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This note clarifies several details about the description of the measurement
process in Bohmian mechanics and responds to a recent preprint by Shan
Gao, wrongly claiming a contradiction in the theory.

1 Measurements in Bohmian mechanics

A prototypical measurement in Bohmian mechanics is an interaction between a system S

and measurement device D resulting in one of several, microscopically discernible, con-
figurations of D (“pointer positions”) which are correlated with certain possible quantum
states of S. Schematically, the interaction between the measured system and measure-
ment device is such that, under the Schrödinger evolution,

ϕiΦ0
Schrödinger evolution−→ ϕiΦi , (1)

where the wave function Φ0 is concentrated on pointer configurations corresponding to
the “ready state” of the measurement device, and Φi are concentrated on configurations
indicating a particular measurement result, e.g., by a pointer pointing to a particular
value on a scale, a point-like region of a detector screen being darkened, a detector
clicking or not clicking, etc. The Schrödinger time evolution is linear, so that the super-
position

ϕ = c1ϕ1 + c2ϕ2, c1, c2 ∈ C, |c1|2 + |c2|2 = 1,

leads to
ϕΦ0 = (c1ϕ1 + c2ϕ2)Φ0

Schrödinger evolution−→ c1ϕ1Φ1 + c2ϕ2Φ2. (2)
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At this point, standard quantum mechanics is hit by the measurement problem. In
Bohmian mechanics, however, the system is described not only by the wave function
but also by the actual spatial configuration (X, Y ) ∈ Rm × Rn of measured system and
measurement device, given by the positions of their constituent particles.

L R

nℝ

Φ1 Φ2

Figure 1: Sketch of the pointer wave functions on configuration space.

For illustrative purposes, let’s say that Φ1 is concentrated on a region L ⊂ Rn of the
configuration space of D corresponding to the pointer of the measurement device pointing
to the left, while Φ2 is concentrated on a region R ⊂ Rn of the configuration space of
D corresponding to the pointer pointing to the right. Obviously, the two regions are
disjoint, i.e. L∩R = ∅. By assumption, Φ1 and Φ2 must be well localized in the respective
regions (otherwise, the measurement device is no good), i.e. almost zero outside. This
implies, in particular, ∫

L
|Φ1|2 dny ≈ 1,

∫
L
|Φ2|2 dny ≈ 0 (3a)∫

R
|Φ1|2 dny ≈ 0,

∫
R
|Φ2|2 dny ≈ 1. (3b)

As Gao (2019) rightly points out, it’s not realistic to assume that Φ1 and Φ2 have
compact support in L, respectively R, i.e., that they are precisely zero outside.1 Hence
the “≈” in the above equations. The better these pointer states are localized, the better
the approximation. In practice, this will depend on the details of the experiment, such
as the makeup of the measurement apparatus, and the strength and duration of its
interaction with the microscopic system.
Now, according to Bohmian mechanics, the probability of the pointer actually pointing

1It is also not realistic to assume, as he does, that the pointer wave functions evolve freely. Usually,
there will be some potential keeping the pointers in place, and decoherence, through interactions
with the environment, leading to further localization. Nonetheless, the pointer wave functions will
be spread out, in general, and may even have infinite tails.
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to the left is:

P(Y ∈ L) =
∫
Rm×L

|c1ϕ1Φ1 + c2ϕ2Φ2|2 dmxdny

= |c1|2
∫
Rm×L

|ϕ1Φ1|2dmxdny

+ |c2|2
∫
Rm×L

|ϕ2Φ2|2dmx dny

+ 2 Re
(
c1c2

∫
Rm×L

(ϕ1Φ1)∗ϕ2Φ2dmx dny
)
≈ |c1|2.

(4)

The final approximation follows from eqs.(3a) (together with the Chauchy-Schwarz in-
equality |

∫
L Φ∗

1Φ2| ≤
√∫

L |Φ1|2
√∫

L |Φ2|2 ). Similarly, the probability of the pointer
pointing to the right is P(Y ∈ R) ≈ |c2|2. If ϕ1 and ϕ2 are eigenstates of some quantum
observable, |c1|2 and |c2|2 are the statistical predictions of standard quantum mechanics
for an ideal measurement. The better the pointer states Φ1 and Φ2 are localized in
disjoint regions of configuration space, the closer the measurement is to “ideal”.
Since a realistic measurement is not quite ideal, we see that there is also a very small

– yet non-zero – probability that the final pointer position is inconclusive, e.g. because
it remains roughly in the ready state, or because the measurement device is blown into
pieces. Tough luck, measurements can fail2.

