly, regarding the inextricable relation between evolution
and gauge symmetry; is it possible to satisfy one but not the other?
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formal proofs for existence and uniqueness of solutions also require the use of CMC foliations, through
the so-called York method [35, 36]. Indeed, most if not all of the numerical simulations used to model
black hole mergers have worked within CMC [37], even helping to interpret LIGO data; and every test
that has ever been passed by GR is known to be consistent with a CMC foliation.

The constraints these foliations need to satisfy generate certain dynamical (symplectic) flows: changes
of spatial scale, i.e. local conformal transformations, as we will see shortly. Indeed, CMC foliations have
special properties in GR: the evolution of the spatial conformal geometry decouples from the evolution of
the pure scale degrees of freedom of the metric. Surprisingly, both the York method and the slice theorem
show that although GR is not fundamentally concerned with spatial conformal geometries, it is deeply
related to them. As we now comment on, this is not an accident; the most general sort of symmetries
that act pointwise in configuration space and locally in space are indeed conformal transformations and
diffeomorphisms.

In the following subsection, I introduce these symmetries. In subsection 2.4.3, I describe this result:
these symmetries are the most general ones with an inherently ‘instantaneous’, local, action.

2.4.2 Relationalism

In Hamiltonian language, the most general symmetry transformation acts through the Poisson bracket
{ · · }, on configurations

δεgij(x) =

{∫
d3xF [g, π;x′)ε(x′) , gij(x)

}
(7)

where ε is the not-necessarily scalar gauge parameter, which in this infinite dimensional context is a
function on the closed spatial manifold, M , and we are using DeWitt’s mixed functional dependence, i.e.
F depends functionally on gij (not just on its value at x′), as denoted by square brackets, but it yields
a function with position dependence – the “ ;x′)” at the end.

Regarding the presence of gauge symmetries in configuration space, we would like to implement the
most general relational principles that are applicable to space (as opposed to spacetime). At face value,
the strictly relational symmetries should be:

• Relationalism of locations. In Newtonian particle mechanics this would imply that only relative
positions and velocities of the particles, not their absolute position and motion, are relevant for
dynamics. In the center of mass frame, i.e. in which the total linear momentum vanishes (~P = 0),
the supposition only holds if the total angular momentum of the system also vanishes (see [4, 38]),
~L ≈ 0. In the gravitational field theory case, relationalism of locations is represented by the (spatial)
diffeomorphism group Diff(M) of the manifold M . It is generated by a constraint F [g, π;x′) =
∇iπij(x) ≈ 0, which yields on configuration space the transformation δ~εgij(x) = L~εgij(x), which is
just the infinitesimal dragging of tensors by a diffeomorphism.

• Relationalism of scale. In Newtonian particle mechanics this relational symmetry would imply
that only the relative distance of the particles, not the absolute scale, is relevant for dynamics.
It only holds if the total ‘dilatational momentum’ of the system vanishes (see [4, 38]). In the
gravitational field theory this symmetry is represented by the group of scale transformations (also
called the Weyl group), C(M), which is symplectically generated by F [g, π;x′) = gijπ

ij(x) ≈ 0
(it yields on configuration space the scale transformation δεgij(x) = ε(x)gij(x)). In this case
the infinitesimal gauge parameter ε is a scalar function, as opposed to a vector field ~ε for the
diffeomorphisms.

Unlike what is the case with the constraints emerging from the Hamiltonian ADM formalism of general
relativity, these symmetries form a (infinite-dimensional) closed Lie algebra.

2.4.3 Laws of the instant

Even if we disregard considerations about relationalism, local time-reparametrizations, or refoliations,
also don’t act as a group in spatial configuration space, and thus do not allow one to form a gauge-
invariant quotient from its action. That is, given a particular linear combination – defined by a smearing12

λ⊥ – of the Hamiltonian constraints given in (5), it generates the following transformation:

δλ⊥gab(x) =
2λ⊥(πab − 1

2πgab)√
g

(x) (8)

12The ⊥ notation is standard to represent parameter acting transversally to the constant-time surfaces.
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which depends not only on the metric, but also on the momenta. This dependence is clearly in contrast
to the symmetries related to relationalism of scale and of position, above. It means that the 3-metric by
itself carries no gauge-invariant information.

Indeed, for the associated symmetry to have an action on configuration space that is independent of
the momenta, a given constraint F [g, π, λ] ≈ 0 must be linear in the momenta. This already severely
restricts the forms of the functional to:13

F [g, π, λ] =

∫
F̃ (g, λ)ab(x)πab(x) (9)

so that the infinitesimal gauge transformation for the gauge-parameter λ gives:

δλgab(x) = F̃ (g, λ)ab(x).

Thus I would like symmetries to act solely on configuration space. Only such symmetries are compati-
ble with the demand that the W (g1

ab , g
2
ab) give all the information we need about a theory, since only such

symmetries allow gab to carry gauge-invariant information. I thus require that δεg
1
ab(x) = G[g1

ab , ε ;x)
for some mixed functional G – which crucially only depends on g1

ab.
In other words, the action of the symmetry transformations of ‘now’, only depend on the content of

‘now’. The action of these relational symmetries on each configuration gab is self-determined, they do
not depend on the history of the configuration or on configurations g̃ab 6= gab. In appendix B, I sketch a
proof that the relational symmetries of scale and position are indeed the only symmetries whose action
in phase space projects down to an intrinsic action on configuration space.

The conclusion of this argument is that spatial relationalism is singled out by demanding that sym-
metries have an intrinsic action on configuration space. Just to be clear, this feature is not realized by
the action of the ADM scalar constraint (5), since it is a symmetry generated by terms quadratic in the
momenta and thus the transformation it generates on the metric requires knowledge of the conjugate
momentum (and vice-versa).

Lastly (and also unlike what is the case with the scalar constraint (5)),14 the action of these symme-
tries endows configuration space M with a well-defined, neat principal fiber bundle structure (see [39]),
which enables their quantum treatment [15].

3 Timelessness, quantum mechanics, and configuration space

As mentioned, any theory that is completely relational would preferably not contain an explicit, Newto-
nian time variable. Briefly summarized, relationalism is the belief that all relevant physical information,
including Time, should be deducible from the relation between physical objects. Thus the presence of an
“external time” is odd from the point of view of relationalism, and should be extractable from internal
properties of curves in configuration space. We thus turn now to timelessness.

What does a timeless, relational theory, quantum or classical, look like? A long literature exists on
this matter, and it is of course beyond the scope of this work to give any reasonably detailed account of
the subject.

Instead, I will start with a brief description of pre-scientific debates surrounding the issue, in section
3.1. Skipping straight into modern ideas about timeless quantum mechanics, in section 3.2 I will then
give a very brief account of the results of [9] which are specially useful for my purposes. Chiou translates
canonical timeless quantum mechanics (see e.g. [10], briefly summarized in appendix A) into the path
integral formulation – which is the approach I believe carries the most useful conceptual baggage. I will
end the section by illustrating the main features of a path integral for quantum gravity satisfying such
principles.

3.1 The special existence of the present - Parmenides and Zeno

It could be argued that we do not “experience” space-times. We experience ‘one instant at a time’,
so to say. We of course still appear to experience the passage of time, or perhaps more accurately, we
(indirectly) experience changes in the spatial configuration of the world around us, through changes of
the spatial configuration of our brain states.

13Up to canonical transformations which don’t change the metric, i.e. with generating functionals of the form∫
d3x (π̃abgab +

√
gF [g]), for F any functional of g and π̃ab the new momentum variable.

