
A computational complexity approach to the

definition of empirical equivalence.

Doriano Brogioli

January 17, 2019

Abstract

I propose to investigate the problem of empirical equivalence by per-
forming numerical calculations, simulating hypothetical physical systems,
with known evolution rules, which include a robot performing an exper-
iment. The aim of the experiments of the robot is to discover the rules
governing the system in which it is simulated. The proposed numerical
calculation is actually a thought experiment: I discuss the principles of
how the discussion on the empirical equivalence should be performed; the
discussion is based on the evaluation of the complexity classes of prob-
lems connected to the numerical calculation. Based on this discussion, I
prove a sufficient condition for empirical equivalence, which is based on
the existence of a transformation belonging to a given complexity class.

1 Introduction

Scientists check their theories by comparing the predictions with observations
and experimental results. This operation is routinely performed by scientists,
but subtleties arise when it is discussed in depth. The philosophical background
of this discussion relies on the concept of “data equivalence”.

Duhem has pointd out that, for any theory T , a data equivalent rival the-
ory T ′ can be found. The same author also discussed the difficulties in the
comparison between theories and experiments: the experiments always rely on
additional hypothesis, making a direct comparison unfeasible [1]. An extremely
critical point of view is expressed by the Quine-Duhem thesis, radically ques-
tioning the possibilty of comparing an experiment with a single theory or with
a small set of theories. Such difficulties lead to the development of the deeper
concept of “empirical equivalence” [2, 3, 4, 5].

Data equivalence and empirical equivalence have been discussed in particular
in relation with realism [6, 7]; shortly, it is discussed if a realistic point of view
can be kept also when there are multiple rival theories which are either data
equivalent or emipirically equivalent.

Roughly speaking, the difficulties in comparing experiments to theories arise
due to the intricate relations among the theories describing the various as-
pects of the experiment and the hypothesis on the behavior of the instruments;

1

the situation becomes even more complex when possible non-deterministic phe-
nomena are taken into account (including experimental errors, quantum non-
determinism and non-determinism due to inherently statistical theories such as
statistical mechanics and thermodynamics). In this paper, I tackle the problem
from an alternative point of view. I hypothetically consider a world that is
determined by known rules, and I discuss what its inhabitants would be able to
discover about the rules. Although this situation is different from real science
(we will start from a privileged situation, in which we already know the “real”
theory), the study can give hints about significant real problems.

The approach is inspired by the widespread use of numerical simulations in
every field of science, from fundamental physics (e.g. numerical calculations of
fundamental particle interactions) to biology (e.g. flock dynamics). The target
of the simulation is not necessarily limited to an accurate modelling of a real
system, but is sometimes used to get a general feeling of a concept. An example
is the theory of the so-called “sand piles” [8]: although the similarity to real
piles of sand is limited, they have been used as a prototype for the concept of
self-organized criticality, which is common in nature.

The usual application of numerical modelling is to calculate results of a
model and compare them with experiments. This can be seen as an “external”
point of view. I underline again that the target of the present study is differ-
ent, i.e. inspecting the “internal” point of view: try to understand what the
inhabitants of a hypothetical world could understand about the physical laws,
by simulating not only the phenomena but also the experimental process itself.
Despite the widespread use of numerical simulations, to my knowledge this ap-
proach has never been attempted in the field of philosophy of science, at least
in the form that I am proposing here.

The idea of simulating a world, and studying the limits to the knowledge of
its inhabitants, is apparently unfeasible in practice: the simulation of a whole
experimental setup, and, in principle, of the scientist performing the experi-
ment, including his brain, is beyond the capacity of computers. I will limit
the discussion to very simplified worlds (described as cellular automata) and to
very simplified entities performing experiments (robots rather than humans).
The very limited target is only a first attempt in this direction, which can be
expanded in the future.

Moreover, I will not present results of numerical experiments, but rather I
will focus on the definition of the problem and I will derive generally valid sen-
tences (theorems), based on computational complexity theory [9]. It has been
already noticed that this theory provides a deep characterisation of physical
concepts [10]. In other words, I will present “thought experiments” and dis-
cuss their mathematical constraints. This way of proceeding has been already
proved fruitfully, for example in the case of the theorems obtained on the Turing
machines: they were actually “thought experiments” discussed in advance with
the real development of computers; they gave interesting results independent on
the practical realisation of the machines.

As an example of the power of the approach, I will mathematically prove
a sufficient condition for empirical equivalence, which is valid at least in the

2

described framework. The sufficient condition is connected to the existence
of a transformation between two models, belonging to a given computational
complexity class.

2 Statement of the problem and definitions

2.1 Cellular automata as models.

I will consider mathematical models expressed as cellular automata. Such a
model is based on a set of cell, distributed on a lattice that is either 1-, 2- or
3-dimensional (or, possibly, with higher dimensionality). Each cell, at a given
time, has a state, expressed by a number. The states evolve with time, according
to an “evolution rule”: given the lattice at time-step t, the evolution at time-
step t + 1 of each cell is calculated based on a given neighborehood of the cell
itself and the evolution rule. A famous example is the “game of life” [11].

