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1 Introduction

The measurement problem of quantum theory has troubled the minds of physicists and
philosophers for decades. This paper will discuss a relatively new attempt at resolving the
issue, one that is rooted in the mathematics of quantum theory. It is known as the mechanism
of the “flea”, as put forward by Landsman and Reuvers in [13] and by Landsman in [12]. The
greatest conceptual work is given by a new understanding of the measurement problem, as
described in chapter 3. Then a small, asymmetric perturbation that arises from the environ-
ment is postulated. This “flea” perturbation provides the symmetry breaking required for a
classical state to emerge from a quantum system, thereby bringing us one step closer to a
possible solution of the measurement problem.

This approach uses the formalism of algebraic quantum theory, which allows for a unified
description of classical and quantum theory. Therefore, this paper will first introduce the no-
tion of a C*-algebra and will discuss the connections between the Hilbert space formalism and
the algebraic formalism in chapter 2. Chapter 3 then describes how the measurement problem
is understood by Landsman and Reuvers, setting up the context for the flea mechanism. It
lays out the unresolved aspects of the process of measurement that the proposal attempts to
address. The “flea”, a small perturbation of the potential of a system, is then introduced in
the following chapter 4. As in [13], this paper will use the symmetric double well as the model
to discuss the details of the flea mechanism. Landsman also discusses other models for which
the mechanism of symmetry breaking can be seen to apply in [11]. However, as these are less
instructive to understanding the concept of the perturbation by the flea, these are at present
not discussed.

Chapter 5 hopes to offer an evaluation of the flea mechanism. These comments focus on
the limitations of the models considered, as well as the nature of the flea perturbation. In
particular, the challenges in attempting to recover the Born rule are discussed. This discussion
is informed by the work of Van Heugten and Wolters in [22]. Finally, the conclusion contains
some general reflections on the flea proposal, portraying it as the start of a new way of making
the idea of a wave function collapse mathematically precise.
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2 Algebraic Quantum Theory

This paper will consider the measurement problem and Landsman’s proposal of “the flea”
in the formalism of algebraic (quantum) theory. Before introducing some of the main mathe-
matical concepts of this formalism, it is important to understand where its conceptual value
lies. Typically, classical mechanics is understood in terms of phase space, which forms a dif-
ferentiable manifold with a symplectic structure [1]. When quantum theory is subsequently
introduced, it tends to be through the method of canonical quantisation. In its most elemen-
tary form, this corresponds to promoting the variables position and momentum, as well as
other observables, to be linear operators on a Hilbert space. The interplay between these ob-
servables is now no longer determined by Poisson brackets, as for the variables in the classical
theory, but by the commutation relations of the operators.2 Although some aspects of the
two theories seem similar at first glance, they concern two very different mathematical struc-
tures. In a sense, the process of canonical quantisation works primarily due to the benefit of
hindsight. Knowledge of the result of the process, namely the correct structure for quantum
theory, is essential for quantisation to be useful.

Given this contrast between the classical and quantum mathematical structures, comparing
the two theories is not trivial. Describing them algebraically allows us to bring classical and
quantum theory into a shared framework, thereby formalising the transition between the
two realms. This is particularly important in our case, since the measurement problem is
principally the question of how to go from a quantum state to a classical state.

2.1 Structure

The algebraic structure that is shared by both classical and quantum theory consists of only
two main components. Rather than taking the state of a physical system as central, we focus
on the observables that we associate with a system, such as spin, energy, and momentum.
Recognising an algebraic structure in this set of observables leads to the following basic axioms
of the algebraic formalism of quantum theory.

1. A physical system is defined by its associated unital C*-algebra A. The observables of
the system are self-adjoint elements of that algebra.

2. The states of a system are taken to be normalised positive linear functionals ω on the
algebra A, i.e. ω : A→ C s.t.

ω(A∗A) ≥ 0 ∀A ∈ A and ω(1) = 1. (1)

2Changing the relations between position and momentum, or similarly in field theory, the field and its
conjugate momentum, has a deeper significance. It corresponds to changing the symplectic structure on the
space of fields, which classically gives you the Poisson brackets, to a symplectic structure that gives you the
commutation relations of quantum theory (page 10, [19]). In general, any new choice of symplectic structure
will result in a new (quantum field) theory.
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Before understanding how these concepts connect to the structure of quantum and classical
physics, let us unpack the most essential mathematical terms from functional analysis. This
account is by no means comprehensive, and thus the reader is referred to other sources
for complete definitions and a more detailed description. For a mathematical approach,
see [12, 14], or for a more philosophical angle, see [16]. This paper will introduce definitions
based on [14].

Observables

We start with the concept of an algebra. For our purposes, we can consider an algebra to
be an extension of a vector space with a product, i.e.

Definition 1. An algebra A over the field K is a K-vector space with a product A× A→ A
that is associative and distributive. An algebra is said to be unital if it contains a unit 1 ∈ A
s.t. 1A = A1 ∀A ∈ A.

In order to get a notion of what properties a C*-algebra has, and thus the structure
associated with the set of observables, there are a few properties of algebras that are helpful
to list.

Definition 2. A complex involutive algebra A, also denoted as *-algebra, is an algebra over
the field C, which also has a map ∗ : A → A called an involution. It has the following
properties ∀A,B ∈ A and ∀λ ∈ C:

1. (A+B)∗ = A∗ +B∗

2. (AB)∗ = B∗A∗
3. (λA)∗ = λA∗

4. (A∗)∗ = A.

Definition 3. A normed algebra A is a normed vector space whose norm satisfies

‖AB‖ ≤‖A‖‖B‖ .

For a unital algebra A, if ‖1‖ = 1 then A is a normed unital algebra.

A C*-algebra has both of the above properties, but is also a complete normed space. In
particular, it is special type of Banach algebra. Although it involves some notions from
topology, this paper will not go into detail beyond the following definitions.

Definition 4. A Banach space is a normed vector space that is equipped with a topology
induced by the norm and that is complete with respect to this topology. A Banach unital
algebra is then a Banach space that is also a normed unital algebra with respect to the same
norm.

Definition 5. A Banach involutive algebra is a Banach algebra with an involution that
satisfies ‖A‖ =‖A∗‖.

