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At present, quantum theory leaves unsettled which quantities ontologically, physically exist in
a quantum system. Do observables such as energy and position have meaningful values only at
the precise moment of measurement, as in the Copenhagen interpretation? Or is position always
definite and guided by the wave function, as in de Broglie-Bohm pilot wave theory? In the language
of Bell, what are the “beables” of quantum theory and what values may they take in space and
time? This is the quantum reality problem. A definitive answer requires not just describing which
physical quantities exist in a quantum system, but describing what configurations of those quantities
in space and time are allowed, and with what probability those configurations occur. Adrian Kent
sets out a new vision of quantum theory along these lines. His interpretation supplements quantum
theory to infer the value of physical quantities in spacetime from the asymptotic late-time behavior
of the quantum system. In doing so, a Lorentz-covariant and single-world solution to the quantum
reality problem is achieved. In this paper, the framework of Kent’s interpretation is presented
from the ground up. After a broad overview, a derivation of the generalized Aharonov-Bergmann-
Lebowitz (ABL) rule is provided before applying Kent’s interpretation to toy model systems, in both
relativistic and non-relativistic settings. By adding figures and discussion, a broad introduction is
provided to Kent’s proposed interpretation of quantum theory.
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I. PROBLEMS WITH MEASUREMENT AND QUANTUM REALITY

Quantum theory was a resounding success of twentieth century physics. The quantum revolution offered far-
reaching insights into physical reality, finding relevance not just in the minds of physicists but of mathematicians,
philosophers, chemists, even engineers and computer scientists. Much is understood, especially about empirical
aspects of quantum mechanics, yet much remains mysterious. Our empirical knowledge of quantum mechanics is, by
definition, limited to what can be observed, and many interesting questions lie beyond current experimental reach.
In particular, interpretations of quantum theory, the role of measurement itself, and “peaceful coexistence” between
quantum theory and Einstein’s theory of relativity, all pose ongoing questions with deep physical significance.

The interpretation of quantum theory is an especially rich subject which plays host to many rival schools of
thought. Motivating the need for these competing interpretations are problems encountered with the once-standard
Copenhagen interpretation. Although pragmatic and highly effective in the laboratory, the Copenhagen interpretation
posits a perhaps unnatural mixture of deterministic evolution of quantum states and non-deterministic measurement
events, a feature seen by many to hint at the existence of a deeper interpretation. Very close to the problems of
the Copenhagen interpretation is the quantum measurement problem, as well as the more modern quantum reality
problem, as described by Kent [1, 2]. Let us formulate these problems and expose some of the holes in the Copenhagen
interpretation.

A. The Quantum Measurement Problem

Two of the fundamental postulates of Copenhagen quantum theory can come in conflict, with their coexistence
dependent on imprecise boundaries between the quantum system, the observer, and their interaction via measurement.
Attempting to unify observers and quantum systems under a single quantum umbrella quickly leads to trouble.
Consider the following two postulates of Copenhagen quantum theory.

Postulate: The time evolution of quantum states is governed by the Schrodinger equation.

In the Schrodinger picture of quantum mechanics, a closed quantum system is described by a ket vector |¥(¢))
which fully describes the state of the system and which evolves in time. It is a fundamental postulate that the time
evolution of this quantum state is described by the Schrédinger equation,

0
iho, [9(2) = H[Y(1), (1)

where H is the Hamiltonian operator, describing the energy of the quantum system. In particular, for Hamiltonians
which do not explicitly depend on time, the time-evolved state of the quantum system can formally be written as

(1)) = e "0 w(0)), (2)
where the exponentiated operator e~ #H/" is defined in terms of its Taylor series. This operator is unitary, so the
time evolved state |¥(¢)) for any time ¢ is related to the initial state |¥(0)) by some unitary transformation. In fact,
unitary time evolution holds for systems with time-dependent Hamiltonians as well. Thus, the Schrodinger equation
implies that all closed quantum systems evolve unitarily in time.

In many ways, unitary time evolution is a very well-behaved way in which a system can change over time. First, it
is deterministic: given the initial state |¥(0)) and knowledge of the Hamiltonian of the system, one can prescribe with
certainty what the state of the system will be at any future time — there is no randomness here. Second, unitary
time evolution is reversible in the sense that for any unitary operator U(t) there exists an inverse operator given by
the conjugate transpose, so that U(t)U(t)T = U(t)U(t)~! = I. In particular, this implies that given the state of the

system |¥(t')) at some time #', there exists an inverse operator U(t')~! which allows one to recover the initial state:
[W(0)) = U)~H[¥(t)).

Postulate: The outcome of measuring a quantum state is random.

Measurement of a quantum state, on the other hand, is quite a different beast. For an outside observer to learn
something about a quantum state requires the observer to intrude on the quantum system, which we previously
considered as a closed system, and probe some part of it. The intrusion of the observer significantly changes the
dynamics of the quantum system.



In their simplest form, measurements are represented by Hermitian operators M = M acting on the Hilbert space
of the quantum state. By the spectral theorem, the eigenvalues {m;} of M are all real numbers and are postulated
to correspond to the possible outcomes of performing the measurement. With any eigenvalue m; we can associate a
projection operator P; which projects the quantum state onto the eigenspace of m;.

At the point of the measurement, it is postulated that the unitary time evolution prescribed by the Schrédinger
equation ceases, temporarily being replaced by a single randomly chosen projection defined by an operator P;. The
projection operator is chosen at random, corresponding to a randomly chosen outcome of the measurement, but chosen
with well-defined probabilities. The probability of obtaining the measurement outcome m; is prescribed by the Born
rule:

Pr(m;) = (V| P |¥), (3)

where |U) is the quantum state just prior measurement. Supposing upon measurement the outcome was found to be
m;, the post-measurement quantum state |¥’) is then found to be the pre-measurement state |¥) projected onto the
eigenspace of m;,

W) — [¥) = NP; |¥) (4)

where N is a normalization factor to ensure that the post-measurement state is normalized so that (¥'|0’) = 1.

Time evolution given by projection transformations, as postulated for measurement processes, is very different
from the time evolution by unitary transformations seen for the closed quantum system. Projections are non-unitary
transformations, they irrevocably discard any component of the quantum state which is orthogonal to the projection
eigenspace. Once the projection occurs, there is no going back — in general there exists no inverse operator for
projections. Thus, by postulate, it would seem that measurement in quantum mechanics is both non-deterministic,
as the projection operator is chosen at random, and irreversible.

Are these postulates consistent?

There is an awkward tension here between closed quantum systems, which behave nicely under Schrodinger equation
unitary evolution, and observers trying to peak in at the quantum system and learn about them, apparently inducing
non-unitary projections. It seems that the type of time evolution that a quantum system undergoes depends critically
on whether the system is being “measured” by an outside observer.

While observers may take the form of macroscopic systems, they are nonetheless a macroscopic collection of inter-
acting microscopic systems whose dynamics ought to be subject to quantum mechanics. But isn’t the total system
containing the observer and the quantum system being measured just another, larger, closed quantum system? In
this situation, the first postulate mandates that the total quantum system, including the subsystem being measured,
evolve unitarily. On the other hand, a measurement is taking place on the subsystem by the observer, so the second
postulate mandates that the subsystem should undergo a random projection. Well, which one is it? The quantum state
being measured cannot simultaneous undergo unitary evolution and projective evolution: the two transformations are
mathematically and physically incompatible with one another!

Have we reached a contradiction in the fundamental postulates of Copenhagen quantum mechanics? This gedanken-
experiment seems to imply that either macroscopic observers are not quantum systems or that measurements are in
fact unitary processes. Such is the measurement problem. While the Copenhagen interpretation accepts as physical
law both the Born rule and the projection postulate for measurement, other interpretations do not — avoiding the
ensuing catastrophic clash with unitary Schréodinger evolution.

B. The Quantum Reality Problem

The quantum measurement problem addresses what happens in quantum systems during measurements to make
them appear stochastic, when the Schrodinger equation tells us they should behave deterministically. The quan-
tum reality problem goes further, addressing the value of physical quantities in a quantum system not just during
measurement events but at all points in space and time. The problem is firstly that quantum theory leaves open
which quantities in a quantum system are granted “physical” status to begin with. In the language of John Bell’s
“beables” [3, 4], emphasizing what can actually be in a quantum system rather than what can merely be observed
through measurement, there does not exist any final word on a precise description of the beables of quantum theory.
Moreover, given a particular closed quantum system, there is no precise description of how those beables may be
distributed in space and time.



A successful solution to the quantum reality problem should imply the highly verified predictions of Copenhagen
quantum theory in the small scale domain of quantum mechanics, including the emergence of the Born rule in
quantum measurements, as well as the quasiclassical physics of macroscopic objects, which appear to follow mostly
deterministic equations of motion. If that all sounds too easy (!), then one may additionally seek a solution to the
Lorentzian quantum reality problem — that is, a solution to the quantum reality problem which provides a Lorentz
covariant description of beables and physical reality, respecting special relativity.

A full solution to the quantum reality problem consists of specifying:

1. A set of physical quantities, a set of beables, which describe the physical reality of a quantum system.

2. A sample space of all possible configurations of those beables in spacetime, what one might call histories. Or, at
least, a sample space of mathematical objects from which the beable configuration can be inferred.

3. A probability distribution over the sample space.

Then, the actual physical reality of a quantum system can be postulated to correspond to a single possible history of
beables, thus a single configuration of physical quantities in space and time, chosen at random from the distribution.

It is worth noting that finding a solution to the quantum reality problem does not imply finding the solution to the
quantum reality problem. That is, a specification of a set of beables and a coherent description of their possible values
in spacetime indeed defines a physical reality of the quantum system, but that description of physical reality need
not be the fundamentally correct one. It may ultimately be found that a specific set of beables and a sample space
of configurations of those beables, i.e. a specific solution to the reality problem, is the one realized in Nature. For
now, it is challenging enough to construct any solutions to the reality problem which sketch a coherent and Lorentz
covariant picture of physical reality, and reproduce both the empirical results of quantum mechanics as well as those
of quasiclassical mechanics in their respective domains.

Different interpretations of quantum theory indeed address quantum reality differently. The pilot wave theory of
de Broglie and Bohm [5] provides a solution to the quantum reality problem, suggesting a pilot wave which steers a
real particle with a definite position in accordance with a guidance equation. Thus, the pilot wave theory suggests
particle position as a fundamental beable, with well-defined histories, though for relativistic systems, in which particle
number may not be conserved, no thoroughly successful extension has been found. On the other hand, the many-
worlds interpretations stemming from the work of Hugh Everett [6, 7] describe a fantastically different kind of physical
reality with a constantly branching universal wave function. Even though the many-worlds interpretation may indeed
be a valid interpretation, it remains of interest whether it is a necessary construct for describing quantum reality.
That is, does there exist a single-world, Lorentz-covariant solution to the quantum reality problem?

