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Instrumental	Perspectivism:	Is	AI	Machine	Learning	Technology	like	NMR	Spectroscopy?	
	
The	question,	“Will	science	remain	human?”	expresses	a	worry	that	deep	learning	algorithms	
will	replace	scientists	in	making	crucial	judgments	of	classification	and	inference	and	that	
something	crucial	will	be	lost	if	that	happens.		Ever	since	the	introduction	of	telescopes	and	
microscopes	humans	have	relied	on	technologies	to	“extend”	beyond	human	sensory	perception	
in	acquiring	scientific	knowledge.		In	this	paper	I	explore	whether	the	ways	in	which	new	
learning	technologies	“extend”	beyond	human	cognitive	aspects	of	science	can	be	treated	
instrumentally.	I	will	consider	the	norms	for	determining	the	reliability	of	a	detection	
instrument,	nuclear	magnetic	resonance	spectroscopy,	in	predicting	models	of	protein	atomic	
structure.	Do	the	same	norms	that	apply	in	that	case	be	used	to	judge	the	reliability	of	Artificial	
Intelligence	deep	learning	algorithms?	
	
Philosophers	of	science	explore	and	explain	how	scientists	acquire	knowledge	of	nature.		Most	

have	agreed	that	we	must	give	up	oversimplified	accounts	of	direct	experience	of	“the	given”	

(which	is	the	English	translation	of	the	Latin	datum	or	date)	and	overambitious	requirements	

that	scientific	knowledge	be	restricted	to	claims	that	are	universally	true	and	exceptionless.		As	

a	result,	many	factors	that	enter	into	scientific	practice	have	been	exposed	as	relevant	to	our	

understanding	of	how	knowledge	of	nature	is	constructed,	how	it	is	judged,	and	how	it	is	used.		

For	example,	which	observations	are	judged	to	provide	reliable	data?	What	features	of	

phenomena	are	represented	in	an	explanatory	model?	In	which	contexts	and	for	what	purposes	

will	an	explanatory	model	be	adequate?	To	be	sure,	science	is	a	product	of	human	activity,	both	

causally,	through	experience	and	experiment	and	inferentially,	though	logic,	calculation,	and	

simulation.		What	is	investigated	and	how	it	is	investigated,	is	shaped	by	decisions	which	are	

themselves	dependent	on	and	constrained	by	human	pragmatic	goals,	like	curing	diseases,	or	

understanding	the	expanse	of	the	universe.		
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The	question,	“Will	science	remain	human?”	is	posed	in	response	to	a	worry	that	AI	machines	

will	replace	scientists,	and	that	something	crucial	will	be	lost	if	that	happens.		Stark	examples	

driving	this	worry	are	found	in	the	proliferation	of	deep	learning	strategies	of	AI:	AlphaGo	

beating	the	world’s	Go	champion,	DeepMind’s	application	to	problems	in	healthcare	(Fauw	et	

al	2018),	deep	learning	models	for	data	reduction	in	high	energy	physics	(Guest,	Cranmer	and	

Whiteson	2018)	and	bias	in	autonomous	systems	(Danks	and	London	2017).1			But	are	these	

new	technologies	really	different	from	what	we	have	come	to	see	as	legitimate	extensions	or	

instrumental	replacements	of	human	capacities	by	what	we	now	accept	as	less	threatening	

machines?		In	this	paper	my	strategy	is	to	explore	in	what	ways	machine	learning	is	similar	to	

other	scientific	instruments,	taking	the	results	of	instrumental	engagement	as	providing	a	

useful	non-human	perspective	on	the	phenomena.	If	AI	is	understood	instrumentally,	then	it	is	

clear	we	use	it	(or	not)	for	our	own,	human,	purposes.		But	when	should	we	use	it,	and	when	

not?		When	should	we	trust	it,	or	why	not?		I	will	suggest	that	the	same	norms	that	govern	

judgments	of	other	scientific	instrumental	reliability	should	be	used	to	warrant	the	use	of	AI.		

My	argument	is	in	support	of	the	norms	to	be	applied,	rather	than	an	account	of	the	success	of	

any	particular	use	of	AI	in	practice.	

	

																																																								
1	AI,	Machine	Learning	and	Deep	Learning	are	not	identical.	AI	is	a	machine	way	of	performing	
tasks	that	are	characteristic	of	human	cognition,	but	may	or	may	not	attempt	to	represent	the	
way	humans	perform	those	tasks.		Machine	Learning	is	one	set	of	practices	to	achieve	AI,	where	
the	algorithm	is	not	explicitly	programmed	to	perform	a	task,	but	“learns”	how	to	achieve	a	
specified	goal.		Deep	Learning	is	one	form	of	Machine	Learning	that	explicitly	references	human	
brains	by	using	Artificial	Neural	Net	structures,	with	many	discreet	layers	(deep	structure)	of	
connected	artificial	neurons.	
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Ever	since	the	introduction	of	telescopes	and	microscopes	humans	have	relied	on	technologies	

to	“extend”	beyond	human	sensory	perception	in	acquiring	scientific	knowledge.	Simple	

instruments	relying	on	lenses	present	mediated	images	to	the	human	observer.		This	

constitutes	an	indirect	causal	interaction	between	the	scientist	and	the	phenomena	studied.	

Contemporary	scientific	experiments,	like	x-ray	crystallography,	nuclear	magnetic	resonance	

spectroscopy	(NMR),	cryo-electron	microcopy,	and	small-angle	neutron	scattering	are	used	for	

predicting	the	three-dimensional	structure	of	proteins,	involve	more	complicated	causal	

interactions	in	order	to	detect	and	process	information	about	the	target	phenomena.	Scientists	

trust	these	detection	instruments,	from	simple	lenses	to	elaborate	experimental	equipment,	to	

reveal	features	of	nature.	Indeed,	we	must	trust	them	more	than	unaided	human	detection.			