14Barring the occurrence of metrics with non-trivial isometry group.
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But if present experience is somehow distinguished, how does “change” come about? This is where
Parmenides has something to say that is relevant for our discussion. Parmenides was part of a group
called the Eleatics, whose most prominent members were himself and Zeno, and whose central belief
was that all change is illusory. The reasoning that led them to this conclusion was the following: if the
future (or past) is real, and the future is not existing now, it would have both properties of existing and
not existing, a contradiction (or a ‘turning back on itself’). Without past and future, the past cannot
transmute itself into future, and thus there is also no possible change. Of course, the argument hinges
on the distinction we perceive between present, past and future.

Many centuries later, Augustine of Hippo picked up the question, concluding that change was an
illusion and yet,

How can the past and future be, when the past no longer is, and the future is not yet? As for
the present, if it were always present and never moved on to become the past, it would not
be time, but eternity.[...] Nevertheless we do measure time. We cannot measure it if it is not
yet into being, or if it is no longer in being, or if it has no duration, or if it has no beginning
and no end. Therefore we measure neither the future nor the past nor the present nor time
that is passing. Yet we do measure time.

According to Augustine, Time is a human invention: the difference between future and past is merely
the one between anticipation and memory.

To the extent that future and past events are real, they are real now, i.e. they are somehow encoded
in the present configuration of the Universe. Apart from that, they can be argued not to exist. My
memory of the donut I had for breakfast is etched into patterns of electric and chemical configurations of
my brain, right now. We infer the past existence of dinosaurs because it is encoded in the genes of present
species and in fossils in the soil. In a timeless Universe, what we actually do is deduce from the present
that there exists a continuous curve of configurations connecting ‘now’ to some other configuration we
call ‘the past’. But if the ideas of past and future were all completely immaterial, how would we have
come to have such illusions in the first place? They surely are not false, and other instants should exist.
But then how to connect a snapshot of the dinosaur dying with the snapshot of the archaeologist finding
its remains? Does the Eleatic argument bring about a ‘solipsism of the instant’?

3.1.1 A more mathematical posing of the question.

Let’s call configuration space M, which we endow with a reasonable topology. Given an appropriate
action functional over M, one obtains continuous curves that extremize this functional. It makes sense
to have configuration ‘bite on donut’ connected by one such continuous curve to configuration ‘me,
reminiscing about donut, six hours later’. But what is the meaning of these curves? In which sense can
we think of ourselves as traversing them?

We now turn to the meaning of timeless configuration space, how to construct a theory of quantum
mechanics there, and how a notion of traversing such a curve arises.

3.2 Timeless path integral in quantum mechanics

We start with a finite-dimensional system, whose configuration space, M, is coordinitized by qa, for
a = 1, · · · , n. An observation yields a complete set of qa, which is called an event. Let us start by
making it clear that no coordinate, or function of coordinates, need single itself out as a reference
parameter of curves inM. The systems we are considering are not necessarily ‘deparametrizable’ – they
do not necessarily possess a suitable notion of time variable.

Now let Ω = T ∗M be the cotangent bundle to configuration space, with coordinates qa and their
momenta pa. The classical dynamics of a reparametrization invariant system is fully determined once
one fixes the Hamiltonian constraint surface in Ω, given by H = 0. A curve γ ∈M is a classical history
connecting the events qa1 and qa2 if there exists an unparametrized curve γ̄ in T ∗M such that the following
action is extremized:

S[γ̄] =

∫
γ̄

padq
a (10)

for curves lying on the constraint surface H(qa, pa) = 0, and are such that γ̄’s projection to M is γ,
connecting qa1 and qa2 .

Feynman’s original demonstration of the equivalence between the standard form of non-relativistic
quantum mechanics and his own path integral formulation relied on refining time slicings. The availability
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of time gave a straightforward manner by which to partition paths into smaller and smaller segments.
Without absolute time, one must employ new tools in seeking to show the equivalence. For instance, a
parametrized curve γ̄ : [0, 1] → Ω need not be injective on its image (it may go back and forth). This
requires one to use a Riemann-Stieltjes integral as opposed to a Riemann one in order to make sense of
the limiting procedure to infinite sub-divisions of the parametrization. In the end, a timeless transition
amplitude becomes (see appendix A):

W (q1, q2) =

∫
Dqa

∫
Dpa δ[H] exp

[
i

~

∫
γ̄

padq
a

]
(11)

where the path integral sums over paths whose projection starts at q1 and ends at q2, and H is a single
reparametrization constraint. In the presence of gauge symmetries, if it is the case that these symmetries
form a closed Lie algebra, one can in principle use the group averaging procedure mentioned in appendix
A, provided one uses a similarly translation invariant measure of integration (which is available for the
single, or global, reparametrization group).

For a strictly deparametrizable system,15 one obtains again:

W (t1, q
i
1, t2, q

i
2) ∼

∫
DtG(t1, q

i
1, t2, q

i
2) ∼ G(t1, q

i
1, t2, q

i
2)

up to an irrelevant overall factor. Further, if the Hamiltonian is quadratic in the momenta, one can
integrate them out and obtain the configuration space path integral with the Lagrangian form of the
action.

3.2.1 The absence of change.

For a theory that contains some driver of change, an absolute Time of some sort, we would extend our
configuration space with an independent time variable, t, making the system effectively deparametrizable.
With this absolute notion of Time, and ontological deparametrization of the system, evolution from t1
to t2 would not require any further definition. At this point we could stop, claiming that we have
expounded on what we expect a relational theory of space to look like. We would be able to define
a Schrodinger equation as in the usual time-dependent framework, and go about our business. Shape
dynamics employing the complete relational symmetries is a theory of that sort.16 However, the presence
of Time there is still disturbing from a relational point of view: where is this Time if not in the relations
between elements of the configurations? Therefore, to fully satisfy our relational fetishes, we must again
tackle the question posed at the introduction: without a driver for change, what is the meaning of a
transition amplitude? The answer will come in section 4.2, where we introduce ‘records’. Before that,
we need to transpose the mechanisms of this section to the quantum gravity context.

3.2.2 A relational transition amplitude for Quantum Gravity.

In this section, I reviewed a timeless path integral formulation of quantum mechanics by Chiou [9],
building on previous results on timeless quantum mechanics (see [10] for a review). In these formulations,
configuration space is the ‘space of all possible instants’.

Configuration space for timeless field theories, which I will still denote byM, is the set of all possible
field configurations over a given closed manifold M . Each point of configuration space q ∈ M is a
“snapshot” of the whole Universe.17 I will require symmetries to be ‘laws of the instant’ precisely so
that they are compatible with a theory defined at its most fundamental level by W (q1, q2).

Given these symmetries (and the principal fiber bundle structure they form), we take the analogous
of (11), schematically projected down onto the space of conformal geometries18:

W ([g1], [g2]) =

∫
D[g]

∫
D[π] exp

[
i

~

∫
γ̄

[πab] δ[gab]

]
δH([g], [π]) (12)

15I.e. one for which [Ĥ(t1), Ĥ(t2)] = 0. If this is not the case, the equality will only hold semi-classically.
16The absolute time used in the original version of shape dynamics [40], is of the form 〈πabgab〉, where brackets denote

the spatial average. This quantity is only invariant wrt Weyl transformations that preserve the total volume of space, and
is thus not completely relational. One can extend the conformal transformation to the full group, acquiring an absolute
time parametrization [41].

17 For instance, it could be the space of sections on a tensor bundle, M = C∞(TM ⊗ · · ·TM ⊗ TM∗ · · ·TM∗). In the
case of gravity, these are sections of the positive symmetric tensor bundle: M = C∞+ (TM∗ ⊗S TM∗).

18The full treatment of the gauge conditions requires a gauge-fixed BRST formalism, which is a level of detail I don’t
need here. See [15] for a more precise definition, equation (28), where we use K(g1, [g2]) as opposed to W ([g1], [g2]).
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where I have (again, schematically) used square brackets to denote the conformal-diffeo equivalence
classes of the metric and momenta, and where δH represents a single reparametrization constraint (not
an infinite amount, as in the ADM scalar constraint). Schematically, this transition amplitude should
play the role of (11) in the field theory case.