Definition 6. Finally, a C*-algebra A is a Banach involutive algebra s.t. the norm has the
C*-property:

‖A∗A‖ =‖A‖‖A∗‖ =‖A‖2 ∀A ∈ A.
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Figure 1: C*-algebra

Here is a diagram of the different properties constituting a C*-algebra, following the def-
initions above. Although the figure does not incorporate all information, it gives an idea of
how the different definitions are related.

States

As stated above, a state of a system is fully specified by a map that assigns to each element
in the algebra A a complex number. The physical idea behind this number is the following.
For a self-adjoint element A of A, this number ω(A) is real and represents the expectation
value of A in the state ω. More on the physical interpretation follows in the next section. We
can make a distinction here between pure states and mixed states.

Definition 7. A pure state ω can only be trivially decomposed. That is, if for some states
ω1, ω2 and some p ∈ (0, 1) we can write ω = pω1 + (1− p)ω2, then ω1 = ω2.

Pure states in the algebraic formulation are the counterparts of rays in Hilbert space. Thus,
mixed states are convex combinations of such pure states [6].

2.2 From Hilbert space H to algebra A

Given the above mathematical structure, how can we see that a quantum system can indeed
be described in such a manner? This section will give some intuition for how this structure
emerges from the Hilbert space formalism of quantum mechanics that most readers are familiar
with. There are nuances to the Hilbert space formalism that for the sake of brevity I have
ignored. For a more detailed description, see the first chapter of [7], or chapter four of [16]. In
particular, following Landsman and Reuvers [13], I will idealise our description by assuming
all operators to be bounded.
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Firstly, let us briefly recall the relevant structure of the Hilbert space formalism. A state
Ψ ∈ H is a wavefunction in the Hilbert space associated with a physical system, while an
observable A is a self-adjoint operator A : H → H. The adjoint of an operator is indicated
A† and is defined with respect to the hermitian inner product defined on H. We can express
the abstract wave function Ψ in a orthogonal basis constructed from the eigenvectors of the
operator A. To that observable we can then associate an expectation value 〈A〉 for a given
state Ψ computed in the following manner

〈A〉 := 〈Ψ, AΨ〉. (2)

Observables are self-adjoint operators, meaning A = A†. For these, the expectation value
is a real number by definition of the hermitian inner product:

〈Ψ, AΨ〉 ≡ 〈AΨ,Ψ〉 = 〈Ψ, AΨ〉. (3)

These ideas are translated to the algebra as follows. The space of all bounded linear
operators on a Hilbert space, B(H), forms a C*-algebra. A state Ψ ∈ H is associated with an
algebraic state ω on the algebra A, through the GNS theorem given by (1) in the next section.
A norm for the operators is introduced by taking the definition in terms of a supremum over
states

‖A‖ := sup
ω
|ω(A)| (4)

which is a finite positive number. Taking the adjoint of an operator corresponds to involution
on the algebra, i.e. we identify A† with involution A∗. Since observables are self-adjoint
operators, they are the elements of the algebra for which A∗ = A.

Inherent in the algebraic formalism is an operational approach to quantum theory, that is,
the viewpoint that a state is fully defined in terms of the possible measurement outcomes of
the observables for that state.3 This is reflected in the interpretation of the (complex) number
ω(A) that a state assigns to elements in the algebra. Namely, for observables we understand
it to be the expectation value for that observable A in the state Ψ, which is associated with
the algebraic state ω. Given the two following properties, this understanding is warranted.

1. Both ω(A) and 〈A〉Ψ are real numbers for self-adjoint A.

2. The expectation value associated to A†A is 〈Ψ, A†AΨ〉 = 〈AΨ, AΨ〉 ≥ 0, which corre-
sponds to the assumed positivity of states on A.

The assumption that quantum states can be taken as linear functionals on the algebra is
not as innocent as it may seem. For two observables A and B that do not commute, it is
not obvious if linearity, i.e. ω(A+B) = ω(A) + ω(B), still ought to hold. In his work laying
the foundations for quantum mechanics [23], Von Neumann assumed that any real-linear

3The possible outcomes of a measurement of an observable are given - for the case of an operator with pure
discrete spectrum - by the set of eigenvalues associated with the operator, which for self-adjoint operators
are real valued. The spectral theorem ensures that we can write such an observable as a real linear sum of
the projection operators associated with these eigenvalues. The details of how this spectral decomposition
is defined for operators with a more general spectrum and is subsequently incorporated in the algebraic
formulation are interesting, but not relevant for this paper. Further information on such details can be found
in [16].
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combination of two observables A and B itself forms an observable, for which this linearity
holds. This assumption was criticised by Bell in 1966 [3], thereby questioning Von Neumann’s
famous proof which ruled out hidden variables in quantum theory. Notwithstanding Bell’s
insight, the algebraic formalism follows Von Neumann’s lead, likewise assuming linearity to
hold for the combination of any two observables.

2.3 From algebra A to Hilbert space H

We have seen that an algebraic structure emerges from the Hilbert space formalism. Con-
versely, an element A of an abstract involutive algebra A can be taken to be a bounded linear
operator on an appropriate Hilbert space H, namely by choosing a representation.

Definition 8. A representation π of a unital C*-algebra A is a unital *-homomorphism
π : A → B(H). A representation π is called faithful if kerπ = {0}. It is called irreducible if
there are no non-trivial subspaces of H invariant under π(A).

The concept of unitarily equivalent representations will be useful when discussing the flea
perturbation:

Definition 9. Two representations of a C*-algebra (π1,H1) and (π2,H2) are unitarily equiv-
alent if, for some unitary map U : H1 → H2

Uπ1(A) = π2(A)U ∀A ∈ A.

For clarity, since π1(A) : H1 → H1 and U : H1 → H2, the composite map Uπ1(A) : H1 → H2.
Similarly, since π2(A) : H2 → H2, the composite map π2(A)U maps also from H1 to H2.

States on C*-algebras can be used to construct a representation of the algebra on a Hilbert
space. This is provided by the Gelfand-Naimark-Segal (GNS) theorem.

Theorem 1 (GNS Theorem). Let ω be a state on a C*-algebra A. Then there exists a
representation π of the algebra on some Hilbert space H, and a unit vector Ω ∈ H, such that

ω(A) = 〈Ω, π(A)Ω〉 ∀A ∈ A.

Any such representation is called a GNS representation.

A proof of a more general version of the GNS theorem can be found in [7, 14]. Such a GNS
representation is unique for a state ω ∈ A, up to unitary equivalence. Thus, this theorem
provides a clear way of representing an abstract algebraic state ω by a unit vector Ω in some
Hilbert space H, through a representation of the abstract algebra A.