	

Recently	developed	artificial	intelligence	technologies	appear	to	“extend”	beyond	human	

cognitive	capacities.	Are	these	forms	of	outsourcing	cognitive	aspects	of	scientific	practice	

similar	to	instrument-mediated	perception?		If	not,	how	do	they	differ	and	should	we	be	

worried	about	their	increasing	role	in	science?		I	will	take	up	this	challenge	by	investigating	AI	

from	an	instrumental	stance.		Does	AI	provide	just	another	instrumental	perspective	for	

humans	to	use	in	gaining	scientific	knowledge,	like	microscopes	and	NMR	spectroscopy?		Are	

the	means	by	which	we	trust	the	results	produced	by	these	“sensory”	technologies	

transferrable	to	the	results	produced	by	AI	“cognitive”	technologies?			

	

Routes	to	scientific	knowledge	
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Science	aims	to	accurately	characterize	features	of	nature	that	permit	explanation,	prediction	

and	intervention	in	order	to	further	our	human	goals.	Support	and	justification	for	scientific	

knowledge	comes	from	experience	(observation	or	experimentation)	and	reason	(concepts,	

logic	and	inference).		I	argue	that	the	theoretically	and	experimentally	based	models	that	result	

from	well-executed	scientific	practices	always	encode	a	limited	perspective.		Much	has	been	

written	about	the	perspectival	character	of	scientific	instruments	and	models	of	natural	

phenomena	(e.g.	Giere	2006,	Van	Fraassen	2008,	Massimi	2012,	Price	2007).		Some	appeal	to	

the	location	of	the	“observer”,	i.e.	the	vantage	point	of	a	distance	or	scale	from	which	

structures	can	be	detected.		I	argue	that	perspectivism	follows	from	the	partiality	of	

representation	itself.		My	argument	rests	on	the	claim	that	no	scientific	model,	whether	it	is	

derived	from	more	general	theories	or	from	the	results	of	an	experiment,	can	provide	a	

complete	account	of	a	natural	phenomenon.		

	

What	could	be	meant	by	model	completeness?	Completeness	in	formal	systems,	like	the	

propositional	calculus,	is	tied	to	notions	of	proof	and	deductive	inference.		A	set	of	axioms	is	

complete	if	every	theorem	can	be	derived	from	it	by	the	specified	rules	of	inference.	But	what	

could	it	mean	for	a	scientific	model	of	natural	phenomena	to	be	representationally	complete?	

Weisberg	(2013)	suggests	that	model	completeness	is	a	representational	ideal	referencing	the	

inclusiveness	of	the	model	(“each	property	of	the	target	phenomenon	must	be	included	in	the	

model.”	P.	106)	and	fidelity	(models	aim	to	represent	“every	aspect	of	the	target	system	and	its	

exogenous	causes	with	an	arbitrarily	high	degree	of	precision	and	accuracy”	p.	106).	As	
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Weisberg	acknowledges,	this	type	of	completeness	is	impossible	to	achieve.2	Rather	than	reject	

completeness	as	a	virtue	of	a	model,	Weisberg	claims	that	we	should	treat	it	as	a	regulative	

ideal	against	which	we	judge	the	success	of	any	given	scientific	model.		Since	no	scientific	

model	can	satisfy	the	standard,	we	instead	focus	on	how	close	or	far	from	it	a	model	comes.	I	

disagree	with	this	approach.	As	I	have	argued	in	the	case	of	ideal,	universal,	exceptionless	laws,	

(see	Mitchell	2000,	Mitchell	2009),	we	should	develop	normative	standards	that	track	the	

character	of	what	can	be	accomplished,	that	is,	what	scientists	in	fact	do.	More	or	less	

complete	often	will	be	unmeasurable	when	we	are	considering	models	the	use	different	

variables	that	do	not	stand	in	inclusive	hierarchies.		Since	all	scientific	models	are	partial,	and	

since	many	will	represent	differing	features,	how	would	we	determine	which	one	of	them	was	

“more”	complete?	Counting	the	number	of	variables	clearly	will	not	be	adequate.		

	

Even	if	we	came	up	with	a	way	of	measuring	more	or	less	complete	models	of	natural	

phenomena,	satisfying	Weisberg’s	completeness	ideal	is	neither	necessary	nor	desirable	for	

successful	science.		Not	every	describable	feature	of	a	system	in	every	possible	degree	of	

precision	is	required	for	identifying	features	and	relations	that	permit	prediction,	explanation,	

and	intervention	on	that	system.		Suppose	we	could	meet	a	strong	completeness	standard	

whereby	our	model	represents	each	property	of	the	target	phenomena	(at	all	spatial	and	

temporal	scales)	with	the	highest	degrees	of	precision	and	accuracy.	That	representation	would	

fail	to	constitute	usable	knowledge	of	the	phenomenon;	it	would	be	a	duplicate.	For	the	
																																																								

2	See	also	Madden	1967	”The	incompleteness	of	science	arises	from	the	impossibility	of	
describing	every	detail	of	nature,	whether	the	universe	be	conceived	as	infinite	or	finite	in	
space	and	time,	and	from	the	fact	that	any	explanatory	deductive	system	depends	upon	
assumptions	which	are	themselves	not	explained”	Madden	review	of	Schelgel	POS	1967	



2/12/19	2:48	PM	

	 6	

purposes	of	facilitating	explanation,	prediction,	and	intervention,	it	would	be	no	better	than	

engaging	directly	with	the	very	system	we	are	trying	to	understand.	Model	“goodness”	should	

be	judged	by	its	accuracy	with	respect	to	existing	empirical	data,	and	its	adequacy	with	respect	

to	specific	goals,	not	how	close	it	comes	to	an	unachievable	and	non-useful	“ideal.”	The	

assumption	that	if	we	could	represent	everything	then	we	can	achieve	any	and	all	of	our	goals	

is	undoubtedly	the	intuition	supporting	completeness	as	an	ideal.		However,	given	we	cannot	

represent	everything,	including	more	details	in	a	model	can	be	detrimental	to	both	for	its	

accuracy	(e.g.	by	over	parameterizing	in	ways	that	compound	uncertainty)	and	its	adequacy	

(e.g.	by	obscuring	main	factors	whose	manipulation	might	be	sufficient	to	meet	the	goal).		

	

A	model	represents	relations	that	provide	explanations	and	predictions.	Since	it	cannot	be	

complete	in	the	sense	of	including	all	that	could	be	described,	it	must	be	partial.	Scientific	

models	expose	what	is	deemed	causally	relevant,	what	is	salient,	what	is	expressible	in	a	

particular	framework,	etc.		What	is	represented	and	what	is	left	out	sometimes	is	guided	

explicitly	by	explanatory	or	pragmatic	goals.	Scientific	representations	also	reflect	limitations	of	

the	representational	medium.	Models	are	abstract	and,	even	when	accurate,	are	not	complete.	