In recent years, Adrian Kent has given us a start on such a solution to the Lorentzian, single-world quantum reality
problem [1, 2, 8, 9]. In his interpretation, it is assumed from the start that there indeed exists a more fundamental
relativistic quantum theory which rigorously describes the physics of measurement and interaction in a unitary fashion,
despite such a theory not being known at present. In Kent’s proposed interpretation, one supplements such a quantum
theory with beables in spacetime, the configurations of which are inferred from an asymptotic late time distribution.
To every late time beable distribution there is an associated probability, corresponding to the probability of measuring
such a distribution given the unitarily evolved final universal quantum state. The beables themselves are often stress-
energy distributions, though a number of alternatives have been considered. Taken together with a few important
assumptions on the late-time behavior of the quantum system, Kent has shown that this form of solution holds promise
as an extension of relativistic quantum theory which solves the Lorentzian quantum reality problem.

In this paper, Kent’s framework for solving the quantum reality problem is first presented in words and figures for
both non-relativistic and relativistic systems, noting some major differences between the two. In section II, the basic
building blocks of the interpretation are established. Section III follows with a derivation and generalization of the
Aharonov-Bergmann-Lebowitz rule, as will be needed for Kent’s framework. Finally, sections IV and V apply Kent’s
interpretation to various models for non-relativistic and relativistic systems, respectively. Adding to the presentation
of the models are figures, discussion of interesting features in Kent’s interpretation, and a new concept of a “region
of indeterminacy” which aids in building visual intuition for Kent’s framework.



II. THE FRAMEWORK OF KENT’S INTERPRETATION

Before concerning ourselves with mathematical machinery, let us take a broad and visual approach to Kent’s
interpretation. To solve the quantum reality problem, one must specify an appropriate beable corresponding to a
physical quantity, lay out the sample space of possible configurations of that beable in spacetime for a given quantum
system, and assign probabilities to those configurations of beables. The framework can be split into four parts, A
through D, which will be introduced in a natural order. These steps will be accompanied by figure 1, painting an
overview. Where the framework differs for relativistic and non-relativistic systems, each will be explained separately.

Final State Usg, |a) Final Boundary Condition p(z)
W
Unitary Evolution Operator N 7
U . .7 Expectation Values
BA
el (p(y))
So Z R

Initial State |a)

FIG. 1: A depiction of Kent’s framework for defining beable expectation values for any spacetime point y located between
an initial spacelike hypersurface Sp and final spacelike hypersurface S. Shaded regions represent spacetime points within the
future or past light cone from y, which are treated differently in relativistic solutions.

A. The Quantum System and its Initial Conditions

In non-relativistic models, space takes the form of three-dimensional Euclidean space, where the physics of the
system is considered to begin at some initial time up and run until the asymptotic infinite future. In relativistic
models the setting is Minkowski space, where all spacetime points between an initial spacelike hypersurface Sy and
a late-time spacelike hypersurface S are considered, where S is taken to asymptotically approach the infinite future.
To be precise, S being in the future of Sy means that for all points x € S every inextendible past-directed, timelike
curve through x intersects Sg.

Kent’s interpretation does not start from a blank slate. A quantum theory is presupposed which prescribes pure
unitary evolution of the quantum state, including interactions and measurements without any break in that unitarity.
As admitted by Kent throughout his work, to date there exists no such rigorous relativistic quantum theory. This
makes a completely rigorous test of any proposed interpretation challenging, but it does not invalidate the foundational
effort to resolve the quantum reality problem. Predicated on the existence of such a theory, Kent shows that one
may supplement the theory to give a mathematically precise and Lorentz covariant description of physical reality in
a quantum system, solving the reality problem.

To complete the initial setup, it is supposed that the initial state of the system, |a) in figure 1, is given on the
initial surface: either the initial time slice ¢ = 0 of three-dimensional Euclidean space or at all points on the initial
hypersurface Sy.

B. Unitary Evolution to a Final State

As a unitary law of evolution for quantum states of our system is provided by the presupposed quantum theory,
the initial state |a) may be evolved in time. In the non-relativistic models, evolution is generated by the Hamiltonian
H for the system, so that states unitarily evolve via the evolution operator e “#t/"  Evaluating for the final time T,
which is taken in the limit as 7 — oo, provides the final state e *#7/"|a) of the system. For relativistic scenarios,



a unitary operator Ug 4 for the evolution of quantum states between any two spacelike hypersurface A and B can be
provided by the Tomonaga-Schwinger formalism [10]. Then, the initial state |a) can evolve according to a unitary
operator Ugg,, so that the quantum state on the late-time hypersurface S is given by Ugsg, |a).

C. A Final Boundary Condition

Thus far, Kent’s framework is more or less “quantum theory as usual”’. Now come the novel aspects which sup-
plement the quantum theory, and which allow one to solve the quantum reality problem. Recalling the definition
of the quantum reality problem, a sample space of possible histories of beables in spacetime needs to be defined,
corresponding to possible physical realities, along with a probability distribution on the sample space.

The quantum sample space of Kent’s framework is composed of beable distributions on the late time hypersurface,
referred to as asymptotic final boundary conditions for the beables of the theory. That is, for non-relativistic systems,
the beable configuration (such as a mass distribution) is specified for the system at the final time T, which is taken to
approach the infinite future. In relativistic solutions, the final boundary condition specifies the beable configuration
(think of the mass-energy distribution across space) on the final hypersurface S, taken in the limit as S tends to the
infinite future. In figure 1, the final boundary configuration is denoted by p(x) for all z € S. Kent’s claim is then
that the specification of the final beable configuration is in fact sufficient to infer the expectation value of the beable
configurations at all other points in spacetime: this challenge is addressed shortly!

The probability distribution for the final boundary conditions is naturally defined by standard Born rule prob-
abilities. Given the unitarily evolved final state on the late-time hypersurface, one may consider a hypothetical
measurement of the beable at all points on the late-time hypersurface (all these measurements commute since they
are spacelike). The probability for measuring an outcome at any one point is governed by the Born rule. Thus, the
probability density for measuring any final boundary condition may be provided by Born rule probabilities. One such
final boundary condition is then chosen at random from the sample space of all possible final boundary conditions,
weighted by its Born rule probability.

Mathematically, the possible final boundary conditions may be characterized as the possible outcomes of a simul-
taneous measurement of beables at all points « € S on the final hypersurface S. However, this is just a mathematical
characterization, no physical measurement takes place - the quantum system is treated as a closed system, with no
external observer present to make such a measurement. Such a measurement is therefore referred to as a fictitious
late-time measurement. As explained by Butterfield [11], one must think of this fictitious measurement in a “tenseless”
sense: the final boundary condition is not selected only upon reaching the late-time hypersurface, but is an inherent
part of the quantum system, pre-selected at random to describe the final beable configuration. This means that there
is no retroactive causation: the late-time boundary condition is not chosen at a final time, proceeding to influence
the beables at earlier spacetime points. On the contrary, the late-time boundary condition in fact dictates the beable
values, and thus the physical reality of the system, throughout all spacetime between Sy and S.

A central postulate of Kent’s framework is that there indeed exists a convergent asymptotic probability distribution
of final boundary conditions, as time tends to future infinity. To be precise, Kent proposes not just one final hyper-
surface S, but a sequence of hypersurfaces S; which approach the infinite future as i tends to infinity. That is, each S;
is a Cauchy surface, analogous to an instant of time, and the sequence S; approaches the infinite future. For each S;,
one may consider a fictitious measurement of the beable at all points on S;, and thus the probability of obtaining any
given final beable distribution on S;. The sequence of hypersurfaces S; thus define a sequence of beable probability
distributions. Kent’s proposal is that such a sequence defines a convergent sequence of probability distributions as the
S; tend to future infinity, so that the limiting probability distribution of beable configurations on those S; defines
the sample space of possible final boundary conditions. A selection of a single final beable configuration from the
sample space, using standard Born rule probabilities, will then define the expectation value of beables at all previous
spacetime points, and thus define the physical reality of the system, as will be explained below. Keeping these points
about convergent sequences of hypersurfaces in mind, for simplicity a single hypersurface .S is often considered which
is taken in the limit of tending to the infinite future.

An important condition is required for the existence of a well-defined asymptotic final boundary condition. Although
there exists non-trivial interactions between particles in the quantum system, the system must evolve so that particle
interactions eventually become negligible as time tends towards the infinite future. Otherwise, the system would not
asymptotically approach any single state, and thus could not asymptotically approach a single probability distribution
for final beable configurations. It is quite a non-trivial assumption that particle interactions in the universe eventually
become negligible, and while some cosmological models suggest a future which is incompatible with this notion (big
crunch scenarios: particle interactions become ever stronger), other current models are compatible (e.g. big rip
scenarios: particle interactions become ever weaker).



D. Beable Expectation Values

The sample space of Kent’s framework is composed of final boundary conditions for the beables of the quantum
theory. How do these final boundary conditions imply the expectation values of beables at all other points in spacetime?
For the non-relativistic solutions, the exact link between the initial state, final boundary condition, and expectation
values of intermediate time beables is given by the Aharonov-Bergmann-Lebowitz (ABL) rule [12]. Since this link
is central to Kent’s theory, section III is dedicated to properly deriving this result, but it is discussed informally
here. The relativistic solutions formally do not make use of the ABL rule, for reasons to be made clear in section V.
However, the form of the expectation values will be very similar.

In short, the ABL rule prescribes the probability of an outcome of a given measurement B, at any given spacetime
point y, given the initial state of the quantum system and given that the system later yields a given outcome of another
measurement C. In the language of ABL, one arrives at such a probability by “pre-selecting” the initial condition
and “post-selecting” for some final outcome. The applicability to Kent’s solutions is then immediately obvious, given
our initial state |a) and final boundary condition p(x). By averaging over all possible beable values at the point y
weighted by the corresponding ABL probability, we finally construct the expectation value of the beable ( p(y)) for
every intermediate point in our spacetime.

There is a significant difference in deriving beable expectation values for relativistic systems. In the non-relativistic
solutions, Kent conditions on the probability of finite time beables by post-selecting on the entire final boundary
condition for all spatial points at time T'. However, in the relativistic solutions, in constructing expectation values
at an intermediate spacetime point y, Kent post-selects not on the final boundary condition for the beables at all
points © € S, but only those x € S which fall outside the future light cone of y. This modification will ultimately
be responsible for the Lorentz covariant descriptions of quantum reality in Kent’s relativistic framework, and will be
covered in depth in section V.



