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Abstract David Finkelstein was very fond of the new information-theoretic paradigm
of physics advocated by John Archibald Wheeler and Richard Feynman. Only re-
cently, however, the paradigm has concretely shown its full power, with the derivation
of quantum theory [1,2] and of free quantum field theory [3–6] from informational
principles. The paradigm has opened for the first time the possibility of avoiding
physical primitives in the axioms of the physical theory, allowing a re-foundation of
the whole physics over logically solid grounds. In addition to such methodological
value, the new information-theoretic derivation of quantum field theory is particularly
interesting for establishing a theoretical framework for quantum gravity, with the idea
of obtaining gravity itself as emergent from the quantum information processing, as
also suggested by the role played by information in the holographic principle [7,8].

In this paper I review how free quantum field theory is derived without using me-
chanical primitives, including space-time, special relativity, Hamiltonians, and quan-
tization rules. The theory is simply provided by the simplest quantum algorithm en-
compassing a countable set of quantum systems whose network of interactions satis-
fies the three following simple principles: homogeneity, locality, and isotropy.

The inherent discrete nature of the informational derivation leads to an extension
of quantum field theory in terms of a quantum cellular automata and quantum walks.
A simple heuristic argument sets the scale to the Planck one, and the currently ob-
served regime where discreteness is not visible is the so-called “relativistic regime”
of small wavevectors, which holds for all energies ever tested (and even much larger),
where the usual free quantum field theory is perfectly recovered.
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In the present quantum discrete theory Einstein relativity principle can be re-
stated without using space-time in terms of invariance of the eigenvalue equation
of the automaton/walk under change of representations. Distortions of the Poincaré
group emerge at the Planck scale, whereas special relativity is perfectly recovered in
the relativistic regime. Discreteness, on the other hand, has some plus compared to
the continuum theory: 1) it contains it as a special regime; 2) it leads to some addi-
tional features with GR flavor: the existence of an upper bound for the particle mass
(with physical interpretation as the Planck mass), and a global De Sitter invariance;
3) it provides its own physical standards for space, time, and mass within a purely
mathematical adimensional context.

The paper ends with the future perspectives of this project, and with an appendix
containing biographic notes about my friendship with David Finkelstein, to whom
this paper is dedicated.
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Beware the Lorelei of Mathematics. Her song is beautiful.
David Finkelstein

1 Introduction

The logical clash between General Relativity (GR) and Quantum Field Theory (QFT)
is the main open problem in physics. The two theories represent our best theoretical
frameworks, and work astonishingly well within the physical domain for which they
have been designed. However, their logical clash requires us to admit that they can-
not be both correct. One could argue that there must exist a common theoretical sub-
stratum from which both theories emerge as approximate effective theories in their
pertaining domains–though we know very little about GR in the domain of particle
physics.

What we should keep and what we should reject of the two theories? Our ex-
perience has thought us that of QFT we should definitely keep the Quantum Theory
(QT) of abstract systems, namely the theory of the von Neumann book [9] stripped of
its “mechanical” part, i. e. the Schrödinger equation and the quantization rules. This
leaves us with the description of generic systems in terms of Hilbert spaces, unitary
transformations, and observables. In other words, this is what nowadays is also called
Quantum Information, a research field indeed very interdisciplinary in physics.

There are two main reasons for keeping QT as valid. First, it has been never
falsified in any experiment in the whole physical domain–independently of the scale
and the kind of system. This has lead the vast majority of physicists to believe that
everything must behave according to QT. The second and more relevant reason is that
QT, differently from any other chapter of physics, is well axiomatized, with purely
mathematical axioms containing no physical primitive. So, in a sense, QT is as valid
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as a piece of pure mathematics. This must be contrasted with the mechanical part of
the theory, with the bad axiomatic of the so-called “quantization rules”, which are
extrapolated and generalized starting from the heuristic argument of the Ehrenfest
theorem, which in turn is based on the superseded theory of classical mechanics, and
with the additional problem of the ordering of canonical noncommuting observables.1

No wonder then that the quantization procedure doesn’t work well for gravity!
To what we said above we should add that today we know that the QT of von

Neumann can be derived from six information-theoretical principles [1,2], whose
epistemological value is not easy to give up.2 On the contrary, it is the mechanical
part of QFT that rises the main inconsistencies, e .g. the Malament theorem [12],
which makes any reasonable notion of particle untenable [13].

The logical conclusion is that what we need is a field theory that is quantum ab
initio. But how to avoid quantization rules? The idea is simply to consider a countable
set of quantum systems in interaction, and to make the easiest assumptions on the
topology of their interactions. These are: locality, homogeneity, and isotropy. Notice
that we are not using any mechanics, nor relativity, and not even space and time.
And what we get? We get: Weyl, Dirac [3], and Maxwell [6]. Namely: we get free
quantum field theory!

The new general methodology suggested to the above experience is then the fol-
lowing: 1) no physical primitives in the axioms; 2) physics only as interpretation of
the mathematics (based on experience, previous theories, and heuristics). In this way
the logical coherence of the theory is mathematically guaranteed. In this review we
will see how the proposed methodology can be actually carried out, and how the in-
formational paradigm has the potential of solving the conflict between QFT and GR
in the case of special relativity, with the latter emergent merely from quantum sys-
tems in interaction: Fermionic quantum bits at the very tiny Planck scale. In synthesis
the program is an algorithmization of theoretical physics, aimed to derive the whole
physics from quantum algorithms with finite complexity, upon connecting the alge-
braic properties of the algorithm with the dynamical features of the physical theory,
preparing a logically coherent framework for a theory of quantum gravity.

Section 2 is devoted to the derivation from principles of the quantum-walk theory.
More precisely, from the requirements of homogeneity and locality of the interactions
of countably many quantum systems one gets a theory of quantum cellular automata
on the Cayley graph of a group G. Then, upon restricting to the simple case of evolu-
tion linear in the discrete fields, the quantum automaton becomes what is called in the
literature quantum walk. We further restrict to the case with physical interpretation in
an Euclidean space, resorting to considering only Abelian G.

In Section 3 the quantum walks with minimal field dimension that follow from
the principles of Sect. 2 are reported. These represent the Planck-scale version of the
Weyl, Dirac, and Maxwell quantum field dynamics, which are recovered in the rela-
tivistic regime of small wavevectors. Indeed, the quantum-walk theory, being purely
mathematical–and so adimensional–nevertheless contains its own physical LTM stan-

1 The problem of ordering is avoided miraculously thanks to the fortuitous non occurrence in nature of
Hamiltonians with products of conjugated observables.

2 For short reviews, see also Refs. [10,11].
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dards written in the intrinsic discreteness and non-linearities of the theory. A simple
heuristic argument based on the notion of mini black-hole (from a matching of GR-
QFT) leads to the Planck scale. It follows that the relativistic regime contains the
whole physics observed up to now, including the most energetic events from cosmic
rays.

In addition to the exact dynamics in terms of quantum walks, a simple analytical
method is also available in terms of a dispersive Schrödinger equation, suitable to
the Planck-scale physics for narrow-band wave-packets. As a result of the unitarity
constraint for the evolution, the particle mass turns out to be upper bounded (by the
Planck mass), and has domain in a circle, corresponding to having also the proper-
time (which is conjugated to the mass) as discrete. Effects due to discreteness that
are in principle visible are also analyzed, in particular a dispersive behavior of the
vacuum, that can be detected by deep-space ultra-high energy cosmic rays.

Section 4 is devoted to how special relativity is recovered from the quantum-
walk discrete theory, without using space-time and kinematics. It is shown that the
transformation group is a non-linear version of the Poincaré group, which recovers
the usual linear group in the relativistic limit of small wavevectors. For nonvanishing
masses generally also the mass gets involved in the transformations, and the De Sitter
group SO(1,4) is obtained.

The paper ends with a brief section on the future perspectives of the theory, and
with an Appendix about my first encounter with David Finkelstein.

Most of results reported in the present review have been originally published in
Refs. [3–6,14–19] coauthored with members of the QUit group in Pavia.

2 Derivation from principles of the quantum-walk theory

If you are receptive and humble, mathematics will lead you by the hand.
Paul Dirac

The derivation from principles of quantum field theory starts from considering the
unitary evolution A of a countable set G of quantum systems, with the requirements
of homogeneity, locality, and isotropy of their mutual interactions. These will be pre-
cisely defined and analyzed in following dedicated subsections. All the three require-
ments are dictated from the general principle of minimizing the algorithmic com-
plexity of the physical law. The physical law itself is described by a finite quantum
algorithm, and homogeneity and isotropy assess the universality of the law.

The quantum system labeled by g∈G can be either associated to an Hilbert space
Kg, or to a set of generators of a C∗-algebra3

ψg ≡ {ψν
g }, g ∈ G, ν ∈ [sg] := {1,2, . . . ,sg}, sg < ∞. (1)

The evolution occurs in discrete identical steps4

A ψg =UψgU†, Uunitary, (2)

3 The two associations can be connected through the GNS construction.
4 More generally the map A is an automorphism of the algebra.
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describing the interactions among systems. When the unitary evolution is also local,
namely A ψg is spanned by a finite subset Sg⊂G, then A is called Quantum Cellular
Automaton. We restrict to evolution linear in the generators, namely

A ψg =UψgU† = ∑
g′

Ag,g′ψg′ , (3)

where Ag,g′ is an sg× sg′ complex matrix called transition matrix. Here in all respects
the quantum cellular automaton is described by a unitary evolution on a (generally
infinite) Hilbert space H =

⊕
g∈G Hg, with Hg = Span{ψν

g }ν∈[sg]. In this case the
quantum cellular automaton is called Quantum Walk. Here the system simply corre-
sponds to a finite-dimensional block component of the Hilbert space, regardless the
Bosonic/Fermionic nature of the field. In the derivation of free quantum field theory
from principles, the quantum walk corresponds to the evolution on the single-particle
sector of the Fock space, whereas for the interacting theory a generally nonlinear
quantum cellular automaton is needed. Simple generalization to Fock-space sectors
with fixed number of particles are also possible.