Although considerations of quantum gravity and its problems have led us to value the timeless, or
instantaneous, representation of quantum theory, having reached this point, we revert back to the more
general notation, denoting the equivalence classes [g] and all other equivalence classes of fields under the
appropriate instantaneous symmetries, by the standard coordinate variable, q.

4 Records and timelessness

Suppose then, that we have in our hands a W (qq, q2) for which q’s carry also the gauge-invariant degrees
of freedom. Still, as stressed in previous sections; without some ‘driver of change’ — which we usually
call time — what is the meaning of this transition amplitude? Here we will see how such a meaning
can arise from timelessness. The ultimate meaning W (q1, q2) can give rise to is simple: the likelihood
that records of q1 will be found in q2. In section 4.1, I will build the scaffolding for a static volume-form
in configuration space. This requires a definition of the space of ‘beables’ and of an ‘anchor’ to the
path integral. Having done this, in section 4.2 I introduce the structure which allows one to ascribe
histories to properties of the static volume-form – -records. However, records are not enough to talk
about conservation of probability, and at the end of the section I sketch how this can be done.

4.1 Born rule and the preferred configuration.

4.1.1 The ontological status of configuration space.

In a true spatially relational theory, an instantaneous state of an observer is encoded in a partial field
configuration. There are no subjective overtones attributed to an observer – it is merely a (partial) state
of the fields. Of course, there are many regions of configuration space where no such thing as an observer
will be represented.

Since each point is a possible ‘now’, and there is no evolution, each ‘now’ has an equal claim on
existing. This establishes the plane of existence, every ‘now’ that can exist, does exist! We are at least
partway towards the adage of quantum mechanics. If this was a discrete space, we could say that each
element has the same weight. This is known as the principle of indifference and it implies that we count
each copy of a similar observer once.19

But configuration space is a continuous space, like R2 (but infinite-dimensional). Unlike what is the
case with discrete spaces, there is no preferred way of counting points of R2. We need to imprint M
with a volume form; each volume form represents a different way of counting configurations.

4.1.2 Born rule.

Contrary to what occurs in standard time-dependent Many Worlds quantum mechanics, I will define
a single, standard time-independent ‘volume element’ over configuration space M. Integrated over a
given region, this volume element will simply give the volume, or the amount, of configurations in that
region.20

The volume form P (q)Dq is defined as a positive scalar function of the transition amplitude, P (q) :=
F (W (q∗, q)). We need to explain the notation in this equation. First, there is still a sign of the principle
of indifference in the manner we choose the ‘bare’ volume element, Dq; it is chosen as the translationally
invariant measure in the field-theory context. But since it is being multiplied by F : C → R+, it can
still be anything. Now we endow F with the extra property that it preserves the multiplicative group
structure,

F (z1z2) = F (z1)F (z2) (13)

19The intuition obtained for Many Worlds in the discrete configuration spaces can be misleading for our purposes. In
that case, each ‘branch’ can be counted, and one needs a further explanation to count them according to the Born rule.
There are different ways of going about this, e.g.: based on this principle, and on the Epistemic Principle of Separability,
Carroll et al claim that the Born rule can be derived [42].

20Of course, these volume forms are divergent and technically difficult to define. Properties of locality of the volume
form, discussed in [13] are essential to show that nonetheless their definition reduces to the usual Born rule for isolated
finite-dimensional systems. Furthermore, only ratios of the volume form have any meaning.
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an important property to recover locality and an empiric notion of records from the transition amplitude
[13]. This measure, F , gives a way to “count” configurations, and it is assumed to act as a positive
functional of the only non-trivial function we have defined on M, namely, the transition amplitude
W (q∗, q). Together with certain locality properties of W (q∗, q) discussed in [13], equation (13) together
with the classical limit uniquely leads to a derivation of the ‘Born volume’: F (W (q∗, q)) = |W (q∗, q)|2,
i.e.

P (q) = |W (q∗, q)|2 (14)

Lastly, in the definition of P (q) I have sneaked in a ‘in’ configuration, q∗, which defines once and for
all the static volume form over (reduced) configuration space. I define q∗ roughly as the simplest, most
structureless configuration of the fields in question. Note that this can only be a meaningful statement
if q carries its own physical content; i.e. for symmetries which are laws of the instant.

4.1.3 The preferred configuration, q∗.

This section gives a set of natural choices for q∗, depending on the configuration space, gauge group, and
manifold topology. Reduced configuration spaces may not form smooth manifolds, but only what are
called stratified manifolds. This is because the symmetry group G in question – whose action forms the
equivalence relation by which we are quotienting – may act qualitatively differently on different orbits. If
there are subgroups of the symmetry group —stabilizer subgroups— whose action leave a point q̃ fixed,
the symmetry does not act “fully” on q̃ (or on any other representative q̄ ∈ [q̃]); some subgroups of G
simply fail to do anything to q̃. This implies the quotient of configuration space wrt to the full symmetry
may vary in dimensionality.

Taking the quotient by such wavering actions of the symmetry group creates a patchwork of manifolds.
Each patch is called a stratum and is indexed by the stabilizer subgroup of the symmetry group in question
(e.g. isometries as a subgroup of Diff(M)). The larger the stabilizer group, the more it fails to act on
q̃, the lower the dimensionality of the corresponding stratum. The union of these patches, or strata, is
called a stratified manifold. It is a space that has nested “corners” – each stratum has as boundaries
a lesser dimensional stratum. A useful picture to have in mind for this structure is a cube (seen as a
manifold with boundaries). The interior of the cube has boundaries which decomposes into faces, whose
boundaries decompose into lines, whose boundaries decompose into points. The higher the dimension
of the boundary component, the smaller the isometry group that its constituents have,21, i.e. the more
fully G acts on it. Thus the interior of the cube would have no stabilizer subgroups associated to it, and
the one-dimensional corners the highest dimensional stabilizer subgroups. Everything in between would
follow this order: the face of the cube could be associated to a lower dimensional stabilizer subgroup
than the edges, and the edges a lower one than the corners.

Configurations with the highest possible dimension of the stabilizer subgroup are what I define as q∗

– they are the pointiest corners of this concatenated sequence of manifolds. And it is these topologically
preferred singular points of configuration space that we define as an origin of the transition amplitude.
Their simplicity coincides with —or is a reinterpretation of— characteristics we would expect from a low
entropy beginning of the Universe.

Thus, depending on the symmetries acting of configuration space, and on the topology of M , one
can have different such preferred configurations. For the case at hand – in which we have both scale and
diffeomorphism symmetry and M = S3– there exists two sorts of such preferred points, one connected to
the rest of the quotient space and the other disconnected. The preferred q∗ of M/(Diff(M) n C) which
is connected to the rest of the manifold is the one corresponding to the round sphere. The disconnected
point is the completely singular metric, q∗ = gab = 0.22

If we look at just the spatial spatial diffeomorphisms, then the natural choice becomes the singular
metric q∗ = gab = 0. In the Hartle-Hawking state, in minisuperspace (where refoliations act as a single
reparametrization, as they would here), this is (equivalent to) the initial state chosen.

21E.g. let Mo be the set of metrics without isometries. This is a dense and open subset of M, the space of smooth
metrics over M . Let In be the isometry group of the metrics gn, such that the dimension of In is dn. Then the quotient
space of metrics with isometry group In forms a manifold with boundaries, Mn/Diff(M) = Sn. The boundary of Sn
decomposes into the union of Sn′ for n′ > n (see [43]).

22For conformal transformation, we can see it is disconnected in the quotient space, because we have no access to gab = 0.