IIT. THE AHARONOV-BERGMANN-LEBOWITZ RULE

Aharonov, Bergmann, and Lebowitz (ABL) first derived in 1964 [12] what is now known as the ABL rule, and it
plays a pivotal role in Kent’s non-relativistic framework, with a very similar analog in the relativistic framework. To
motivate the rule, consider a scenario in which an experimenter prepares a quantum system in a known initial state.
Time passes, then a measurement is made of the quantum system, but the result of the measurement is not known to
the experimenter. More time passes, then the experimenter makes another, final measurement and finds the quantum
system in some final state. Although the experimenter does not know the result of the intermediate measurement, but
does knows the initial and final states, can the experimenter at least determine the probabilities of possible results of
the intermediate measurement?

Indeed the experimenter can. Using the ABL rule, knowledge of the final state provides further insight than is
provided by the Born rule alone, and constrains the possible results of the intermediate measurement. Here the ABL
rule is derived from basic principles in quantum theory and probability theory — first in its simplest form, then
generalized as necessary to suit Kent’s framework. From here on, unless stated otherwise, natural units will be used
so that A =c= 1.

A. The ABL Rule in Basic Form

Consider a quantum state which is prepared in an eigenstate |a) of some observable A at time ¢ = 0, and which is
later measured and found to be in an eigenstate |c) of some observable C' at time ¢ = T'. What then is the probability
of measuring some outcome b; of another observable B, measured in between ¢ = 0 and ¢t = T, given that the state is
initially in the state |a) and later measured and found to be in the state |¢)?

In the most common and simplest case, the ABL rule is formulated for the case in which the eigenvalues of B
and C' are nondegenerate and discrete, and for which the Hamiltonian of the system is simply H = 0, so that states
persist unchanged between measurements. Beginning with these simplifications, the basic ABL rule will be derived
then generalized as needed.

First, consider the probability of obtaining some result b; from the intermediate measurement followed by finding
¢ in the final measurement, given initial state |a). This is written as

Pr(bi,c‘a):Pr(c|bi,a)~Pr(bi‘a) (5)

where terms like Pr(z, y { u, v) denote the joint probability of z and y conditioned on u and v. The chain rule for
conditional probabilities was used to split the probability into two separate factors.

With a Hamiltonian H = 0, the system remains in the initial prepared state |a) up until the moment of measurement
of B. The Born rule then prescribes the probability of obtaining outcome b; as Pr (b; | a) = [(b;|a) |* with corresponding
post-measurement state |b;). Similarly, having measured b;, the system remains in the state |b;) up until the moment
of final measurement of C' at time T. The probability of obtaining the result ¢, which depends only on the state |b;)
and not the initial state, is again prescribed by the Born rule as Pr (¢ | b;,a) = Pr (¢ | b;) = {c|b;)|*. Thus, equation
(5) can be evaluated as

2 2
Pr (bi, ¢ | a) = [{c|b)]” |(bsla)|” . (6)
Now, the joint probability in (5) may also be expanded in another way with the chain rule:
Pr(b;, c|a) =Pr(b; | c,a)-Pr(c|a). (7)

Notice that the term Pr (bi ’ c, a), giving the probability of measuring b; given the initial and final states, is the one
of interest for the ABL rule. Dividing both sides by Pr (¢ |a) gives

Pr(b;,cla
Pr(bi|c,a)=P£(c|L)>. (8)

The probability Pr (¢ |a) can be interpreted as the total probability of ultimately measuring the eigenstate |¢) given
that the initial state was |a), and that observable B was measured in between. This may be evaluated using the law of
total probability, accounting for every possible outcome of measuring B. Denoting by B the set indexing all possible
outcomes of the measurement of B, the total probability can be written as

Pr ( c|a ZPr c| J|a ZPr c|b (bj|a). (9)

jEB jeB



The conditional probability Pr (bi | c, a) in (8) can now be evaluated using equation (6) and the total probability (9)
above. Thus, the ABL rule can be written in its simplest form as follows:

Pr(c|bi) - Pr(bi]a) [(clbi) (bila)]”
Pr(b;|ca)= = 5- 10
(ol L Prlelb) Pr(bila) 3 [(elbs) (bsla)] 1

B. Degenerate Eigenvalues

The ABL rule can be generalized to accommodate eigenvalues of the measurements B and C which may be degen-
erate. It is no longer possible to uniquely label eigenstates like |b;) or |c¢) with only their eigenvalue, as the eigenvalue
b; may correspond to multiple eigenstates. Thus, another formalism for expressing probabilities like Pr (bi | a) is
needed. In the more general formalism of projective measurements, the observable B is defined via a set of projection
operators {P;} satisfying P;P; = d; ; P; and the completeness relation ), P; = I, where the operator P; projects onto
the eigenspace of the i’th outcome of the measurement. Given an arbitrary state |¢) the probability of measuring the
i’th outcome is given by Pr (i | |¢)) = (¢| P; [4).

The post-measurement state after obtaining the i’th outcome of observable B must also be reconsidered, as it is
no longer true that measuring outcome ¢ implies that the state collapses to a unique eigenstate. For this the Liiders
rule is needed, which prescribes the post-measurement state of |¢(¢)) after obtaining the i’th outcome of observable B
as NP, |1(t)); where N is a normalization constant to ensure that the state remains normalized. Thus, immediately
after measurement of B, and still assuming the Hamiltonian is zero, the system is in the state NP, |a).

The ABL rule can now be rewritten in the projective measurement formalism, which is valid for possibly degenerate
eigenvalues of B and C. As above, P; is the projector onto the eigenspace corresponding to the i’th outcome of
measurement B, and P, is the projector corresponding to the fixed outcome ¢ of measurement C.

Pr(c|b;)-Pr(bi|a) B ({(a| NP,)P.(NP;la)) - {(a| P; |a)

Privilee) = 2 Pr(elts) Pr(bla) 5 (el NFy)P(NF;la)) - ol P lo)

(11)

The expression may be put into a more compact form by rewriting the numerator above. Recall that P; is a
projector, so that P; = P;P;, and that N is a scalar which we are free to commute about the expression. The
numerator of (11) may then be written in the suggestive form

(<a| NPZ-)PCPi la) (a| P, (NPi |a>>. (12)
Unit norm states N P; |a) sandwich the expression. This allows one to write the above as a trace, using an orthonormal

basis containing NP;|a) and other orthogonal states, as any other basis state orthogonal to NP;|a) will also be
orthogonal to the (a| P; term. Then

Pr(c|b;) Pr(bi|a)=Te(P.Pila)(a| P;) = Tr(P.P,P.P) (13)
where we denote by P, := |a)a| the projector onto the initial state. Thus, the ABL rule can be rewritten in the
compact form below, valid for degenerate eigenvalues of B and C:

TI"(PCPZ‘PaPZ‘)
Pr(b; | ca)= . 14
( ! ) Z TY(PCPjPan) ( )
jE€B

C. Time Evolution

If the quantum state exhibits non-negligible time evolution between measurements, then there is a non-zero Hamil-
tonian H which must be accounted for. Immediately before measurement of B at time ¢, the system will have unitarily
evolved to the state e~ |a). According to Liiders rule, immediately after measurement of B the system is then in
the state N P;e ="t |a). Following unitary evolution up until time T immediately before measurement of C, the system
is finally in the state Ne=*#(T=t) P,e=#t |g). The probabilities in ABL formula (14) thus require a revision:

Pr(b; | a) = (a| " Pe="" |a)

) ) . ) 15
Pr (C ’ bz) — (<a| NelHtPielH(T—t))Pc(Ne—zH(T—t)Pie—th |a> ) ( )
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From section III B, the product of the probabilities above can be written compactly as a trace on the projectors.
Pr (c | bi) -Pr (bi | a) = Tr(eiH(T*t)Pce*iH(T*t)Pl-e*thPaethPi) (16)
The full ABL rule generalized for non-zero Hamiltonians thus takes the updated form

- (b- | . a) B Tr(eiH(Tft)PcefiH(Tft)piefthPaethPZ_) an
LI - Z Tr(eiH(Tft)PcefiH(Tft)pjefthPaethpj) :
JjEB

This is the form of the ABL rule used by Kent in his non-relativistic class of solutions, presented in section IV. With
this formula in hand, it is then straightforward to obtain expectation values for beables at intermediate times by
averaging over all possible values weighted by their above ABL probability.

D. In Relativistic Solutions

One may hope that the ABL rule extends to relativistic frameworks. As before, one could construct the probability
of a given outcome b; at an intermediate spacetime point y by pre-selecting on the initial condition on the initial
hypersurface Sy and post-selecting on the final boundary condition on the final hypersurface S. However, in general
there are points on both Sy and S which are spacelike separated from y, and these points cannot be regarded as being
in the past or future of y in any meaningful sense. Thus, the ABL rule as originally envisaged, namely relating an
initial state in the past of y and a final state in the future of y, does not extend naturally.

Full specification of the conditional probability replacing the ABL rule in relativistic solutions for intermediate
measurements of B requires further definitions which are postponed until the relativistic solutions are described in
section V. However, Kent will still make use of a conditional probability for an outcome b; given a relevant “final”
condition ¢ and an initial state |a). Formally, the conditional probability may still be expressed using equations (7)
and (9) as

Pr(c | bi) -Pr(bi ’ a)
j%%Pr(c | bj) -Pr(bj | a)'

Pr (bi | c, a) = (18)

Fortunately, the conditional probabilities are often highly simplified in the relativistic solutions. Upon postulating
the existence of “photon-like” particles in the system, which are treated as point-like particles moving along lightlike
spacetime segments, there are only a finite and often small number of possible final boundary conditions and interme-
diate beable values to be considered. The conditional probabilities are reduced to something like a geometric game
of “photon billiards”.

Recall from section II D that in the relativistic solutions, when considering the conditional probabilities at a space-
time point y, Kent post-selects not on the entire final boundary condition but only on that part outside the future
light cone of y. This leads to an interesting case: what happens when none of the relevant final boundary condition
is “visible” outside the future light cone?