2.1 The quantum system: qubit, Fermion or Boson?

At the level of quantum walks, corresponding to the Fock space description of cel-
lular quantum automata (leading to free QFT in the nonrelativistic limit), it does not
make any difference which kind of quantum system is evolving. Indeed one can sym-
metrize or anti-symmetrize products of wavefunctions, as it is done in usual quantum
mechanics, or else just take products with no symmetrization. Things become dif-
ferent when the vacuum is considered, and particles are created and annihilated by
operating with algebra generators on the vacuum state, as in the interacting theory.
Therefore, as far as we are concerned with free QFT, which kind of quantum system
should be used is a problem that can be safely postponed.

However, there are still motivations for adopting a kind of quantum system in-
stead of another. For example, a reason for discarding qubits as algebra generators is
that there is no easy way of expressing the operator U making the evolution in Eq. (3)
linear, whereas, when ψg is Bosonic or Fermionic this is always possible choosing
U exponential of bilinear forms in the fields. On the other hand, a reason to chose
Fermions instead of Bosons is the requirement that the amount of information in a
finite number of cells be finite, namely one has finite information density in space.5

The relation between Fermionic modes and finite-dimensional quantum systems, say
qubits has been studied in the literature, and the two theories have been proven to
be computationally equivalent [21]. However, the quantum theory of qubits and the
quantum theory of Fermions differ in the notion of what are local transformations
[22,23], with local Fermionic operations mapped into nonlocal qubit transformations
and vice versa.

5 Richard Feynman is reported to like the idea of finite information density, because he felt that: “There
might be something wrong with the old concept of continuous functions. How could there possibly be an
infinite amount of information in any finite volume?” [20].
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ψg(t + 1) =
∑

g′∈Sg

Agg′ψg′(t) g

g1

g2

g3

Fig. 1 The linear Eq. (3) endows the set G with a directed graph structure. We build a directed graph with
an arrow from g to g′ wherever the two are connected by a nonnull matrix Agg′ in Eq. (3).

In conclusion, the derivation from informational principles of the fundamental
particle statistics still remains an open problem. One could promote the finite infor-
mation density to the level of a principle, or motivate the Fermionic statistics from
other principles of the same nature of those in Ref. [1] (see e. g. Refs. [22,23]), or
derive the Fermionic statistics from properties of the vacuum (e. g. having a localized
non-entangled vacuum in order to avoid the problem of particle localization), and
then recover the Bosonic statistics as a very good approximation, with the Bosonic
mode corresponding to a special entangled state of pairs of Fermionic modes [6], as
it will be reviewed in Subsect. 3.9. This hierarchical construction will also guarantee
the validity of the spin-statistic connection in QFT.

2.2 Quantum Walks on Cayley graphs6

The linear Eq. (3) endows the set G with a directed graph structure Γ (G,E), with
vertex set G and edge set E = {(g,g′)|Ag,g′ 6= 0} directed from g to g′ (see Fig. 1).
In the following we will denote by Sg := {Ag,g′ 6= 0} the set of non-null transition
matrices with first index g, and by Ng := {g′ ∈ G|Ag,g′ 6= 0} the neighborhood of g.

2.2.1 The homogeneity principle

The assumption of homogeneity is the requirement that every two vertices are indis-
tinguishable, namely for every g,g′ ∈ G there exists a permutation π of G such that
π(g) = g′ which commute with any discrimination procedure consisting of a prepara-
tion of local modes followed by a general joint measurement. In Ref. [18] it is shown
that this is equivalent to the following set of conditions

∀g ∈ G one has:

H1 sg = s;

6 This subsection is based on results of Refs. [3] and [17].
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H2 there exists a bijection Ng↔ N with a fixed set N;
H3 Sg contains the same s× s transition matrices, namely Sg = S := {Ah1}

|N|
i=1;

H4 Ag,g′ = Ahi ∈ S⇒ Ag′,g = Ah j ∈ S;

Condition H2 states that Γ (G,E) is a regular graph—i. e. each vertex has the
same degree. Condition H3 makes Γ (G,E) a colored directed graph, with the arrow
directed from g to g′ for Ag,g′ = Ah ∈ S and the color associated to h.7 Condition H3
introduces the following formal action of symbols hi ∈ S on the elements g ∈ G as

Agg′ = Ahi ⇒ ghi = g′. (4)

Clearly such action is closed for composition. From condition H4 one has that

Ag′g = Ah j ⇒ g′h j = g, (5)

and composing the two actions we see that ghih j = g, and we can write the label h j

as h j =: h−1
i . We thus can build the free group F of words made with the alphabet S.

Each word corresponds to a path over Γ (G,E), and the words w∈ F such that gw = g
correspond to closed paths (also called loops). Notice that by construction, one has
Aπ(g)π( f ) = Ag f = Ahi , which implies that π(g)hi = π( f ) = π(ghi), from which one
can prove that f ′w = π( f )w = π( f w) = π( f ) = f ′ (see [18]). Thus we have the
following

H5 If a path w ∈ F is closed starting from f ∈ G, then it is closed also starting from
any other g ∈ G.

The subset R⊂ F of words w such that gw = g is obviously a group. Moreover R is a
normal subgroup of G, since gwrw−1 = (gw)rw−1 = (gw)w−1 = g, namely wrw−1 ∈
R ∀w ∈ F,∀r ∈ R. Obviously the equivalence classes are just elements of G, which
means that G = F/R is a group. Pick up any element of G as the identity e ∈ G. It is
clear that the elements of the quotient group F/R are in one-to-one correspondence
with the elements of G, since for every g ∈ G there is only one class in F/R whose
elements lead from e to g (write g = ew for every w ∈ F , w representing a path
leading from e to g). The graph Γ (G,E) is thus what is called in the literature the
Cayley graph of the group G (see the definition in the following). The Cayley graph
is in correspondence with a presentation of the group G. This is usually given by
arbitrarily dividing the set as S = S+ ∪ S− with S− := S−1

+ ,8 and by considering a
set W of generators for the free group of loops R. The group G is then given with
the presentation G = 〈S+|W 〉, in terms of the set of its generators S+ (which along
with their inverses S− generate the group by composition), and in terms of the set of
its relators W containing group words that are equal to the identity, with the goal of
using these words in W to establish if any two words of elements of G correspond to
te same group element. The relators can also be regarded as a set of generators for R.

The definition of Cayley graph is then the following.

7 If two transition matrices Ah1 = Ah2 are equal, we conventionally associate them with two different
labels h1 6= h2 in such a way that ∑ f∈Nπ(g)

Aπ(g) f ψ
π−1( f ) = ∑ f∈Ng Ag f ψ f . If such choice is not unique, we

will pick an arbitrary one, since the homogeneity requirement implies that there exists a choice of labeling
for which all the construction that will follow is consistent.

8 The above arbitrariness is inherent the very notion of group presentation and corresponding Cayley
graph, and will be exploited in the following, in particular in the definition of isotropy.
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Cayley graph of G. Given a group G and a set S+ of generators of the group, the
Cayley graph Γ (G,S+) is defined as the colored directed graph with vertex set G,
edge set {(g,gh);g ∈ G,h ∈ S+} with the edge directed from g to gh with color
assigned by h (when h = h−1 we conventionally draw an undirected edge).

Notice that a Cayley graph in addition to being a regular graph, it is also vertex-
transitive—i. e. all sites are equivalent, in the sense that the graph automorphism
group acts transitively upon its vertices. The Cayley graph is also called arc-transitive
when its group of automorphisms acts transitively not only on its vertices but also on
its directed edges.

2.2.2 The locality principle

Locality corresponds to require that the evolution is completely determined by a rule
involving a finite number of systems. This means having each system interacting with
a finite number of systems (i. e. |N|<∞ in H2), and having the set of loops generating
F as finite and containing only finite loops. This corresponds to the fact that the group
G is finitely presented, namely both S+ and W are finite in G = 〈S+|W 〉.

The quantum walk then corresponds to a unitary operator over the Hilbert space
H = `2(G)⊗Cs of the form

A = ∑
h∈S

Th⊗Ah, (6)

where T is the right-regular representation of G on `2(G), Tg|g′〉= |g′g−1〉.

2.2.3 The isotropy principle

The requirement of isotropy corresponds to the statement that all directions on Γ (G,S+)
are equivalent. Technically the principle affirms that there exists a choice of S+, a
group L of graph automorphisms on Γ (G,S+) that is transitive over S+ and with
faithful unitary (generally projective) representation U over Cs, such that the follow-
ing covariance condition holds

A = ∑
h∈S

Th⊗Ah = ∑
h∈S

Tl(h)⊗UlAhU†
l , ∀l ∈ L. (7)

As a consequence of the linear independence of the generators Th of the right regular
representation of G one has that the above condition (7) implies

Al(h±1) =UlAh±1U†
l . (8)

Eq. (8) implies that the principle of isotropy requires the Cayley graph Γ (G,S+) to
be arc-transitive (see Subsect. 2.2.1).