1.1 Some remarks and observations

1. After the measurement (assuming it was not destructive), the system S will be
guided by the wave function ϕ1(x)Φ1(Y ) + ϕ2(x)Φ2(Y ). If the pointer actually
points left (let’s say), i.e. Y ∈ L, we have Φ2(Y ) ≈ 0 and hence (after normaliza-
tion) the effective wave function ϕ1 describing the System S after the measurement.
This is the effective collapse in Bohmian mechanics.3

2. In many papers – including some of my own – it is said with regard to eq. (7) that
we are integrating “over the support of Φ1”. This is indeed a little abuse of mathe-
matical language. For non-idealized situations, one should read the statement like
a physicist, not like a mathematician, namely as saying: we integrate over a region
of configuration space – here L – that contains almost the entire L2-weight of Φ1

(and which corresponds to configurations in which the pointer points to the left).
Let’s call this the FAPP4-support.

2though other sources of error would seem more likely, in practice, than an atypical pointer position
due to the tails of the pointer wave functions

3See Dürr et al. (2013, Ch. 2) for more details.
4For All Practical Purposes
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3. If the pointer after the measurement is actually pointing to the left (let’s say),
i.e. Y ∈ L, then the contribution of Φ2 to the Bohmian guiding field at Y will be
negligible small, as well – provided the tails are “well-behaved”. This justifies the
statement that the configuration of the measurement device is effectively guided
by the wave packet Φ1 only. “Well-behaved” means that not only Φ2 itself but also
its gradient – more precisely Im∇yΦ2 – is very small outside the FAPP-support
(think, for instance, of Gaussian tails). This assumption is commonly made in
physics, and well justified in general. Moreover, the contribution of the other
branch will further diminish (even for not so well-behaved tails) as decoherence
is progressing through interactions with the environment, leading in effect to the
situation of the effective collapse for the pointer states (see remark 1 and 4 below).

4. Suppose we go one step further and consider a “measurement of the pointer po-
sition” by another system E. You may think of an “observer” looking at the
measurement device, resulting, ultimately, in a particular particle configuration
in her brain (though I prefer a camera or some other system under no suspicion
of consciousness). In any case, the spatial resolution of such an observation can
easily be finer than the localization of the initial pointer wave functions, thus
corresponding to a Schrödinger evolution of the form

Φi −→
∑

j

ΦijΨj ,

where
∑

j Φij = Φi and the Ψj are well-localized in disjoint regions of the config-
uration space of E. This then leads to further decoherence and localization (by
effective collapse) of the apparatus wave function into one of the wave packets Φij .

Hence, clearly, the accuracy of an observation of the pointer position is not limited
by the spread of the pointer states Φi prior to observation (contrary to what
Gao (2019) seems to suggest). Moreover, we didn’t even have to consider another
“measurement”; environmental decoherence – if only by scattering of air molecules,
photons, etc. – occurs everywhere and all the time (unless one takes very special
precautions to prevent it), causing localization of the macroscopic wave function.

If some of these points (like 2) are rarely spelled out in detail in the “Bohmian” literature,
then because they involve fairly standard physical arguments. No deep foundational
issues are hiding behind the mathematical details here. If there’s a lesson to learn, then
that serious physics is a bit messier and a bit more subtle than the sterile operator-
formalism of quantum mechanics reveals.
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2 What Gao’s objection gets wrong