There	are	two	consequences	of	this	fact.		First,	the	partiality	of	scientific	models	requires	us	to	

embrace	model	pluralism	as	essential	to	science	achieving	its	goals.	Second,	the	partiality	of	

scientific	models	entails	perspectivism.	

Premise	1:	A	useful	representative	model	can	include	only	some	aspects	of	its	target	

phenomena.	

Premise	2:	Therefore	other	aspects	that	might	have	been	represented	are	omitted.	
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Premise	3:	The	omitted	aspects	could	be	(and	typically	are)	included	in	other	scientific	

models.	

Premise	4:		Some	sets	of	representational	models	are	not	incompatible,	nor	

intertranslatable/reducible,	nor	additive/mutually	exclusive.	 	 	 	 		

Conclusion:		To	explain,	predict,	and	intervene	on	a	given	phenomenon,	science	may	

require	a	plurality	of	models	to	represent	the	features	that	are	relevant	in	different	

contexts	and	for	different	purposes.		

This	raises	new	questions	about	the	relationships	among	the	multiple	models	that	are	

developed	to	represent	the	same	phenomenon.		While	reduction,	unification,	and	elimination	

are	ways	in	which	models	of	the	same	phenomenon	may	be	related,	I	have	argued	that	when	

there	are	substantial	instances	of	compatible	pluralism	explanatory	integration	better	accounts	

for	model-model	relationships	(Mitchell	2009,	and	forthcoming).			

	

The	flip-side	of	partiality	of	representation	is	perspectivism.		One	representational	model,	by	

leaving	out	some	features	or	details	explicitly	and	implicitly	“selects”	features	to	include.	What	

is	left	in	constitutes	a	perspective.		Given	there	is	no	unique,	complete	representational	model,	

there	can	be	and	frequently	are	multiple	models	that	all	satisfy	the	empirical	demands	science	

places	on	acceptance.		The	accuracy	of	a	model	is	judged	by	its	ability	to	account	for	accepted	

empirical	data.	Multiple	models	can	provide	equally	accurate	descriptions	of	a	phenomenon,	

though	they	do	so	by	referencing	different	features	of	it,	perhaps	at	different	scales,	with	

different	degrees	of	precision,	etc.	The	adequacy	of	any	model	or	set	of	models	is	judged	by	

how	well	it	or	they	serve	some	epistemic	or	non-epistemic	purposes.		Human	purposes,	as	well	
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as	human	capacities	are	reflected	in	both	these	judgments.		How	should	we	evaluate	AI	deep	

learning	algorithms?	Surely,	AI	provides	new	tools	for	developing	models,	which	describe	and	

predict	features	of	nature.	These	models	are	partial	and	perspectival.		As	such,	they	cannot	

provide	a	complete	model,	though	they	may	provide	new	perspectives	that	no	human	could	

produce.		

	

The	New	Technologies	

Machine	learning	includes	a	variety	of	computational	algorithms	that	detect	patterns,	or	make	

inferences	from	data,	without	applying	explicit,	human	programmed	rules	specifically	designed	

to	solve	the	problem	at	hand,	rather	they	implement	generic	“learning”	algorithms.	From	

minimal	information	(a	training	set	of	input-output	patterns	bearing	varying	degrees	of	human-

assigned	labels)	the	machine	builds	its	own	models	and	new	algorithms	for	making	predictions	

from	data	in	a	specific	domain.	Artificial	Neural	Networks	(ANNs),	massively	parallel	systems	

with	distributed	computation	were	modeled	on	biological	neural	architecture	in	the	brain.		

Research	on	ANNs	has	been	a	growth	industry	since	the	1980s,	due	to,	in	part,	the	

development	of		back-propagation	learning	algorithms	for	multilayer	feed-forward	networks	

that	had	widespread	impact	through	Rumelhart	and	McClellan’s	1986	book.	While	feed-forward	

networks	are	static,	producing	one	set	of	output	values	for	a	given	input,	recurrent,	or	feedback	

network	architectures	are	dynamic,	where	computed	outputs	modify	the	inputs.	ANN’s	learn	

from	examples	rather	than	explicit	rules.		This	means	that,	among	other	things,	connection	

weights	between	the	neurons	are	adjusted	by	means	of	a	learning	rule.	For	example	a	back-	
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propagation	algorithm	can	implement	error-correction	to	train	the	network	to	minimize	output	

error	(Jain,	Mau	and	Mohiuddin	1996).	

	

A	human	signature	is	ineliminable	from	all	forms	of	machine	learning.		In	so-called	supervised	

learning,	humans	determine	not	just	what	the	prediction	problem	is,	but	specify	what	counts	as	

a	“correct	answer”,	the	target,	that	is	used	as	part	of	the	training	process.	The	machine	learns	

how	to	reach	the	target	by	calculating	an	error	signal	between	the	target	and	actual	outputs,	

and	using	that	error	to	make	changes	in	the	weights	in	the	algorithm.	Unsupervised	machine	

learning,	infers	a	function	from	unlabeled	input	to	output	that	relies	on	hidden	structure.	In	

both	cases,	what	data	is	presented,	and	what	problem	is	to	be	solved	is	set	by	humans.	The	

feature	that	makes	artificial	neural	net	machine	learning	(ANNs)	a	challenge	is	that	the	

functions	it	“infers”	to	map	input	data	into	output	patterns,	and	how	the	functions	are	acquired	

may	not	always	be	cognitively	available	or	meaningful	for	humans.	If	AI	machine	learning	

algorithms	do	not	learn	the	way	humans	learn,	do	not	make	inferences	or	patterns	the	way	

humans	do,	and	we	cannot	see	what	it	is	doing,	then	how	can	we	trust	it	is	doing	the	right	

thing?	

	

This	seems	to	me	to	be	parallel	to	the	situation	of	causal	detection	instruments.		They	detect	

features	of	phenomena	that	we	cannot	detect,	and	they	do	it	in	ways	that	are	different	from	

how	we	do	it.		Yet	we	trust	the	results	of	such	instruments.	How	is	the	perspective	of	AI	

machine	learning	different	from	causal	experimental	perspectives?			
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How	is	AI	machine	learning	different	from	experimental	instruments?	