We remind that the split S = S+∪S− is non unique (and in addition one may add
to S the identity element e corresponding to zero-length loops on each element corre-
sponding to self-interactions). Therefore, generally the quantum walk on the Cayley
graph Γ (G,S+) satisfies isotropy only for some choices of the set S+. It happens
that for the known cases satisfying all principles along with the restriction to quasi
isometric embeddability of G in Euclidean space (see Subsect. 2.3) such choice is
unique.
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2.2.4 The unitarity principle

The requirement that the evolution be unitary translates into the following set of equa-
tions bilinear in the transition matrices as unknown

∑
h∈S

A†
hAh = ∑

h∈S
AhA†

h = Is, ∑
h,h′∈S

h−1h′=h′′

A†
hAh′ = ∑

h,h′∈S

h′h−1=h′′

Ah′A
†
h = 0. (9)

Notice that the structure of equations already satisfy the homogeneity and locality
principles. The solution of the systems of equations (9) is generally a difficult prob-
lem.

2.3 Restriction to Euclidean emergent space

How a discrete quantum algorithm on a graph can give rise to a continuum quantum
field theory on space-time? We remind that the flow of the quantum state occurs on a
Cayley graph and the evolution occurs in discrete steps. Therefore the Cayley graph
must play the role of a discretized space, whereas the steps play the role of a dis-
cretized time, namely the quantum automaton/walk has an inherent Cartesian-product
structure of space-time, corresponding to a particular chosen observer. We will then
need a procedure for recovering the emergent space-time and a re-interpretation of
the notion of inertial frame and of boost in the discrete, in order to recover Poincaré
covariance and the Minkowski structure. The route for such procedure is opened by
geometric group theory, a field in pure mathematics initiated by Mikhail Gromov at
the beginning of the nineteen.9 The founding idea is the notion of quasi-isometric
embedding, which allows us to compare spaces with very different metrics, as for
the cases of continuum and discrete. Clearly an isometric embedding of a space with
a discrete metric (as for the word metric of the Cayley graph) within a space with
a continuum metric (as for a Riemaniann manifold) is not possible. However, what
Gromov realized to be geometrically relevant is the feature that the discrepancy be-
tween the two different metrics is uniformly bounded over the spaces. More precisely,
one introduces the following notion of quasi-isometry.

9 The absence of the appropriate mathematics was the reason of the lack of consideration of a discrete
structure of space-time in earlier times. Einstein himself was considering this possibility and lamented
such lack of mathematics. Here a passage reported by John Stachel [24]

But you have correctly grasped the drawback that the continuum brings. If the molecular view
of matter is the correct (appropriate) one, i. e. , if a part of the universe is to be represented by
a finite number of moving points, then the continuum of the present theory contains too great
a manifold of possibilities. I also believe that this too great is responsible for the fact that our
present means of description miscarry with the quantum theory. The problem seems to me how
one can formulate statements about a discontinuum without calling upon a continuum (space-
time) as an aid; the latter should be banned from the theory as a supplementary construction not
justified by the essence of the problem, which corresponds to nothing “real”. But we still lack the
mathematical structure unfortunately. How much have I already plagued myself in this way!
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Quasi-isometry. Given two metric spaces (M1,d1) and (M2,d2), with metric d1 and
d2, respectively, a map f : (M1,d1)→ (M2,d2) is a quasi-isometry if there exist con-
stants A≥ 1, B,C ≥ 0, such that ∀g1,g2 ∈M1 one has

1
A

d1(g1,g2)−B≤ d2( f (g1), f (g2))≤ Ad1(g1,g2)+B, (10)

and ∀m ∈M2 there exists g ∈M1 such that

d2( f (g),m)≤C. (11)

The condition in Eq. (11) is also called quasi-onto.

It is easy to see that quasi-isometry is an equivalence relation. It can also be
proved that the quasi-isometric class is an invariant of the group, i. e. it does not
depend on the presentation, i. e. on the Cayley graph. Moreover, it is particularly
interesting for us that for finitely generated groups, the quasi-isometry class always
contains a smooth Riemaniann manifold [25]. Therefore, for a given Cayley graph
there always exists a Riemaniann manifold in which it can be quasi-isometrically
embedded, which is unique modulo quasi-isometries, and which depends only on the
group G of the Cayley graph. Two examples are graphically represented in Fig. 2.

2.3.1 Geometric group theory

With the idea of quasi-isometric embedding, geometric group theory connects geo-
metric properties of the embedding Riemaniann spaces with algebraic properties of
the groups, opening the route to a geometrization of group theory, including the gen-
erally hard problem of establishing properties of a group that is given by presentation
only.10

The possible groups G that are selected from our principles are infinitely many,
and we need to restrict this set to start the search for solutions of the unitarity condi-
tions (2.3) under the isotropy constraint. Since we are interested in a theory involving
infinitely many systems (we take the world as infinite!), we will consider infinite
groups only. This means that when we consider an Abelian group, we always take
it as free, namely its only relators are those establishing the Abelianity of the group.
This is the case of G = Zd , with d ≥ 1.

A paradigmatic result [25] of geometric group theory is that an infinite group G is
quasi-isometric to an Euclidean space Rd if and only if G is virtually-Abelian, namely
it has an Abelian subgroup G′ ⊂ G isomorphic to Zd of finite index (namely with a
finite number of cosets). Another result is that a group has polinomial growth iff it is
virtually-nihilpotent, and if it has exponential growth then it not virtually-nihilpotent,
and in particular non Abelian, and is quasi-isometrically embeddable in a manifold
with negative curvature.

In the following we will restrict to groups that are quasi-isometrically embeddable
in Euclidean spaces. As we will see soon, such restriction will indeed lead us to free

10 One should consider that the Dehn’s problem of establishing if two words of generators correspond
to the same group element is generally undecidable. The same is true for the problem of establishing if the
presentation corresponds to the trivial group!
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a b

e
b
a a

b ab

a2

ab2

Fig. 2 From Ref. [18]. (Colors online). Given a group G and a set S+ of generators, the Cayley graph
Γ (G,S+) is defined as the colored directed graph having set of nodes G, set of edges {(g,gh);g ∈ G,h ∈
S+}, and a color assigned to each generator h ∈ S+. Left figure: the Cayley graph of the Abelian group
Z2 with presentation Z2 = 〈a,b|aba−1b−1〉, where a and b are two commuting generators. Right figure:
the Cayley graph of the non-Abelian group G = 〈a,b|a5,b5,(ab)2〉. The Abelian-group graph is embedded
into the Euclidean space R2, the non-Abelian G into the Hyperbolic space H2 with negative curvature.

quantum field theory in Euclidean space. It would be very interesting to address also
the case of curved spaces, to get hints about quantum field theory in curved space.
Unfortunately, the case of negative curvature corresponds to groups, as the Fuchsian
group in Fig. 2, whose unitary representations (that we need here) are still unknown
[26–28]. The virtually-nihilpotent case also would be interesting, since it corresponds
to a Riemaniann manifold with variable curvature [28], however, a Cayley graph that
can satisfy the isotropy constraint could not be found yet [29].

I close this section with some comments about the remarkable closeness in spirit
between the present program and the geometric group theory program. The main gen-
eral goal of geometric group theory is the geometrization of group theory, which is
achieved studying finitely-generated groups G as symmetry groups of metric spaces
X , with the aim of establish connections between the algebraic structure of G with the
geometric properties of X [30]. In a specular way the present program is an algorith-
mization of theoretical physics, with the general goal of deriving QFT (and ultimately
the whole physics) from quantum algorithms with finite complexity, upon connecting
the algebraic properties of the algorithm with the dynamical features of the physical
theory. This will allow a coherent unified axiomatization of physics without physical
primitives, preparing a logically coherent framework for a theory of quantum gravity.

3 Quantum Walks on Abelian groups and free QFT as their relativistic regime

As seen in Subsect. 2.3, from the huge and yet mathematically unexplored set of pos-
sibilities for the group G of the quantum walk, we restrict to the case of G virtually-
Abelian, which corresponds to G quasi-isometrically embeddable in an Euclidean
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space. As we will see in the present section, the free QFT that will be derived from
such choice exactly corresponds to the known QFT in Euclidean space.

Since we are interested in the physics occurring in R3, we need to classify all
possible Cayley graphs of G having Z3 as subgroup with finite index, and then select
all graphs that allow the quantum walk to satisfy the conditions of isotropy and uni-
tarity. We can proceed by considering increasingly large dimension s > 0 (defined in
H1), which ultimately corresponds to the dimension of the field–e .g. a scalar field
for s = 1, a spinor field for s = 2, etc.

3.1 Induced representation, and reduction from virtually Abelian to Abelian
quantum walks

An easy way to classify all quantum walks on Cayley graphs with virtually Abelian
groups is provided by a theorem in Ref. [19], which establishes the following

A quantum walk on the Cayley graph of a virtually Abelian group G with Abelian
subgroup H ⊂ G of finite index iH and dimension s is also a quantum walk on the
Cayley graph of H with dimension s′ = siH .