So, if not mathematical nitpicking, what is the point of the objection formulated by Shan
Gao (2019)? My best attempt at a reconstruction of his argument goes as follows: The
possible measurement results are first and foremost given by the pointer states Φ1 and
Φ2. The role of the Bohmian particle configuration Y is to pick out one of the two results
(by ending up in the support of one of the two wave functions) and thus determining a
unique outcome. However, since Φ1 and Φ2 actually overlap, the Bohmian configuration
is not able to do so – at least not always. Gao (2019) writes: “This means that there is
no one-to-one correspondence from the particle configurations of a measuring device to
the result wave functions of the device or the measurement results.” (p. 3)
This objection is based on a superficial understanding of Bohmian mechanics and

misses its mark for several reasons. First of all, the pointer configuration IS the mea-
surement result (and thus always unique). It is important to take the ontological com-
mitment of Bohmian mechanics to particles seriously.
Second, the pointer configuration Y does typically pick out either Φ1 or Φ2 as the

wave function guiding the system, namely in the sense explained above (remark 3) that
the contribution of the other wave packet becomes negligibly small.5 In particular, it
will typically lead to an effective collapse of the measured system S into either ϕ1 or ϕ2.
Finally and most basically, there is no postulate in Bohmian mechanics stating a

“one-to-one correspondence” between the pointer configuration and the “result wave
function” of the measurement device. The connection that the theory predicts– rather
than assumes – is the one explained above.
It is not clear what theory or principle Gao has in mind when he insists that the wave

packets Φ1 or Φ2, which he calls “result wave functions” (and emphatically these wave
packets as a whole (p. 2)), correspond to the measurement result. Apparently, he thinks
of the wave packets Φ1 and Φ2 as an (observationally) “preferred basis”, or something
like that, but this has nothing to do with Bohmian mechanics.
Actually, any quantum theory I can think seems to agree that the wave functions Φ1

and Φ2 overlapping – on configurations roughly in between “pointer left” and “pointer
right” – means that it is possible (though maybe very unlikely) for the pointer to end
up pointing to the middle rather than left or right. For this reason alone, the assertion
that there are exactly two possible outcomes of the measurement, corresponding to the
pointer states Φ1 and Φ2, seems planly wrong – and not just in Bohmian mechanics.

5It should also be noted that the description of the measurement process in any precise quantum theory
relies on decoherence, in one way or another, and that this decoherence is never perfect for finite
times and a finite number of degrees of freedom.
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Moreover, any (serious) quantum theory I can think of seems to agree that decoherence
would lead to further branching (and, in whatever sense, “collapse”) of the apparatus
wave function, which can result in wave functions other than Φ1 or Φ2 (see remark
4 above). From this point of view also, insisting that there are exactly two possible
outcomes, corresponding precisely to Φ1 and Φ2, seems wrong or at least arbitrary – and
not just in Bohmian mechanics.
A more subtle point is that the question how wave functions, in general, are connected

to measurement results – or any physical facts at all – is at the core of the measurement
problem and, in fact, most debates in quantum foundations. Different quantum theories
answer this question differently (though I still don’t know which one answers it in a way
consistent with Gao’s analysis).
Bohmian mechanics is a theory about particles moving in physical space. The empiri-

cal content of the theory lies in the spatio-temporal configuration of matter, constituted
by particles. The role of the wave function is first and foremost to determine how the
particles move, and also (though this is a theorem rather than an additional postulate)
to describe typical statistical distributions in ensembles of subsystems. The wave func-
tion of a closed system always evolves unitarily (in and of itself, it is thus insensitive to
different “measurement results”). The actual configuration of a system (and its envi-
ronment), however, determine which part of the wave function is effectively guiding the
subsystem, and which decoherent branches, if any, can be ignored FAPP. In this sense,
a particular effective wave function can result from a measurement process, but it would
be misleading to say that the wave function is the measurement result.
In the present case, the wave packet Φ1 (Φ2) “corresponds” to a pointer pointing to

the left (right) in the sense that it is well-localized in a region of configuration space
whose points realize a pointer configuration pointing to the left (right) and thus assign
very high probability to the respective pointer position. This (and only this) is also what
justifies common notations such as |left〉 and |right〉 for the pointer states. Nonetheless,
Φ1 may be consistent with a pointer actually pointing to the middle or to the right
(at least for a brief period of time), and Φ2 may be consistent with a pointer actually
pointing to the middle or to the left (at least for a brief period of time). So again, it
is unclear what Gao has in mind when he insists that “the whole result wave function
[not just a truncated part] ... corresponds to the result” (p. 2). If the relevant result is
“pointer left” or “pointer right”, the statement is clearly wrong.
In Bohmian mechanics, the complete state of the measurement device (if there is no

relevant entanglement with other subsystems6) is always described by a pair (Y, Φ),