A representation of A constructed using the above theorem will in general not be irre-
ducible; it is only irreducible if the state ω used in the construction is a pure state. For a
mixed state, as opposed to a pure state, each pure state in the decomposition will induce
a irreducible representation of A (e.g. π1 and π2). Then the composite representation of
any given A ∈ A can be seen as a block-diagonal matrix constructed from the respective
irreducible representations, e.g.

π(A) =

[
π1(A) 0

0 π2(A)

]
.
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3 The Measurement Problem

The measurement problem is a grand question in the philosophy of physics, discussed by
many great minds. The aim of this section is certainly not to give a comprehensive overview
of this discussion. Rather, we explain how the measurement problem is understood in the
context of Landsman’s work. We hope to clarify where the current description of the process
of measurement is problematic, so as to make apparent how the “flea” perturbation could
hope to answer these problematic aspects.

It is important to briefly mention the context in which the approach discussed in this paper,
Landsman’s mechanism involving a perturbation, operates. There are a few main approaches
to solving the measurement problem that can be distinguished, often characterised as different
interpretations of quantum mechanics. The “flea” perturbation allows for classical behaviour
to emerge from the quantum through an explicit breaking of symmetry. Thus, it can be seen
as a mathematical description of some type of “collapse”. Namely, there is a multiplicity of
possible states of a system and only one outcome is realised. In contrast, Everettian mechanics
posits that all possible outcomes are realised, admitting the existence of many worlds. Lastly,
the pilot wave picture singles out the position of a quantum particle as the observable (beable)
that holds a definite value at all times. It can be classified as a hidden variable theory.

In terms of J.S. Bell’s six possible world of quantum mechanics, as discussed beautifully
in [4], we could perhaps see Landsman’s work as a technical, mathematical approach to the
measurement problem. It sketches an unromantic quantum world, characterised in Bell’s
words as

“Surely the big and the small should merge smoothly with one another? And
surely in fundamental physical theory this merging should be described not just
by vague words but by precise mathematics?” (page 1210, [4])

In his discussion of asymptotic Bohrification in [12], Landsman explicitly makes the assump-
tion that the classical behaviour indeed emerges from the quantum theory, and seeks a math-
ematical connection between the quantum description and apparent classicality. Thus, his
endeavours can be seen to follow the rationale above.

Firstly, the algebraic formulation of both classical theory and quantum theory are intro-
duced in Section 3.1. Then, the ‘bridge’ between these two theories is discussed in Section
3.2, namely the limiting procedure of taking ~ → 0. With these technical notions in hand,
Section 3.3 discusses the process of measurement in more detail and the problematic aspects
are made precise. Finally, before moving on to Chapter 4, some important conceptual remarks
are made about the classical limit.
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3.1 Two theories

Classical Let us call the algebra associated with classical systems Ac. We will be concerned
with a point particle confined to one spatial dimension, so that its phase space is R2. This
algebra can be represented as (a subset of) the space of essentially bounded measurable
functions on the phase space R2, i.e.

π : Ac → L∞(R2). (5)

Thus, every element A ∈ Ac is represented as

π(A) := f (6)

for some f ∈ L∞(R2)
f : R2 → C , f : z 7→ f(z). (7)

Operations on the algebra, e.g. the product between two elements of the algebra, are defined
pointwise. Thus, the algebra is commutative. Involution is taken as pointwise complex
conjugation. The norm for algebraic elements is the supremum norm, thus

‖f‖ := sup
{
|f(z)| : z ∈ R2

}
. (8)

States on this algebra correspond to probability measures on phase space. In particular, pure
states are measures of the Dirac form, δz. Thus, pure states correspond bijectively to points
z ∈ R2 through the δ-function. Finally, to correctly describe a classical system, we need to
impose extra continuity conditions on the functions. This essentially reduces our algebra to
the continuous function on the phase space, i.e. C0(R2) [13].

Quantum As previously described in section 2.2, to a quantum system we can associate
an algebra Aq that is represented as (a subset of) the space of bounded linear operators on
a Hilbert space H. For the quantum systems we will be concerned with, H is the space of
square-integrable wave functions, L2(R). Thus,

π : Aq → B(L2(R)). (9)

Since there are operators in quantum mechanics that do not commute, this algebra will be
non-commutative. Its elements obey the canonical commutation relations in their bounded
form. Involution is hermitian conjugation, and the norm is defined as in equation (4). States
on this algebra can be identified with density matrices on L2(R). By means of the GNS-
construction for a state, pure states on this algebra correspond bijectively to rays C ·Ψ in the
Hilbert space L2(R). Imposing the correct continuity conditions on these operators means we
reduce the algebra to K(L2(R)), the space of compact operators on L2(R).

3.2 Taking the limit ~→ 0

In order to consider how quantum states can converge to classical states, we have to as-
sociate an element of the classical algebra, i.e. a function, with an element of the quantum
algebra, i.e. an operator. This can be done by means of a quantisation map,

f 7→ Q~(f) (10)
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where f ∈ π(Ac) = L∞(R2) and Q~(f) ∈ π(Aq) = B(L2(R)). This paper will take the Berezin
quantisation map, following Landsman and Reuvers [13]. In order to define this map, we first

introduce the concept of coherent states Φ
(p,q)
~ ∈ H = L2(R). These states are labelled by

points z = (p, q) ∈ R2, and defined as

Φ
(p,q)
~ (x) := (π~)−

1
4 e−

ipq
2~ e

ipx
~ e−

(x−q)2

2~ . (11)

These coherent states are states in the Hilbert space, and thus quantum mechanical. They
are constructed so that they are Gaussian wave functions with minimum uncertainty in both
position and momentum. This makes a coherent state the natural “quantum analogue” of a
given classical state, hence we label coherent states with z = (p, q). This indeed provides a
map from an algebraic classical state to an algebraic quantum state, since

• a pure state ω0 on the classical algebra corresponds bijectively to a point z = (p, q) ∈ R2;

• for a given value of ~, a pure state ω~ on the quantum algebra corresponds bijectively

(up to a phase) to the coherent state Ψ
(p,q)
~ ∈ H.