This is just the induced-representation theorem [31–33] in group theory, here ap-
plied to quantum walks. The multiple dimension s′ = sih corresponds to tiling the
Cayley graph of G with a tile made with a particular choice of the cosets of H. The
new set of transition matrices of the new walk for H can be straightforwardly evalu-
ated in terms of those for G (generally self interactions within the same tile can occur,
corresponding to zero-length loops in the Cayley graph). In Fig. 3 two examples of
such tiling procedure are given.

The induced-representation method guarantees that scanning all possible virtually
Abelian quantum walks for increasing s is equivalent to scan all possible Abelian
quantum walks, since e. g. the set of Abelian walks of dimension s = nm will contain
all virtually Abelian walks with s= n and index m, etc. We therefore resort to consider
only Abelian groups.

3.2 Isotropy and orthogonal embedding in R3

We will also assume that the representation of the isotropy group L in (7) induced
by the embedding in R3 is orthogonal, which implies that the graph-neighborhood is
embedded in a sphere S2 ⊂ R3 (we want homogeneity and isotropy to hold locally
also in the embedding space R3). We are then left with the classification of the Cayley
graphs of Z3 satisfying the isotropic embedding in R3: these are just the Bravais
lattices.

3.3 Quantum Walks with Abelian G

When G is Abelian we can greatly simplify the study of the quantum walk by using
the wave-vector representation, based on the fact that the irreducible representations
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Fig. 3 From Ref. [19]. (Colors online). Two examples of reduction of a quantum walk on the Cayley graph
of a virtually Abelian group G to that of a quantum walk on the Cayley graph of an Abelian subgroup
H ⊂ G with finite index iH . The graphs on the left of the figures are the Cayley graph of G (it is easy to
see that both groups are non Abelian). The graphs on the right represents a choice of the Cayley graph of
the subgroup H = Z2, with the tiling corresponding to the induced representation (the elements of H are
the black bullets). Top figures: G = 〈a,b | a4,b4,(ab)2〉. The index is iH = 4. The subgroup generators
are hx = a−1b and hy = ba−1. The tiling is defined by the coset representatives e,a,a2,a3. Bottom figures:
G = 〈a,b | a2b−2〉. The index is iH = 2. The subgroup generators are h1 = ba and h2 = a2 (or h1 = ba and
h3 = ab−1), with the tiling the cosets representatives e,a.

of G are one-dimensional. The interesting case is for d = 3, but what follows holds
for any dimension d. We will label the group elements by vectors g ∈ Zd , and use the
additive notation for the group composition, whereas the right-regular representation
of Zd on `2(Zd) will be written as Th|g〉 = |g− h〉. This can be diagonalized by
Fourier transform, corresponding to write the operator A in block-form in terms of
the following direct-integral

A =
∫

B
d3k |k〉〈k|⊗Ak, Ak := ∑

h∈S
e−ik·hAh, |k〉 :=

1√
|B| ∑g∈G

e−ik·g|g〉. (12)

where B is the Brillouin zone, and |k〉 is a plane wave.11 Notice that the quantum
walk is unitary if and only if Ak is unitary for every k ∈ B.

11 The Brillouin zone is a compact subset of R3 corresponding to the smallest region containing only
inequivalent wave-vectors k. (See Ref. [3] for the analytical expression.)
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3.4 Dispersion relation

The spectrum {e−iω(i)
k } of the operator Ak is usually given in terms of the so-called

dispersion relations ω
(i)
k versus k. As in usual wave-mechanics, the speed of the

wave-front of a plane wave is given by the phase-velocity ω
(i)
k /|k|, whereas the speed

of a narrow-band packet peaked around the value wave-vector k0 is given by the
group velocity ∇kω

(i)
k evaluated at k0.

3.5 The relativistic regime

As we will see in Sect. 3.8.3 an heuristic argument will lead us to set the scale of
discreteness of the quantum walk (and similarly the quantum cellular automaton for
the interacting theory) at the Planck scale. The domain |k| � 1 then corresponds to
wave-vectors much smaller than the Planck vector, which is much higher than any
ever observed wave-vector.12 Such regime includes that of usual particle physics, and
is called relativistic regime. To be precise, the regime is defined by a set of wavepack-
ets that are peacked around k = 0 with r.m.s. value much smaller than the Planck
wave-vector, which we will refer shortly to as narrow-band wave-packets.

I want to emphasize here that we have never used any mechanical concept in our
derivation of the quantum walk, including the notion of Hamiltonian: the dynamics
is given in term of a single unitary operator A. A notion of effective Hamiltonian
could be considered as the logarithm of A, which would correspond to an Hamil-
tonian providing the same unitary evolution, and which would even interpolate it
between contiguous steps. For this reason we will call such an operator interpolating
Hamiltonian. In the Fourier direct-integral representation of the operator, the inter-
polating Hamiltonian will be given by the identity e−iH(k) := Ak. It is easy to see that
the relativistic limit H0(k) of H(k), corresponding to consider narrow-band wave-
packets centered at k = 0, is achieved by expanding it at the first order in |k|, i. e.
H(k) = H0(k)+O(|k|2). The interpolated continuum-time evolution in the relativis-
tic regime will be then given by the first-order differential equation in the Schrödinger
form

i∂tψ(k, t) = H0(k)ψ(k, t). (13)

Rigorous quantitative approaches to judge the closeness between free QFT and the
relativistic regime of the quantum walk have been provided in Ref. [5] in terms of
channel discrimination probability, and in Ref. [3] in terms of fidelity between the
two evolutions. Numerical values will be provided at the end of Subsect. 3.8.

3.6 Schrödinger equation for the ultra-relativistic regime

In the ultra-relativistic regime of wave-vectors comparable to the Planck vector, an
obvious option is that of evaluating the evolution by a numerical evaluation of the ex-

12 The highest momentum observed is that of a ultra-high-energy cosmic ray, which is k ∼ 10−8.
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act quantum walk.13 However, even in such regime we still have an analytical method
available for evaluating the evolution of some common physical states. Indeed, for
narrow-band wave packets centered around any value k0 one can write a dispersive
Schrödinger equation by expanding the interpolating Hamiltonian H(k) around k0 at
the second order, thus obtaining

i∂tψ̃(x, t) =±[v ·∇+ 1
2 D ·∇∇]ψ̃(x, t), (14)

where ψ̃(x, t) is the Fourier transform of ψ̃(k, t) := e−ik0·x+iω0tψ(k, t), v=(∇kω)(k0)
is the drift vector, and D = (∇k∇kω)(k0) is the diffusion tensor. This equation ap-
proximates very well the evolution, even in the Planck regime and for large numbers
of steps, depending on the bandwith (see an example in Fig. 4 from Ref. [5]).

3.7 Recovering the Weyl equation14

In Subsect. 3.2 we were left with the classification of the Cayley graphs of Z3 satisfy-
ing the isotropic embedding in R3, which are just the Bravais lattices. For dimension
s = 1 it is easy to show that the only solution of the unitarity constraints gives the
trivial quantum walk A = I.15 We then consider s = 2. Now, the only inequivalent
isotropic Cayley graphs are the primitive cubic (PC) lattice, the body centered cubic
(BCC), and the rhombohedral. However only in the BCC case, whose presentation
of Z3 involves four vectors S+ = {h1,h2,h3,h4} with relator h1 +h2 +h3 +h4 = 0,
one finds solutions satisfying all the assumptions of Section 2. The isotropy group is
given by the group L of binary rotations around the coordinate axes, with the unitary
projective representation on C2 given by {I, iσx, iσy, iσz}. The group L is transitive
on the four BCC generators of S+. There are only four solutions (modulo unitary
conjugation) that can be divided in two pairs A± and B±. The two pairs of solutions
are connected by transposition in the canonical basis, i. e. A±k = (B±k )

T . The solutions
B±k can be also obtained from the solution A±k by shifting the wave-vector k inside
the Brillouin zone16 to the vectors [3]

k1 =
π

2
(1,1,1), k2 =−

π

2
(1,1,1), k3 =−

π

2
(1,0,0). (15)

The A±k solutions in the wave-vector representation are

A±k = Iu±k − iσσσ± · ñ±k (16)

13 A fast numerical technique to evaluate the quantum walk evolution numerically exploits the Fourier
transform. For an application to the Dirac quantum walk see Ref. [34].

14 This section is a synthesis of the results of Ref. [3]. It should be noticed that there isotropy is not even
assumed in solving Eqs. (9). A simplified derivation making use of isotropy and full detailed analysis of
all possible Cayley graphs will be available soon [29].

15 Also more generally one has A = Th.
16 The first Brillouin zone B for the BCC lattice is defined in Cartesian coordinates as−

√
3π ≤ ki±k j ≤√

3π, i 6= j ∈ {x,y,z}.
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Fig. 4 From Ref. [5]. (Colors online). Test of the quality of the approximation of the Schrödinger equation
(14) at for different time t of the Dirac quantum walk with mass m= 0.6 in one space dimension of Ref.[5].
Comparison of the probability distribution (in red) and the solution of the Schrödinger equation (in blue).
Right figures: the state is a superposition of Hermite functions multiplied by the Gaussian peaked around
momentum k0 = 3π/10, for drift and diffusion coefficients v = 0.73 and D = 0.31, respectively. The mean
value moves at the group velocity given by the drift coefficient v. The approximation remains accurate even
for position spread σ̂ = 20 Planck lengths. Left figures: The same four times comparison for the quantum
walk with m = 0.4, and an initial Gaussian state peaked around the momentum k0 = 0.1. In this case the
drift velocity and the diffusion coefficient are respectively v = 0.22 and D = 2.30.

with

ñ±k :=




sxcycz∓ cxsysz
cxsycz± sxcysz
cxcysz∓ sxsycz


 , u±k := cxcycz± sxsysz, (17)
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where ci := cos(ki/
√

3), si := sin(ki/
√

3), and σσσ+ = σσσ , σσσ− = σσσT . The spectrum of
A±k is {e−iω±

k }, with dispersion relation given by

ω
±
k = arccos(cxcycz∓ sxsysz). (18)

It is easy to get the relativistic limit of the quantum walk using the procedure in
Subsect. 3.5. This simply corresponds to substituting ci = 1 and si = ki/

√
3 in Eq.