More precisely, for a given intermediate spacetime point y, it is possible that every possible final boundary condition
pi(x) is the same for points x which lie on the final hypersurface S and outside the future light cone of y. That is,
pi(x) = pj(z) for all € S outside the future light cone of y. This will often be the case, at least in our toy models to
come, for spacetime points far in the past of the relevant interactions which take place in the system. At these points
far in the past, none of the photons correlated with system are yet able to escape the future light cone, resulting in all
of the final boundary conditions being indistinguishable outside the light cone. Now, only one of the final boundary
conditions will correspond to the one actually realized in the quantum system. However, in this special case, every
final boundary condition is equivalent for the set of points z € S outside the future light cone. Thus, no matter
which final boundary condition is actually chosen, the result of fictitiously measuring the final quantum state outside
the light cone on S is certain to give just one possible outcome. Thus, in our notation using c¢ as the relevant final
boundary condition, there is only one possible condition ¢, and it is certain. That is, in (18) above, Pr (c ‘ bi) =1
for all b;. This leads to a drastic simplification of the conditional probability:

Pr(bi | a)
> Pr(b;|a)

jEB

Pr(b; | c,a) = (19)

The denominator can be recognized as the total probability of measuring any one of the outcomes b; given the
initial state |a). However, one is of course certain to obtain one of the outcomes after measurement of B, thus the
denominator simply sums to one.
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In the numerator, all that remains is Pr (bi | a)7 the probability of measuring b; given the initial state |a). To
evaluate this probability, first consider evolving the initial state forward in time to the point of measurement. For
time evolution, Kent employs the Tomonaga-Schwinger formalism, which defines a unitary evolution operator between
spacelike hypersurfaces. Considering a hypersurface in the future of Sy which contains the spacetime point y of
interest, the Tomonaga-Schwinger formalism produces some state |a’) giving the unitarily evolved initial state on that
hypersurface.

Now, the probability of measuring a given outcome b; given the evolved state |a’) is prescribed by perhaps the
most successful empirical law of quantum mechanics: the Born rule. Thus, there exists a complete reduction of the
conditional probabilities used by Kent to the standard Born rule in the case when there is no relevant information
outside the light cone. This observation and its implications are the foundation for a forthcoming analysis [13] of
Kent’s interpretation.
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IV. NON-RELATIVISTIC MODELS

All of the tools needed to start applying Kent’s interpretation to model systems are now available. One may imagine
the non-relativistic framework would be simpler than the relativistic framework, with Minkowski spacetime structure
and post-selection outside the light cone. However, it will become clear that in fact the opposite is closer to the truth.
Nevertheless, let us first construct solutions to the quantum reality problem in non-relativistic three-dimensional
Euclidean space. First, the most straightforward approach one might hope for will be taken to construct a solution
to the quantum reality problem. It will ultimately fail, but motivate a successful second attempt and illuminate the
main challenges.

A. An N-Particle System

How far can Kent’s interpretation be taken in describing the physical reality of a generic N-particle system? This
idea was originally presented by Kent [14] in broad strokes but will be constructed here in detail.

Consider an N-particle system governed by pure unitary evolution generated by a Hamiltonian H. Suppressing
any intrinsic degrees of freedom, Kent considers mass as the preferred beable of the theory, allowing the i’th particle
to have its own mass m;. The quantum sample space for the system then consists of asymptotic final boundary
conditions in the form of final mass distributions of the system. Kent’s main postulate is then that upon random
selection of a single final mass distribution from the quantum sample space, the expectation value of the mass density
of the system may be defined for all points in spacetime.

As an initial condition, suppose the initial wave function of the system is provided as 1o (21, . . . , #%) for all #; € R3.
The unitarily evolved wave function at any later time is then given by

z/J(m'i,...,x'jv;t):e_thwo(x_L...,:v_jV). (20)

At a late time T', which is taken in the limit at T approaches infinity, it is postulated that there exists a final
mass distribution p(Z;T). As explained in section I, this final boundary condition is mathematically described as the
result of a fictional mass density measurement, here characterized by a mass weighted sum of position measurements.
Spacelike separated position measurements will be assumed to commute, so that simultaneous position measurements
at all points in space may be considered. Measuring the position of the i’th particle completely localizes the particle
to some position y;, thus upon such a measurement the probability density of each particle’s position collapses to the
position eigenstate §2(Z — 4;). The form of the final boundary condition is then a mass weighted sum of probability
densities

N
p(ET) = 3 mi (@~ ). (21)

Now to define expectation values for the mass density distribution at intermediate times ¢ and positions Z. To
do so, the ABL rule will be applied given the initial wave function 1y and final mass density distribution p(Z;T).
Following section III, the ABL rule probability of measuring some mass M; in a small volume §V around point Z at
time ¢ may be computed. Taking the limit as 6V goes to zero then produces the mass density at point #. The masses
M; are labelled with subscript ¢ as there are in fact only a finite number of possible masses which may be measured.
Recall mass density measurements are defined via a simultaneous measurement of particle position at all points in
space, localizing all particles to positions {y;}, then mass weighting the delta functions as in (21) above. Thus, upon
measurement, the entire mass of the i’th particle either will or will not be contained within the small volume §V.
The only possible outcomes of a mass measurement are then any combination of the m;’s summed together, which,
for finite N, is a finite set of masses.

Precise language will be needed in order to properly set up the ABL probability. For clarity below, all boldfaced
letters correspond to sets. Let N = {1,..., N} and define the set K = {k C N : k # ()} as the set of all non-empty
subsets of N. Each set k € K corresponds to a unique subset of the N particles. The combined mass of this collection
of particles is then My = > .., m;. Finally let the set M = {My : k € K} be the finite set of all such possible
combined masses.

The various projection operators appearing in the ABL probability must now be formulated. Let Py = |t )10
be the projector onto the initial state, and Pr = |y1,...,y~N)X¥1,.-.,y~| be the projector onto the final state with
mass distribution (21). The projector at intermediate time ¢ requires a bit more work; the projector Pﬁ[ is required
to project onto the eigenspace of states with mass M; € M in the volume 0V around a point Z, where 0V will tend
to zero. This requires that summing over all collections of particles k which have combined mass My = M;. For
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any such collection k, all particles ¢ € k must be projected onto the space inside §V but allow the other particles to
assume any position in space by integrating over all such possibilities. For notational convenience, define the set k¢
as the complement of k with respect to N, containing all particles not in k.

Define the projectors pjﬁ to project the system onto the space of states with the j'th particle localized at position
ij. As the Pjg project the j’th particle into a position eigenstate, it necessarily follows that PfPf = 03(% — Q')P;-j.
One may then construct a projector Pﬁx onto the space of states with mass M; in the volume 6V as follows. Below,
AP = [Tjex d*z; and d*Fe = [Lcke d®#; are written as a shorthand for the measures over positions.

Py = > /5 y &z [ PP / i [[ P (22)

k| My=M,; jek R3SV lek®

However, in the limit as the volume of §V tends to zero around &, when computing the probability density, the only
point which remains inside V' is Z. Thus define the projector Py , projecting onto the space of states with mass M;
in the differential volume dV around the position &, as

Pidvi= > /R ) EPae [[2F [ P (23)
M.

k| Mix=M; jek lek®

In the limit where the volume dV becomes infinitesimal around &, presumably only one particle at most will ever
sit inside V', though such details would be coded into the given Hamiltonian H defining particle interactions. In the
case that it is indeed true that two particles cannot both be perfectly localized to the same point in space after a
position measurement, the projector Pf/[ above can be written as

PLav=Y / @ a0 1A . i PE ] P (24)
jImy=M; ki

As the next step in writing down the ABL probability, one must construct the total probability term Pr( p(&; T) | 1)o)
expressing the probability of measuring the late-time mass distribution p(Z;T') given the initial wave function 1.
This probability is expressed by considering all possible intermediate measurements of mass M; at any position and
summing over all possible mass measurements M;. To this end, define the projector Pys, which projects onto the
space of states with mass M; at any point.

Py, = / 4*z P§, (25)
R3

With a slew of projectors defined, the ABL rule (17) can be evaluated for the probability density of measuring mass
M; at the point Z and time ¢, given initial state |¢)o) and final mass distribution p(Z;T).

Tr(eiH(T—t)PFe—iH(T—t)PIf/[ie—thPOethPIT;Ii)

Z ’I‘r(eiH(T—t)PFe—iH(T—t)PMje—thpoethPMj)
M;eM

Pr (M;, &t | o, p(#T)) = (26)

where all of the projectors Py, P, PI@” and Py, are defined above but left unexpanded here for readability. Fi-
nally, the expectation value of the mass density is obtained by averaging over all M; weighted by the corresponding
probability of M; directly above.

(p(@t)) = S M;-Pr(M;, &t |o) , p(TT)) (27)
M;eM

Viola, it would seem that Kent’s framework has succeeded in at least formally defining expectation values of mass
density at all points in spacetime, even if the solution is far from explicit. Unfortunately, although this formula gives
an answer, the answer is not a good one. In Kent’s own words, but which was also known quite well by Heisenberg,
the problem arises because localizing a particle to a single point “is a very violent thing to do to it” [14].

Let’s understand how the problem arises. Maintaining a non-relativistic point of view, the Heisenberg uncertainty
principle says that complete localization of a particle in position space results in complete delocalization in momentum
space. When considering a mass-weighted position measurement in the ABL rule at an intermediate time, the particles



14

collapse into position eigenstates, which are of course delta functions around the measured particle positions {z;} in
position space.

N
U@, ant) = [[6° @ - 2) (28)

In Fourier space, the wave function is thus completely delocalized, taking the form

N

N
Flo(a, ..., a5 1)) = / dan [[0° (3 - 5) e 2o = [ em2mis (29)

%

with non-normalizable momentum space probability density |1(w1,...,wx;t)[?> = 1. Thus, after the intermediate
position measurement, the particles may obtain arbitrarily high momentum. The effect is that any set of particle
positions at the late time T are equiprobable after the intermediate position measurement, and the final boundary
condition is completely uncorrelated with the intermediate time positions.

Thus, the formally correct expression (26) for the ABL probability Pr( M;, Z,t |vg, p(Z;T)) of measuring mass M;
at the point £ and time ¢ in fact assumes a much simpler form. For any given mass M;, the corresponding probability
of measuring M; is simply the number of particles with mass M; over the total number of particles.

Pr(M Tt [, BT = Y+ (30)

Jlmi=M,;

The ABL probabilities are thus constant over all spacetime as given above, leading to an expectation value (27)
which is also constant over all spacetime. Thus, our beables, the expectation values of mass density in spacetime, are
constant throughout our universe. An odd result which does not intuitively describe observed quasiclassical reality.