Given the definition for coherent states above, the Berezin quantisation map is defined as

Q~(f) :=

∫
R2

dpdq

2π~
f(p, q)

∣∣∣Φ(p,q)
~ (x)

〉〈
Φ

(p,q)
~ (x)

∣∣∣ . (12)

The construction implies that the following convergence occurs. The pure states ω~ form a
family of quantum states labelled by the parameter ~ with values ∈ (0, 1]. Thus, for a fixed
value ~,

ω~ : B(L2(R))→ C. (13)

Recall that ω0 is a classical state, i.e.

ω0 : L∞(R2)→ C. (14)

Now suppose that we take the classical limit, corresponding to taking the quantum parameter
~ to zero. Then the quantum states converge to the classical, i.e.

lim
~→0

ω~(Q~(f)) = ω0(f) : (15)

when this convergence holds ∀f , we write

lim
~→0

ω~ = ω0. (16)

We introduce one more shorthand in the interest of convenience and clarity. Let ρ0 be a pure
classical state in the phase space of a classical system, thus describing a point z ∈ R2. It
corresponds to the algebraic state ω0 on the classical algebra. On the quantum side, we have
already stated that the coherent states Φ~ ∈ H correspond to the algebraic states ω~. Thus,
rather than writing the convergence in terms of the algebraic states, we can write

lim
~→0

Φ~ = ρ0. (17)

For the purposes of this paper, there is no need to go into further detail on this convergence.
The curious reader is referred to chapter seven of [12] for more mathematical detail.
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3.3 The process of measurement

To understand the problematic aspects of measurement in quantum theory, it is helpful
to inspect the process of measurement in more detail. Two steps in this process can be
distinguished. Two avoid confusion with Von Neumann’s process 1 and 2 in [23], we call them
α and β.

Ψ →[α] Φ~ →[β] ρ0

We start with a quantum state, Ψ ∈ H, and we want to end up with a classical state, ρ0. As
we saw in the last section, the classical state ρ0 is the limit of some family of coherent states,
Φ~. This limiting procedure is thought of as the second step of the measurement process, β.

The measurement problem arises in the following case. Consider the quantum state Ψ we
start out with, the ground state of the system, to be a quantum superposition. This means, if
we were to perform the limiting procedure immediately on Ψ and take ~→ 0, we would find
the system to be in a combination of multiple classical states. This is a mixed state, rather
than a pure state. In other words, Schrödinger’s cat will be ‘alive’ + ‘dead’. Or, in the words
of Landsman

“Certain pure post-measurement states of an (ontologically quantum mechanical!)
apparatus coupled to a microscopic quantum object induce mixed states on the
apparatus (and on the composite) once the apparatus is described classically”
(page 453, [12]).

Now, a mixed state is not the outcome we observe, nor one that properly describes a classical
system. Thus, before we perform the limiting procedure, some other process has to occur.
There has to be an intermediate state, such that we will eventually acquire the correct state
ρ0. This intermediate state can be thought of as the coherent state Φ~. Some process, let us
call it α, needs to change the quantum ground state Ψ into a state that - if not equals, then
at least approximates - the coherent state Φ~. Once we have such a state, we can perform
the limiting procedure β to find a ‘single’ classical state ρ0. This process αmust involve some
kind of symmetry breaking, selecting between finding the cat to be either ‘alive’ or ‘dead’.
Thus,

“At heart the problem does not lie with the (dis)appearance of interference terms
(which is a red herring) but with the inability of quantum mechanics to predict
single outcomes” (page 453, [12]).

The solution to this problem must be found in giving an account of the required symme-
try breaking process α. This will be provided by the proposed perturbation, a “flea on
Schrödinger’s cat”.
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3.4 About the classical limit

Before we move on to discuss in detail Landsman’s proposal of a perturbation, there are a
few important notes to make about the classical limit.

The reader may be wondering how we can take a constant, ~, to vary in value. After all,
isn’t it simply given as, approximately, 1.05457 × 10−34Js? The idea is that the parameter
in the limit, let us call it ~̃, does not actually represent the constant quoted above. When
we consider the classical limit, we mean to take ~̃ → 0. The full answer to this confusion is
twofold.

Firstly, we require the parameter ~̃ that we vary to be dimensionless. Thus we can combine
the constant ~ with other constants and parameters in the theory to acquire a dimensionless
parameter [10]. A special case of this is where the constant ~ is divided by the typical action
for the physical system under consideration. Since the constant has dimensions of physical
action, this creates a dimensionless parameter ~̃.

Secondly, we take the limit of this newly constructed dimensionless parameter by consider-
ing the appropriate limit of a physical parameter that is included in creating ~̃. In the case
above, the classical limit of the system may correspond to the action becoming much larger
than ~, i.e. taking ~̃ → 0. For a different physical system, the parameter N may be used
to construct ~̃, so that the macroscopic limit, i.e. N → ∞, may correspond to taking the
classical limit, i.e. ~̃→ 0. More such examples are considered in [10].

Thus, the constant ~ can be re-scaled by the action or can be combined with other con-
stants and variables in the theory, so that taking it to zero becomes the desired classical
limit. Certainly, this idea has been prevalent for a long time, as Landsman points out in the
introduction of [12] by quoting both Heisenberg from 1958 and Planck from 1906. However,
it must be noted that there does not seem to be a general ‘proof’ for why we are allowed to
assume that such a construction is possible for every quantum system. In particular, it is
an open question if every quantum system allows for emergent classical behaviour by taking
some mathematical limit. Or, conversely, if classical behaviour can always be constructed as
the limit of some quantum mechanical theory. This is often referred to as Bohr’s correspon-
dence principle. In light of the next Section on Butterfield’s principle, where we describe the
limiting quantum theory to be the physically real theory, in place of some classical theory,
these assumptions are noted but not resolved.

3.5 Butterfield’s principle

Given that this paper discusses how classical behaviour is to emerge from the quantum
description of a system by taking a limit, it is important to discuss some nuances of the
concept of emergence. Many of these nuances in relation to taking limits were precisely
examined by Butterfield in [5]. Some relevant notions will be applied to the case at hand.

Assuming that taking the particular limit ~ → 0 is the appropriate one to consider, what
does it mean for classical behaviour to ‘emerge’? Butterfield takes emergence to be behaviour
that is both novel and robust. In the case at hand, as we move from the quantum description
to a classical description of the system, a new behaviour arises. In the example discussed in
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the next chapter, we can characterise this emergent behaviour as ‘localisation’. This paper
will not attempt to describe the general case of going from quantum to classical theory, as
this would involve much more examination. A masterful survey of the technicalities that are
relevant for such a project was given by Landsman in [10].