(17), thus obtaining

i∂tψ(k, t) =
1√
3

σσσ
± ·kψ(k, t). (19)

Eqs. (19) are the two Weyl equations for the left and the right chiralities. For G = Zd

with d = 1,2 one obtains the Weyl equations in dimension d = 1,2, respectively [3].
All the three quantum walks have the same form in Eq. (16), namely

Ak = ukI− iσσσ · ñk, (20)

with dispersion relation

ωk = arccosuk, (21)

and with the analytic expression of uk and nk depending on d and on the chirality
(see Ref. [3]). Since the quantum walks in Eq. (17) or (20) have the Weyl equations
as relativistic limit, we will also call them Weyl quantum walks.

The interpolating Hamiltonian is H(k) = σσσ ·nk, with nk := (ωk/sinωk)ñk play-
ing the role of an helicity vector, and with relativistic-limit being given by H0(k) =

1√
d

σσσ · k, which coincides with the usual Weyl Hamiltonian in d dimensions upon
interpreting the wave-vector k as the particle momentum.

We conclude the present subsection by emphasizing that one additional advan-
tages of the discrete framework is that the Feynman path-integral is well defined,
and it is also exactly calculated analytically in some cases. Indeed, in Refs. [35] and
[36] the discrete Feynman propagator for the Weyl quantum walk has been analyti-
cally evaluated with a closed form for dimensions d = 1 and d = 2, and the case of
dimension d = 3 will be published soon [37].

3.8 Recovering the Dirac equation

From subsection 3.7 we know that all quantum walks derivable from our principles
for s = 2 give the Weyl equation in the relativistic limit. We now need to increase the
dimension s of the field beyond s = 2. However, the problem of solving the unitar-
ity equations (9) becomes increasingly difficult, since the unknown are matrices of
increasingly larger dimension s ≥ 3 (we remind that the equations are bilinear non
homogeneus in the unknown transition matrices, and a canonical procedure for the
solution is unknown). What we can do for the moment is to provide only some partic-
ular solutions using algebraic techniques. Two ways of obtaining solutions for s = 4
is to start from solutions in dimension s = 2 and built the direct-sum and tensor prod-
uct of two copies of the quantum walk in such a way that the obtained quantum walk



18 Giacomo Mauro D’Ariano

for dimension s = 4 still satisfies the principles. We will see that the quantum walks
that we obtain in the relativistic limit give the Dirac equation when using the direct
sum, whereas they give the Maxwell equation (plus a static scalar field) when we use
the tensor product.

When building a quantum walk in 2× 2 block form, all four blocks must be
quantum walks themselves. The requirement of locality of the coupling leads to off-
diagonal blocks that do not depend on k. A detailed analysis of the restrictions due
to the unitarity conditions (9) shows that, modulo unitary change of representation
independent on k,17 we can take the off-diagonal matrix elements as proportional
to the identity, whereas the diagonal blocks are just given by the chosen quantum
walk and its adjoint, respectively. We then need to weight the diagonal blocks with
a constant n and the off-diagonal identities with a constant m, and unitarity requires
having |n|2 + |m|2 = 1. Then, starting from the walk Ak that leads us to the Weyl
equations for all dimension d = 1,2,3, the walk, modulo unitary equivalence,18 can
be recast in the form[3]

Dk :=
(

nAk im
im nA†

k

)
, n2 +m2 = 1, n ∈ R+,m ∈ R. (22)

Also the sign of m can be changed by a unitary equivalence (a “charge-conjugation”),
however, we keep m with changing sign for reasons that will explained in Subsect.
3.8.2. The walk (22) with s = 4 can be conveniently expressed in terms of gamma
matrices in the spinorial representation as follows

Dk := nIuk− inγ
0
γγγ · ñk + imγ

0, (23)

where the functions uk and ñk depend on the choice of Ak in Eq. (22), i. e. on d =
1,2,3. The dispersion relation of the quantum walk (23) is simply given by

ωk = arccos[
√

1−m2uk]. (24)

We will see now that the quantum walks in Eq. (22) in the small wave-vector limit
and for m� 1 all give the usual Dirac equation in the respective dimension d, with m
corresponding to the particle rest mass, whereas n works as the inverse of a refraction
index of vacuum. In fact, the interpolating Hamiltonian H(k) is given by

H(k) =
ωk

sinωk
(nγ

0
γγγ · ñk−mγ

0), (25)

with relativistic limit given by

H0(k) =
n√
d

γ
0
γγγ ·k+mγ

0, (26)

17 This can also be e. g. the case of an overall phase independent of k.
18 Also the solutions with walk B± = (Ak)

T are contained in Eq. (22), since they can be achieved either
by a shift in the Brillouin zone or as σyB±σy = A±†, with the exchange of the upper and lower diagonal
blocks that can be done unitarily.
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and to the order O(m2) we get the Dirac Hamiltonian

H0(k) =
1√
d

γ
0
γγγ ·k+mγ

0. (27)

One has the Dirac Hamiltonian, with the wave-vector k interpreted as momentum and
the parameter m interpreted as the rest mass of the particle. In the relativistic limit
(26) the parameter n plays the role of the inverse of a refraction index of vacuum. In
principle this can produce measurable effects from bursts of high-energy particles of
different masses at the boundary of the visible universe, and would be complementary
to the dispersive nature of vacuum (see subsections 3.8.3 and 3.9.2).

In the following we will also call the quantum walk in Eq. (22) Dirac quantum
walk.19

In Ref. [35] the discrete Feynman propagator for the Dirac quantum walk has
been analytically evaluated with a closed formal for dimension d = 1, generalizing
the solution of Ref. [38] for fixed mass value.

3.8.1 Discriminability between quantum walk and quantum field dynamics

In Subsect. 3.5 we mentioned that rigorous quantitative approaches to judge the close-
ness between the two dynamics have been provided in Ref. [5], and in Ref. [3] in
terms of fidelity between the two unitary evolutions. For the Dirac quantum walk
for a proton mass one has fidelity close to unit for N ' m−3 = 2.2 ∗ 1057, corre-
sponding to t = 1.2 ∗ 1014s = 3.7 ∗ 106 years. The approximation is still good in the
ultra-relativistic case k� m, e. g. for k = 10−8 (as for an ultra-high energy cosmic
ray), where it holds for N ' k−2 = 1016 steps, corresponding to 5∗10−28 s. However,
one should notice that practically the discriminability in terms of fidelity corresponds
to having unbounded technology, and such a short time very likely corresponds to
unfeasible experiments. On the other hand, for a ultra-high energy proton with wave
packet width of 100 fm the time required for discriminating the wave-packet of the
quantum walk from that of QFT is comparable with the age of the universe.

3.8.2 Mass and proper-time

The unitarity requirement in Eq. (22) restrict the rest mass to belong to the interval

m ∈ [−1,1]. (28)

At the extreme points ±1 of the interval the corresponding dynamics Dk = ±iγ0

are identical (they differ for an irrelevant global phase factor). This means that the
domain of the mass has actually the topology of a circle, namely

m ∈ S1. (29)

19 For d = 1, modulo a permutation of the canonical basis, the quantum walk corresponds to two identical
and decoupled s = 2 walks. Each of these quantum walks coincide with the one dimensional Dirac walks
derived in Ref. [5]. The last one was derived as the simplest s = 2 homogeneous quantum cellular walk
covariant with respect to the parity and the time-reversal transformation, which are less restrictive than
isotropy that singles out the only Weyl quantum walk in one space dimension.
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From the classical relativistic Hamiltonian [39]

H = p ·q+ c2mτ−L, (30)

with p and q canonically conjugated position and momentum and L the Lagrangian,
we see that the proper time τ is canonically conjugated to the rest mass m. This
suggests that the Fourier conjugate of the rest mass in the quantum walk can be in-
terpreted as the proper time of a particle evolution, and being the mass a variable in
S1, we conclude that the proper time is discrete, in accordance with the discreteness
of the dynamical evolution of the quantum walk. This result constitutes a non trivial
logical coherence check of the present quantum walk theory.

3.8.3 Physical dimensions and scales for mass and discreteness

We want to emphasize that in the above derivation everything is adimensional by
construction. Dimensions can be recovered by using as measurement standards for
space, time, and mass the discreteness scale for space a∗ and time t∗ (a∗ is half of the
BCC cell side, t∗ the time-length of the unit step), along with the maximum value of
the mass m∗ (corresponding to |m| = 1 in Eq. (22)). From the relativistic limit, the
comparison with the usual dimensional Dirac equation leads to the identities

c = a∗/t∗, h̄ = m∗a∗c, (31)

which leave only one unknown among the three variables a∗, t∗ and m∗. At the max-
imum value of the mass |m| = 1 in Eq. (22) we get a flat dispersion relation, corre-
sponding to no flow of information: this is naturally interpreted as a mini black-hole,
i. e. a particle with Schwarzild radius equal to the localization length, i. e. the Comp-
ton wavelength. This leads to an heuristic interpretation of m∗ as the Planck mass,
and from the two identities in Eq. (31) we get the Planck scale for discreteness. No-
tice that the value of m∗ can be in principle obtained from the dispersion of vacuum
as m∗ ' 1√

3
h̄k

c(k)−c(0) for small k, which can be in principle measured by the Fermi
telescope from detection of ultra high energy bursts coming from deep space.