	

The	Instrumental	Stance	

In	commendation	of	ye	Microscope	

Of	all	the	Inventions	none	there	is	Surpasses	
	 The	Noble	Florentine’s	Dioptrick	Glasses	
For	what	a	better,	fitter	guift	Could	bee	
	 In	the	World’s	Aged	Luciosity.	
To	help	our	Blindnesse	so	as	to	devize	
	 A	paire	of	new	&	Artificial	eyes	
By	whose	augmenting	power	wee	now	see	more	
	 Than	all	the	world	Has	ever	doun	Before.	
	 	 	 	 	 	 	 Henry	Power	1664	(Cowles	1934)	

Power,	one	of	the	first	scientists	to	be	made	a	fellow	of	the	Royal	Society	wrote	the	first	book	

about	microscopes	(predating	Hooke’s	Micrographia	by	two	years).		Power’s	message	–	that	

artificial	eyes	let	us	see	more	than	anyone	could	have	seen	before	continues	to	be	true	of	the	

modern	forms	of	spectroscopy.		These,	like	X-ray	crystallography	and	Nuclear	Magnetic	

Resonance	Spectroscopy,	are	less	clearly	extensions	of	human	visual	perception,	than	they	are	

alternative	detecting	devices.		Why	do	we	trust	the	results	of	such	instruments	to	provide	data	

from	which	scientific	inferences	can	be	drawn?	In	what	follows	I	will	consider	the	use	of	these	

experimental	instruments	in	the	determination/prediction	of	protein	structure.			There	are	two	

components	to	trusting	instrumental	detection;	one	is	reliability	of	the	data	output	that	result	

from	the	causal	interaction	with	the	target	phenomenon;	the	other	is	the	inferential	or	

epistemic	warrant	that	the	measurements	or	models	of	data	provide	in	supporting	hypotheses	

about	the	phenomena.3	

																																																								
3	See	Bogen	and	Woodward	1988	for	an	important	distinction	between	data	and	phenomena.	
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Briefly,	proteins	are	the	most	common	molecules	found	in	living	cells.		They	consist	of	one	or	

more	polypeptide	chains	which	themselves	are	composed	of	amino	acids.	Proteins	are	coded	

for	by	DNA	and	produced	through	a	process	of	transcription	of	RNA	from	DNA,	then	translation	

of	the	RNA	on	a	ribosome	to	generate	a	chain	of	amino	acids	(the	primary	structure	of	a	

protein)	that	then	folds	into	a	functional	conformation,	of	secondary,	tertiary	and	sometime	

quaternary	structure.		Predicting	the	structure	aims	to	identify	the	position	of	the	atoms	

constituting	the	amino	acids	in	their	folded,	functional	form.		Knowing	the	structure	provides	

information	about	binding	sites	on	a	protein	that	are	a	clue	to	its	function,	since	most	proteins	

perform	their	biological	function	in	response	to	or	in	conjunction	with	other	molecules.	This	

information	can	also	aid	in	drug	design	to	intervene	on	proteins	for	medical	purposes.	NMR	and	

X-ray	Crystallography	are	the	two	primary	methods	for	experimentally	ascertaining	protein	

structure.	

	

Obviously,	humans	cannot	directly	detect	what	is	going	on	at	the	scale	of	atoms.		NMR	

spectroscopy	is	an	experimental	alternative	causal	detection	method	that	measures	the	way	

magnetic	influences	affect	the	behavior	of	the	nuclei	of	atoms	(e.g.	hydrogen).			Basically,	a	

concentrated	protein	solution	is	placed	in	a	strong	magnetic	field.		Atomic	nuclei,	like	hydrogen,	

have	an	intrinsic	magnetization	resonance	or	spin	that	is	changed	by	the	strong	magnetic	field.		

In	the	experiment,	the	initial	alignment	with	the	strong	magnetic	field	is	disrupted	by	a	radio	

frequency	(RF)	electromagnetic	pulse.		As	the	hydrogen	nuclei	return	to	their	aligned	states,	

they	emit	RF	radiation	that	is	measured.		The	radiation	emitted	depends	on	the	local	
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environment	so	that	excited	hydrogen	nuclei	in	other	amino	acids	induce	small	shifts	in	the	

signals	of	close-by	hydrogen	nuclei	(magnetization	transfer).		Given	information	about	the	

protein’s	constituent	amino	acid	sequence,	the	measurements	provide	information	about	

where	each	atom	of	each	amino	acid	is	located	in	the	3-D	structure	of	the	protein.		

	

As	Hans	Radder	puts	it	“An	experiment	tries	to	realize	an	interaction	between	some	part	of	

nature	and	an	apparatus	in	such	a	way	that	a	stable	correlation	between	a	feature	of	that	part	

of	nature	and	a	feature	of	the	apparatus	is	produced.”	(Radder	2003).	The	first	level	causal	

output	in	NMR	protein	spectroscopy	is	the	RF	radiation	associated	with	hydrogen	nuclei	in	the	

various	amino	acids	composing	the	protein	sample.	From	measuring	the	decay	curves	of	the	

hydrogen	atoms,	the	experimenter	can	recover	information	about	the	relative	distance	and	

rotational	angles	between	atoms.	From	that,	plus	measurements	of	other	types	of	atoms	in	the	

protein,	an	atomic	structure	of	the	protein	can	be	inferred.	What	are	our	grounds	for	trusting	

the	results	of	the	instrument?	We	don’t	have	any	experience	of	“what	is	like	to	be	a	nuclear	

magnetic	resonance	spectrometer”.		Though	we	can	decompose	the	causal	process	into	more	

fine-grained	steps,	at	some	point	we	will	not	have	any	more	direct	perception.	Thus,	reliability	

of	the	causal	process	will	be	an	inference	we	make	–	not	a	causal	“experience”	we	have.		That	

inference	is	made	by	appeal	to	theories,	the	“theory	of	the	experiment”	and	the	stability	of	the	

results	of	instrumental	replication	and	multi-instrument	convergence.				