Butterfield argues that emergent behaviour is exhibited in different ways as we take the
appropriate limit. Although he takes the case of N →∞, the same ideas are applicable to the
~→ 0 case. The two different versions of emergence that Butterfield identifies are as follows.

At the limit When we set ~ = 0, there is a case of strong emergence: we have a fully
classical theory that explicitly describes the emergent behaviour we are considering.

Before the limit When the value of ~ becomes sufficiently small, the system exhibits a
weaker version of the emergent behaviour.

Butterfield’s principle, as named by Landsman in [11] and [12], is the claim that the first
case, where ~ = 0, is not physically real. Rather, the weaker version of emergence occurs in
the physical world. When we consider the limit N → ∞, where N indicates the number of
particles in a system, we can see how this idea makes some intuitive sense. Namely, physically,
this number does not become infinite: rather it becomes very large. Thus, claiming that the
limit N =∞ is physically real does not seem sensible. The emergent behaviour occurs already
for sufficiently large N.

For these ideas to hold, both the theory at ~ = 0 and the theory at sufficiently small ~ are
required to be empirically accurate. However, typically the mathematics at small values of ~
may be more complicated and inconvenient to work with. Thus, setting ~ = 0 may result in a
more tractable theory, which works in practice in describing the emergent, classical behaviour.
Yet this is only an idealisation of reality. We will see this explicitly in the example of the
symmetric double well of the next chapter.
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4 Perturbation by the Flea

Finally, we arrive at Landsman’s proposed description of process α of the measurement
process, the symmetry breaking necessary for a classical theory to emerge. It comes as the
introduction of a small perturbation to the potential of a system, one that is asymmetric by
construction. This idea was first proposed in a slightly different context by Simon, in a paper
titled ‘Semiclassical Analysis of Low Lying Eigenvalues. IV. The Flea on the Elephant’ [18].
In the context of the measurement problem, Landsman refers to the small perturbation as a
“flea on Schrödinger’s cat” [13].

Following Landsman and Reuvers in [13], in this chapter we will consider the simple example
of the symmetric double well on the real line R. As mentioned in the Introduction, we
have chosen to focus on this model rather than other models discussed in [11]. This choice
is motivated by the following properties that make the symmetric double well particularly
illuminating.

1. The quantum mechanical ground state of the system does not converge to a single
classical ground state, and thus the measurement problem arises.

2. The situation is simple enough to provide an intuition of the process, yet complete
enough to offer a mathematical description.

3. It provides a model of a quantum mechanical measurement apparatus with a pointer
that can ‘land’ on different outcomes. Thereby it is especially appropriate for the
measurement problem. More will be said about this in the next chapter.

Assuming the perturbation by the flea indeed causes a collapse, there are remaining ques-
tions on the dynamics of the perturbation: How does it arise and how does it evolve? This
paper will not address these technical questions and instead refers the reader to Landsman’s
work.

4.1 Symmetric double well

The potential of the symmetric double well on R is given by

V (x) = −ω
2

2
x2 +

λ

4
x4 +

ω4

4λ
=
λ

4
(x2 − a2)2 (18)

where we assume ω and λ to be positive, real numbers and so also a = ω√
λ
> 0. Note that we

are working in position space, so x is a point in our manifold M = R, and V is a real scalar
function, V : M → R. This system has very different quantum and classical low energy states
associated.

Classical Since the potential has two equal minima, there exist two classical ground states.
Namely, the classical particle sits still at +a or at −a. We refer to these positions as ‘right’
(x > 0) and ‘left’ (x < 0) respectively. Let ρ+

0 be the state on the right, and ρ−0 the one on
the left i.e.

ρ±0 = (p = 0, q = ±a) (19)
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Quantum There exists one unique ground state, let us call it Ψ0
~, with associated energy

E0. This state is real, positive definite and has two peaks, one above +a and one above
−a. However, the quantum mechanical system reflects the degeneracy of the classical ground
states in that it has exactly two “very low” energy eigenstates, the ground state, Ψ0

~, and
the first excited state, let us denote it Ψ1

~. Both of these low energy eigenstates converge
to the same mixed classical state in the limit ~ → 0. The excited state Ψ1

~ is also real, but
anti-symmetric around x = 0. At first glance this seems to break the symmetry inherent in
the potential. However, quantum mechanical states that differ with a phase are identified as
the same physical state. Thus, the state with a peak above +a and below −a is the same
physical state as that with a peak above−a and below +a. This ensures no symmetry breaking
occurs. The two low energy states are displayed in the figure below, which is reproduced from
Landsman and Reuvers’ paper [13].

Figure 2: The ground state and first excited state of the quantum double well for ~ = 0.5,
from [13].

Let us consider the coherent states we associate with the degenerate classical ground states.
These will be labelled by their classical (p, q) . Let Φ+

~ and Φ−~ denote the coherent states
associated with the particle being on the right or on the left, respectively, i.e.

Φ±~ = Φ
(p=0,q=±a)
~ . (20)

Recall that these coherent states will converge to their respective classical states, ρ+
0 and ρ−0 ,

in the limit ~→ 0. Since they converge to classical states with a definite position, we refer to
these states as localised coherent states. In this case, they are closely related to the quantum
mechanical ground state and first excited state. Namely, we can create the following states

Ψ±~ =
Ψ0

~ ±Ψ1
~√

2
(21)

in which the quantum mechanical particle is confined to one of the two wells. As such, they
approximate the coherent states defined above, i.e.

Φ±~ ≈ Ψ±~ . (22)

The question is now: what process can get us from the quantum state Ψ0
~, the ground state of

the system, to a state resembling either Φ+
~ or Φ−~ ? That is, how does the quantum mechanical
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ground state choose a side? We seem to have a spontaneous breaking of a symmetry on the
classical level, while no such breaking occurs on the quantum level.

The proposed answer will come as no surprise. The small “flea” perturbation δV of the
potential V is introduced. By assumption, this flea must have the following three properties.

1 Given that the potential function is a real valued function on the manifold, we ask the
added perturbation δV to be real valued as well. In addition, we ask that is has a fixed sign
to ensure the right dynamics. Lastly, we ask it has some nice mathematical properties by
requiring δV ∈ C∞c . Thus, it is a smooth function and has connected support, not including
the minima x = a or x = −a.