This catastrophe indicates that a particle’s position alone at late times is not enough to come up with any non-trivial
or intuitively appealing statement regarding expectation values of its mass density at earlier positions. Before making
another attempt, one might first argue that this attempt may not have been for nought if a relativistic attitude had
been taken; since after the intermediate position measurement, one can be sure that our wild particles at least stay
within their future light cone. One would be correct, and it is for this reason and others that Kent’s framework
becomes more natural in relativistic settings—as will be seen soon enough.

B. Interacting Classes of Particles

Suppose you decide to set two billiard balls on a crash course for each other on a frictionless infinite plane, with two
initially known positions and velocities. Measuring the position of one billiard ball well after the collision tells you
quite a lot about the other - in fact, from conservation of momentum one could ascertain exactly the position of the
other. Generalizing to a larger set of billiard balls, the picture gets more complicated but the general idea remains
intact - knowledge of the position of some balls yields much information about the others. Kent builds from this sort
of intuition, in a much more sophisticated way, to improve on his first prototype model described in section IV A.

Consider a further postulate that there exists a natural classification of particles into interacting classes. As Kent
introduces in [2], it is natural to assume two interacting classes composed of indistinguishable fermions and bosons,
and also allow for other distinguishable particles in either class. By allowing the two classes of particles to interact
for a finite time and assuming that the particles asymptotically reach well separated non-interacting final states, the
final mass distribution of the class 1 particles can be used to post-select on expectation values for the class 2 particles’
mass densities at intermediate times, and vice versa.

The previous model will require some modification but will remain largely intact. Again consider an N-particle
system, with b > 2 indistinguishable bosons, f > 2 indistinguishable fermions, and d > 0 distinguishable particles
such that b+ f +d = N. When labelling particles, let the first {1,...,b} label the indistinguishable bosons, the
next {b+1,...,b+ f} label the indistinguishable fermions, and the final {b+ f 4+ 1,..., N} label the distinguishable
particles. Now designate two classes of particles: class B composed of all the bosons and class F composed of all the
fermions, with each distinguishable particle allocated to either class B or F. Again letting N = {1,..., N}, define the
sets B={1,...,b} U{i > b+ f: particle i € class B} and F = {b+1,...,b0+ f} U{i > b+ f : particle i € class F}
containing the labels of the particles in each class, so that BUF = N.

The mass of the i’th particle is again labelled as m;, though it is required that all bosons have mass mp and all
fermions have mass mg. In this model it is assumed from the start that particles may not perfectly overlap in space
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after a position measurement, an assumption that, in the previous model, was only made later in equation (24). This
assumption entails that the result of a mass measurement in space may only yield one of the individual m;’s, as
opposed to any sum of them. Then define the sets of possible mass measurements for each class as Mg = {m;|: € B}
and Mp = {m;||i € F}, noting that M p contains the possibly different masses of the distinguishable particles in
class B as well as mp, and similarly for Mg.

Again suppose the initial quantum state |1} is given. By the new postulate, it is supposed that the composite state
of the system [ (¢)) decomposes into a tensor product of the individual states |11 (t))®- - -®[n(t)). The wave function
of the system is then ¢¥(21,...,a%;t) = (@1, ..., 2|1 (¢t)) and note that the wave function must obey the proper spin
statistics, so that (a7, ..., 25;t) is symmetric under exchange of any two bosonic labels and antisymmetric under
exchange of any two fermionic labels. Time evolution of states is again provided by a Hamiltonian H which defines
particle interactions between and within classes, so that the state evolves as |¢(t)) = et |¢)g).

An essential feature of this interacting class model is that in the ABL probability of measuring a given mass for the
class B particles, only the final mass distribution of the class F particles are post-selected on (and vice versa). Thus,
late-time mass measurements not of the entire system, but of just one class, must be considered. As before, late time
T mass distributions are constructed through a mass-weighted sum of position measurements. Position measurements
are performed as before, with the operators Pf projecting onto the space of states with particle ¢ localized at position
Z. Given the tensor product structure of the state, one may now write these projectors as

PP=L®  @L 0|7 {@,el110 - oIy. (31)

These projectors may then be used to construct mass density functions for a given particle. Denote p;(Z;t) as the
mass density function for the i’th particle at position Z, which, in words, gives the total probability of measuring this
i’th particle at position & weighted by its mass m;:

pi(Ft) = m; (Y()| PT [(t))

. . B e I, . (32)
:mi/del---dei,1d3$i+1-~-d3$N |’lﬂ(!L‘1,...,$i71,$71‘i+17...x]\[;t)|2.

It is worth noting that Pf, and thus p;(Z;t), is not well-defined on its own if ¢ is an indistinguishable bosonic or
fermionic label in the set {1,...,b4 f} C N. As the bosons and fermions are indistinguishable, how could one be sure

that PF projects the i’th boson and not the j’th boson? All that one can be sure of is that P¥ projects one of the
bosons onto position . However, sense can be made of operations including all of the bosons, such as Ele P?, which
projects all of the bosons onto position #. Similarly, this lets one place the mass density function of all the bosons
Zle m; (¥(t)| P¥ |4b(t)) on solid footing. The same story holds for the fermions, summing over i = b+ 1,...,b+ f
instead.

Importantly, the above lets one define the mass density functions for the two classes. The collective mass density
functions above for all of the bosons or fermions is well defined, and the addition of any number of distinguishable
particles presents no further problem. Thus, the mass density functions pg(Z;t) and pp(#;t) may be defined, giving
the probability density of finding a class B or class F particle at position & at time ¢, weighted by the mass of the
particle:

p(Tit) =Y m (B(1)| PF [y(t)) pr(Tst) =Y my ()] PF[3(t)) . (33)

i€B i€F

From the above the total mass density of the system can constructed as in the first model in section IV A by simply
adding the mass densities of the two classes: p(Z;t) = pp(Z;t) + pr(Z;t).

The final boundary must now be considered, again characterized as a fictitious late time 7" measurement of the
mass density at all points in space. This yields a final mass distribution for post-selection in the ABL rule probability.
However, to consider a simultaneous measurement at all points in space one need ensure that the operators Pf
commute for all ¥ and particle labels ¢, something taken for granted in section IV A. Without loss of generality,
consider two such projectors P and P;’ with ¢ < j, both considered at an arbitrary fixed time ¢. In the case that
1 # j, using equation (31), the operators leave each other well alone.

prgg:h@'“@-’ifl@ﬁ% (@], @ Liy1 @ @ Lj_1 ®Y), <g|j®lj+1®‘”®IN:PJng (34)
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And for the case i = j, again referring to (31), one has
PPl =1L @i o5, @) @, 0 Lin -0y
=L ®L10|8),8@-PN@, 011 ® @Iy

(35)
=L® L 1@y, Y)Z,@lit1® - 1IN

= Pfjpf

Thus the commutator [PF, P]g} vanishes in all cases. Thus, simultaneous measurements of P for all points & in space
are valid. In particular, simultaneous mass density measurements of the entire system can be defined via

S ms ((6)] PF (1)) (36)

i€EN

As before, a fictitious measurement of the position of all particles localizes each particle i to a delta function around
some point y;, producing a late-time mass density distribution of the form

p(#T) = pp(#;T) + pr(Z;T)
= > m;i (D) PFI(T)) + > mi (W(T)| PF (1))

i€EB i€F

= Zml/d?’ cdPrdBegy - B W@, . e, B i, 2 T
i€N (37)

ZmJﬁ e ety Sy 0@ - g) [[ 0@ - )

i€eN JFi

= mi 6@ - i)

i€N

And similarly, the class B and class F late-time mass distributions take the same form but summed only over their
respective particles.

BT) = mi 67 - ) pr(ET) =Y mi6°(F - 3;) (38)

icB i€F

Now the ABL probabilities are constructed. Doing so is mostly a matter of carefully specifying the correct set of
projection operators as before. For notational convenience and to avoid double quoting every equation henceforth, let
J be a placeholder for either class B or class F, and let .J denote the other class, as the classes play symmetric roles.
Similarly, define the sets J and J containing the labels for particles in set J and J, respectively. Finally, the sets M
and M 7 contain the possible outcomes of mass measurements for each class as defined earlier.

Consider the ABL probability for measuring a class J mass of M; € M at a position Z and intermediate time ¢.
The crux of the matter is that to evaluate the ABL probability for the class J mass density, we post-select only on
the late-time mass distribution of class J, the other class. Thus, the projector Py appearing in the ABL probability
only projects onto the space of states with the class .J particles localized at their respective final positions:

P = H PYi (39)

ieJ
The projector Py onto the initial state remains untouched as |1 )X1g|. A projector P}E’ 1, 18 needed at an intermediate
time t to project onto the space of states which have a class J particle of mass M; in the differential volume dV at

position Z. The positions of all other particles, in either class, are free to vary and are integrated over. As shorthand
for the measures, we write A3z = HJEN dgx_; and d3x'1(1\{j} = [lren kst dgfk, then define Py, via

PiadV = > /d?’x?\l\{j}Pf IT & (40)
JE€J | my=M; kEN : k#j

The total probability term in the denominator of the ABL rule (17) requires a projector Py a,, which, like the above,
projects onto the space of states with a class J particle of mass M;, but allows the particle to be found anywhere by
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integrating over all positions of the particle. One then sums over all possible masses M; in the ABL probability.

Py, = / d*z P¥,, (41)
R3 T

All of the pieces are in place. The ABL probability density for measuring a class J mass of M; € M at a position
Z and intermediate time ¢ is given below.

Tr(eiH (T—1) pJd o—iH(T—t) pZ e—tHtp iHtpT
Pr(M;, J, @t [0, p5(FT)) = S i b B (42)
ZMjeM Tr(ezH(T—t)PFle—zH(T—t)pJ’Mj eﬂHtP()elHtPJ,Mj)

Finally the expectation value of the mass density for class J at position & and time ¢ is obtained by averaging over
all M; € M; weighted by the corresponding probability above.

M;eM,;

Letting J run over the bosonic and fermionic classes, the above defines the expectation values for the beables of
our theory, the mass density of the fermionic and bosonic particles. In the quantum system in which all physics take
place between times ¢t = 0 to T, with initial quantum state |1)g), quasiclassical physical reality is described by the
following two generalized mass density fields on spacetime.

{p?(T5t), pp(T5t) : 0<t < T, T eR%} (44)

A solution to the non-relativistic quantum reality problem may now be claimed. Having formally solved the quantum
reality problem, some natural questions may arise, addressed now.

How does this solution escape the trivial description encountered in the previous model?

Recall how the problem arose in the first model. The question being asked in the ABL rule probability was: given
the position of all particles at an intermediate time, what is the probability of finding them in the correct final
configuration at late time? The answer was trivial, as completely localizing the particles at the intermediate time
destroys any ability to predict their future positions, as seen in equation (30).