6Otherwise, we have to consider the conditional wave function, see Dürr et al. (2013, Ch. 2).
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where Y ∈ Rn is the configuration of the particles and Φ ∈ L2(Rn) the (effective) wave
function. In principle, there is thus a continuum of possible outcomes of the measure-
ment, as there is a continuum of possible configurations Y . In practice, we care only
about a coarse-grained description (e.g. Y ∈ L or Y ∈ R) which leads to the statis-
tical analysis sketched above. There are, however, no postulates about “measurement
results”, in particular no “result assumption” that Gao repeatedly alludes to.
The most charitable reading of Gao’s objection is that the final pointer position “left”

(Y ∈ L) or “right” (Y ∈ R) is not perfectly correlated with the quantum states ϕ1

or ϕ2 of the measured system. Indeed! The pointer states Φ1 and Φ2 having a finite
overlap (as Gao insists) means precisely that the detector is imperfect in this sense,
that the measurement is not quite “ideal”. Not only is this a realistic limitation of
measurements (that more sophisticated quantum measurement formalisms capture, as
well,) it is actually put to good use in physics, namely in so-called weak measurements,
in which the possible pointer states overlap a lot, thus providing very little information
from a single measurement event but also affecting the state of the measured system as
little as possible (cf. e.g. Wiseman (2007)). In the upshot, far from being contradictory,
the Bohmian description of the measurement process gets things exactly right, and it
took the operator formalism some time to catch up with it.
At this point, I also have to warn against thinking of the quantum states ϕ1 or ϕ2

– even if they are eigenstates of some relevant observable – as corresponding to pre-
existing properties of the system that the measurement is supposed to reveal. This idea,
which is conclusively dispelled by Bohmian mechanics, lies behind many of the alleged
paradoxes of quantum mechanics or misguided talk about “quantum logic” (Bell (2004,
Chs. 17, 23), Lazarovici et al. (2018)). Thus, contrary to what Gao seems to assume (p.
5), there is no “measured quantity” with pre-existing values that the Bohmian particle
configuration registers (cf. Norsen (2014) for the particular example of spin). Bohmian
particles have a position and nothing else7, while different wave functions or quantum
states have to be understood through their dynamical role for the particle motion. John
Bell (2004) summarized this important insight brilliantly:

“[I]n physics the only observations we must consider are position observa-
tions, if only the positions of instrument pointers. It is a great merit of the
de Broglie-Bohm picture to force us to consider this fact. If you make axioms,
rather than definitions and theorems, about the ‘measurement’ of anything
else, then you commit redundancy and risk inconsistency.” (p. 166)

7We can leave open the status of dynamical parameters such as mass and charge.

7



Possibly the most basic mistake committed by many critics is to think of Bohmian
mechanics essentially as standard quantum mechanics plus an ad hoc addition of particle
positions to solve the measurement problem. In fact, the measurement formalism of
quantum mechanics reduces to Bohmian mechanics as an effective statistical description
of the fundamental microscopic theory. Simply put, Bohmian mechanics is to textbook
quantum mechanics what Hamiltonian mechanics is to thermodynamics. There would
thus be a lot more to learn by studying the measurement process from a Bohmian point
of view: the status of Born’s rule (Dürr et al., 2013, Ch.2), the role of observables (Dürr
et al., 2013, Ch.3), the meaning of the no-hidden-variables theorems (Lazarovici et al.,
2018) – all this and more is explained and demystified by Bohmian mechanics.
What Bohmian mechanics doesn’t provide – and what a serious physical theory

shouldn’t provide, as we learned, most notably, from Bell – are postulates about “ob-
servables”, “measurements”, “measurement results”, etc. The theory describes what is
going on in the world, and we have to analyze the theory to know what can or will
happen in a specific physical situation, what can be measured and how, and what we
can infer from a particular outcome.
One of the many intellectual harms done by operational quantum mechanics is that

this way of doing serious physics is no longer common ground.
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