In order to formulate the other two properties, we state some results from the WKB ap-
proximation to this wavefunction. There can be some confusion as to which factors are the
correct ones. This paper follows Landsman and Reuvers in [13] who refer to [8]. The reader
is directed to these for further details. The typical WKB-factor is given as

dV =

∫ a

−a
dx
√
V (x). (23)

This factor determines the ground state splitting ∆ ≡ E1−E0 in the classical limit ~→ 0, as

∆ ∼
(
~ω/

√
1
2eπ

)
·e−dV /~. We can now state the second property we assume the perturbation

to have.

2 We want the perturbation to be sufficiently large as we go towards the classical limit, taking
~→ 0. Thus, for sufficiently small values of ~, we ask the absolute value of the perturbation
to be much larger than the fall off of the wavefunction, so as to ensure localisation takes place,
i.e.

|δV | >> e−dV /~. (24)

The last assumption will ensure that our perturbation has the correct notion of asymmetry,
which will allow the symmetry of the quantum system to be broken. We first introduce some
further notation, extending the WKB-factor (23) to any two points y, z

dV (y, z) =

∣∣∣∣∣
∫ z

y

dx
√
V (x)

∣∣∣∣∣ . (25)

Now, from a point to a set of points, A, we define the quantity dV as the infimum of the set

dV (y,A) = inf{dV (y, z) : z ∈ A}. (26)

We then introduce two more symbols, namely d′V and d′′V , as

d′V = 2 ·min
{
dV
(
−a, supp(δV )

)
, dV

(
a, supp(δV )

)}
(27)

d′′V = 2 ·max
{
dV
(
−a, supp(δV )

)
, dV

(
a, supp(δV )

)}
(28)
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3 The asymmetry property of the flea is then the assumption that either of the following
two cases holds:

d′V < dV < d′′V ; (29)

d′V < d′′V < dV . (30)

This excludes the possibility where d′V = d′′V , where dV
(
−a, supp(δV )

)
= dV

(
a, supp(δV )

)
.

So then the perturbation has the same ‘relation’ to −a as to +a, thus this corresponds to the
symmetric case. In addition it also requires the perturbation to be located sufficiently close
to either of the minima, and not arbitrarily far on either the left external side or the right
external side on the well. Since, if the perturbation were located too far to either side, the
set value of dV would be smaller than both d′V and d′′V .

The first condition (29) corresponds to the case where the perturbation is located on either
of the external sides of the wells, thus x < −a or x > a. The second condition (30) corresponds
to the case where the perturbation is located in between the wells, thus in the region −a <
x < a.

What effect does such a perturbation have on our system? Taking the potential of our dou-
ble well to be V +δV , let us consider a δV that is positive and localised to the right. This can
correspond to either condition (29) or (30), as long as dV

(
−a, supp(δV )

)
> dV

(
a, supp(δV )

)
.

In terms of energy considerations, the left well will have a lower potential energy relative to
the right well, so that the ground state of the system, let us call it Ψ0,δ

~ , is no longer a sym-
metric wave function of two peaks. Rather, the left peak (at −a) will be of larger magnitude
than the right peak (at a), given by the ratio

Ψ0,δ
~ (a)

Ψ0,δ
~ (−a)

∼ e−dV /~. (31)

For small ~, figure 3 from Landsman and Reuvers [13] shows that the wavefunction becomes

almost completely localised. In particular, this means Ψ0,δ
~ ≈ Φ−~ . In the classical limit when

~→ 0, both states converge to the same classical state, ρ−0 ,

lim
~→0

Ψ0,δ
~ = lim

~→0
Φ−~ = ρ−0 . (32)

The perturbation also effects the first excited state. However, Landsman and Reuvers find
that the first excited states localises oppositely to the ground state, as can be seen in figure
3. Let Ψ1,δ

~ be the first excited state. Then under the same small perturbation δV that is
positive and on the right, and for small ~, we find that the state is localised almost fully to
the right. Thus,

lim
~→0

Ψ1,δ
~ = lim

~→0
Φ+

~ = ρ+
0 . (33)
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Figure 3: Localisation of the ground state and first excited state for ~ = 0.01, from [13]

Of course, taking the flea δV to be localised on the right was an arbitrary choice. We can
also consider a similar perturbation δV that is positive and localised on the left. Following
the same reasoning as above, we then find that in the classical limit ~→ 0, the ground state
localises to the right, while the first excited state localises to the left. For sufficiently small
~, we see that the quantum energy states approximate the localised coherent states:

Ψ0,δ
~ ≈

{
Φ−~ for δV

Φ+
~ for δV

Ψ1,δ
~ ≈

{
Φ+

~ for δV

Φ−~ for δV

In summary, the full measurement process under perturbations δV and δV can be abstractly
seen to happen as displayed in figure 4. As before, process α represents the symmetry
breaking due to the perturbation by the flea, from the energy state of the system to a state
that approximates a localised coherent state. Then process β represents the convergence
from the approximate coherent state to the classical state. The colours correspond to the
perturbations described above.

Figure 4: The steps of the measurement process
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4.2 Symmetry breaking

Before we can consider how exactly the symmetry is broken in the above example, we
need to recast our understanding of symmetries to fit the algebraic framework. Generally,
symmetries are understood as transformations of states that leave the dynamics of the system
invariant. Thus, a symmetry transformation maps ψ 7→ ψ′ so as to leave the action invariant,
i.e. S(ψ) = S(ψ′). In the algebraic formulation, we have put the algebra of observables in
the centre. Thus, a symmetry is now understood not as a transformation on the states, but
a transformation on the operators in the algebra A. A symmetry transformation is given by
an automorphism of the algebra

α : A→ A : (34)

α : A 7→ α(A). (35)

that leaves the dynamics of the system invariant [17]. Any such symmetry α can be shown to
be a *-automorphism on the algebra A, meaning it preserves the algebraic structure and the
involution on the algebra [2, 15]. From the transformation on the operators in the algebra, a
symmetry transformation on the states can be derived. Namely,

α′ : ω 7→ ω′ = α′(ω) (36)

is given by ω ◦ α−1, such that

ω′(A) = α′(ω)(A) = (ω ◦ α−1)(A) = ω(α−1(A)). (37)

Given the GNS theorem, every state ω can be used to construct a representation π :
A → B(H). For a state ω and a second state ω′ that is related to the first by a symmetry
transformation, we can ask what the relation is between their respective GNS representations,
(π,H) and (π′,H). Since the states describe the same system and are related by a symmetry,
their representations will map to the same Hilbert space H. For states that respect the
symmetry of the theory, there exists a unitary mapping U : H→ H between the two

Uπ(A) = π′(A)U = π(α(A))U ; (38)

i.e. π and π′ are unitarily equivalent representations of A. If this is the case, we say α is
unitarily implementable in the representation π.