Cellular automata are often used to model natural phenomena: the evolution
rule is chosen so that it mimicks some phenomenon; the evolution of a given
configuration of the cellular automaton is calculated and results are compared
with the experiments. In the case considered in the present paper, the target
is completely different: I aim at describing inside the cellular automaton the
process of performing an experiment, and that experiment will be aimed at
discovering some property of the evolution rule.

In order to reach the target, the model (the cellular automaton) must be
powerful enough to enable the description of the experimental apparatus and
of its control logic, at least. The cellular automata are actually quite powerful.
Indeed it is known that many of them are Turing-complete; roughly speaking,
it is possible to give a suitable initial lattice which evolves similarly to a Turing
machine (or any real computer) [12]. Examples of Turing-complete cellular
automata are the “game of life” [13] and “Rule 110” [14]. In specific cellular
automata, it was possible to simulate a self-replicating robot [15]. We thus see
that the cellular automata are able to model two of the features connected with
a complex bahaviour, i.e. the ability to perform operations following a logic and
self-replicating.

2.2 Notation for the representation of cellular automata

The state of each cell can be represented by a finite sequence of bits, usually
a few bits, e.g. for the “game of life” one bit suffices (0 represents an empty
cell and 1 an occupied cell). The instantaneous state of the whole cell lattice is
coded by concatenating the bits representing each cell, taken a given ordering.
I call s a coding of the lattice state, with s ∈ [0, 1]∗, i.e. s is a string of 0 and 1
(see Ref. [9] for the notation); sj is the jth bit of the representation. I call |s|
the length of the string s, i.e. the number of bits representing a given lattice.

The evolution rule is a function f : {0, 1}∗ → {0, 1}∗ which maps a lattice
state in the lattice state at a subsequent (discrete) time. Since the lattice is

3

fixed during the evolution, |f(s)| = |s|, i.e. a lattice state s is mapped to a
lattice state with the same number of bits.

I represent the (discrete) time-sequence of lattice states (or “history”) with
h and the state s at a discrete time t will be written as h(t). The range of t
is between 0 and T − 1, i.e. it is finite. Moreover I assume that the number
of time-steps, T , is equal to the number of bits of the lattice state s, N = |s|.
This means that the state-sequences h are square matrices of binary digits. This
limitation will not affect the discussion performed in this paper.

The time-sequences h are formally elements of a set H, h ∈ H, where the
set H is defined as:

H =
⋃
N∈N

[0 . . . N − 1]× [0, 1]N (1)

where [0 . . . N − 1] ⊂ N is the finite interval of integers from 0 to N − 1 repre-
senting the time range. All the states of a state-sequence have the same length
N , i.e. |h(t)| = N .

In terms of h, the evolution rule is written as:

h(t+ 1) = f [h(t)] (2)

The “initial state” of the cellular automaton is the state h(t = 0), which
I will call s̃. Given the initial state s̃, its evolution up to time T − 1 can be
calculated by sequentially applying f , thus obtaining a full time-sequence h. I
will call F : [0, 1]∗ → H the function which maps an initial state s̃ into the full
time-sequence h = F (s̃). More formally, F is defined so that:

[F (s̃)] (t = 0) = s̃ (3)

[F (s̃)] (t+ 1) = f {[F (s̃)] (t)} (4)

The two equations univocally define the function F .

2.3 Inspecting the “internal point of view”

Giving an initial state of the cellular automaton s̃ and observing its time-
evolution of course enables to infere the evolution rule. However, what we
would like to inspect is the “internal point of view”: which details of the evo-
lution rule can be discovered by an entity which is simulated inside the cellular
automaton itself.

In order to clarify this point, I make an example of a detail of the evolution
rule that cannot be discovered from the internal point of view.

Example 1. Given a cellular automaton α and evolution rule fα, it is possible
to obtain an alternative representation β of the same cellular automaton by
flipping (negating) all the bits. The evolution rule fβ is fβ(s) = ¬f(¬s), where
the operator ¬ flips (negates) all the bits of its argument. By giving an initial
state s̃ and observing the resulting time-sequence F (s̃), a researcher can easily
find if the rule of the cellular automaton is fα or fβ ; this represents the “external
point of view”. However, it is clear that f and f ′ represent the same cellular

4

automaton, simply obtained by representing each bit either as it is or flipped:
the difference is in the representation and not in the cellular automaton itself.
We thus expect that an experiment, simulated inside the cellular automaton,
cannot distinguish between fα and fβ .

I argue that the two evolution rules fα and fβ cannot be distinguished from
the “internal point of view”, while it is possible that other couples of evolution
rules can. The main target of this paper is to formally define the internal point
of view and characterize it mathematically.

2.4 A different perspective on empirical equivalence

Usually, the numerical simulation is used to calculate results of a model; the
results expected from the model are then compared with the results of real
experiments. The researcher has an external point of view, i.e. it sees from
outside both the experimental system and the numerical simulation. If two
simulations of models α and β give the same experimentally testable results,
then the models are judged empirically equivalent.

The present approach is radically different. I imagine that the two models
α and β are simulated numerically, including the experimental apparatus, and I
wonder if it is possible to perform an experiment which gives different results in
α and β. If not, the two cellular automata are deemed empirically equivalent.
This represents the new perspective on empirical equivalence (an internal point
of view) that I propose in this paper.