Choosing any given reference ḡab, we can conformally project gab, i.e. [gab] =
(
ḡ
g

)1/3
gab. As gab becomes degenerate, its

determinant goes to zero, and any such conformal projection diverges. Any such [gab] is therefore, at bes, ‘infinitely far’.
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4.2 Records

4.2.1 Semi-classical records.

We are now in position to relinquish “a driver of change”. With the notion of ‘records’, about to be
introduced, we can recover all the appearances of change, without it having to be introduced by fiat as
extraneous structure.

Having defined q∗, we can set it as q1 and obtain a meaningful transition amplitude W (q1, q2) to
‘now’, represented by q2. At a fundamental level, q∗, together with a definition of F and the action,
completely specify the physical content of the theory by giving the volume of configurations in a given
region of M.

It is this anchoring of the amplitude on q∗ that allows probabilities to depend only on the ‘past’. It
is also what permits the existence of another class of object which I call records.

The system one should have in mind as an example of such a structure is the Mott bubble chamber
[44]. In it, emitted particles from α-decay in a cloud chamber condense bubbles along their trajectories.
A quantum mechanical treatment involving a timeless Schrödinger equation finds that the wave-function
peaks on configurations for which bubbles are formed collinearly with the source of the α-decay. In this
analogy, a ‘record holding configuration’ would be any configuration with n collinear condensed bubbles,
and any configuration with n′ ≤ n condensed bubbles along the same direction would be the respective
‘record configuration’. In other words, the n+ 1-collinear bubbles configuration holds a record of the n-
bubbles one. For example, to leading order, the probability amplitude for n bubbles along the θ direction
obeys

P [(n, θ), · · · , (1, θ)] ' P [(n′, θ), · · · , (1, θ)]P [(n′, θ), · · · , (1, θ)|(n, θ), · · · , (1, θ)] (15)

where n′ < n, and P [A|B] is the conditional probability for B given A.
Let us sketch how this comes about in the present context. When semi-classical approximations may

be made for the transition amplitude between q∗ and a given configuration, we have

Wcl(q
∗, q) =

∑
γj

∆
1
2
j exp ((i/~)Scl[γj ]) (16)

where the γj are curves that extremize the action, which on-shell we wrote as Scl[γj ]), and ∆ are certain
weights for each one (called Van-Vleck determinants23). This formula is approximately valid when the
Scl[γj ]) >> ~.

Roughly speaking, when all of γj go through a configuration qr 6= q, I will define q as possessing a
semi-classical record of qr. Note that this is a statement about q, i.e. it is q that contains the record (a
more precise definition is left for [14]). I will call M(r) the entire set that contains qr as a record.

For q ∈M(r), it can be shown that the amplitude suffers a decomposition (this is shown in [14])

W (q∗, q) 'W (q∗, qr)W (qr, q) (17)

To show this in a simplified setting of a deparametrizable system — i.e. when the Hamiltonian admits
a split H(q, p) = po + Ho(qi, p

i, qo), with [Ho(t), Ho(t
′)] = 0 —, one uses the same techniques as those

used to prove the semi-group properties of the semi-classical amplitude. For qo = t:

Wcl((q
i
1, t1), (qi3, t3)) =

∫
dq2Wcl((q

i
1, t1), (qi2, t2))Wcl((q

i
2, t2), (qi3, t3)) (18)

Since the extremal curves all go through the single point corresponding to tr2, we immediately recover
(17):

Wcl(q
∗, q) = Wcl((q

i
1, t1), (qi3, t3)) = Wcl((q

i
1, t1), (q

i(r)
2 , tr2))Wcl((q

i(r)
2 , tr2), (q3, t3)) 'Wcl(q

∗, qr)Wcl(qr, q)

Calculating the probability of q from equation (17), we get an equation of conditional probability, of
q on qr,

P (qr) = P (q|qr)P (qr) (19)

23The weights of each extremal path are given by the Van-Vleck determinant, ∆i =
δπi

1
δφ

, where πi1 is the initial momentum

required to reach that final φ. Having small Van-Vleck determinant means that slight variations of the initial momentum
give rise to large deviations in the final position. Let me illustrate the meaning of a Van-Vleck determinant with a well-
known heuristic example: suppose that φ1 contains a broken egg. If φ represents a configuration with that same egg24

unbroken (still connected to φ1 by an extremal curve), small deviations in initial velocity of configuration change at φ1 will
result in a a final configuration very much different (very far from) φ.
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Equation (19) thus reproduces the Mott bubble equation, (15) for qi, qj along the same classical trajectory,
and separated by more than ~.

Furthermore, it is easy to show that when q1 is a record of q2 and there is a unique classical path
between the two configurations, then the entire path has an ordering of records. Namely, parametrizing
the path, γ(t), such that γ(0) = q1 , γ(t∗) = q2, then γ(t) is a record of γ(t′) iff t < t′. We call such types
of objects, strings of records, and it is through them that we recover a notion of classical time.

4.2.2 The recovery of classical Time

If records are present, it would make absolute sense for ‘observers’ in q to attribute some of q’s properties
to the ‘previous existence’ of qr. It is as if configuration qr had to ‘happen’ in order for q to come into
existence. If q has some notion of history, qr participated in it.

When comparing relative amplitudes between possibly finding yourself in configurations q1 or q2,
both possessing the same records qr, the amplitude W (q∗, qr) factors out, becoming irrelevant. This says
that we don’t need to remember what the origin of the Universe was, when doing experiments in the
lab.25

I believe that indeed, it is difficult to assign meaning to some future configuration q in the timeless
context. Instead, what we do, is to compare expectations ‘now’, with retrodictions, which are embedded
in our records, or memories. We compare earlier records with more recent ones. When we have a record
at q, then qr itself acquires meaning. Accordingly, records imbue W (qr, q) with stronger epistemological
status.

This finally gives us back a complete notion of history, which is recovered only in the complete classical
limit (~→ 0). This retrodiction aspect begs for a Bayesian treatment of probabilities, which works well
(but we leave this analysis for the appendix C).

If there is nothing to empirically distinguish between our normal view of history (i.e. as having
actually happened) on one hand, and the tight correlation between the present and the embedded past
on the other, why should we give more credence to the former interpretation? Bayesian analysis can
pinpoint no pragmatic distinction, and I see no reasons for preferences, except psychological ones.

4.2.3 Records and conservation of probability

Now, one of the main questions that started our exploration of theories that are characterized by the
timeless transition amplitude, was the difficulty in defining concepts such as conservation of probability
for quantum gravity, which has no fixed causal structure. Are we in a better position now?

What we are talking about so far is volume in configuration space. How does that relate to probabil-
ities, of the sort that is conserved? But first, conserved in which ‘time’? In the presence of a standard
time parameter, we first distinguish between the total probability Pt at one time, t, from Pt′ at another,
t′. To translate this statement to one that uses only records and configuration space, we want a notion
that reproduces this separation. This separation is easily accomplished by first restricting configurations
in M(r) to subsets, Sα, α ∈ Λ, such that there is no pair φαi , φ

α
j ∈ Sα for which φi ∈ M(j). We call

these sets, Sα, screens. In other words, in each one of these sets, no configuration is a record of any
other configuration. This is taken to say that configurations belonging to a single screen are not “causally
related”. In relativistic terminology — which can be misleading, since here we are in configuration space,
and not in real space(time)— this would represent events that happen ‘at the same time’ (for some equal
time surface). But here this property also holds for Many-Worlds type theories in configuration space,
where there is no real time.