3.9 Recovering Maxwell fields20

In Sections 3.7 and 3.8 we showed how the dynamics of free quantum fields can
be derived starting from a countable set of quantum systems with a network of in-
teractions satisfying the principles of locality, homogeneity, and isotropy. Within
the present finitistic local-algorithmic perspective one also considers each system
as carrying a finite amount of information, thus restricting the quantum field to be
Fermionic (see also Subsect. 2.1). However, one may wonder how the physics of
the free electromagnetic field can be recovered in such a way and, generally, how
Bosonic fields are recovered from Fermionic ones. In this section we answers to these
questions. The basic idea behind is that the photon emerges as an entangled pair of
Fermions evolving according to the Weyl quantum walk of Section 3.7. Then one

20 The entire subsection is a short review of Ref. [6]
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shows that in a suitable regime both the free Maxwell equation in 3d and the Bosonic
commutation relations are recovered. Since in this subsection we are actually con-
sidering operator quantum fields, we will use more properly the quantum automaton
nomenclature instead of the quantum walk one.

Consider two Fermionic fields ψ(k) and ϕ(k) in the wave-vector representation,
with respective evolutions given by

ψ(k, t +1) =Wkψ(k, t). ϕ(k, t +1) =W ∗k ϕ(k, t). (32)

The matrix Wk can be any of the Weyl quantum walks for d = 3 in Eq. (16), (the
whole derivation is independent on this choice), whereas W ∗k = σyWkσy denotes the
complex conjugate matrix. We introduce the bilinear operators

Gi(k, t) := ϕ
T (k

2 , t)σ
i
ψ(k

2 , t) = ϕ
T (k,0)(W †

k
2

σ
iWk

2
)ψ(k

2 ,0) (33)

by which we construct the vector field

G(k, t) := (G1(k, t),G2(k, t),G3(k, t))T (34)

and the transverse field

GT (k, t) := G(k, t)−
(

n k
2

|n k
2
| ·G(k, t)

)
n k

2

|n k
2
| , (35)

with nk := (ωk/sinωk)ñk and ñk given in Eq. (17). By construction the field GT (k, t)
satisfies the following relations

n k
2
·GT (k, t) = 0, (36)

GT (k, t) = Exp(−i2n k
2
·Jt)GT (k,0), (37)

where we used the identity

exp(− i
2 v ·σσσ)σσσ exp( i

2 v ·σσσ) = Exp(−iv ·J)σσσ , (38)

the matrix Exp(−iv · J) acting on σσσ regarded as a vector, and J = (Jx,Jy,Jz) repre-
senting the infinitesimal generators of SU(2) in the spin 1 representation. Taking the
time derivative of Eq. (37) we obtain

∂tGT (k, t) = 2n k
2
×GT (k, t). (39)

If EG and BG are two Hermitian operators defined by the relation

EG := |n k
2
|(GT +G†

T ), BG := i|n k
2
|(G†

T −GT ), (40)

then Eq. (36) and Eq. (39) can be rewritten as

∂tEG = i2n k
2
×BT (k, t) ∂tBG =−i2n k

2
×ET (k, t)

2n k
2
·EG = 0 2n k

2
·BG = 0. (41)

Eqs. (41) have the form of distorted Maxwell equations, with the wave-vector k sub-
stituted by 2n k

2
, and in the relativistic limit |k| � 1 one has 2n k

2
∼ k and the usual

free electrodynamics is recovered.
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3.9.1 Photons made of pairs of Fermions

Since in the Weyl equation the field is Fermionic, the field defined in Eqs. (35) and
(40) generally does not satisfy the correct Bosonic commutation relations. The solu-
tion to this problem is to replace the operator G defined in Eq. (35) with the operator
F defined as

F(k) :=
∫ dq

(2π)3 fk(q)ϕ
(k

2 −q
)

σσσ ψ
(k

2 +q
)
, (42)

where
∫ dq

(2π)3 | fk(q)|2 = 1,∀k. In terms of F(k), we can define the polarization oper-

ators ε i(k) of the electromagnetic field as follows

ε
i(k) := ui

k ·F(k,0), i = 1,2, (43)

ui
k ·nk = u1

k ·u2
k = 0, |ui

k|= 1, (u1
k×u2

k) ·nk > 0. (44)

In order to avoid technicalities from continuum of wavevectors, we restrict to a dis-
crete wave-vector space, corresponding to confinement in a cavity. Moreover we as-
sume | fk(q)|2 to be uniform over a region Ωk which contains Nk modes, i. e.

| fk(q)|2 =
{

1
Nk

if q ∈Ωk

0 otherwise.
(45)

Then, for a given state ρ of the field we denote by Mϕ,k (resp. Mψ,k) the mean number
of type ϕ (resp ψ) Fermionic excitations in the region Ωk. One can then show that,
for states such that Mξ ,k/Nk ≤ ε � 1 for both ξ = ϕ,ψ and forall k we have

[ε i(k),ε j†(k′)]− = δi, jδk,k′ , (46)

i. e. the polarization operators are Bosonic operators.

3.9.2 Vacuum dispersion

According to Eq. (41) the angular frequency of the electromagnetic waves is given
by the modified dispersion relation

ω(k) = 2|n k
2
|, (47)

which recovers the usual relation ω(k) = |k| in the relativistic regime. In a disper-
sive medium, the speed of light is the group velocity ∇kω(k) of the electromagnetic
waves, and Eq. (47) predict that the vacuum is dispersive, namely the speed of light
generally depends on k. Such dispersion phenomenon has been already analyzed in
some literature on quantum gravity, where several authors considered how an hy-
pothetical invariant length (corresponding to the Planck scale) could manifest itself
in terms of modified dispersion relations [40–44]. In these models the k-dependent
speed of light c(k), at the leading order in k := |k|, is expanded as c(k) ≈ 1± ξ kα ,
where ξ is a numerical factor of the order 1, while α is an integer. This is exactly



Physics without physics and the power of information-theoretical principles 23

k

E

B

2n k
2

kx

ky

kz

k

r!(k)

2nk
2

Fig. 5 From Ref. [6]. (Colors online). Left: In a rectilinear polarized electromagnetic wave, the polariza-
tion plane (in green) is slightly tilted with respect the plane orthogonal to k (in gray). Right: vector 2n k

2
(in green), which is orthogonal to the polarization plane; wavevector k (in red) and group velocity (in blue)
for the value |k| = 0.8 and different directions. Notice that the three vectors are not parallel (the angles
between them depend on k).

what happens in our framework, where the intrinsic discreteness of the quantum cel-
lular automata A±k leads to the dispersion relation of Eq. (47) from which one obtains
the following k-dependent speed of light

c∓(k)≈ 1±3
kxkykz

|k|2 ≈ 1± 1√
3
k. (48)

Eq. (48) is obtained by evaluating the modulus of the group velocity and expanding
in powers of k with the assumption kx = ky = kz =

1√
3
k, (k = |k|).21 Notice that the

dispersion is not isotropic, and can also be superluminal, though uniformly bounded
[3] by a factor

√
d (which coincides with the uniform bound of the quasi-isometric

embedding). The prediction of dispersive behavior, as for the present automata theory
of quantum fields, is especially interesting since it is experimentally falsifiable, and,
as mentioned in Subsect. 3.8.3, allows to experimentally set the discreteness scale. In
fact, differently to other birefringence effects (Fig.5), the disperision effect, although
is extremely small in the relativistic regime, it accumulates and become magnified
during a huge time of flight. For example, observations of the arrival times of pulses
originated at cosmological distances (such as in some γ-ray bursts[45–48]), have suf-
ficient sensitivity to detect corrections to the relativistic dispersion relation of the
same order as in Eq. (48).

4 Recovering special relativity in a discrete quantum universe22

We have seen how relativistic mechanics, and more precisely free QFT, can be recov-
ered without using any mechanical primitive, and without making any use of special

21 Notice that, depending on the quantum walk A+(k) of A−(k) in Eq. (16) we obtain corrections to the
speed of light with opposite sign.

22 This entire section is a review of the main results of Ref. [17].
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relativity, including the relativity principle itself. However, one may wonder how dis-
creteness can be reconciled with Lorentz transformations, and most importantly, how
the relativity principle itself can be restated in purely mathematical terms, without
using the notions of space-time and inertial frame. In this section we will see how
such goal can be easily accomplished.

The relativity principle is expressed by the statement:

Galileo’s Relativity Principle: The physical law is invariant with the inertial frame.

Otherwise stated: the physics that we observe, or, equivalently, its mathematical rep-
resentation, is independent on the inertial frame that we use.

What is a frame? It is a mathematical representation of physical laws in terms of
space and time coordinates. What is special about the inertial frame? A convenient
way of answering is the following

Inertial frame: a reference frame where energy and momentum are conserved for
an isolated system.