2.5 Robots performing experiments

The approach for inspecting the “internal point of view” consists in implement-
ing a robot, inside the cellular automaton, that performs experiments. It is
already known that a self-replicating robot can be built in specific cellular au-
tomata, and in general an “universal constructor” [15]: so it should be possible
to discuss this possibility at least for some cellular automata. Practically, the
implementation of the robot is performed by designing an initial state s̃, which
evolves mimicking a robot performing a specific task.

In particular, the task will be the execution of a sequence of experiments. It
is important to emphasize here that I do not expect that the robot itself performs
a heuristic process to discover the rule f : this would require an investigation of
artificial intelligence. Instead, the robot will make a set of experiments aimed
at distinguishing between two known possible cellular automata α and β. The
operation is pre-programmed and the logics behind it is decided by the human
operator who is studying the cellular automata.

An ingenuous way of inspecting the behaviour of the robot could be the
following. The reseacher Φ, which is investigating the cellular automaton, gives
an initial state s̃ = h(t = 0) describing the initial state of the robot, then Φ
calculates the time-sequence h(t) and from it Φ infers the governing rule f . Of
course, by this approach it is not clearly evident wether Φ is inspecting the

5

“internal” or the “external” point of view; for example, the researcher Φ could
easily distinguish fα from fβ of Example 1, having access to the time-sequence
h(t), and pretend that the distinction comes from the experiment itself. In order
to avoid this difficulty, it is necessary to better distinguish the information
available to the robot itself (internal point of view) from the information on
the representation of the cellular automaton (external point of view). This
distinction can be done by means of the following assumption.

I will assume that the robot is “programmable”. I will give a formal definition
below; in less formal way, I say that the robot accepts a program, written in a
given language (similar to C or Pascal), with some additional built-in function
for controlling the actuators and sensors. An example of such a function is
the movement of an arm; in this case, the arguments of the function contain
the parameters of the movement (e.g. speed and final position) and the results
include the forces measured by the haptic sensors.

I suggest that the genuine “internal point of view” is represented by the
information on the governing rule f that the researcher can get by programming
the robot and observing the result of the program (a number, a string, or, in the
following, even a single bit) without having access to the whole state-sequence
h.

A formal definition of the operation of implementing the robot in the cellular
automaton, and of the related difficulties, is reported in Sect. 3.3.

3 Implementing Turing machines and robots in
cellular automata

3.1 Notations about Turing machines and universal Tur-
ing machines

I assume that the general notions about Turing machines are known to the
reader. I will use the notation of Ref. [9].

When a Turing machine M operates on an input i it returns a single bit of
output at the end of the program (either “accept” or “reject”). This output bit
is denoted M(i).

An universal Turing machine U is a Turing machine able to simulate any
other Turing machine (it is the analogous of a computer, which can be pro-
grammed to execute any task). Given a Turing machine M and an input i, a
universal Turing machine U takes as inputs a coding of M (as a string) and the
input i, and returns as output M(i).

3.2 Implementing Turing machines in cellular automata

In literature, it has been often discusses if (and how) it is possible to imple-
ment an arbitrary Turing machine in a given cellular automaton. As already
discussed, this is possible e.g. for the “game of life” [13] and for “Rule 110” [14].

6

This possibility is usually expressed in terms of “Turing-universality” of the cel-
lular automaton: if it is possible to implement any arbitrary Turing machine in
it, then the automaton itself behaves as an universal Turing machine.

The concept of “universal machine” was developed by Turing, who showed
the existence of a machine (nowadays called “universal Turing machine”) that
can be programmed in order to behave as any other desired Turing machine [16].
In that case, it was clear from the definition that the “universal machine” was
able to simulate the behaviour of any specific Turing machine. When we want to
discuss the Turing-universality of a given cellular automaton, however, subtleties
arise [17].

For showing that a given cellular automaton is Turing-universal, a coding
C(M, i) and a decoding D(s) algoritm are provided, operating as follows. Given
a Turing machine M (or better its coding as a string) and an input i, the coding
algorithm generates an initial state, s̃ = C(M, i). The evolution rule is repeat-
edly applied, s′ = f(s), starting from the initial state s̃. At each repetition, the
deconding algorithm checks if the state s represents an halting state; if so, the
decoding algorithm returns the halting state, “accept” or “reject”. It is possible
that the halting state is never reached; but if it is, then the decoding algorithm
gives the result of the Turing machine, D(s) = M(i).

The two algorithms C and D can be imagined as roughly analogus to a
compiler and a debugger.

A related definition of “circuit-universality” has been given [18]. It refers
to the ability of a cellular automaton to calculate the output of a circuit c,
given the input values i. Also in this case there is a coding operation C(c, i),
which codes the circuit c and the input i into an initial state of the cellular
automaton, and a decoding algorithm D(h) which retrieves the output. In the
definition [18], the decoding algorithm is specified: it trivially takes the value
of a given cell. The overall operation is thus:

D {F [C(c, i)]} = c(i) (5)

This can be qualitatively explained as:

• the circuit c and the input i are coded into s̃ = C(c, i);

• the state-sequence is calculated, F [C(c, i)];

• the state-sequence is decoded, D {F [C(c, i)]}

The result corresponds to M(i).
The two definitions are however not complete. Indeed, without a proper

definition, it would be possible to conceal the calculation of M(i) or c(i) inside
the operations of coding or decoding, thus deceiving into believing that some
very simple cellular automaton (likely not able to perform any calculation) is
Turing-universal or circuit-universal. Since this point is important, I make an
example.