However, for a state ω that breaks the symmetry of the theory, it is a necessary condition4

that the GNS representation π′ generated by the transformed state ω′ = ω◦α−1 is not related
to the GNS representation π′ by a unitary mapping. Thus, these representations are unitarily
inequivalent.

Let us now apply these ideas to the example at hand, the symmetric double well. For this
system, before introduction of the perturbation, the dynamics and laws do not distinguish
between states that differ only by the sign of the position variable, x. In the case of the
symmetric double well, we see this reflected in the potential V (x) in equation (18): it is
invariant under x 7→ −x, as it contains only even powers of x. Translating this to a symmetry

4Authors differ on whether this condition is sufficient, in addition to being necessary, for a symmetry to
be broken (Introduction, [2]).
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on the algebra, this corresponds to the automorphism α on A that maps the position operator
Q to −Q.

How is the symmetry broken in this system? In the higher level theory, the classical
theory, a symmetry seems to be spontaneously broken. Namely, the theory of the symmetric
double well respects a Z2 symmetry that the two degenerate ground states do not respect.
Thus, the GNS representations generated by the states ρ− and ρ+ are required to be unitarily
inequivalent. This means, since in a physical system only one of the ground states occurs, that
the symmetry is spontaneously broken. When we look at the details of the lower level theory,
namely the quantum theory, we see that this breaking of the symmetry is “foreshadowed in
quantum mechanics for small yet positive ~” (page 375, [12]). By introducing the asymmetric
flea perturbation of the potential, δV , we see that the theory is no longer invariant under
the transformation x 7→ −x. Thus, the symmetry is broken explicitly by the system (chapter
2, [20]). This explicit symmetry breaking on the lower level theory is perceived on the higher
level theory as a spontaneous symmetry breaking.
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5 Evaluating the Flea

Now that the main ideas of the perturbation by the flea have been introduced, this chapter
will provide some assessment of the proposal in its current state. It will first discuss the
model that is used by Landsman and Reuvers, the symmetric double well. Thereafter it will
discuss the perturbation by the flea itself. In each case, favourable aspects and problematic
aspects will be considered. The first have, mostly, been previously recognised and emphasised
by Landsman in [12], while many of the latter have been raised by the recent paper of Van
Heugten and Wolters in [22]. As in the previous sections of the paper, we will not consider
the dynamics of the flea mechanism.

5.1 Model and measurement

In Landsman’s approach, the symmetric double well is taken as the model for a measurement
apparatus that is in a Cat state, in reference to Schrödinger’s beautiful paper [21]. That
is: a two-state quantum superposition where each outcome represents a different classical,
macroscopic state. It can be thought of as the pointer of such an apparatus that can land
on two distinct outcomes. Given such a state, the measurement problem arises, and thus the
model is an important one to consider.

The virtue of this model is the finding that it is exceptionally sensitive to small perturbations
to the potential. This was pointed out previously by Jona-Lasinio et al. in 1981 [9], and
again by Simon in 1984 [18]. When discussing the model in relation to the measurement
problem, Landsman and Reuvers also emphasised this property [13]. They find that, for even
a tiny perturbation, when considering small enough values of ~, the system almost completely
localises in one well. As we saw in equation (31), the ratio between the two peaks of the
ground state goes as e−dV /~. Thus, if we add a perturbation to the system and take ~ → 0,
there is an exponential sensitivity. This exponential is not dependent on the size of the flea
perturbation. As explained by Landsman, “precisely in the classical limit Cat states are
destabilised even by the tiniest (asymmetric) perturbations and collapse to the ‘right’ states”
(page 455, [12]).

Indeed, given that this collapse happens even before we reach the classical limit, this lo-
calisation behaviour emerges in the manner we would hope from Butterfield’s principle (see
Section 3.5). Localisation is almost complete: thus we see a weaker version of the emergent
behaviour. Setting ~ = 0 then means we can simplify our mathematics, but the physical
behaviour occurs for small, yet non-zero, values of ~.

However, as Van Heugten and Wolters point out, this model is a simplification of the
process of measurement. Namely, a description of measurement ought to start with a quantum
mechanical target system and describe how the measurement apparatus interacts with this
target. These systems then become entangled and can be described by a common Hamiltonian
and potential. The symmetric double well is too simple to describe this entangled state. If it
is meant to solely to describe the pointer of the apparatus, the flea acts on this system. Then
it is only this system, that of the apparatus, that collapses due to the flea perturbation. But,
if it is only the pointer that collapses, it does not seem the apparatus has actually measured
the target quantum mechanical system. Thus, for a measurement, we ought to require that
“the post-measurement state not only [assigns] a value to the pointer variable, but also to the
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system’s measured observable in such a way that these values are correlated” (page 15, [22]).
But how then does this collapse ‘transfer’ to the quantum mechanical target system? The
answer to this question is, as of yet, lacking.

Alternatively, it seems more reasonable to assume the perturbation acts in some way on the
complete system of apparatus and target, rather than the pointer of the apparatus alone. In
this case, it is not straightforward to translate the flea perturbation to this entangled system.
The proposal is still incomplete in this regard, and further exploration of how this could work
could strengthen the ideas of the flea.

This can be seen as a general objection to the flea proposal in its current form. The
symmetric double well that is taken is too simple to describe a realistic measurement situation,
yet generalisations of the flea in other models are not unambiguous. The additional models
considered by Landsman in [11], the quantum Ising chain and the quantum Curie-Weisz
model, only partially address these concerns. Both of these models have a Z2-symmetry
and thus represent physical systems in which the symmetry breaking is relatively simple.
Van Heugten and Wolters further explore this aspect by considering a symmetric potential
with n wells, rather than only two. In general, for a quantum mechanical system with a
potential of n symmetric wells, there will be an associated ground state that has n peaks.
The classical system will have n degenerate ground states, and correspondingly, the quantum
system will have n low energy states. Thus, the structure is similar to the double well, and
it is imaginable that the flea mechanism could cause an appropriate collapse. However, Van
Heugten and Wolters find that adding a single flea perturbation does not cause such a collapse,
since the wave function of the ground state does not localise in a single well (page 19, [22]).
This suggests that the flea perturbation, although very effective in the symmetric double well
and similar models, may be more ineffective in alternative models.