When a system is isolated? This is established by the theory. In classical mechanics,
a system is isolated if there are no external forces acting on it. In quantum theory a
system is isolated when its dynamical evolution is described by a unitary transfor-
mation on the system’s Hilbert space. At the very bottom of its notion, the inertial
frame is the mathematical representation of the physical law that makes its analytical
form the simplest. In classical physics, if we include the Maxwell equations among
the invariant physical laws, what we get from Galileo’s principle is Einstein’s special
relativity.

The quantum walk/automaton is an isolated system (it evolves unitarily). Math-
ematically the physical law that brings the information about the constants of the
dynamics in terms of their Hilbert eigenspaces is provided by the eigenvalue equa-
tion. For the case of virtually Abelian group G (which ultimately leads to physics in
Euclidean space) the eigenvalue equation has the general form corresponding to Eqs.
(19) and (21)

Akψ(ω,k) = eiω
ψ(ω,k), (49)

with the eigenvalues usually collected into s dispersion relations (the two functions
ω±(k) for the Weyl quantum walk). This translates into the following re-interpretation
of representations of the eigenvalue equation:

Quantum-digital inertial frame: Representation in terms of eigen-spaces of the
constants of the dynamics of the eigenvalue equation (49).

Using such notion of inertial frame, the principle of relativity is still the Galileo’s
principle. The group of transformations that connect different inertial reference frames
will be the quantum digital-version of the Poincaré group:

Quantum-digital Poincaré group: group of changes of representations in terms of
eigenspaces of the dynamical constants that leave the eigenvalue equation (49)
invariant.
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It is obvious that the changes of representations make a group. Since the constants of
dynamics are k and ω±, a change of representation corresponds to an invertible map
k→ k′(k), where with k we denote the four-vector k := (ω,k).

In the following subsection we will see how the inherent discreteness of the al-
gorithmic description leads to distortions of the Lorentz transformations, visible in
principle at huge energies. Nevertheless, Einstein’s special relativity is perfectly re-
covered for |k| � 1, namely at energy scales much higher than those ever tested.

On the other hand, as we will see in the following, discreteness has some plus
compared to the continuum theory, since it contains the continuum theory as a special
regime, and moreover it leads to some additional features with GR flavor: 1) it has a
maximal particle mass with physical interpretation in terms of the Planck mass; 2) it
leads to a De Sitter invariance (see Subsect. 4.2). And this, in addition to providing
its own physical standards for space, time, and mass within a purely mathematical
context (Subsect. 3.8.3).

4.1 Quantum-digital Poincaré group and the notion of particle23

The eigenvalue equation (49) can now be rewritten in “relativistic notation” as follows

nµ(k)σ µ
ψ(k) = 0, (50)

upon introducing the four-vectors

k = (ω,k), n(k) = (sinω,n(k)), σσσ = (I,σ), σ = (σx,σy,σz), (51)

where the vector n(k) is defined in Eq. (16), namely

n(k) ·σ :=
i
2
(Ak−A†

k). (52)

As already mentioned, since the constants of dynamics are k and ω±, a change of
representation corresponds to a map k 7→ k′(k). Now the principle of relativity cor-
responds to the requirement that the eigenvalue equation (50) is preserved under a
change of representation. This means that the following identity must hold

nµ(k)σ µ = Γ̃
−1

k nµ(k′)σ µ
Γk, (53)

where Γk, Γ̃k are invertible matrices representing the change of representation.
The simplest example of change of observer is the one given by the trivial rela-

beling k′ = k and by the matrices Γk = Γ̃k = eiλ (k), where λ (k) is an arbitrary real
function of k. When λ (k) is a linear function we recover the usual group of transla-
tions. The set of changes of representation k 7→ k′(k) for which Eq. (53) holds are a
group, which is the largest group of symmetries of the dynamics. In covariant nota-
tion the dispersion relations are rewritten as follows

n±µ (k)n
µ±(k) = 0, (54)

23 For a simpler analysis in one space dimensions and the connection with doubly-special relativity and
relative locality, see Ref.[49]. For a connection with Hopf algebras for position and momentum see Ref.
[50].



26 Giacomo Mauro D’Ariano

Fig. 6 From Ref. [17]. (Colors online). The distortion effects of the Lorentz group in the present quantum
walk theory leading to the Weyl quantum field in the relativistic limit. Top left figure: the orbit of the
wavevectors k = (kx,0,0), with kx ∈ {.05, .2, .5,1,1.7} under the rotation around the z axis. Top right
figure: the orbit of wavevectors with |k|= 0.01 for various directions in the (kx,ky) plane under the boosts
with β parallel to k and |β | ∈ [0, tanh4]. Bottom figure: the orbit of the wavevector k = (0.3,0,0) under
the full rotation group SO(3).

and in the small wave-vector regime one has n(k)∼ k, recovering the usual relativistic
dispersion relation.

In addition to the neighbour of the wavevector k0 = (0,0,0), the Weyl equa-
tions can be recovered from the quantum walk (16) also in the neighborhood of the
wavevectors in Eq. (15). The mapping between the vectors ki exchange chirality of
the particle and double the particles to four species in total: two left-handed and two
right-handed.24 In the following we will therefore more generally refer to the rela-
tivistic regime as the neighborhoods of the vectors {ki}3

i=0.
The group of symmetries of the dynamics of the quantum walks (16) contains

a nonlinear representation of the Poincaré group, which exactly recovers the usual
linear one in the relativistic regime. For any arbitrary non vanishing function f (k)

24 Discreteness has doubled the particles: this corresponds to the well known phenomenon of Fermion
doubling [51].
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one introduces the four-vector

p( f ) = D ( f )(k) := f (k)n(k) (55)

and rewrite the eigenvalue equation (50) as follows

p( f )
µ σ

µ
ψ(k) = 0. (56)

Upon denoting the usual Lorentz transformation by Lβ for a suitable f [17] the Bril-
louin zone splits into four regions Bi, i = 1, . . . ,4 centered around ki i = 0, . . .3, such
that the composition

L
( f )

β
:= D ( f )−1Lβ D ( f ) (57)

is well defined on each region separately. The four invariant regions corresponding
to the four different massless Fermionic particles show that the Wigner notion of
”particle” as invariant of the Poincaré group survives in a discrete world. For fixed
function f the maps L

( f )
β

provide a non-linear representation of the Lorentz group
[52–54]. In Figs. 6 the orbits of some wavevectors under subgroups of the nonlinear
Lorentz group are reported. The distortion effects due to underlying discreteness are
evident at large wavevectors and boosts. The relabeling k→ k′(k) =L

( f )
β

(k) satisfies
Eq. (53) with Γk = Λβ and Γ̃k = Λ̃β for the right-handed particles, and Γk = Λ̃β and
Γ̃k = Λβ for the left-handed particles, with Λβ and Λ̃β being the (0, 1

2 ) and ( 1
2 ,0)

representation of the Lorentz group, independently on k in each pertaining region.
For varying f , one obtains a much larger group, including infinitely many copies

of the nonlinear Lorentz one. In the small wave-vector regime the whole group col-
lapses to the usual linear Lorentz group for each particle.

4.2 De Sitter group for nonvanishing mass

Up to now we have analyzed what happens with massless particles. For massive par-
ticles described by the Dirac walk (22), the rest-mass m gets involved into the frame
transformations, and their group becomes a nonlinear realization of the De Sitter
group SO(1,4) with infinite cosmological constant, where the rest mass m of the par-
ticle plays the role of the additional coordinate. One recovers the previous nonlinear
Lorentz group at the order O(m2).

5 Conclusions and future perspectives: the interacting theory, ..., gravity?

The logical connections that have lead us to build up our quantum-walk theory of
fields leading to free QFT are summarized in Fig. 7. The free relativistic quantum
field theory emerges as a special regime (the relativistic regime) of the evolution of
countably many Fermionic quantum bits, provided that their unitary interactions sat-
isfy the principles of homogeneity, locality, and isotropy, and with the restrictions of
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Fig. 7 Logical scheme of the derivation from principles of the present quantum-walk theory of fields, with
the known free quantum field theory as its relativistic limit. The top six principles from which quantum
theory of abstract system is derived are not discussed in the present paper, and can be found in Refs. [1,2].

linearity of the evolution and of quasi-isometric embedding of the graph of interaction
in an Euclidean space.

We are left now with the not easy task of recovering also the interacting relativis-
tic quantum field theory, where particles are created and annihilated. We will need to
devise which additional principles are missing that will lead to the interacting theory,
breaking the linearity assumption. This is likely to be related to the nature of a gauge
transformation. How can this be restated in terms of a new principle? From the point
of view of a free theory, the interaction can be viewed as a violation of homogeneity,
corresponding to the presence of another interacting field–namely the gauge-field.
The gauge-field can be regarded as a restoration of homogeneity by a higher level
homogeneous “meta-law”. For example, one can exploit the arbitrariness of the local
bases of the Hilbert block subspaces Cs for the Weyl automata, having the bases de-
pendent on the local value of the wave-function of the gauge automaton made with
pairs of entangled Fermions, as for the Maxwell automaton. In order to keep the inter-
action local, one can consider an on-situ interaction. In such a way one would have a
quantum ab initio gauge theory, without the need of artificially quantizing the gauge
fields, nor of introducing mechanical Lagrangians. A d = 1 interacting theory of the
kind of a Fermionic Hubbard quantum cellular automaton, has been very recently
analytically investigated by the Bethe ansatz [55], and two-particle bound states have
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been established. It should be emphasized that for d = 3 just the possibility of recov-
ering QED in the relativistic regime would be very interesting, since it will provide a
definite procedure for renormalization. Very interesting will be also the analysis of the
full dynamical invariance group, leading also to a nonlinear version of the Poincaré
group, with the possibility that this restricts the choice of the function f in Eq. (55).
Studying the full symmetry group of the interacting theory will also have the poten-
tial of providing additional internal symmetries, e. g. the SU(3) symmetry group of
QCD, with the Fermion doubling possibly playing the role in adding physical par-
ticles. The mass as a variable quantum observable (as in Subsections 3.8.2 and 4.2)
may provide rules about the lifetimes of different species of particles. The additional
quasi-static scalar mode entering in the tensor-product of the two Weyl automata that
give the Maxwell field in Subsect. 3.9 may turn out to play a role in the interacting
theory, e. g. playing the role of a Higg boson providing the mass value, or even being
pivotal for gravitation. But for now we are just in the realm of speculations.