Example 2. A trivial cellular automaton is defined by the rule f(s) = s. It is
likely not circuit-universal. The coding algorithm C(c, i) calculates the result

7

of the output of a circuit c on the input i, i.e. it is defined as a single bit
C(c, i) = c(i). This bit is encoded as the first bit of the initial state s̃ (having
a given, fixed, length): s̃j=0 = c(i). The decoding algorithm returns the same
bit: D(s) = sj=0. In turn, D(s) = c(i): the coding and decoding algorithms
return the result of the calculation of the output of the circuit c on the input i,
mimicking a circuit-universality.

In this example, the calculation is clearly not performed by the cellular
automaton, but it is concealed into the coding algorithm. It is also possible to
conceal the calculation in the decoding algorithm, as in the following example.

Example 3. As in the previous example, the cellular automaton is defined by
the rule f(s) = s. The coding algorithm C(c, i) returns the binary representa-
tion of c and i: s̃ = (c, i). The decoding algorithm first converts s into (c, i),
then calculates c(i) and returns it: D(s) = c(i).

From the two examples, it is clear than any cellular automaton could be
declared as Turing-universal or circuit-universal, unless additional conditions
are imposed on the nature of the coding and decoding algorithms. No syntactic
property has been found useful for improving the definition; likely, a property
such “the algorithm calculates the result of M(i)” cannot be defined at syntactic
level. The approach is thus different: the additional condition is defined based on
the computational complexity of the coding and decoding algorithms, compared
to the calculation of M(i) (respectively, c(i)). It is required that the complexity
of C and D is less than the complexity of calculating M(i) (respectively, c(i)),
so that C and D cannot conceal the operation of calculating M(i) (respectively,
c(i)).

• In Turing-universality, the coding and decoding algorithms are required to
be (total) computable functions [19, 20] (roughly, they can be computed
in a given finite time for every input). The implemented Turing machine
instead calculates partial functions (roughly, functions for which it is not
guaranteed that the calculation halts)

• In circuit-universality [18], the coding and decoding algorithms are re-
quired to be in the complexity class NC (for the definition of the com-
plexity classes see Ref. [9]). Instead, the calculation of the output c(i) of
the implemented circuit is a P-complete problem. It is conjectured that
P-complete problems are more complex than NC, thus C and D cannot
conceal the operation of calculating c(i).

These requirements prevent to conceal the calculation performed by the imple-
mented Turing machine inside the coding and decoding operations: we can say
that the calculation of the output of the Turing machine or of the circuit is
genuinely performed by the cellular automaton.

We can describe the discussion as a dispute on the circuit universality of a
given cellular automaton α, with evolution Fα. Let us imagine that a researcher
Φ thinks that α is circuit-universal, while another researcher Ψ is not convinced.

8

At first, Φ provides the coding C and decoding D algorithms. The researcher
Ψ checks that C and D actually work as expected, i.e. they encode any circuit
and any input i in the cellular automaton according to Eq. 5.

If Ψ is not jet convinced, Ψ can ask for a proof that the operation of cal-
culating M(i) is not concealed into C or D. This proof can be given by Φ,
as described above, based on the computational complexity of the algorithms:
if Φ is able to show that the calculation of M(i) asymptotically requires more
resources (time or space) than C and D, this should be considered as a valid
proof. Of course, the proof could be based on conjectures on the separation of
complexity classes (such as the conjecture that NP contains problems that are
more complex than P); in such cases, the result on the circuit-universality of
the given automaton is not conclusive but only related to a conjecture.

3.3 Formal definition of the robot

The programmability of the robot is expressed by saying that it includes an
universal Turing machine U . In order to allow us to interact with the robot, U
will take as input a robot program P and i, the robot program P representing
an extended coding of a Turing machine. Here “extended” means that it enables
to associate states (of the Turing machine) to a given set of operations of the
robot. Entering such states during the execution of the program P will force the
robot to perform an operation; parameters of the operation are possibly read
from a special tape and results are written on another special tape. These states
correspond to the “functions” described above in the informal description. It is
worth noting that the robot operations are fixed, once the robot itself and the
controlling universal Turing machine U are defined; the program P can only
define if and when to execute them.

Now it is necessary to describe the meaning of “implementing” the robot
in the cellular automaton. I follow the analogous concept of “implementing a
Turing machine” or “implementing a circuit” described in Sect. 3.2 (see Refs [16,
17, 18]. Thus this operation is performed by giving a couple of algorithms: the
coding C and decoding D algorithms. The coding algorithm maps the robot
program P , the time-steps required for the execution T (expressed in unary)
and the input i into the initial state of the cellular automaton, s̃ = C(P, T, i).
The decoding algorithm reads the resulting state-sequence h = F [C(P, T, i)]
and evaluates the state of the Turing machine, “accept” or “reject”, at the
time-step T ; the result is called r:

r = D {F [C(P, T, i)]} (6)

If the robot program P is not yet ended at time T , on input i, then the result
can be arbitrarily set to “reject”. It is worth noting that, at variance with the
case of Eq. 5, r cannot be related only to the robot program P , the time T
and the input i: it contains information on the cellular automaton in which it
is implemented, through the evolution function F .