Now, each Sα ⊂ M(r) does not contain redundant records. But there are many redundant records
along each extremal trajectory, at least in the no-interference case. In that simple case, there is precisely
one extremal trajectory γj between φr and each element φαj of a given screen, which is thus parametrized

by the set J 3 j. Define a screen S1 = {φ1
j = γj(t

1
j ), j ∈ J}, where t1j is a given parameter along the

j-th extremal curve. We can then find another screen S2 = {φ2
j = γj(t

2
j ) , t

2
j > t1j ,∀j}. In these simple

cases, and at least for certain types of action functionals, it can be shown that, for the translationally
invariant measure and Born volume, the infinitesimal volumes respect: V (S2) ' V (S1) [14]. This is as
close as we can get to a statement about conservation of probability.

25But note that whenever a record exists, the preferred configuration q∗ is also a record. In fact, one could have defined
it as the record, of all of configuration space. Indeed, it does have the properties of being as unstructured as possible,
which we would not be amiss in taking to characterize an origin of the Universe.

19



5 What are we afraid of? The psychological obstacles.

What usually unsettles people – including me – about this view is the damage it does to the idea of
a continuous conscious self. The egalitarian status of each and all instantaneous configurations of the
Universe – carrying on their backs our own present conscious states – raises alarms in our heads. Could
it be that each instant exists only unto itself, that all our myriad instantaneous states of mind exist
separately? This proposal appears to conflict with the construed narrative of our selves – of having a
continuously evolving and self-determining conscious experience.

But perhaps, upon reflection, it shouldn’t bother us as much as it does. First of all, the so-called
Block Time view of the self does not leave us in much better shape in certain respects of this problem.
After all, the general relativistic worldline does not imply an ‘evolving now’ – it implies a collection of
them, corresponding to the entire worldline. For the (idealized) worldline of a conscious being, each
element of this collection will have its own, unique, instantaneous experience.

Nonetheless, in at least one respect, the worldline view still seems to have one advantage over the one
presented in this paper. The view presented here still appears more fractured, more disconnected, less
linear than the worldline view, even in the classical limit – for which aspects of a one-parameter family
of configurations becomes embedded in a ‘now’. The problem is that we start off with a one-parameter
family of individual conscious experiences, and, like Zeno, we imagine that an inverse limiting procedure
focusing on the ‘now’ will eventually tear one configuration from the ‘next’, leaving us stranded in the
‘now’, separated from the rest of configuration space by an infinitesimal chasm. This is what I mean
here by ‘solipsism of the instant’. In the first subsection of this section, I will explain how this intuitive
understanding can only find footing in a particular choice of (non-metric) topology for configuration
space. That topology is not compatible with our starting point of applying differential geometry to
configuration space.

5.1 Zeno’s paradox and solipsism of the instant: a matter of topology

It might not seem like it, but the discussion about whether we have a ‘a collection of individual instants’
as opposed to ‘a continuous curve of instants’ hinges, albeit disguisedly, on the topology we assume for
configuration space. Our modern dismissal of Zeno’s paradox relies on the calculus concept of a limit.
But in fact, a limit point in a topological space first requires the notion of topology: a limit point of a
set C in a topological space X is a point p ∈ X (not necessarily in C) that can be “approximated” by
points of C in the sense that every neighborhood of p with respect to the topology on X also contains a
point of C other than p itself.

In the finest topology – the discrete topology – each subset is declared to be open. On the real line,
this would imply that every point is an open set. Let us call an abstract pre-curve in X the image of
an injective mapping from R (endowed with the usual metric topology) to the set X. Thus no pre-curve
on X can be continuous if X is endowed with the finest topology. Because the mapping is injective,
the inverse of each point of its image (which is an open set in the topology of X) is a single point in
R, which is not an open set in the standard metric topology of R. Likewise, with the finest topology,
Zeno’s argument becomes inescapable – when every point is an open set, there are no limit points and
one indeed cannot hop continuously from one point to the next. We are forever stuck ‘here’, wherever
here is.

In my opinion, the idea that Zeno and Parmenides were inductively aiming at was precisely that of
a discrete topology, where there is a void between any two given points in the real line. If X is taken to
be configuration space, this absolute “solipsism of the instant” would indeed incur on the conclusions of
the Eleatics, and frozen time would necessarily follow. However, the finest topology cannot be obtained
by inductively refining metric topologies.

With a more appropriate, e.g. metric, topology, we can only iteratively get to open neighborhoods
of a point, neighborhoods which include a continuous number of other configurations. That means
for example that smooth functions on configuration space, like P (q), are too blunt an instrument – in
practice its values cannot be used to distinguish individual points. No matter how accurately we measure
things, there will always be open sets whose elements we cannot parse. And so it is with any subjective,
empirical notion of ‘now’.

The point being that with an appropriate topology we can have timelessness in a brander version
than the Eleatics, even assuming that reality is entirely contained in configuration space without any
absolute time. With an appropriate coarser (e.g. metric) topology on configuration space, we do not
have to worry about a radical “solipsism of the instant”: in the classical limit there are continuous
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curves interpolating between a record and a record-holding configuration. I can safely assume that there
is a continuous sequence of configurations connecting me eating that donut this morning to this present
moment of reminiscence.

5.2 The continuity of the self - Locke, Hume and Parfit

John Locke considered personal identity (or the self) to be founded on memory, much like my own view
here. He says in “Of Ideas of Identity and Diversity”:

“This may show us wherein personal identity consists: not in the identity of substance, but
[...] in the identity of consciousness. [...] This personality extends itself beyond present
existence to what is past, only by consciousness”

David Hume, wrote in “ A Treatise of Human Nature” that when we start introspecting, “we are never
intimately conscious of anything but a particular perception; man is a bundle or collection of different
perceptions which succeed one another with an inconceivable rapidity and are in perpetual flux and
movement.”.

Indeed, the notion of self, and continuity of the self, are elusive upon introspection. I believe,
following Locke, that our self is determined biologically by patterns in our neural connections. Like
any other physical structure, under normal time evolution these patterns are subject to change. What
we consider to be a ‘self’ or a ‘personality’, is inextricably woven with the notion of continuity of such
patterns in (what we perceive as) time. Yes, these patterns may change, but they do so continuously. It
is this continuity which allows us to recognize a coherent identity.

In Reasons and Persons, Derek Parfit puts these intuitions to the test. He asks the reader to imagine
entering a “teletransporter” a machine that puts you to sleep, then destroys you, copying the information
of your molecular structure and then relaying it to Mars at the speed of light. On Mars, another machine
re-creates you, each atom in exactly the same relative position to all the other ones. Parfit poses the
question of whether or not the teletransporter is a method of travel – is the person on Mars the same
person as the person who entered the teletransporter on Earth? Certainly, when waking up on Mars, you
would feel like being you, you would remember entering the teletransporter in order to travel to Mars,
you would also remember eating that donut this morning.

Following this initial operation, the teletransporter on Earth is modified so as to leave intact the
person who enters it. Each replica left on Earth would claim to be you, and also remember entering the
teletransporter, and then getting out again, still on Earth. Using thought experiments such as these,
Parfit argues that any criteria we attempt to use to determine sameness of personal identity will be
lacking. What matters, to Parfit, is simply what he calls “Relation R”: psychological connectedness,
including memory, personality, and so on.

This is also my view, at least intellectually if not intuitively. And it applies to configuration space and
the general relativistic worldline in the same way as it does in Parfit’s description. In our case there exists
a past configuration, represented (but not contained) in configuration ‘now’ in the form of a record. This
past configuration has in it neural patterns that bear a strong resemblance to neural patterns contained
in configuration ‘now’. Crucially, these two configurations are connected by continuous extremal paths
in configuration space, ensuring that indeed we can act as if they are psychologically connected. We can
— and should! — act as if one classically evolved from the other. Indeed, in such cases our brain states
are consistent with evolved relations between all subsystems in the world we have access to. Different
sets of records all agree and are compatible with arising from joint evolution. Furthermore, I would have
a stronger Relation R with what I associate with future configurations of my (present) neural networks,
than to other brain configurations (e.g. associated to other people). There seems to be no further reason
for this conclusion to upset us, beyond those reasons that already make us uncomfortable with Parfit’s
thought experiment.