What we can say for sure is that it is not just a coincidence that so much physics
comes out from so few general principles. How amazing is the whole resulting the-
ory which, in addition to having a complete logical coherence by construction, it also
winks at GR through the two nontrivial features of the maximum mass, and the De
Sitter invariance. And with special relativity derived without space-time and kinemat-
ics, in a fully quantum ab initio theory. So much from so little? This is the power of
the new information-theoretical paradigm.

Appendices

A A very brief historical account

The first very preliminary heuristic ideas about the current quantum cellular automaton/quantum walk the-
ory have been presented in a friendly and open-minded environment at Perimeter Institute in Waterloo in
a series of three talks in 2010-11 [56–58].25 Originally, the idea of foliations over the quantum circuit has
been explored, showing how the Lorentz time-dilations and space-contractions emerge by changing the
foliation. This work has lead to the analyses of Alessandro Tosini in Refs. [72,73] and in the conclusive
work [74]. However, it was soon realized that the foliation on the quantum circuit explores only the causal
connectivity of the automaton, and works in the same way also for a classical circuit, as it happens for
random walks in one dimension (see e. g. Ref. [75]). Moreover, only rational boosts can be used, with
the additional artifact that the events have to be coarse-grained in a boost-dependent way, with very dif-
ferent coarse-graining for very close values of the boost. This makes the recovery of the usual Lorentz
transformations at large scales practically unfeasible. On the other hand, the first Dirac automaton in one
space dimension [16] exhibited perfect Lorentz covariance for small wavevectors, which made clear that
the quantum nature of the circuit plays a pivotal role in recovering the Lorentz invariance. In the same Ref.
[16] it also emerged that the Dirac mass has to be upper bounded as a consequence of unitarity.

The idea that so-called “conventional”principles as homogeneity and isotropy may play a special role
entered the scene since the very beginning [56] through the connection with the old works of Ignatowsky
[76], whereas ideas about how to treat gauge theories emerged already in Ref. [58]. However, the project
remained stuck for a couple of years because of two dead ends. First, we were looking to the realization
of the quantum cellular automaton in terms of circuit gates, and we much later realized that the problem
of connecting the gate realization (socalled Margolus scheme [77]) to the linear quantum walk was a

25 Other talks have been presented in the Växjö conference on quantum foundations [59–62], at QCMC
[63], and other conferences. The general philosophy of the program have been object of four FQXi essays
[64–67] partly republished in [68–71].



30 Giacomo Mauro D’Ariano

highly non trivial problem for dimension greater than one. Second, we where considering Jordan-Wigner
mappings between local qubits and discrete Fermions [78], generalizing to dimensions d > 1 what can be
done for d=1, and later Tosini realized that for d > 1 such mapping cannot be done iso-locally [22,23],
namely preserving the locality of interactions. Paolo Perinotti, inspired from the work of Bialynicki-Birula
[79], recognized the first Dirac quantum walks in 2 and 3 dimensions. Later the graph structure of the
walk was pointed out to be a Cayley graph of a group by Matt Brin, and the work of the derivation from
principles of Weyl and Dirac [3] followed after a Paolo’s nontrivial solution of the unitarity conditions.
This was the turning point of the whole program. It was soon recognized that the Maxwell field could be
obtained by tensor product of two Weyl, and Alessandro Bisio soon found a way of achieving the photons
with entangled pairs of Fermions. We finally realized the pivotal role played by the eigenvalue equation
of the quantum in restating the relativity principle and recovering Lorentz covariance, and Bisio found the
construction recovering the notion of particle as invariant of the deformed Poincaré group.

B My encounter with David Ritz Finkelstein

Vieque Island, January 6th 2014: FQXi IV International Conference on The Physics of Information. The
conference is very interactive, mostly devoted to debates, round tables, and working groups. Max Tagmark
organizes and chaires a morning session made of five-minutes talks. The audience includes distinguished
scientists, a unique opportunity for presenting my Templeton project A Quantum-Digital Universe. I want
to say many things that I consider very important, and I prepare my talk carefully, measuring the time
of each single sentence, and memorizing each single word. The result goes beyond my best expectations,
with gratifying comments by a number of scientists, some whom I meet for the first time.26 But the best
that happens is that a beautiful old man, whom I never met before, with a white bear and a hat, literally
embraces me with a great smile, and almost with tears in his blue eyes says that I realized one of his dreams.
His enthusiasm, so passionate and authentic captures me. I spend most of the following days discussing
with him. He invites me to visit him in his home in Atlanta.

I visit David on March 16th and 17th in a weekend during a visit in Boston. His house is beautiful,
with large windows opened on a surrounding forest. With his wife Shlomit we have pleasant conversations,
some about their past encounter with the Dalai Lama.

David writes a nice dedication on my copy of his last book [80]. He then asks me to explain to him the
derivation of quantum theory from information-theoretical principles (which I did with my former students
Paolo Perinotti and Giulio Chiribella [1]: a textbook from Cambridge University Press is now in press [2]).
I spend almost the two entire days in front of a small blackboard in David room full of books (see Fig. 8),
drawing diagrams and answering to his many questions. His genuine interest will boost my enthusiasm for
the years to come.

After that visit David and I will continue to exchange emails. David regularly will send to me updates
of his work. We promise to exchange visits soon, but unfortunately this will not happen again.

C My talk at FQXi 2014 verbatim

I’d like to tell you about the astonishing power of taking information more fundamental than matter, the
informational paradigm advocated by Wheeler, Feynman, and Seth Lloyd of “the universe as a huge quan-
tum computer”. Quantum Theory is indeed a theory of information, since it can be axiomatically derived
from six axioms of pure information-theoretical nature. Five of the postulates are in common with classical
information. The one that discriminates between quantum and classical is the principle of conservation of
information–technically the purification postulate. Information means describing everything in terms of
input-output relations between events/transformations, mathematically associating probabilities to closed
circuits between preparations and observations. [Some of the principles are conceptually quite new and
interesting, such as the local discriminability one, which in the quantum case reconciles holism with re-
ductionism, with the possibility of achieving complete information by local observation.]

26 Very flattering are the compliments of Federico Faggin, the designer of the first microprocessor at
Intel.
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Fig. 8 The blackboard in David room, after a day-long tour on the derivation of quantum theory from
principles [2]. You can notice some diagrams that pertain noncausal variations of quantum theory.
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Now these postulates provide only the quantum theory of abstract systems, not the mechanical part of
the theory. In order to get this you need to add new principles that lead to quantum field theory, without as-
suming relativity and space-time. These principles describe the topology of interactions, which determine
the flow of information along the circuit. The first of these requirements is that of finite info-density, corre-
sponding to having a numerable set of finite-dimensional quantum systems in interaction. Such principle,
along with the assumption of unitarity, locality, homogeneity, isotropy and minimal dimension of the sys-
tems in interaction, are equivalent to minimizing the quantum algorithmic complexity of the information
processing, reducing the physical law to a bunch of few quantum gates, and leading to a description in
terms of a Quantum Cellular Automaton.

Now, it turns out that from these few assumptions only two quantum cellular automata follow that are
connected by CPT, and Lorentz covariance is broken. They both converge to the Dirac equation in the rela-
tivistic limit of small masses and small wave-vectors. In the ultra-relativistic limit of large wave-vectors or
masses (corresponding to a Planck scale) Lorentz covariance becomes only an approximate symmetry, and
one has an energy scale and length scale that are invariant in addition to the speed of light, corresponding
to the Doubly Special Relativity of Amelino-Camelia/Smolin/Magueijo, with the phenomenon of relative
locality, namely that also coincidence in space, not only in time, is observer-dependent. The covariance is
given by the group of transformation leaving the dispersion relations of the automaton invariant, and holds
for energy-momentum. When you get back to space-time via Fourier, then you recover a space-time of
quantum nature, with space-time points in superposition.

The quantum cellular automaton can be regarded as a theory unifying scales ranging from Planck
to Fermi. It is interesting to notice that the same quantum cellular automaton also gives the Maxwell
field, interestingly in the form of the de Broglie-Fermi neutrino theory of the photon. With the principle of
bounded information density, also the Boson becomes an emergent notion, but the relation with Fermions is
subtle in terms of localization. The fact that the theory is discrete avoids all problems that plague quantum
field theory arising from the continuum, especially the problem of localization, but, most relevant, the
theory is quantum ab initio, with no need of quantization rules. And this is the great bonus of taking
information as more fundamental than matter.
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