After defining the coding C and decoding D algorithms, Φ starts interacting
with the system, now seen as a black box able to execute programs. First, Φ can

9

check if the implementation is working propertly, i.e. if it correctly responds as
the desired Turing machine when no robot operation is involved. Then, Φ can
start operating the robot and perform experiments. If the robot was properly
designed, Φ will be eventually able to perform experiments distinguishing α
from β.

4 How to properly dispute about the empirical
equivalence of two cellular automata

4.1 Dispute on the empirical equivalence of two cellular
automata

Let us consider two cellular automata α and β. The researcher Φ believes that
an entity (the above-described programmable robot), built inside one of the two,
is able to decide if it is α or β, while Ψ believes the opposite, i.e. that the two
cellular automata are empirical equivalent. It is worth noticing that the data
equivalence here refers to the “internal point of view” as expressed in Sect. 2.4.

In order to convince Ψ, Φ proposes the coding and decoding algorithms Cα
and Dα which apply to the cellular automaton α; moreover, Φ provides a robot
program P which performs suitable experiments; the experiments (according to
the belief of Φ) enable to prove that the correct model is α. The experiments are
conducted considering r = D {F [C(P, T, i)]} as a black box: the program P ,
the time T and the input i are given and the result r is inspected; Φ argues that,
from this black-box view, it is possible to deduce that the cellular automaton is
α rather then β.

The target of the present paper is to discuss how to rigorously decide if the
procedure used by a researche Φ to compare his experiments with theories is
valid, thus I proceed by considering that the approach declared by Φ is not
convincing for Ψ, who requires a more solid proof: Ψ does not believe that the
experiments proposed by Φ are able to distinguish among the cellular automata
α and β.

In order to support the position, Ψ provides the coding and decoding algo-
rithms Cβ and Dβ , for the cellular automaton β, aiming to show that the same
results would be obtained in β.

If Ψ is not able to provide coding and decoding algorithms Cβ and Dβ ,
then the dispute is resolved in favour of Φ; likely, the cellular automaton β
is extremely different from α, since it is not possible to implement a robot in
it, while in α it is. In the following, I assume that Ψ is able to provide the
algorithms.

The aim of Ψ is now to show that, for any program M , the execution gives
the same result in α and β:

Dα {Fα [Cα (P, T, i)]} = Dβ {Fβ [Cβ (P, T, i)]} (7)

The validity of Eq. 7 can be checked by means of logical arguments, eventually
leading to an agreement on them among Φ and Ψ. If Eq. 7 holds, it is a point

10

in favour of Ψ (the two cellular automata α and β are empirically equivalent);
instead, if there is a program M for which Eq. 7 is false, it is a point in favour
of Φ (the two cellular automata α and β are not empirically equivalent).

It is worth noting that, in general, it is not possible to require that the
algorithms C and D are the same for the two cellular automata, because the
implementation of the Turing machine in the different cellular automata is likely
different; this is why we assume that there are two sets, Cα, Dα and Cβ , Dβ .
Instead, the program P that is run is the same, in both α and β.

At this point of the dispute, Φ could argue that Ψ could have cheated, by
using a trick analogous to what reported in Sect. 3.2. The trick would consist
in concealing the operation Dα {Fα [Cα (P, T, i)]} in either Cβ or Dβ . This can
be done as in the following example:

Example 4. The coding algorithm Cβ(P, T, i) first calculates r (a single bit):

r = Dα {Fα [Cα (P, T, i)]} (8)

Then C encodes r into the first bit of the initial state:

s̃j=0 = r (9)

The decoding function returns the first bit of the initial state:

Dβ (h) = hj=0(t = 0) = s̃j=0 = r (10)

We thus find that Dβ {Fβ [Cβ (P, T, i)]} is equal to r, so Eq. 7 holds. It is here
clear that the calculation of Dα {Fα [Cα (P, T, i)]} is concealed into Cβ .

A similar result, obtained by concealing the operation Dα {Fα [Cα (M)]} into
Dβ , can be obtained in analogy with the example reported in Sect. 3.2.

4.2 Discussion based on the computational complexity

In analogy with the case of Sect. 3.2, also in this case the problem expressed
at the end of the previous subsection can be resolved by imposing conditions
on the computational complexity of the coding and decoding operations. The
problem is that it is possible that Ψ conceals the operation Dα {Fα [Cα (P, T, i)]}
in Cβ or in Dβ . In order to avoid this, in analogy with the case of Sect. 3.2,
the computational complexity of the operations Cβ and Dβ is required to be
in a given class; then it is checked that Dα {Fα [Cα (P, T, i, i)]} can execute
algorithms with a larger complexity.

It is possible to impose that the coding and decoding algorithms operate in
logarithmic space in the length of the representation of P , T and i. Indeed, the
robot contains an universal Turing machine U , which is implemented into the
cellular automaton; C simply stores P , T and i as input data (this approach is
similar to embedding an “interpreter” in the cellular automaton together with
a representation of the program and of its input). This requires to only keep a
finite number of indices (memory addresses), with a length that is logarithmic

11

in the length of the representation of P , T and i (I remind here that T is
represented in unary) [9]. This can be expressed saying that the calculation of a
bit of the output of Cβ or the output of Dβ are problems in L, i.e. calculations
that can be performed using an amount of memory that is logarithmic in the
size of the input.