6 Summary and conclusions

The idea of timelessness is certainly counter-intuitive.
But our own personal histories can indeed be pieced together from the static landscape of configuration

space. Such histories are indiscernible from, but still somehow feel less real than our usual picture of our
pasts. Even beyond the worldline view of the self, the individual existence of every instant still seems to
leave holes in the integrity of our life histories. I have argued this feeling is due to our faulty intuitions
about the topology of configuration space.
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Nonetheless, even after ensuring mathematical continuity of our notion of history, the idea of time-
lessness and of all possible states-of-being threatens the ingrained feeling that we are self-determining;
since all these alternatives exist timelessly, how do we determine our future? But this is a hollow threat.
Forget about timelessness; free will and personal identity are troublesome concepts all on their own, we
should not fear infringing their territory. I like to compare these concepts to mythical animals: Nessie,
Bigfoot, unicorns and the like. They are constructs of our minds, and – apart from blurry pictures
– shall always elude close enough inspection. Crypto-zoologists notwithstanding, Unicorns are not an
endangered species. We need not be overly concerned about encroaching on their natural habitat.

6.1 Crippling and rehabilitating Time

6.1.1 Crippling Time

“Time does not exist. There is just the furniture of the world that we call instants of time.
Something as final as this should not be seen as unexpected. I see it as the only simple and
plausible outcome of the epic struggle between the basic principles of quantum mechanics
and general relativity. For the one – on its standard form at least – needs a definite time,
but the other denies it. How can theories with such diametrically opposed claims coexist
peacefully? They are like children squabbling over a toy called time. Isn’t the most effective
way to resolve such squabbles to remove the toy?”[7]

Loosely following the Eleatic view of the special ontological status of the present, here we have
carved Time away from spacetime, being left with timeless configuration space as a result. If Time is
the legs which carries space forward, we might seem to have emerged from this operation with a severely
handicapped Universe.

The criticism is to the point. Even if Time does not exist as a separate entity in the Universe, our
conception of it needs to be recovered somehow. If there is no specific variable devoted to measuring
time, it needs to be recovered from relational properties of configurations. This essay showed that this
can be done.

6.1.2 Rehabilitating Time

The plan was to recover Time by using a semi-classical approximation of a fundamentally timeless
quantum mechanics theory in configuration space. There are two meanings of Time which should be
discerned. One is merely an ordering of configurations. The other is a a sense of duration. I have not
discussed duration in this paper, but only briefly mention it in a paragraph below.

6.1.3 Recovering ordering.

For the ordering of configurations, mathematically, before all else we needed to find a way to breath life
into the configuration space propagator, W (q1, q2), by defining a second configuration other than any
present configuration, ‘now’.

This first step was accomplished by defining a preferred configuration q∗, playing a role similar to
the quantum mechanical ‘vacuum’. It is preferred in that it is the most structureless point of reduced
configuration space, and it is also the configuration representing the “ pointiest corner” of configuration
space. The precise choice of q∗ depends both on the topology of the spatial manifold M and on the
relational symmetry group at hand. For the case of M = S3 and the symmetry group Diff(M) n C, q∗
is represented by (the orbit of) the round metric on S3.

With the introduction of the preferred ‘in’ configuration, we defined a positive scalar density (a
volume form, or probability density) on configuration space, P (q)Dq, given by the transition probability
from the vacuum to the given configuration. Restrictions of locality (see [13]) and factorization properties
(required to make V (q) compatible with the later introduction of records), limit our choices, leading us
to conjecture that we can recover the Born form, P (q) = |W (q∗, q)|2.

But in any case, this state of affairs is still not completely satisfactory. The number |W (q∗, q)|2,
which makes reference to some quantum mechanical vacuum state, or “ preferred initial configuration”,
is too removed from everyday practice of physics, and it seems to say nothing about why I believe I
really had a donut this morning. To get around this, we need the emergence of records which are more
local (in configuration space). In the semi-classical path integral representation, there indeed exist such
candidate objects to play this role. We have named these objects semi-classical records (or just records
here).
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If qr is the record possessed by the configuration ‘now’, q, then W (qr, q) can encode our immediate
pasts, through a correlation of amplitudes. The probability of q becomes the conditional probability of
q given qr, P (q) = P (q|qr)P (qr). Using the notion of records shifts the burden from predictability in
physics, to updating of our knowledge. We do physics by comparing our expectations ‘now’ – dictated
by our records and our theories – with other properties of the present configuration. From a Bayesian
perspective, it proves worthwhile to assume the existence of a history.

Indeed, in certain circumstances, all of the configurations between qr and q will themselves define an
ordering of records, reproducing a notion of granular history. In such cases, each previous run of an
experiment is encoded in each posterior run. The equations emerging for a Bayesian treatment for the
fitness of a given theory are identical to the usual, timeful ones, as was shown in [14].

The more records a certain configuration has, the more data one has to test their theories. Consis-
tency of multiple records within a given configuration increases our level of confidence in a theory, and
inconsistency decreases it, as expected. The more such types of consistent structures a configuration
has, the more we will have perceived time to have passed. In other words, an arrow of time points from
q∗ – the most symmetric configuration – to ones that have consistent records.

We have gone from a handicapped picture of a Universe that limps, to one that lilts, step by step
conducted by the complex structures present in configuration space.

6.2 Consequences for quantum gravity.

6.2.1 Relationalism and Laws of the Instant

Looking for a theory that will allow a more natural description of unitarity, probability, and superposition,
we are led to require of it no external input other than what is contained in configuration space itself.
Interestingly, this demand puts severe restrictions on the types of symmetries that can exist. Namely,
we only allow those symmetries whose action depends solely on the configuration on which it is acting.
The ones that obey these restrictions we call ‘Laws of the Instant”.

Had we allowed symmetries which are not ‘Laws of the Instant’, the transition amplitude would not
have been a well-defined object by itself, and records would not be invariant under such symmetries,
thus losing objective meaning. Fortuitously, we find that the most general Laws of the Instant are those
that indeed embody the full gamut of relational symmetries.

I want to repeat once more that the theory of general relativity does not accommodate all mani-
festations of spacetime relationalism. In particular, it does not incorporate relationalism of scale: the
theory is not conformally invariant (unlike its unitarily-challenged cousin, conformal gravity). In a 3+1
formulation, general relativity still does not respect the Laws of the Instant; refoliations are not intrinsic
to configuration space.

Spatially relational theories also have better control over questions of unitarity (unlike conformal
gravity), and have the correct number of degrees of freedom (unlike Horava gravity), although we have
said little in these directions here. Moreover, configuration space only has a principal fiber bundle
structure for symmetry groups which are ‘Laws of the Instant’, and this is a useful structure to have for
explicitly writing the path integral [15]. In fact, as we saw, in the Hamiltonian language, the natural
setting for quantum mechanics, it is impossible to implement relativity of simultaneity without also
implementing the equations of motion. This is part of the mixing between evolution and symmetries
present in GR, in many different guises.

Actions which represent completely spatially relational theories would be the ones suggested by
the principles expounded on in this paper. The challenge is to find ones which are also in accord with
experiment. From these principles, the derivation of shape dynamics, with its non-local Hamiltonian and
preferred Time, is without a doubt overly contrived, and requires a detour through general relativistic
territory. In the future, we need to investigate the phenomenology of more natural relational models,
such as the one given by (32) in the appendix.