The key difference here is that, to derive an ABL probability of finding the fermions in some position at intermediate
time, one considers an intermediate time measurement of the fermions positions, but then does not post-select on these
fermion positions, only the bosons’ positions. Thus, while any power to predict future fermion positions is ruined by
measuring their positions at an intermediate time, ones does not lose power to predict boson positions after measuring
the fermions, as the bosons themselves were not measured at an intermediate time. The same story of course holds,
replacing bosons with fermions and vice-versa. Thus, assuming there are non-trivial interactions between the bosons
and fermions, the ABL probabilities are now non-trivial as well.

Is this solution unique?

No. Kent’s framework can accommodate different beables for the theory, and Kent himself considers alternatives
such as the electromagnetic field in later work [9].

Which is the correct solution then?

One might suggest that, since there appear to be numerous ways of defining physical reality via different beables,
only one such description should be correct. Or, perhaps, a single beable may not be enough to describe a “full”
physical reality. Does there then exist a fundamental set of beables which collectively describe quantum reality through
their expectation values in spacetime? These are interesting questions to be explored!
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V. SEMI-RELATIVISTIC MODELS

The principles of relativity suggest that the spacetime manifold of the universe, at least locally, looks like Minkowski
space. Any interpretation of quantum theory would then ideally extend naturally to Minkowski space and respect the
symmetries of special relativity. This is not always the case — it has proven challenging to extend other interpreta-
tions addressing the quantum reality problem, such as de Broglie-Bohm pilot wave theory [15], to Lorentz-covariant
interpretations. However, Kent has proposed a relativistic interpretation, modifying his interpretation considered in
section IV, which describes physical reality using fully Lorentz-covariant rules, appropriate for Minkowski space and
other background spacetimes.

Intriguingly, Schrodinger’s cat might just escape quantum purgatory in Kent’s relativistic interpretation. As will
be seen, the relativistic form of Kent’s interpretation paints an interesting picture of physical reality for quantum
states in superposition. While all kinds of particles or field perturbations are treated on equal footing, photon-like
particles moving at the speed of light play an important preferred role, acting much like an “environment” on which
the quantum state leaves a physical mark. Through interaction between the quantum state and these photons,
the beables of systems in superpositions may be knocked into definite configurations localized in space, producing a
Lorentz-covariant “collapse” of the beable values. That is, while the quantum state itself persists in a superposition, the
physical beables describing reality may not reflect that superposition, instead assuming a configuration corresponding
to a measurement eigenstate.

First, the basic structures involved in Kent’s nonrelativistic framework, presented in section IV, will be extended
to their Lorentz-covariant counterparts in subsection A. In the following two subsections, B and C, illuminating semi-
relativistic toy models will be considered, with interactions between photon-like particles and larger quantum systems
which are initially in superpositions of spatially well-separated states.

A. The General Form

The general structure of Kent’s framework remains mostly intact. The spirit of the ABL rule retains a prominent
role, though a key modification is made which is responsible for the Lorentz covariant description of physical reality
in the relativistic framework. Some new constructions are needed to properly express the new form of the conditional
probabilities for intermediate measurements.

An initial quantum state |1g) is now more generally provided on some spacelike hypersurface Sy. In the non-
relativistic setting, the unitary evolution of quantum states was generated by a Hamiltonian operator, from an initial
time ¢ = 0 to a later time 7. In the relativistic setting, the generalization of the evolution of quantum states between
arbitrary spacelike surfaces in Minkowski space is provided by the Tomonaga-Schwinger formalism [10]. Given the
initial state |1g) on Sy, the Tomonaga-Schwinger formalism provides a unitary operator Ugg, which gives the evolved
state of the system Ugg, |¢)o) on any hypersurface S in the future of S.

Now it is postulated that there exists a single final boundary condition, a single final beable configuration on
the final hypersurface S, chosen by Nature from the sample space. Recall that a convergent sequence of ever later
hypersurfaces is used to define the final boundary conditions, each with beable probability density prescribed by the
quantum state as evolved up to that hypersurface. As a shorthand for the limiting hypersurface of this sequence, let
us simply consider a single hypersurface S with evolved state Ugsg, |1o)-

To be explicit, let us consider mass-energy density as the beable, where it is assumed that spacelike measurements
of mass-energy commute. First, define the mass-energy density distribution on S as Ts(z) = T}, (z)7*(z)n” (z), where
T, () is the stress-energy tensor at the point € S and 7(z) is the forward pointing timelike unit 4-vector normal to
the tangent plane of S at . Then a single such distribution ¢g(x) is chosen by Nature which corresponds to physical
reality. Keep in mind that no physical measurement of Ts(z) is actually performed by any kind of outside observer,
though we mathematically characterize tg(z) as the result of such.

Now consider an arbitrary spacetime point y between Sy and S. Kent constructs a number of hypersurfaces as a
function of y, and the notation will deviate slightly from that used by Kent [8], so to make the notation as clear as
possible. First define the surface Ag(y) as the set of points on the future light cone of the point y, up to and including
the intersection of the light cone with the final surface S. Then define the surface S, (y) as the set of points x € S
which lie outside the future light cone of Y. Kent then calls the surface Sa(y) := Sout(y) U As(y) the effective future
boundary of y. It includes all points on S outside the future light cone of y and the future light cone of y itself up to
the intersection with S.

To define probabilities, it is useful to consider S (y) as the limit of a sequence of spacelike hypersurfaces, as follows.
Consider a sequence of spacelike surfaces S;(y), with ¢ € N, which contain the point y and include all z € S,,:(y) such
that the distance from z to any point z € Syu:(y) N As(y) (where Syt (y) meets the light cone) is greater than some
distance ¢;. If ¢, — 0 as ¢ — oo through some sequence, the condition that each S;(y) must remain spacelike ensures
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So

FIG. 2: The spacelike hypersurface Sout(y) in bold blue, for a given spacetime point y between the initial hypersurface So and
final hypersurface S.

convergence to the unique surface Si(y) = lim; o Si(y). A requirement of Kent’s method is that the proposed
solution must not be dependent on this limiting process.

Now for computing probabilities of intermediate spacetime measurements. As each S;(y) is a spacelike hypersurface
in the future of Sy, one may use the Tomonaga-Schwinger formalism to evolve the initial state |[¢)g) on Sy to some state
Us, s, |%0) on the surface S;(y), ultimately being interested in the limit as S;(y) — Sa(y). Now one needs to determine
the probability of measuring a certain outcome T,{V of the stress-energy tensor 7T}, at the point y € S;(y), conditional
on measuring tg(x) for all x € S;(y) NS and conditional on the initial state |a). Notice that the post-selection takes
place on tg(x) only for x outside the light cone of y, implying that the conditional probabilities are blind to the part
of the final boundary condition which falls within the timelike future of y.

€; €;

Sa(y)

So

FIG. 3: Spacelike hypersurfaces S;(y) (left) converging, as ¢; — 0, to the effective future boundary Sa(y) (right) for a given
spacetime point y between Sp and S.

As demonstrated in section III, this conditional probability can be decomposed, but with one difference. It cannot
be said that Pr (ts(z) | Ti,,la)) = Pr(ts(z) |T3,). Previously, by Liiders’ rule, the intermediate measurement
instantaneously collapses the state to a measurement eigenstate, so that the later probability of obtaining the final
boundary condition depended only on the state after the intermediate measurement, not on the initial state. However,
in the relativistic case, it is assumed that spacelike separated measurements commute, and that points on the final
boundary condition which are spacelike separated from the point of measurement should not be influenced by the
measurement. Thus, the initial state remains relevant at such points. With this pedantic correction, one may similarly
formulate the conditional probability as in section III equation (18) as

j _ Pr(ts() | Ti,,la) - Pr (74, | la)
Pr (T}, | ts(x),|a)) = >, Pr (ts(z) | TE, |a) - Pr(TF, | |a)) 1)

where tg(z) is considered for all z € S;(y)N.S, and the sum over j runs over all possible outcomes Til, of measuring the
stress-energy. This procedure may be used to obtain conditional probabilities for measuring the stress-energy tensor
for each point y between Sy and S. One may then construct the expectation value of the stress-energy, (T}, (y)), in the
usual way. That is, a probability has been associated to every possible outcome 77, of measuring the stress-energy
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tensor. By averaging over all possible TIZV weighted by the corresponding conditional probability, the expectation
value of T}, (y) is obtained as

(T (y)) = ZTﬁV -Pr (T3, | ts(z),|a)) (46)

where the sum over j again indexes over all possible measurement outcomes Tgy of measuring the stress-energy.

In our universe defined between spacelike hypersurfaces Sy and S, where S is the limit of a convergent sequence
of ever later spacelike hypersurfaces, Kent’s framework thus constructs beable expectation values for the tensor field
(T, (y)). The inferred physical reality of the system can then be succinctly described by

{(Tw () : So <y < S} (47)

where the notation implies that y lies between the surfaces Sy and S.
The Role of Photons in Kent’s Relativistic Framework

Our modified procedure for relativistic systems has a major implication which was, so far, not stated explicitly. Post-
selecting only on the part of the final boundary condition that falls outside the light cone of a given spacetime point
excludes a vast amount of information; in fact, by definition, only a particle moving at light speed could ever stay
outside this light cone: everything else in the universe which moves at less than light speed, such as massive particles,
will eventually be swallowed up by the light cone as we let the final hypersurface S tend to the infinite future.

Photons, or at least particles or field propagations which can keep pace with photons, thus play a vital role in
Kent’s solutions. They are the only particles which can ever escape the light cones of intermediate spacetime points
as S tends to future infinity, and thus are vital information carriers in Kent’s framework. They are the only particles
carrying information relevant for the conditional probabilities.

B. Toy Model: Single Photon Interaction

How exactly do photon-like particles knock the beables of the system into measurement eigenstates, despite the
quantum state itself existing in superposition? Let us find out with a simple toy model presented by Kent [8]. Here,
we will consider a massive system in a well-separated superposition of stationary, non-interacting states which are
spatially well-separated in one dimension. The physical beable of the system will be mass density, that is, the physical
reality of the system will ultimately be described by the expectation value of mass-density at every spacetime in the
system.

To begin, one must address the behavior of photons themselves. It is true that photons may be most accurately
described as having a non-negligible “width” and corresponding wave packet, but for our purposes it is not unrea-
sonable to model photons as purely point-like particles, perfectly localized in space, which always move at the speed
of light. Furthermore, the toy models are presented in one spatial dimension, so that the photon wave function can
be simply described as a delta function moving leftward or rightward at the speed of light. If the reader is put off by
these assumptions, note that Kent has replaced these simplifications with the formalism of photon wave mechanics
[9] and achieved similar results.