	

I	will	consider	how	this	is	achieved	in	the	case	of	NMR	experiments	and	question	whether	or	

not	the	same	types	of	inference	are	available	in	the	case	of	AI	machine	learning.	
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Theoretical	support	

Instruments	have	perspectives,	i.e.	they	selectively	interact	with	some	features	of	the	target	

phenomena,	not	all,	and	in	this	sense,	are	causally	“biased”(see	Giere	2006).	Measurements	or	

some	other	meaningful	representation	of	the	causal	effects	of	an	instrument/phenomenon	

interaction	encode	theoretical	assumptions,	and	are	not	perfectly	objective	or	“given”	by	

experience.	Numbers,	graphs,	and	natural	language	represent	the	causal	process	in	terms	that	

express	units,	scales,	and	other	content.		As	Tal	(2017)	clearly	and	correctly	claims	“To	attain	

the	status	of	an	outcome,	a	set	of	values	must	be	abstracted	away	from	its	concrete	method	of	

production	and	pertain	to	some	quantity	objectively,	namely	be	attributable	to	the	measured	

object	rather	than	the	idiosyncrasies	of	the	measuring	instrument,	environment,	and	human	

operators.”	(p.	35).		With	respect	to	NMR	experiments,	we	want	to	assign	measurements	

(relative	distances)	to	the	atoms	of	the	protein	itself.		How	much,	which	and	where	theories	are	

involved	in	detection	matter	to	our	judging	the	process	and	the	outcomes	as	a	reliable	means	

to	do	that.		In	NMR	determination	of	protein	structure	experiments,	theories	of	how	

electromagnetic	fields	and	pulses	affect	the	behavior	of	atomic	nuclei	are	required	both	for	

designing	the	experiments	and	interpreting	their	results.		Additional	theories	are	also	required	

pertaining	to	the	materials	used	in	building	the	instrument,	how	the	preparation	of	the	sample	

might	affect	the	target	properties,	the	confounding	influences	of	the	environment	in	which	the	

experiment	is	conducted	and	more.	Theories	are	essential	for	both	performing	an	experiment	–	

the	causal	theory	of	the	experiment	–	and	for	producing	epistemically	relevant	information.	We	

might	require	different	causal	operations	to	elicit	measurements	relevant	to	determining	the	
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structure	of	particular	proteins,	which	are	biologically	functional	only	in	conjunction	with	other	

molecules.		We	might	need	different	sorts	of	information,	and	hence	experimental	access,	to	

design	drugs	that	will	bind	with	a	protein	to	negate	a	detrimental	function	it	would	otherwise	

perform.			

	

The	role	of	theoretical	assumptions	in	experimental	hypothesis	testing	long	has	been	a	subject	

of	philosophical	scrutiny.	Concerns	about	theory-ladenness	challenge	the	“objectivity”	of	

experimental	results	for	testing	theories.	But	theories	are	required.	Duhem	points	out	that	“The	

same	theoretical	fact	may	correspond	to	an	infinity	of	distinct	practical	facts….The	same	

practical	fact	may	correspond	to	an	infinity	of	logically	incompatible	theoretical	facts….”	Duhem	

(Aim	and	Structure,	p	152).			Thus,	for	an	experiment	to	be	a	test	of	a	specific	hypothesis	or	

prediction,	there	needs	to	be	some	way	to	translate	the	causal	outcome	(practical	fact	for	

Duhem)	into	a	claim	relevant	to	the	prediction	of	the	hypothesis	being	tested	(theoretical	fact).	

There	is	no	escaping	some	semantic	infection	from	the	theory	being	tested	in	describing	the	

outcomes	of	an	experiment.	4		There	is	no	way	to	isolate	an	observation	or	measurement	from	

the	theoretical	assumptions.		But	which	theories	are	involved?	

	

In	its	most	extreme	version,	what	is	called	Duhemian	holism,	it	is	claims	that	every	experiment	

implicates	“a	whole	theoretical	group”	(Duhem	1906,	1862,	p.	183)	and	thus	no	isolated	

hypothesis	can	either	be	confirmed	or	falsified	by	an	experimental	result.	There	is	always	the	

																																																								
4	There	are	different	forms	of	theory	ladenness.		See	Bogen’s	SEP	article	distinction	of	
perception	loading,	semantic	theory	loading,	and	salience.	On	Bogen’s	classification,	Duhem’s	
claim	is	about	semantic	theory	loading.			
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possibility	that	a	negative	test	result	is	due	to	one	of	the	auxiliary	assumptions,	and	not	the	

theory	under	test.		This	has	challenged	the	“objectivity”	of	experimental	results	to	both	

accurately	reflect	the	features	of	the	phenomena	and	provide	test	for	accepting	or	rejecting	

individual	hypotheses.		

	

Hasok	Chang	(Chang	2004)	argues,	in	his	examination	of	the	history	of	the	thermometer,	that	

scientists	can	avoid	the	worst	forms	of	holism	by	adopting	a	“principle	of	minimalist	

overdetermination”.		For	Chang,	overdetermination	is	the	agreement	by	different	methods	on	

the	measurement	value	ascribed	to	some	phenomenon,	e.g.	a	temperature	determined	by	both	

calculation	and	measured	by	a	mercury	thermometer,	or	measured	by	two	different	types	of	

thermometer.		The	necessity	of	invoking	auxiliary	hypotheses	in	order	to	make	predictions,	

build	apparatus	and	interpret	the	results	of	an	experiment	is	unavoidable,	but	by	minimizing	

assumpitons,	Chang	argues,	the	damage	can	be	contained.			“The	heart	of	minimalism	is	the	

removal	of	all	possible	extraneous	(or	auxiliary)	non-observational	hypotheses.”	(Chang	2004,	

p.	94).	Overdetermination	by	multiple	experiments	which	make	similar	ontological	assumptions	

about	the	nature	of	the	phenomena,	uses	fewer	assumptions	than	are	required	by	predictions	

from	high-level	theories.	His	approach	rests	on	the	appeal	for	the	most	direct,	or	least	theory-

mediated	correlation	between	what	is	in	the	world	and	the	measurement.		I	understand	this	

principle	to	require	that	the	theories	of	the	experiment	should	rely	on	as	few	assumptions	

about	the	function	that	associates	the	target	feature	with	the	measured	feature	as	possible.		