6.2.2 A note on duration.

In a 3+1 description of GR, given an initial and a final Cauchy surfaces and a unique spacetime in-
terpolating between the two, duration along a world-line is read off from the lapse associated to that
foliation. The lapse is a Lagrange multiplier, associated to relativity of simultaneity. In these types of
relational configuration space theories, e.g.: (30) and (32), there is no inkling of a lapse anywhere to be
seen. For a given unique extremal field history between [g1] and [g2], one must then define duration as a
local measure of change in the conformal geometry. In this case, duration along a worldline is completely
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relational, and does not set a scale by itself, unlike what is the case in GR. Not only is this possible,
but it has been done for one theory that is not intrinsically formulated in spacetime. In [45, 41], it
was shown that weak matter perturbations evolving through standard unitary Hamiltonian evolution in
shape dynamics [40, 38], will perceive conformal geometry change – or duration – in the exact proportion
to rebuild an Einstein spacetime (in a particular foliation, CMC).

6.2.3 What gives, Wheeler’s quip or superpositions?

Neither, really.
Perhaps our shortcomings in the discovery of a viable theory of quantum gravity are telling us that

spacetime is the obstacle. Though at first sight we are indeed mutilating the beautiful unity of space
and time, this split should not be seen as a step back from Einstein’s insights. I believe the main insight
of general relativity, contained in Wheeler’s sentence (1), is about the dynamism of space and time
themselves. There is no violence being done to this insight here.

Spatial geometry appears dynamic – it warps and bends throughout evolution whenever we are in the
classical regime. Regarding the dynamism of Time, the notion of ‘duration’ is emergent from relational
properties of space. Thus duration too, is dynamic and space-dependent.

Nonetheless, all relational properties are encoded in the static landscape of configuration space. The
point is that this landscape is full of hills and valleys, dictated by the preferred volume form that sits on
top of it. From the way that the volume form distributes itself on configuration space, certain classical
field histories – special curves in configuration space – can give a thorough illusion of change. I have
argued that this illusion is indistinguishable from how we perceive motion, history, and time.

Moreover, with regards to the quantum mechanics adage, the processes W (qr, q) straightforwardly
embody “everything that can happen, does happen”. The concept of superposition of causal structures
(or even that of superposition of geometries), is to be replaced by interference between paths in config-
uration space. Those same hills and valleys in configuration space that encode classical field histories
reveal the valleys and troughs of interference patterns. A very shallow valley around a point – for ex-
ample representing an experimental apparatus and a fluorescent dot on a given point on a screen –
indicates the scarcity of observers sharing that observation. By looking at the processes between records
and record-holding configurations, we can straightforwardly make sense of interference, or lack thereof,
between (coarse-grained) histories of the Universe.

In all honesty, I don’t know if formulating a theory in which space and time appear dynamical, and
in which we can give precise meaning to superpositions of alternative histories, is enough to quantize
gravity. Although the foundations seem solid, the proof is in the pudding, and we must further investigate
tests for these ideas.

But I also don’t believe that dropping Time from the picture is abdicating hard-won knowledge
about spacetime. Indeed, we can recover a notion of history, we can implement strict relationalism, we
transfigure the ‘measurement problem’, and we can make sense of a union of the principles of quantum
mechanics and geometrodynamics.26

It seems to me that there are many emotions against this resolution, but very few arguments; as I
said at the beginning of these conclusions, accepting timelessness is deeply counter-intuitive. But such a
resolution would necessarily change only how we view reality, while still being capable of fully accounting
for how we experience it. The consequences for quantum gravity still need to be unraveled. Even at
the classical level, from our search for a natural action embodying timelessness we are led to (32), in
appendix B.1.3; a theory that now needs to be phenomenologically investigated. But this whole approach
should be seen as a framework, not as a particular theory. And indeed, in the non-relativistic regime
of quantum mechanics, we are not looking for new experiences of reality, but rather for new ways of
viewing the ones we can already predict, a new framework to interpret these experiences with. This is
the hallmark of a philosophical insight, albeit in the present case one heavily couched on physics. As
Wittgenstein once said: “Once the new way of thinking has been established, the old problems vanish;
indeed they become hard to recapture. For they go with our way of expressing ourselves and, if we clothe
ourselves in a new form of expression, the old problems are discarded along with the old garment.”

26Perturbative techniques of course still need to be employed, even in the semi-classical limit, to make sense of the
weights ∆ in (16). This, and other issues to do with renormalizability are left for future study.
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APPENDIX

A Timeless quantum mechanics, the canonical theory

Configuration space, M, is coordinitized by qa, for a = 1, · · · , n. An observation yields a complete set
of qa, which is called an event.

Ω = T ∗M is the cotangent bundle to configuration space, with coordinates qa and their momenta
pa. The classical dynamics is fully determined once one fixes the Hamiltonian constraint surface in Ω,
given by H = 0, where H : Ω → Rk is the Hamiltonian of the system. If k = 1, then we have a
single Hamiltonian constraint, whose action only generates reparametrizations of curves in phase space,
if k > 1, then we have further gauge-invariance.

A curve γ ∈M is a physical motion connecting the events qa1 and qa2 if there exists an unparametrized
curve γ̄ in T ∗M such that the following action is extremized:

S[γ̄] =

∫
γ̄

padq
a (20)

for curves lying on the constraint surface H(qa, pa) = 0, and are such that γ̄’s projection toM connects
qa1 and qa2 . By parametrizing the curve with a parameter τ , we get the familiar form:

S[γ̄] =

∫
dτ
(
paq̇

a −Ni(τ)Hi(qa, pa)
)

(21)

where the N i are Lagrange multipliers.
One can now define the fundamental transition amplitudes between configuration eigenstates:27

W (q1, q2) := 〈q1|P̂ |q2〉 (22)

where P̂ is the “evolution operator”:

P̂ :=

∫
dτ e−iτĤ (23)

where Ĥ is the canonically quantized (with Weyl ordering) Hamiltonian. Note that since one integrates
over all τ , the projector is parametrization independent. To obtain physical states, one need still use the
quantization of the constraints, as in (6):

Ĥ|ψ〉 = 0 (24)

We will for now implicitly consider the case of a single constraint, H : Ω→ R.
Given two regions in configuration space, R1, R2, we have that the probability of an observation in

R2 given an observation in R1 is:

P (R1, R2) =

∣∣∣∣∣ W (R1, R2)√
W (R1, R1)

√
W (R2, R2)

∣∣∣∣∣
2

(25)

where

W (R1, R2) =

∫
R1

dq1

∫
R2

dq2W (q1, q2)

27As much as possible, I want to avoid technicalities which won’t be required here. Having said this, formally one would
have had to define the so-called kinematical Hilbert space K for the quantum states overM by using a Gelfand triple over
M with measure ddqa = dq1 · · · dqd, i.e. S ⊂ K ⊂ S′. This is not necessary in my case, because we will not require a
Hilbert space, as we will see.
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Standard non-relativistic quantum mechanics through deparametrizable systems

If one can single out a degree of freedom to parametrize motion on a whole region of configuration space,
we can write qa = (t, qi), in which case one gets a momenta conjugate to time and writes H(t, qi, pt, pi) =
pt +Ho(t, q

i, pi). In this case, by inserting a decomposition of the identity in terms of eigenstates pt and
E of p̂t and Ĥo, one obtains:

W (qa1 , q
a
2 ) = W (t1, q

i
2, t2, q

i
2) =

∫
dE e−iE(t1−t2)〈qi1|E〉〈E|qi2〉 = G(t1, q

i
2, t2, q

i
2) (26)

where G(t1, q
i
2, t2, q

i
2) is the usual transition amplitude in quantum mechanics.28

Gauge transformations

The presence of more than one constraint, i.e. H : Ω → Rk, indicates further gauge symmetries of the
system. In this case we must impose all of the respective equations (24) simultaneously, which generally
is difficult. When the the commutation of the constraints form a true Lie Algebra:

[Ĥi, Ĥj ] = f ijkĤ
k, (27)

i.e. when f ijk have no phase space-dependence, different methods can be used to find the projection
onto the physical states, the most straightforward of which is called ‘group-averaging’ [47]. This consists
in integrating over the group:

|Ψ〉 =

∫
G

dµ(U)Û |ψ〉

where dµ is the Haar measure, which is translation invariant. In the more general case, this technique
will in general incur in anomalies.29

B Relational symmetries and laws of the instant

In the case at hand, suppose that the transformations in phase space are given by a Hamiltonian vector
field, associated to a smeared functional F [g, π, η], polynomial in its variables. For this to have an action
on configuration space that is independent of the momenta, F [g, π, η] must be linear in the momenta.
This already severely restricts the forms of the functional to

F [g, π, η] =

∫
F1(g, η)abπ

ab

A Poisson bracket here results in

{F [g, π, η1], F [g, π, η2]} =

∫
d3x

(
δF1(g, η1)ab

δgcd
πabF1(g, η2)cd −

δF1(g, η2)ab
δgcd

πabF1(g, η1)cd

)
where F1(g, η)ab must be a covariant tensor of rank two.