This toy model considers an interaction between a slow-moving massive system in a superposition of two spatially
well-separated states and a photon-like particle, which follows lightlike paths at the speed of light, taking ¢ = 1
in natural units. Denote the entire composite state as |(t)) with subsystems |¢g(t)), the massive system in a
superposition of states, and |4 (t)), the photon-like particle.

To construct the massive subsystem [1g(t)) in a superposition, consider two states |11) and |¢9) each with mass
M, which are thought of intuitively as “mass clouds”. For concreteness, let us take the wave functions ;(x) and
12(x) to be normalized Gaussian functions centered on position 1 and xe with x; < 2, and of widths o and o9,
respectively. The wave functions are required to be well separated, so that 01,09 < |22 — 21|, implying that

(Wrlepn) = / de 3 (@ pa(z) ~ 0. (45)

The details of the wave functions’ spread about their center points are not central to the construction as long as the
above condition holds; in particular, they need not be Gaussian. Assuming the above does hold, write the massive
subsystem as the superposition [1s) = a|1) + b|ie) for a,b € C with |a|? 4 |b|?> = 1. For simplicity the dynamics
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and self-interactions of the massive subsystem are ignored and let the Hamiltonian Hg of the subsystem be zero, so
that |15 (t)) has no dynamics when unperturbed by any other system.

Now consider the other part of the system, a single point-like particle |1, (t)) which moves at the speed of light,
¢ = 1, which is referred to as a “photon”. The initial wave function of the photon is modeled as

Py (5t) = 6(x — (20 £ 1)) (49)

which, in words, is a delta function initially located at some point xg, but which propagates to the right (+t) or to
the left (—t) at the speed of light.

Interactions are simplified to “bounces”, as Kent puts it: upon an interaction of the photon and mass cloud 1 at
position x1, the photon reflects off the mass cloud and travels in the opposite direction, and similarly for the other
mass cloud. As Kent points out, this interaction indeed violates conservation of momentum, but if the mass clouds
are considered to be macroscopic systems of non-negligible mass, the momentum imparted by the incoming photon
will be negligible. Moreover, assume that interactions are certain to happen in the sense that a photon will always
interact with one or the other of the mass clouds constituting the massive system.

Now consider a final boundary condition on S in the form of a mass-energy distribution T's(x) = T, n*n” for all
z € 8, where T}, is the stress-energy and n# are the components of the unit vector normal to the tangent plane of S
at x. Kent postulates that the expectation value of mass-density p(y) at any point in spacetime can be inferred by a
single such stress-energy configuration tg(x) at late times.

For the initial conditions, let us consider the massive subsystem [¢s(t)) in a superposition of [i1) and |¢2) as
described above, with the photon propagating rightward from the far left of the entire system. Suppose that the
photon will arrive at the point x; at some time t; and, if unreflected by the first mass cloud, will arrive at the point
x9 at time ty = ¢1 + (x2 — x1). Using the position variable z for the photon and y for |g(t)), the wave function
P(x,y;t) of the system, for t < t1, i.e. up until the time of the first possible “bounce”, is given by

Pl y;t) = 0(z — (t+ 21 = 1)) - (a1 (y) + b¢a(y)) - (50)

At time tq, the photon arrives at the first mass cloud at the point z;. In our simplified interaction picture, one must
account for the two possibilities corresponding to the superposition between the two mass clouds. In the first scenario,
the photon interacts with the first mass cloud at x, reversing its direction as a result. In the second scenario, the
photon interacts at time to with the second mass cloud after propagating to xo. For the intermediate times between
t1 <t < ts, the wave function of the system thus takes the form

Pz, y;t) = 0(z = (b + 21 = 1) - ahr(y) +6(x — (E+ 21 — 1)) - bha(y) - (51)

The situation is depicted in figure 4 assuming that in fact the photon reflects off of the first mass cloud rather than
the second one. Finally, after time ¢ the photon heading to the second mass cloud will have also interacted and
reversed its direction, implying the wave function of the system for times t > ¢5 as

Y(x,y;t) = 0(x — (tr + 21 — 1)) - ah1(y) +6(x — (t2 + 22 — 1)) - biba(y). (52)

Let us consider a universe in which Nature selects a certain final boundary condition tg(z) for the late-time mass-
energy configuration which indicates that the photon indeed reflects off the first mass cloud - that is, one finds localized
mass-energy density along the leftmost outgoing light ray d(z — (t1 +x1 — t)) at late times in tg(z). The goal is now
to define expectation values of mass density (p(y)) for all intermediate points in spacetime, with particular interest
in the mass density at the spatial points x; and x5 corresponding to the centers of the mass clouds.

Postulating that the photon moves along lightlike paths greatly simplifies the conditional probabilities of measuring
any given value of mass density at intermediate times, since in this model there are only two possible outcomes of
a fictional late-time measurement of mass-energy: that in which the photon mass-energy is found in the position
which corresponds to having reflected from the first or second mass cloud. Moreover, the leftmost outgoing light ray
d(x — (t1 +x1 — 1)) encodes both possible outcomes - if mass-energy is found along this light ray at late time, it must
be that the photon reflected from the first mass cloud; if no mass-energy is found along the light ray, the photon
must have reflected from the second mass cloud. For an arbitrary point y in spacetime, if the leftmost outgoing light
ray is present on the surface S,.:(y) (outside the light cone of y), then the presence or absence of mass-energy along
that light ray makes definite whether or not the photon “actually” reflected from the first mass cloud. Thus, if the
leftmost outgoing light ray falls outside the future light cone of a given intermediate point y, the mass density will
be forced into taking a definite value localized at either x; or xo, despite the wave function of the massive subsystem
persisting in superposition. In this example, where Nature randomly selected the final mass-energy configuration with
mass-energy in the support of the leftmost outgoing light ray, the mass density must be found localized around x; for
such points y.
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FIG. 4: Single photon interaction. Diagonal lines represent possible photon paths, where the paths branch at z; and the wave
function becomes a superposition. The thick blue line is the “actual” path taken by the photon in the case where Nature
randomly selects a final boundary condition with mass-energy distributed on the final hypersurface where it is intersected by
the leftmost outgoing ray. The grey region depicts the “region of indeterminacy”, where mass density configurations represent
Born rule weighted averages. The vertical lines at x1 and x2 show the temporal structure of the collapse of the mass density,
and Az = xo — x1. Dotted lines represent Born rule weighted proportions of mass density, solid vertical lines represent the
complete presence of mass density, and dashed lines represent absence of mass density.

Here it is useful to go beyond Kent’s exposition and introduce the concept of a region of indeterminacy, depicted
as the grey region in figure 4. In the context of a system in a superposition state, the region of indeterminacy is the
set {y} of points in spacetime for which the surface S,,:(y) does not contain the relevant information which describes
the final boundary condition for the massive subsystem. Recalling our discussion from section III D, for all spacetime
points in the region of indeterminacy, every possible final boundary condition appears the same - all of the relevant
information is contained within the forward light cone, inaccessible in the conditional probability. It was shown that
in this case, the conditional probability defaults to the Born rule given the unitarily evolved initial state.

In this case, the region of indeterminacy can be explicitly stated as the set of spacetime points

{y =", 2"): ¢ <ty — (' —x1)}. (53)

For spacetime points in this region of indeterminacy, the mass-density beables remain in a configuration corresponding
to their Born rule weighted average, with |a|?M proportion of the mass distributed around z; and |b|? proportion
distributed around z5. For spacetime points outside the region of indeterminacy, in a universe in which Nature selects
a final boundary condition with mass-energy on the leftmost outgoing ray, the mass is found completely localized
around x.

Thus, the mass-density beables p(y) describing the physical reality of the system are summarized in figure 4 and
summarized as follows. For spacetime points y’ = (¢/, 2’) falling within the region of indeterminacy, the mass density
distribution takes the form

(p(a’;t")) = Mlaf?|p1 (2')* + M|B*|¢(2) (54)
while for spacetime points y = (¢, z) outside the region of indeterminacy, the mass density distribution takes the form

(p(a5t")) = My ()] (55)
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Similarly, if Nature had chosen a final boundary condition with mass-energy in the support of the rightmost outgoing
light ray, the mass density distribution would be distributed like |t/ (z")|? around x5 for spacetime points outside the
region of indeterminacy.

An interesting observation about this toy model is that the rightmost outgoing light ray corresponding to the photon
interacting with the second mass cloud at x5 is never relevant, the presence or absence of the photon along the the
first outgoing light ray is sufficient to determine the conditional probabilities for intermediate measurements of mass
density.

As depicted in figure 4, “news” of the interaction at 1 and the ensuing collapse of mass density does not propagate
instantaneously across the universe at time ¢; (the time of interaction) as one might intuitively expect. In fact, one
sees a collapse defined by the leftmost outgoing light ray, so that points to the right of z; in collapse before ¢; and
points to the left of x1 collapse later in time than ¢;.

There is another, seemingly awkward, conclusion—during the time interval t; — Az < t < t; it seems that the mass
density is only “partly present” as Kent puts it [8]. That is, for a time-slice of the universe in this time interval, the
mass density does not seem to be fully realized, with only |a|? < 1 percentage of the total mass present. This indeed
appears awkward, though one must recall that, in a sense, a “time-slice” of the universe is not a relativistic concept.
Even if the collapse did occur instantaneously in one reference frame, it necessarily would not appear so in any other
boosted frame of reference.

C. Toy Model: Two Photon Interaction

Intuitions may be developed further with a small addition to the first toy model of section V B, in which a second
photon is introduced to the system. Ultimately, a similar story will emerge: but with a corresponding collapse of
mass density across a light cone structure instead of across a single light ray, and with a corresponding triangular
region of indeterminacy.

As before, consider the state |1g(¢)) initially in a superposition of two spatially well-separated states |¢)1) localized
around position z1 and |is) around s, such that, initially, [t5(t)) = a|t1) + b|hs) for a,b € C with |a|*> + |b]? = 1.
Each state again has mass M. The dynamics and self-interactions of |¢g(t)) are ignored so that the state doesn’t
evolve in time when unperturbed. As before, interactions between |¢g(t)) and incoming photons are modeled by a
simple bounce of the photon off the system.