It is usually conjectured [9] that L is strictly contained in P (although, up
to now, there are no rigorous proofs that L is not equal to P, or even NP). I
will assume this conjecture in the following.

If the robot program P does not make use of functions of the robot, it simply
describes a Turing machine M . Thus Dα {Fα [Cα (P, T, i)]} calculates M(i) at
time T . The problem of taking M and i as inputs, and calculating M(i) at time
T , is a well-known P-complete problem.

Thus it has been shown that the condition that Cβ and Dβ work in log-space
prevents them to contain the calculation of Dα {Fα [Cα (M, i)]}.

In particular, in order to prove that Ψ has cheated by doing so, Φ can operate
as follows. Φ writes a program P that takes an input split into two parts, M and
i (the first part is the representation of a Turing machine). First, P checks if it
is running in α or β. In the first case, P executes the machine M on the input
i; this operation calculates the result of a P-complete problem. In the second
case, it rejects. If the calculation of Dα {Fα [Cα (P, T,M, i)]} is concealed in Cβ
or Dβ , then the two algorithms should require more than log-space to run.

5 Formalization of the dispute

I formalize the procedure for resolving the dispute between Φ and Ψ about the
empirical equivalence of α and β. Φ believes that there is an experiment able
to distinguish α from β; instead Ψ thinks that they are empirically equivalent.

The first step is to declare the two cellular automata. Φ chooses one of the
cellular automata; I assume that it is α. Φ provides the coding and decoding
algorithms Cα and Dα. Ψ provides the coding and decoding algorithms Cβ and
Dβ .

The inability of either Φ or Ψ to do so is regarded as the inability of imple-
menting a robot or a Turing machine in the corresponding cellular automaton.
If Φ succeeds but Ψ fails, then it is possible to conclude that the two cellular
automata are empirically different, since one of them is Turing-complete and
the other is not; if both fail, then it is concluded that the two cellular automata
are not complex enough to host a Turing machine, thus the problem of their
empirical equivalence from the internal point of view is not relevant.

The procedure for a fair dispute is described in the following as a game
between two players. The empirical equivalence of α and β is concluded if Ψ
has a winning strategy; the opposite is concluded if Φ has a winning strategy.
It must be noticed that this procedure refers to the given Cα, Dα, Cβ and Dβ .

The first step consists in checking that Cβ and Dβ can be calculated in log-
space. If not, the dispute is resolved in favour of Φ because Ψ failed in providing
a valid couple of algorithms Cβ and Dβ .

12

The empirical equivalence is expressed as the Eq. 7. It corresponds to making
an experiment, represented by the couple P, i, in α and β and comparing the
results.

In order to support the opinion that α and β are not empirically equivalent,
Φ looks for a couple P, i for which the equation is not satisfied. If Φ can provide
such a couple P, i, then the dispute is resolved in favour of Φ. Else, it is assumed
that the equation holds and the dispute is resolved in favour of Ψ.

6 Transformations

Transformations play an important role in physical theories. The same theory
can be represented in different coordinate systems, resulting in different math-
ematical models; a change of coordinates is a transformation, connecting the
different mathematical models. It is often implicitly assumed that a change of
coordinates transforms a model into an empirically equivalent one. However,
the existence of a (more general) transformation between two models in general
does not ensure that they are empirically equivalent. This has been discussed
in particular for quantum theories: unitary transformations do not ensure the
empirical equivalence but isometric transformations do [21]. I give examples
relevant for this discussion in Sect. 6.2.

6.1 Definition of transformation

A transformation T is a function which transforms time-sequences of a cellular
automaton α into time-sequences of another cellular automaton β, and vice-
versa.

A transformation T is defined as follows.

Definition 1 (Transformation). A function T : [0, 1]∗ → [0, 1]∗ is a transfor-
mation between the cellular automata α and β if T is invertible (i.e. one-to-one
and onto) and

T [fα (s)] = fβ [T (s)] (11)

It must be noticed that here the symbol T−1 refers to the inverse function
of T , so that T

[
T−1(s)

]
= s, rather than the algebraic inverse 1/T .

Given two cellular automata α and β, and two state-sequences hα and hβ
belonging to them, they are connected by the transformation of the lattice states
at each time:

hβ(t) = T [hα(t)] (12)

I also define “partial transformations”, as follows.

Definition 2 (Partial transformation). Two sets Sα ⊂ [0, 1]∗ and Sβ ⊂ [0, 1]∗

are given. A function T : Sα → Sβ is a partial transformation between the
cellular automata α and β if T is invertible (i.e. one-to-one and onto) and

T [fα (s)] = fβ [T (s)] (13)

∀ s ∈ Sα.

13

Partial transformations are particularly relevant when:

{Fα [Cα(P, T, i)] (t)∀P ∈ [0, 1]∗, T ∈ N, i ∈ [0, 1]∗, t ∈ [0 . . . N − 1]} ⊂ Sα (14)

i.e. when the domain of T covers at least the initial states given by the coding
algorithm and their evolutions in the time-sequences. Since these are the lattice
states that are subject to the analysis and to the experiments performed by
the robot, they are the only ones that are relevant for the discussion. For this
reason, I will call such transformations “partial”, rather than “local”, since they
cover enough space and time to describe the whole world that is seen by the
robot performing the experiments.