If F1 has no derivatives of the metric, it will straightforwardly commute. But with no derivatives the
only objects we can form are:

F1(g, η)ab = ηgab , and F1(g, η)ab = ηabgab

In the first case, these are just conformal transformations, in the second, they would imply that πab = 0,
a constraint killing any possibility of dynamics, which is still consistent (also consistent with the strictly
Eleatic Universe).

28 One should be careful to note however, that in standard non-relativistic quantum theory, time is not an operator,
and thus ∆t = 0, i.e. measurements are made at a specific instant. Thus, although at the level of transition amplitudes,
equation (22) for deparametrizable systems reproduces G(t1, qi2, t2, q

i
2), the probabilities for measurements performed with

some inaccuracy ∆t in the time variable need not match. The basic reason is that according to (25), one sums over the
transition amplitudes first, and then one takes the squared norm. Thus they are summed interferentially. For standard
quantum mechanics with time dependence, one takes the squared norm at each instant and then integrates over the time
taken by the measurement. The temporal resolution ∆t necessary for a good agreement between the two theories was
studied in [46] for simple systems.

29In the more general case one should use BRST techniques, but in the Lie groupoid case – i.e. when the structure
constants depend on the fields, f ijk(q, p) – is still much more problematic, as one has a BRST charge that is not (usually)
of rank 1 in ghost momenta [48].
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The point now is to show that only with one derivative – which implies a Lie derivative for a covariant
object – they still weakly commute. With more derivatives of the metric, the conjecture is that one does
not close the algebra. For example,

F1(g, η)ab = η(αRab + βRgab)

it is straightforward but tedious to show that the algebra does not close for any values of α and β. If
one instead chose a term of the form βRηab one can show that the rank of this constraint is not constant
along phase space. Furthermore, it implies that almost everywhere πab = 0, as before. The conjecture is
that these conclusions hold order by order in number of derivatives of the metric.

B.1 Configuration space metrics

B.1.1 Superspace

One nice thing about the space of metrics is that itself comes with a supermetric, defined, for v , w ∈ TgM,
at the base point gab ∈M by:30

〈v , w〉g =

∫
d3x
√
g gacgbdvabwcd (28)

This supermetric induces a metric topology on M.31 Furthermore, the inner product (28) is invariant
wrt to diffeomorphisms acting through pull-back. That is, the directions along the diffeomorphism orbits
in M are Killing wrt the metric (28) (see [49]).

B.1.2 Conformal Superspace

However, the supermetric (28) is not invariant wrt conformal transformations, because of the presence
of
√
g. Thus we construct:

〈v , w〉g =

∫
d3x
√
g
√
CefCef g

acgbdvabwcd (29)

where Cab is the Cotton-York tensor, which is both traceless and transverse, and has the correct conformal
weight for the inner product to be conformally invariant.

B.1.3 Examples of relational conformal geoemetrodynamical theories

Let me exemplify the constructions above with two different actions. The first is that of shape dynamics,
and is given in Hamiltonian form by

HSD =

∫
√
g
(
(e6φo − ρπabgab − πabLξgab

)
(30)

where Lξ denotes the Lie derivative, and φo is defined implicitly from the modified Lichnerowicz-York
equation [35]:

e−6φπabπ
ab

√
g

+
√
g
(
e6φ(−(t2/6) + 2Λ) + e2φ(−R+ 8(∇aφ∇aφ+∇2φ))

)
= 0 (31)

The problem with (30) is that it can be put in this form only when it is deparametrizable (see [38]).
Otherwise, one must use not the full group of scale transformations as symmetries, but only those that
preserve the total volume of space. I.e. instead of ρπabgab one must use (ρ− 〈ρ〉)πabgab where

〈ρ〉 =

∫ √
gρ∫ √
g

This is a non-local restriction, and is hard to make sense of from a purely relational manner.

30In fact, it comes with a one-parameter family of supermetrics, where we substitute gacgbd → gacgbd + λgabgcd. This
supermetric however is only positive for λ > −1/3. Note also that we are not symmetrizing the DeWitt supermetric
because we are assuming that it is acting on tangent vectors of M, which are already symmetric.

31More formally, one would work with what is called a weak Whitney topology, which roughly is a norm on the jet
bundles of the sections. We will ignore these more formal aspects here.
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The second action is given in its Lagrangian Jacobi form (see [35, 15]): We have the reparametrization
and conformal-diffeomorphism invariant geodesic action:

S =

∫
dt

√∫
M

√
gd3x

√
CabCab (ġcd − (Lξg)cd − ρgcd) (ġcd − (Lξg)cd − ρgcd)) (32)

where ξa and ρ are the Lagrange multipliers corresponding to diffeomorphisms and conformal transfor-
mations, respectively.

To stress, this is a fully conformal diffeomorphism invariant action with the same physical degrees
of freedom as general relativity, but which does not have local refoliation invariance, only a global
reparametrization one. Equation (32) is furthermore a purely geodesic-type action in Riem, with just one
global lapse and thus one global notion of time, as such it also possesses inherent value in a relationalist
setting. Classical solutions are one-parameter collections of conformal geometries, which extremize the
total length according to a given supermetric (29). Although this theory is completely relational – it is
not yet clear whether it will reproduce standard tests of general relativity, and more analysis is required.

C Bayesian analysis

Let us call ‘an observation’ E a property of correlations within a configuration. We call the manifold
M(Eo) the manifold which has records of observation Eo. Given a theory Ti (where i indexes the theory
we are discussing), the probability of observation E1 is given by the relative volume of observers:

P (E|Ti) =
Pi(E1)

Pi(M(Eo))
:=

∫
E1
Fi(φ)Dφ∫

M(Eo)
Fi(φ)Dφ

(33)

In Bayesian analysis we want to judge the ability of the theories to explain a given distribution of the
observation given the theory This number is called the ‘likelihood’ of the theory Ti given the observation
of E. We want to compare the chances that we will find ourselves correlated with a “new” observation
E1, according to the two distinct theories above. Assuming that F factorizes according to (13),∫

E1

Fi(φ)Dφ = Fi(K(φ∗, Eo))

∫
E1

Fi(K(Eo, φ))Dφ

and using Bayes rule, we can determine the posterior probability of the theory given the records Eo and
observation E1:

P (Ti|E1) ≈ P (Ti)P (E1|Ti, Eo)
P (E1)

(34)

where P (E1|Ti, Eo) is obtained from (33) by the replacement Fi(φ) → Fi(K(Eo, φ)). It should be
interpreted as the probability that you would find E1 if Ti is correct, and you have already ‘observed’
Eo (it is a record). For configurations that have many records of properties of E we can – by just looking
at these records – update the prior of the next (or present) such observation En. This is the standard
way in which we test our theories, nothing needs to change.
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