Chang’s	principle	acknowledges	that	there	is	not	way	to	eliminate	theoretical	assumptions	in	

generating	experimental	results,	in	contrast	to	others	who	have	required	something	stronger,	



2/12/19	2:48	PM	

	 16	

namely	the	independence	of	the	theory	of	the	instrument	and	theory	to	be	tested	by	the	

experimental	results	using	the	instrument.	Complete	independence	is	certainly	too	strong,	

since	there	needs	to	be	some	form	of	translation	between	experimental	measurements	and	

theoretical	predictions	in	order	for	the	former	to	be	a	test	of	the	latter	at	all	(Darling	2002).		By	

minimizing,	removing	all	possible	auxiliary	assumptions,	Chang	suggests	we	can	provide	the	

strongest	grounds	for	taking	experimental	results	to	be	confirmations	or	refutations	of	the	

hypothesis	being	tested.	

	

The	theory	of	the	instrument	does	not	need	to	be	simple,	and	certainly	is	not	in	the	case	of	

NMR	spectroscopy,	but	is	should,	if	Chang	is	correct,	rely	on	no	more	theory	overlapping	the	

hypotheses	to	be	tested	than	is	necessary.		NMR	spectroscopy	relies	on	theories	of	nuclear	spin	

and	the	effects	on	spin	from	magnetic	influences	(chemical	shift).		While	the	atoms	in	each	

functional	protein	are	described	by	these	theories,	which	particular	arrangement	of	molecules	

occurs	in	a	given	protein	is	not.		So	although	NMR	spectroscopy	experiments	may	succeed	or	

fail	to	correctly	detect	the	atomic	locations,	the	assumptions	involved	in	addition	to	the	theory	

of	the	instrument	seem	to	be	minimally	overlapping	with	a	hypothesis	that	protein	P	has	

conformational	structure	C.		At	least	on	Chang’s	account,	it	could	be	argued	that	NMR	

experiments	are	minimally	overdetermined.	

	

Chang’s	approach	has	the	virtue	of	recognizing	the	ineliminabilty	of	influence	of	theoretical	

assumptions	related	to	the	hypothesis	being	tested	in	acquiring	reliable	measurements	from	

any	experimental	set	up.		However,	like	Weisberg,	his	approach	seems	to	take	the	impossible	–	
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complete	independence	–	as	a	regulative	ideal.		Minimizing	means	using	fewer	assumptions,	

thus	getting	closer	to	independence.	However,	as	in	the	case	of	Weisberg’s	ideal	completeness	

ideal,	reliance	on	the	impossible-to-realize	ideal	norm	of	independence	strikes	me	as	an	

inappropriate	goal.		Instead,	what	matters	is	what	is	assumed	in	an	experimental	set	up,	not	

how	much.5			

	

In	the	case	of	NMR	for	protein	structure	prediction	assumptions	invoke	general	theories	about	

atomic	nuclei	and	chemical	steric	constraints	(what	angles	of	rotation	are	possible,	and	that	no	

two	atoms	occupy	the	same	space	at	the	same	time)	and	a	host	of	other	theories.		However,	

the	specific	location	of	atoms	in	the	conformation	of	a	functional	protein	in	solution	is	not	

directly	implicated	in	those	theories.		NMR	can	be	trusted	in	testing	rival	structure	predictions	

since	NMR	is	not	tuned	to	a	specific	protein	structure	but	only	to	nucleic	atomic	behavior	more	

generally.		A	more	detailed	explication	of	the	theories	involved	in	all	the	steps	of	generating	

measurements	in	NMR	spectroscopy,	akin	to	what	Tal	(2017)	calls	“white-box	calibration”	in	

contrast	to	“black-box	calibration”	would	be	required	to	convincingly	make	the	case	(see	also	

Humphries	2004).		At	some	point,	however,	there	will	be	no	more	sub-boxes	between	the	

phenomenon	and	detector	that	can	be	theoretically	unpacked.	There	will	just	be	input	(some	

sample	of	the	phenomenon)	and	an	output.	This	is	the	rawest	sense	of	data.		With	no	theories	

left	to	support	the	veridicality	of	the	correlation	between	phenomenal	feature	and	instrument	

detection,	we	appeal	to	stability	of	the	results	to	warrant	claims	of	reliability.	

	
																																																								
5	See	Glymour	1980	for	other	ways	to	manage	the	theory-ladenness	of	experimental	
observations.		
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Replicability	and	Convergence	

A	theory	or	model	of	the	experiment	itself	describes	and	predicts	the	causal	relations	between	

the	target	phenomenon	and	the	output	of	the	experiment.		It	involves	theoretical	constraints	as	

well	as	sources	of	random	and	systematic	error.		Even	if	we	have	good	grounds	for	accepting	

that	the	theory	of	the	experiment	is	correct,	there	remains	a	question	about	if	our	experimental	

apparatus	instantiates	what	the	theory	describes.			

	

NMR	spectroscopy,	based	on	theories	of	nuclear	magnetization	had	been	attempted	in	1936	to	

testing	Lithium	compounds.	However,	the	experiments	were	unable	to	produce	any	

measurable	signals.		In	1941	it	was	reported	that	NMR	signals	of	hydrogen	in	water	had	been	

detected,	but	there	was	insufficient	replicability	of	the	results.	It	wasn’t	until	1946	that	the	first	

successful	results	of	NMR	were	reported	by	two	labs,	by	Bloch	at	Stanford	and	Purcell	at	

Harvard	for	which	they	were	jointly	awarded	the	Nobel	Prize	in	1952.		There	were	many	

developments	that	refined	the	instrument;	importantly	Richard	Ernst’s	1964	introduction	of	the	

use	of	short,	intense	RF	pulses	to	simultaneously	excite	all	magnetic	resonances	and	using	

Fourier	transforms	to	computationally	analyze	the	response	(H.	Pfeifer	1999).	The	RF	technique	

increased	the	sensitivity	of	the	instrument	thus	improving	the	signal	to	noise	ratio.		The	first	

NMR	spectrum	of	the	protein	ribonuclease	was	detected	in	1957.		In	1958	Kendrew	and	Perutz	

published	the	first	high-resolution	protein	structure,	using	by	X-ray	crystallography.		In	1970	

Wuthrich	published	a	lecture	showing	that	NMR	spectroscopy	and	X-ray	studies	of	proteins	

could	yield	similar	spatial	structures	of	protein	under	extremely	different	experimental	
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conditions	(NMR	of	proteins	in	solution	and	X-ray	of	proteins	in	a	crystalline	form).		This	is	taken	

to	be	the	pivotal	moment	for	NMR	in	the	history	of	protein	experimentation.	(Schwalbe	2003).	