6.2 Examples of transformations

Here I give two exemples of transformations. The first is inspired by the Exam-
ple 1.

Example 5. A cellular automaton α is given, with evolution rule fα. A derived
cellular automaton β is defined by an the evolution rule fβ :

fβ(s) = ¬fα(¬s) (15)

The transformation T connecting them is thus:

T (s) = ¬s (16)

T is a transformation between α and β according to Def. 1.

Proof. T it is clearly invertible and T−1 = T ; moreover, it satisfies Eq. 11, by
substituting s′ = ¬s:

¬fα(s′) = fβ(¬s′) (17)

As already noticed for Example 1, the two cellular automata α and β are
likely empirically equivalent (from the internal point of view). As already no-
ticed, in general, the existence of a transformation between two cellular au-
tomata does not ensures that they are empirically equivalent. The following is
an example of transformation between two cellular automata that are lilely not
empirically equivalent.

Example 6. Two reversible cellular automata α and β are given. Reversibility
means that the evolution rules fα and fβ are invertible (one-to-one and onto).
I define a partial transformation on a domain Sα and co-domain Sβ .

I define a function τα(s), with the following property:

τα[fα(s)] = τα[s] + 1 (18)

Roughly, the function τα represents a clock, associating an absolute time to a
state s (number of time steps elapsed since a given initial time) in the cellular

14

automaton α. The existence of such a function depends on the cellular automata
α and β and of the sets Sα and Sβ ; a discussion of this point would require to
give a specific example with specific α and β and is outside the scope of the
present paper.

The transformation T is defined as follows:

T (s) = f
τα(s)
β

[
f−τα(s)
α (s)

]
(19)

where fn(s) is the result of composing n times the function f (not the algebraic
power).

In words, T first evaluates the absolute time of s in the cellular automaton α;
evolves s back in time to the origin of the absolute time; finally evolves forward
in time for the same number of steps.

It must be discussed if T is a transformation between α and β according
to Def. 1. T can be constructed as surjective (onto) by definition, taking Sβ
as the co-domain of T , Sβ = T [Sβ]. The injectivity depends on the presence
and structure of cycles; it can be ensured by giving suitable sets Sα and Sβ ;
however, also in this case, a discussion of this point would require to give a
specific example with specific α and β and is outside the scope of the present
paper. The last property required by Def. 1 is to show that Eq. 13 holds, as
follows.

Proof. I start calculating T [fα (s)] by using the definition of T , Eq. 19:

T [fα (s)] = f
τα[fα(s)]
β

{
f−τα[fα(s)]
α [fα (s)]

}
(20)

By using Eq. 18:

T [fα (s)] = f
τα(s)+1
β

{
f−τα(s)−1
α [fα (s)]

}
(21)

Calculating the composition of the function fα:

T [fα (s)] = f
τα(s)+1
β

[
f−τα(s)
α (s)

]
(22)

This equation can be rewritten as:

T [fα (s)] = fβ

{
f
τα(s)
β

[
f−τα(s)+1
α (s)

]}
(23)

In this expression it is possible to recognise the definition of T , so that Eq. 13
is obtained.

The trasformation of this last example can be built between quite generic
couples of cellular automata; assuming that it is possible to find two reversible
cellular automata that are not empirically equivalent, then it is possible to
build the corresponding T also for them. This emphasizes that the existence of
a transformation between two cellular automata does not prove their empirical
equivalente (from the internal point of view). In the next section, I will show
that there is a sufficient condition which ensures that, in the presence of a
transformation, the two cellular automata are empirically equivalent (in the
sense defined in Sect. 4).

15

6.3 Transformations ensuring empirical equivalence

In this section I show that it is possible to select a subset of the set of trasfor-
mation (as defined in the previous section), by giving an additional condition,
so that the presence of such a transformation between two cellular automata
ensures that they are empirically equivalent.

Definition 3 (Log-space transformation). A transformation T is a log-space
transformation if each bit of T (s) and of T−1(s) can be calculated using an
amount of memory that is logarithmic in the number of bits of s.

The following theorem can be proved.

Theorem 1. The presence of a log-space transformation T between two cellular
automata α and β is a sufficient condition for their empirical equivalence (as
defined in Sect. 4).

Proof. The two cellular automata α and β are given, together with the coding
Cα and decoding Dα algorithms for the cellular automaton α.

The coding algorithm Cβ for the cellular automaton β is defined as follows:

Cβ(P, T, i) = T [Cα(P, T, i)] (24)

In words: the algorithm Cβ first uses the coding algorithm Cα for coding P, T, i
into an initial state s̃ of α; then it transforms it into an initial state of β.

The decoding algorithm Dβ if formally defined as:

Dβ(h) = Dα

[
T−1(h)

]
(25)

i.e., given a state-sequence h of β, the inverse of T is applied to obtain the
corresponding state-sequence of α.

The algorithms Cα, Dα and T operate in log-space, thus also Cβ and Dβ

can operate in log-space, as requested in Sect. 5.
Finally, Eq. 7 is evaluated. By using the definitions of Cβ and Dβ given

above:
Dβ {Fβ [Cβ (P, T, i)]} = Dα

[
T−1 (Fβ {T [Cα (P, T, i)]})

]
(26)

By using Eq. 11, T−1 {Fβ [T (s̃)]} = s̃, and thus Eq. 7 is obtained.