5.2 The “flea”

Concerning the flea itself, it may not be unreasonable to expect an occurrence of a small
perturbation in a physical system. Landsman argues this perturbation arises externally, from
the environment. After all, physical systems do interact with their environment in ways that
are nearly impossible to capture. Is it reasonable to assume such a perturbation does not take
place? Landsman even refers to the presence of asymmetric flea perturbations as “practically
unavoidable” (page 378, [12]). In addition, the flea causes a perturbation of exactly the right
kind, since it does not affect the quantum state in the quantum regime, i.e. it is irrelevant
for relatively large values of ~. Rather, its importance arises in the classical regime, when ~
is sufficiently small.

Nonetheless, questions regarding the nature of the flea perturbation remain. These are
especially pertinent when we consider that the flea perturbation ought not to ‘mess up’ the
Born probabilities associated with quantum systems. Landsman recognises this need several
times, writing that “among all remaining challenges, deriving the Born rule stands out in
particular” (page 450, [12]). Even so, he leaves it to further research into the possible dynamics
of the flea to address this question. Besides these dynamic concerns, the static case already
informs the discussion.
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In the model we have considered, the Born probabilities are equal (50/50) for the two
associated classical states. Thus, the expectation of finding the particle (approximately) in
the left classical state, ρ−0 , was equal to finding it in the right classical state, ρ+

0 . Let us now
consider a slightly different example, where the weights for the outcomes are slightly different.
Take a simple distribution, such as (75/25), meaning that we are three times as likely to find
it in the left classical state than in the right classical state. In other words, if we repeat
the experiment (infinitely) many times on identically prepared systems, we ought to recover
this (75/25) distribution. Given that the prepared system excludes the (uncontrollable) flea
perturbation, recovering such an outcome through the flea mechanism is not unreasonable.
In fact, according to Landsman, “the flea perturbation would naturally be different at each
different run of an experiment under otherwise identical initial conditions” (page 456, [12]).

How would the flea perturbation have to differ at each run of the same experiment? As we
saw in the example, the only factor that influences the direction of collapse was the location of
the flea perturbation. If we consider it to be a ‘random’ perturbation from the environment,
we would have no reason to expect the flea to have a higher chance of arising on the right side
(so that the ground state collapses to the left) than on the left side. If the flea is assumed
to be external to the system, it ought not to adhere to the Born probabilities we associate to
that system. Thus, once the flea perturbation has appeared, it seems hard to maintain the
Born rule, as concluded also by Van Heugten en Wolters.

Without any relation between the flea and the initial system state there is no
reason why the Born probabilities (apart from the special 50/50 case) should be
replicated by the flea model (page 24, [22]).

For an independent flea, it seems that “nothing short of a conspiracy theory would be needed
to replicate the Born rule” (page 14, [22]). Does this mean we ought to require the flea
perturbation to be dependent on the system, in some way? Such a dependence does not seem
straightforward, given the idea that the flea is part of the environment.

Alternatively, perhaps we should not assume the perturbation to be random. Rather, it
could be deterministic, where we could imagine it as a missing element in quantum theory.
Landsman gives a hint in that direction, by writing that “the location of the flea plays a
similar role to the position variable in Bohmian mechanics, i.e. it is essentially a hidden
variable” (page 397, [13]). This could open to door for determinism to re-enter quantum
mechanics, although the plentiful no-go theorems are essential in this area.

In conclusion, the nature of the flea perturbation remains unclear. Firstly, although a
perturbation in principle does not seem unrealistic, the specific properties of the perturbation
can seem implausible. Indeed, it may have to have very particular properties if it can account
for a mechanism that preserves the Born rule. Secondly, there is such a multitude of unresolved
questions asking to be answered that it is difficult to have a precise discussion.
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6 Conclusion

This paper has discussed the main mathematical and conceptual ideas related to the pro-
posed solution of the measurement problem known as the ‘flea mechanism’, formulated by
Landsman and Reuvers in [13]. Chapter 2 and 3 gave the relevant background needed to put
the proposal in context. Chapter 4 discussed the workings of the mechanism for the main
model considered by the Landsman and Reuvers, the symmetric double well. Both favourable
and unfavourable aspects to the proposal were then discussed in chapter 5, informed by the
work of Van Heugten en Wolters in [22]. To conclude this essay, some further reflections from
the author are presented.

Undoubtedly, what the discussion in chapter 5 has shown is that there is more work to be
done. Landsman recognizes this throughout his work, no where claiming that the proposal
is complete. Philosophically, the nature of the flea perturbation is unclear, and the question
of why it is reasonable to assume the occurrence of such a perturbation remains unanswered.
Mathematically, the mechanism for how the flea ought to respect the Born rule is not apparent.
Additionally, only limited models have been considered. Thus, it would be interesting to
explore how the idea of symmetry breaking, referred to here as process α, could apply to
further models. In particular, which symmetries do we expect to see in quantum systems,
that such a ‘flea mechanism’ ought to break, in order to obtain classical outcomes? This
may shed light on the flexibility of the proposed mechanism, and help clarify its essential
conceptual elements.

Although the flea mechanism is currently incomplete, the work done by Landsman and
Reuvers has already been illuminating. If we want to imagine a solution to the measurement
problem that avoids postulating the existence of many worlds and mysterious preferred ob-
servables, as mentioned in chapter 3, the mechanism of the flea does not seem outrageous.
Certainly, for those who are inclined to a collapse, the flea perturbation provides a very rea-
sonable mathematical construction for how such a collapse could occur. In addition, it is
not a great leap of faith to posit that the collapse ought to come from some small, external
perturbation, which disrupts the symmetry of a quantum system and forces a single outcome.
Thus, some of the problems and challenges that the flea mechanism faces could be seen as
indicative of the challenges of translating the, admittedly vague, idea of collapse into a pre-
cise mathematical mechanism. Landsman and Reuver’s proposal not only offers the start of
a new way forward, it is also essential for understanding the work that lies ahead in giving a
coherent account of a collapse of the quantum theoretical wave function.
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