	

For	an	instrument	to	be	reliable	is	for	the	output	of	its	detection	process	to	capture	the	

targeted	features	of	the	phenomenon	thus	permit	accurate	measurements	that	represent	

those	features.	But	since	we	have	no	direct	access	to	the	phenomenon	outside	of	some	

detection	device,	there	is	no	way	to	directly	compare	the	phenomenon	with	the	instrumental	

response.	Instead,	instrumental	reliability	is	supported	by	the	stability	of	instrumental	results	in	

different	places	and	times	using	the	same	experimental	protocols	(replicability)	and	stability	of	

results	among	very	different	kinds	of	experiments	(reproducibility	or	convergence).		For	NMR	to	

reliably	indicate	the	atomic	structure	of	a	protein	is	for	the	signals	detected	(chemical	shift)	and	

measured	(decay	curves)	to	reflect	the	distance	and	rotational	angles	between	atoms	present	

in	the	molecules	constituting	the	protein.			

	

The	comparison	of	different	instrumental	techniques,	like	X-ray	and	NMR	spectroscopy,	permits	

cross-validation.		If	there	is	a	designated	standard	technique	with	which	to	compare	a	new	

instrument,	this	is	called	calibration,	if	not,	then	multiple	experiments	each	with	different	

sources	of	systematic	errors	can	be	taken	to	be	validating	each	other.		Notice	that	just	as	there	

is	no	independent-of-theory	test	of	a	single	measurement,	neither	is	that	any	independent-of-

theory	calibration.	Eran	Tal	(2017)	has	recently	argued	that	successful	calibration	depends	on	

two	conditions.		First	the	measurement	outcomes	“are	mutually	consistent	within	their	

ascribed	uncertainties”	and	second	“the	ascribed	uncertainties	are	derived	from	adequate	
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models	of	each	measurement	process”	(2017:43).		Since	the	conditions	are	different,	and	the	

models	are	driven	by	different	theories,	or	parts	of	a	theory,	Tal	argues	that	the	shared	results	

are	context	invariant.		This,	Tal	suggests,	is	what	can	be	meant	by	the	objectivity	of	the	result.		

They	are	not	theory	independent,	but	are	independent	of	any	particular	theory.	Replication	

under	the	same	experimental	protocol	can	support	claims	of	internal	stability	–	the	

phenomenal	feature-instrument	interaction	is	generating	the	signal	measured,	not	a	signal	

from	some	fluctuating	or	random	extraneous	source.	Convergence	can	support	a	broader	

warrant.		Tal	suggests	it	permits	prediction	of	experimental	outcomes	for	other	types	of	

measurements	with	other	sources	of	bias	and	uncertainty.		As	Tal	claims,	convergence	accounts	

for	“how	it	is	possible	to	assess	the	reliability	of	measuring	instruments	despite	the	

inaccessibility	of	‘true’	quantity	values,	and	despite	the	fact	that	measurement	standards	do	

not	provide	absolutely	exact,	infallible	quantity	values.”		(Tal	2017:	45).		Stability	across	

replication	and	convergence	plays	the	same	role	as	Chang’s	principle	of	minimalist	

overdetermination.		However	instead	of	minimizing	the	number	of	assumptions	required	for	an	

experiment,	on	Tal’s	account,	reliability	is	gained	by	varying	the	sources	of	uncertainty,	no	

matter	how	many	assumptions	each	source	requires.	

	

To	sum	up:		trust	in	the	reliability	of	the	models	inferred	from	the	causal	processes	of	

experimental	instruments	derives	from	our	theories	of	the	instrument	(how	is	nuclear	spin	

affected	by	magnetic	influences)	and	from	the	stability	of	the	results	across	multiple	trials	

(replication)	and	multiple	instruments	(convergence).			
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AI	instrumental	perspectives	

		
I	have	presented	a	view	that	the	inferences	supporting	the	reliability	of	the	causal	capture	of	

phenomenal	features	through	experimentation	is	supported	by	theories	of	the	experiment	and	

by	the	stability	of	results	in	replication	and	convergence.		Are	AI	machine-learning	practices	

subject	to	the	same	tests	for	reliability?		How	do	they	fare?	

	

The	instrumental	stance	focuses	attention	on	the	causal	interaction	between	the	target	

phenomena	and	the	detecting	device	in	the	experiment	that	can	output	a	measurement.		Note	

that	the	measurement	is	a	description	that	depends	on	interpretation	and	inference.		In	

particular	the	measurement	(or	model	of	the	data)	involves	distilling	the	signal	from	the	noise	

in	the	initial	data	output.		There	are	a	variety	of	techniques	to	accomplish	this	in	NMR	protein	

experiments,	from	averaging	out	random	error	to	‘correcting’	for	known	systematic	errors.	In	

addition	the	measured	data	must	be	represented	in	a	way	that	can	be	related	to	the	

hypotheses	at	issue,	i.e.	decay	curves	in	NMR	experiments	are	translated	into	relative	distance	

and	rotation	angles	between	atoms.	

	

Instrumentally,	machine-learning	algorithms	enable	identification	of	associations	and	patterns	

in	observed	data,	permitting	scientists	to	build	explanatory	models	and	make	predictions.		The	

algorithms	do	not	have	explicit	programmed	rules	that	are	applied	directly	to	accomplish	the	

pattern	recognition,	but	rather	“learn”	rules	based	on	past	“experience”.		There	are	many	

different	protocols	for	the	type	of	learning	implemented	(reinforcement,	supervised)	and	the	

character	of	the	algorithms	(linear	regression,	logistic	regression,	etc.).			The	point	at	issue	is	
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that	how	AI	learns	and	then	generates	patterns	and	predictions	seems	to	diverge	from	the	way	

a	human	scientist	learns	and	generates	patterns	and	predictions.		For	some	architecture	of	

multiple	layer	(deep)	neural	networks,	there	may	be	no	way	in	which	a	human	can	recover	the	

rules	that	have	been	learned.	Thus,	even	though	the	architecture	of	ANNs	is	inspired	by	analogy	

to	the	way	humans	reason,	it	is	difficult	to	know	if	they	actually	reason	in	the	ways	humans	

reason.		There	is	some	evidence	(Dodge	and	Karam	2017)	of	significant	differences	between	

deep	neural	nets	and	humans	in	recognition	performance	of	distorted	images	in	success	rates	

and	in	types	of	errors.			