It can be noticed that the transformation T of Example 5 can be clearly
calculated in log-space, and indeed it was already argued that it connected
empirically equivalent cellular automata.

In the case of the transformation T of the Example 6, it was argued that it
could connect cellular automata that are not empirically equivalent. Actually,
the definition of T (Eq. 18) contains the calculation of fn(s̃): this operation is
equivalent to calculating the evolute of an initial state of a cellular automaton,
that is a P-complete problem in the case of circuit-complete cellular automata.
Under the (widely believed) conjecture that L6=P, it is thus not possible to
calculate T in log-space.

16

7 Conclusion

I introduced the idea that the empirical equivalence can be studied from an
“internal point of view” by numerically simulating a system, including a robot
which performs experiments. I showed that a discussion about the empirical
equivalence of two models, from this “internal point of view”, requires some
subtleties and I suggested how to correctly perform it. The distinction between
empirically equivalent and non-equivalent models is based on the theory of com-
putational complexity.

The presence of a transformation between two cellular automata is not
enough to ensure that they are empirically equivalent; I discuss two examples
of transformations, one connecting empirically equivalent cellular automata and
one connecting cellular automata that are (likely) not empirically equivalent.

However, from the suggested procedure for discussing the empirical equiva-
lence, I obtained that an additional condition that can be imposed on a trans-
formation; if such a condition is met, then the presence of the transformation
between two cellular automata is a sufficient condition for empirical equivalence.
This condition is defined in terms of computational complexity: it is required
that the transformation can be calculated using an amount of memory (space)
that is at most logarithmic in the input length. If such a log-space transforma-
tion exists between two models, then the models are empirically equivalent.

The above-mentioned examples of transformations (one connecting empiri-
cally equivalent models and one connecting models that can be not empirically
equivalent) are actually different from the point of view of computational com-
plexity, i.e. one can be calculated in logarithmic space and the other does not,
emphasizing the importance of the complexity class of the transformation for
determining the empirical equivalence.

Although the discussion only covers systems that are discrete (in space, time
and states of cell), various properties of complexity classes have been extended
to continuous systems. Wether this is possible in the present case will be the
goal of future work.

References

[1] P. Duhem. The Aim and Structure of Physical Theory. Princeton University
Press, Princeton NJ, 1954.

[2] C. Hoefer and A. Rosenberg. Empirical equivalence, underdetermination,
and systems of the world. Philosophy of Science, 61:592–607, 1994.

[3] L. Laudan and J. Leplin. Empirical equivalence and underdetermination.
The Journal of Philosophy, 88:449–472, 1991.

[4] P. Acuña and D. Dieks. Another look at empirical equivalence and underde-
termination of theory choice. European Journal for Philosophy of Science,
4(2):153–180, 2013.

17

[5] P. Acuña and D. Dieks. Artificial examples of empirical equivalence.
Springer, 2014.

[6] R. Boyd. Realism, underdetermination, and a causal theory of evidence.
Noûs, 7:1–12, 1973.

[7] J. Worrall. Underdetermination, realism and empirical equivalence, 2011.

[8] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: an expla-
nation of 1/f noise. Physical Review Letters, 59(4), 1987.

[9] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, New York, 2009.

[10] S. Aaronson. Why philosophers should care about computational complex-
ity, 2011. manuscript Pre-print.

[11] Martin Gardner. The fantastic combinations of John Conway’s new solitaire
game of life. Scientific American, 223:120–123, 1970.

[12] S. Wolfram. Universality and complexity in cellular automata. Physica D:
Nonlinear Phenomena, 10(1–2):1–35, 1984.

[13] B. Durand and Zs. Róka. The game of life: universality revisited, 1999.
Cellular automata, (Saissac, 1996) (M. Delorme and J. Mazoyer, eds.),
Kluwer Acad. Publ., Dordrecht.

[14] M. Cook. Universality in elementary cellular automata. Complex Systems,
15(1):1–40.

[15] J. von Neumann and A. W. Burks. Theory of self-reproducing automata.
University of Illinois Press, Urbana and London, 1966.

[16] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc. Ser., 2(42):230–265, 1937.

[17] Nicolas Ollinger. Universalities in cellular automata; a (short) survey,
2008. Bruno Durand. JAC 2008, Uzès, France, Regular paper track.
¡hal-00274563¿ HAL Id: hal-00274563 https://hal.archives-ouvertes.fr/hal-
00274563.

[18] A. Gajardo and E. Goles. Circuit universality of two dimensional cellular
automata: a review. In C. S. Calude, editor, Randomness and Complexity:
From Leibniz to Chaitin, chapter 7. World Scientific Publishing, Singapore,
2007.

[19] Y. Rogozhin. Small universal turing machines. Theoretical Computer Sci-
ence, 168(2):215–240, 1996.

[20] M. D. Davis and M. Davis. A note on universal turing machines. Journal
of Symbolic Logic, 35(4):590–590, 1970.

18

[21] A. Anderson. Quantum canonical transformations. physical equivalence of
quantum theories. Phys. Lett. B, 305(1–2):67–70, 1993.

19