Now suppose there are two photons at play in the system, the states of which are denoted as |41 (t)) and [142(t)).
The first photon [¢),1(t)) approaches the system from the left, reaching the point z; at time ¢; as before, and now
suppose that the second photon |i,2(t)) approaches the system from the right, reaching the point xs at the same
time ¢;. Allowing x to label the position variable for |1,1), ¥ for |1g), and now also z for |1,2), the wave function
for the system for times t < t; becomes

(@, y,zt) = 6(x — (21 + ¢ = 11)) - (2 — (22 — £+ 1)) - (ath1(y) + b¥2(y))- (56)

At time ¢q, the rightward traveling photon [¢.,1) arrives at mass cloud one, while the leftward traveling photon
|thy2) simultaneously arrives at mass cloud two. As |¢g) is in a superposition, one must again account for the two
possibilities in which the superposed state is “found by a photon” around one or the other mass cloud. In either case,
letting X = 1,2, one of the photons will interact with mass cloud X at time ¢; and reverse its direction, while the
other continues propagating toward mass cloud X up until interaction with mass cloud X at time to = t1 + (z2 — x1).
Thus, for ¢; < t < to the wave function of the system takes the form below

Y(x,y,z;t) =0(x — (k1 —t+1t1)) - 6(z — (22 —t+ t1)) - atp1(y)

+(5($L‘—(l‘1 +t—t1))~6(2—($2+t—t1))~b¢2(y). (57)

Finally, upon reaching the mass cloud X at time ¢y, the other photon interacts and reverses its direction as well.
Then for t > t9, the wave function of the system assumes the form

Y(x,y,z;t) =0(x — (1 —t+11)) - 6(z — (w1 + ¢ — t2)) - ah1(y)

B — (s — t 1)) 6z — (a2 4t —11) - bun(y) (58)

Now, for the final boundary condition, suppose that Nature selects an asymptotic late-time mass-energy distribution
which indicates that the photons [1.,1) and |t)2) reflected from mass cloud one located at x = x1, though of course
we could analogously consider the photons reflecting from mass cloud two.

The conditional probabilities are again very simple - it remains true that the leftmost outgoing light ray corre-
sponding to |¢,1) reflecting off mass cloud one encodes all the relevant information about the system. Also similar to
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FIG. 5: Two photon interaction. Diagonal lines represent possible photon paths. The thick blue line is the “actual” paths
taken by the photons, one of the two possible outcomes which was chosen at random by Nature. The grey region depicts the
“region of indeterminacy”, triangular this time, where mass density configurations represent Born rule weighted averages. The
vertical lines at x1 and z2 show the temporal structure of the collapse of the mass density, and Ax = x2 — z1. Dotted lines
represent Born rule weighted proportions of mass density, solid vertical lines represent the complete presence of mass density,
and dashed lines represent absence of mass density.

the first toy model: the other light ray for |¢.1) which reflects from mass cloud two is never needed, as it lags behind
the leftmost light ray and is thus “harder to see” in the conditional probability. However, there is now another set
of two light rays from [t),2). The rightmost outgoing ray corresponding to [t,2) reflecting from mass cloud two also
encodes all of the relevant information about the system in the sense that if mass-energy is found along this light ray,
the mass density of the massive subsystem must be found centered around mass cloud two, and otherwise, it must
be found centered around mass cloud 1. Thus, one now has a collapse along the rightmost outgoing light ray as well
as the leftmost outgoing light ray. Any point in spacetime y which falls in the future-time side of at least one of
these light rays will “see” the relevant information in the late-time mass-energy distribution in the surface S,u:(y)
used in the conditional probability. Thus, the region of spacetime which does not see the collapse must lie in the
past-time side of both collapses across the leftmost and rightmost outgoing light rays, resulting in a triangular region
of indeterminacy.
In this case, the region of indeterminacy is formulated as the set of spacetime points 3’ defined by

{yy =2t <ti+ (2 —z9) and t' < t; — (2' —x1)}. (59)

Thus, the mass-density beables p(y) describing the physical reality of the system are summarized in figure 5 and
summarized as follows. For spacetime points y' = (¢/,2’) falling within the region of indeterminacy (59), the mass
density distribution takes the form

(p(a’st")) = Mla?|p1(2))[* + MBI [a(2)? (60)
while for spacetime points y = (¢, z) outside the region of indeterminacy, the mass density distribution takes the form
(p(a’st")) = M (). (61)

Similarly, if Nature had chosen a final boundary condition with mass-energy in the support of the light rays reflecting
from the mass cloud two instead of mass cloud one, the mass density distribution would be distributed like |2 (2")|?
around z for spacetime points outside the region of indeterminacy.
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As made evident in figure 5, in this case one gets a full collapse of mass density at time ¢t; — Az. This is due to the
two photons arriving at their respective system precisely at time ¢; in the rest frame of superposed massive system.
If one of the photons were to arrive before or after the other, the corresponding region of indeterminacy would be
shifted so that the mass density collapses at 21 and z2 would no longer occur at the same time in the rest frame.
Thus, the “missing mass” phenomenon of the first model remains present.

Introducing more photons into the system thus has the effect of shrinking the region of indeterminacy, or equivalently
making the mass density beables describing physical reality localized at more points in spacetime as opposed to being
distributed between z; and z5. In most other regards, the picture is very similar to the single photon model. Both
models have in common the feature that the actual mass density of the system remains distributed between the states
in superposition until interaction with an “information carrying” photon, at which point they collapse into localized
configurations.



26
VI. CONCLUSION

Adrian Kent has proposed a mathematically precise interpretation of quantum theory which solves the quantum
reality problem. By considering a sample space of physical beable distributions in the asymptotic infinite future,
with a well defined probability distribution over those distributions, one can postulate that the physical reality of
the quantum system corresponds to one such distribution chosen at random from the sample space. Entire histories
of the beables’ actual expectation values are then inferred from the final distribution, making definite the physical
reality of the quantum system at all points in spacetime. Moreover, his framework defines these histories using fully
Lorentz covariant rules, ultimately producing Lorentz covariant descriptions of quantum reality.

In this paper, Kent’s framework was presented and worked out in detail for a number of systems. As increasingly
sophisticated models are considered [8, 9], Kent’s interpretation continues to provide a coherent and illuminating de-
scription of physical reality in quantum systems; of course, with no rigorous formulation of relativistic quantum theory
known at present, a thorough analysis of Kent’s interpretation must ultimately wait. Nonetheless, his interpretation
of quantum theory endows quantum reality with physical existence and mathematical precision, solving the quantum
reality problem, and providing us all with an enlightening perspective of the quantum world.

Acknowledgements

I sincerely thank Jeremy Butterfield for his supervision, editing, and his Michaelmas 2017 term class “Philosophical
Aspects of Quantum Field Theory” during Part IIT of the Mathematical Tripos at the University of Cambridge.
Comments passed on from Adrian Kent were much appreciated and greatly improved the text. Gijs Leegwater was
very kind in sharing his time to explain non-locality in Kent’s solutions. Finally, I thank Sam Crawford for his talk
on interpretations of quantum theory and Matthew Horner for stimulating discussions. This material is based upon
work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE - 1656518.

References

[1] A. Kent, “Real world interpretations of quantum theory,” Foundations of Physics, vol. 42, no. 3, pp. 421-435, 2012. doi:
10.1007/s10701-011-9610-z.

[2] A. Kent, “Solution to the lorentzian quantum reality problem,” Phys. Rev. A, vol. 90, p. 012107, Jul 2014. doi:
10.1103/PhysRevA.90.012107, URL: https://link.aps.org/doi/10.1103 /PhysRevA.90.012107.

[3] J. S. Bell, “The theory of local beables,” in Quantum Mechanics, High Energy Physics And Accelerators: Selected Papers
Of John S Bell (With Commentary), pp. 744-754, World Scientific, 1995.

[4] J. S. Bell and A. Aspect, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy.
Cambridge University Press, 2 ed., 2004. doi: 10.1017/CB09780511815676.

[5] D. Bohm, “A suggested interpretation of the quantum theory in terms of "hidden” variables. i,” Phys. Rev., vol. 85,
pp. 166-179, Jan 1952. doi: 10.1103/PhysRev.85.166, URL: https://link.aps.org/doi/10.1103/PhysRev.85.166.

[6] H. Everett, “’relative state” formulation of quantum mechanics,” Rev. Mod. Phys., vol. 29, pp. 454-462, Jul 1957. doi:
10.1103/RevModPhys.29.454, URL: https://link.aps.org/doi/10.1103/RevModPhys.29.454.

[7] A.Kent, “Against many-worlds interpretations,” International Journal of Modern Physics A, vol. 05, no. 09, pp. 1745-1762,
1990. doi: 10.1142/S0217751X90000805, URL: https://doi.org/10.1142/50217751X90000805.

[8] A. Kent, “Lorentzian quantum reality: postulates and toy models,” Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 373, no. 2047, 2015. doi: 10.1098/rsta.2014.0241, URL:
http://rsta.royalsocietypublishing.org/content/373/2047/20140241.

[9] A. Kent, “Quantum reality via late-time photodetection,” Phys. Rev. A, vol. 96, p. 062121, Dec 2017. doi: 10.1103/Phys-
RevA.96.062121, URL: https://link.aps.org/doi/10.1103/PhysRevA.96.062121.

[10] F. J. Dyson, “The radiation theories of tomonaga, schwinger, and feynman,” Physical Review, vol. 75, no. 3, p. 486, 1949.
doi: 10.1103/PhysRev.75.486.

[11] J. Butterfield, “Peaceful coexistence: Examining kent’s relativistic solution to the quantum measurement problem,” in
Reality and Measurement in Algebraic Quantum Theory (M. Ozawa, J. Butterfield, H. Halvorson, M. Rédei, Y. Kitajima,
and Y. Buscemi, eds.), Springer, 2018. doi: 10.1007/978-981-13-2487-1_11.

[12] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, “Time symmetry in the quantum process of mea-
surement,” Phys. Rev., vol. 134, pp. B1410-B1416, Jun 1964. doi:  10.1103/PhysRev.134.B1410, URL:
https://link.aps.org/doi/10.1103 /PhysRev.134.B1410.

[13] B. Marsh, “A generalized born rule in kent’s interpretation of quantum theory,” In preparation.

[14] A. Kent, “A solution to the lorentzian quantum reality problem,” 2014. Free Will and Retrocausality in the Quantum
World, URL: https://newagendasstudyoftime.wordpress.com/events/retrocausality-conference/.

[15] A. Valentini, “On galilean and lorentz invariance in pilot-wave dynamics,” Physics Letters A, vol. 228, no. 4, pp. 215 —
222, 1997. doi: 10.1016/S0375-9601(97)00101-1.