	

In	the	case	of	AI,	the	“phenomena”	are	the	data	sets	fed	into	the	computer	and	the	output	is	a	

pattern	or	a	prediction.		The	output	is	more	like	a	measurement	or	model	of	the	data	than	a	

physical	causal	effect,	as	is	the	case	for	the	spectroscopy	instruments.	What	the	learning	

algorithm	does	is	eliminate	noise	and	minimize	error.	In	the	NMR	experiment	the	model	of	the	

data	is	based	on	both	theories	of	the	instrument	and	on	the	stability	of	repeated	outputs.		

Most	modern	NMR	experiments	rely	heavily	on	the	reproducibility	and	stability	

of	the	spectrometer,	because	in	order	to	select	those	signals	that	carry	useful	chemical	

information,	it	is	necessary	to	cancel	those	that	do	not….	In	some	experiments…the	

sensitivity	of	the	technique	is	often	determined	not	by	the	intrinsic	signal-to-noise	ratio	

of	the	instrument,	but	by	its	stability.	The	limiting	factor	is	the	ability	to	distinguish	

between	the	signals	of	interest	and	a	background	of	unwanted	signals	derived	from	

instrumental	errors,	rather	than	a	background	of	random	noise.”		Morris	(1992)		

	

I	suggest	that	the	warrant	of	the	output	of	machine	learning	is	similar	to	the	warrant	of	the	

measurement	output	of	a	causal	detection	device.		Both	rely	on	a	theory	of	the	instrument	and	



2/12/19	2:48	PM	

	 23	

the	stability	of	the	results.		To	assess	reliability,	one	needs	an	analysis	of	the	learning	rules	

implemented	in	AI	algorithm.			What	is	the	support	for	reinforcement	learning	vs.	supervised	

learning	relative	to	particular	problem	types?			Just	as	in	physical	experiments,	the	theories	

“behind”	the	instrument	in	AI	machine	learning	are	subject	to	the	norms	of	contrastive	

confirmation	that	apply	across	science.		Which	learning	rules,	representation	protocols,	etc.	are	

theoretically	warranted	to	solve	specific	kinds	of	problems	cam	provide	support	for	the	

reliability	of	AI.	

	

In	addition,	it	is	clear	that	the	stability	of	results	through	replication	and	convergence	are	also	

sources	of	warrant	in	the	case	of	AI.		In	a	recent	Science	article	(Hutson	2018),	a	“replication	

crisis”	was	announced	for	artificial	intelligence.		Scientists	who	wanted	to	test	a	new	algorithm	

against	a	benchmark,	a	classic	example	of	calibration,	found	they	could	not	replicate	the	

benchmark	itself.			Replication	is	a	norm	that	AI	scientists	clearly	adopt.	Making	explicit	how	a	

detector	instrument	is	built	or	a	program	is	designed	will	accomplish	two	things.			First,	a	

replication	can	be	attempted,	checking	the	stability	of	the	results	across	different	iterations	in	

space	and	time.		Second,	the	assumptions	implicit	in	the	instrument	or	program	can	be	made	

visible	and	the	theories	underlying	them	can	be	endorsed	or	challenged.		

	

Other	sources	of	failure	to	replicate	include	not	having	access	to	the	training	set	upon	which	

the	algorithm	learns	the	functions	that	execute	predictions	on	new	data	input.		Learning	from	

different	data	sets	can	generate	major	differences	in	output	predictions.	(Nishikawa	et	al	1994).		

Other	factors	that	are	not	central	to	the	code	may	also	influence	the	stability	of	the	outcomes	
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(see	Islam	et	al	2017).		Factors	in	NMR	experiments	that	are	not	directly	in	the	source-signal-

detector	path	also	can	influence	outcomes,	like	input	electricity	source.	Although	there	is	no	

way	to	eliminate	factors	that	disrupt	the	fidelity	of	the	source	features	to	the	detected	

features,	there	are	strategies	in	both	NMR	and	in	AI	to	identify	and	manage	what	may	bias	the	

results.		Replication	and	convergence	of	results	in	each	case	can	warrant	the	reliability	of	the	

instruments.	

	

That	the	failure	of	reproducibility	in	AI	is	deemed	a	‘crisis’	indicates	that	the	sources	of	

reliability	and	trustworthiness	typical	for	“extensions”	of	our	perceptual	means	of	acquiring	

knowledge	of	nature,	namely	instrumented	detection	devises,	also	apply	to	the	new	

“extensions”	of	our	cognitive	components	of	acquiring	knowledge	of	nature,	namely	machine	

learning	AI	programs.		In	the	case	of	NMR	spectroscopy,	the	way	it	“sees”	the	world	is	not	the	

same	as	the	way	we	do	and	yet	we	can	trust	its	results	based	on	robust	theories	of	the	

experiment	and	evidence	of	the	stability	of	the	output.		The	way	AI	machine	learning	detects	

patterns	in	data	is	also	not	the	way	we	do	it.		Like	the	NMR	case,	artificial	intelligence	deploys	

capacities	that	are	beyond	our	unaided	human	perceptual	and	cognitive	abilities.		Are	there	

differences	in	how	we	can	interrogate	the	causal	instrument	and	the	cognitive	instrument	to	

apply	the	norms	required	for	judgments	of	reliability?		Certainly	yes.		However	that	the	same	

general	norms	for	reliability	apply	to	both	types	of	scientific	practice	supports	taking	an	

instrumental	stance	towards	AI.		It	is	a	tool	we	can	use,	if	reliable,	in	the	same	way	we	use	NMR	

spectroscopy	or	other	tested	and	trusted	scientific	instruments.	
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