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“Isn’t it a bad thing to be deceived about the truth and a good thing to know what the 
truth is?” Plato

Abstract

  The Lucas - Penrose argument is considered. As a special case we consider 
sorites arithmetic and explain how the argument actually works. A comparison with 
Gödel’s own treatment is made.

  Truth is valuable. But certifiable truth is hard to come by!

The Case of Mathematics

  Does truth equate with proof?

No: Gödel showed famously that truth outruns proof, even in the case of the natural 
numbers 0, 1, 2, 3, …

The Lucas-Penrose argument

  The argument that ascertainable truth outruns proof in mathematics has been used 
by John Lucas and Roger Penrose to claim that human minds can do things which 
computers can’t do, and hence that minds can’t be (digital) machines.

  Quote from Lucas and myself :

  We are dealing with a different style of reasoning… an informal semantics 
concerned with truth rather than proof. Sceptics deny that we have such a concept of
truth. We cannot prove to them that we have… (but) we have many intimations of 
truth, not all of which can be articulated as proofs.

Sorites arithmetic

  This is the sort of arithmetic you learnt at school. The basic operation is moving 
from one number to the next along the number line and repeating the operation a 
finite number of times.

  Addition and multiplication are defined recursively in the usual way.

  So, addition is effectively reduced to adding one and one and one… repeatedly, 
and multiplication is repeated addition. We now have the machinery to check out 
some arithmetical facts like 279 x 681= 681 x 279.



Sorites axioms

1. Zero is a number

2. Every number has a unique successor

3. If two numbers have equal successors, then the number are equal

4. Every number other than zero is the successor of some number

5. Recursive definitions of addition and multiplication

Indeed,

(1) For any pair of number (m, n), we can prove m x n = n x m

But what we can’t prove in Sorites arithmetic is the Commutative law of Multiplication
(CM) in the form

(2) For all pairs of numbers (m, n), m x n = n x m

Why is this?

  Because as the number get bigger, the proof increases in length without limit, so 
there is no finite proof that will work for all pairs of number. And this can’t be avoided.
In other words, we can’t make the transition any → all.

  Compare Any plum in this plum pudding is delicious → all the plums in the pudding 
are delicious.

  This is a perfectly valid argument because we are claiming that a typical plum is 
delicious, not in virtue of being that particular plum, but just in virtue of being a plum.

  But in the arithmetical example, there is no such thing as a typical pair of numbers.

The detailed proof for any particular pair depends crucially on which pair you choose.

  But although we cannot prove CM, we can argue that it is true!

  From (1) it follows that

(3) For any pair of numbers (m, n), it is true that m x n = n x m But (3) is strictly 
equivalent to:

(4) It is true that for all pairs of numbers (m, n), m x n = n x m And (4) is just CM!

  So, in Sorites arithmetic CM can’t be proved. (Notice that the argument depended 
crucially on the fact that the sequence of numbers is infinite). Note that we don’t 
assume consistency. For the Gödel proofs of true but unprovable assertions we have
to assume consistency. Without this nothing follows.

Response



  Why not introduce a new axiom to strengthen Sorites arithmetic in such a way that 
CM can be proved? This step was taken by Peano in 1889, and in the resulting 
system known as Peano arithmetic, CM is both true and provable. But in 1931, 
Gödel showed that examples could be given of unprovable statements in Peano 
arithmetic and indeed in any strengthening of Peano arithmetic.

The Peano axioms 

1. Zero is a number

2. Every number has a unique successor

3. If two number have equal successors, then the numbers are equal

4. Every number other than zero is the successor of some number

5. Induction axiom:

  For any admissible predicate F, if F is true of zero, and if, given that F is true of n, 
then it is true of the successor of n, then it is true for all n.

  Poincare (1952) famously claimed that this was not an analytic truth, but forced 
itself on us with such conviction, that it was a candidate for the elusive synthetic a 
priori. The induction axiom certainly cannot be proved from the first four axioms, so 
what is the source of the conviction that Poincare talks of?

  My claim is that the essence of the Lucas-Penrose argument can be framed in the 
context of Sorites arithmetic and simple examples like CM, thus avoiding the 
formidable complexity of the Gödel construction.

  We notice that the syntactic proof can be formalised, the semantic proof cannot. 
This is because in order to formalise it, we would have to express the notion of truth. 
But this is ruled out by Tarski’s theorem on the undefinability of truth, whose proof is 
closely connected to Godel's theorem. The definable truths are at most 
denumerable, whereas there are non-denumerably many sets of numbers.

  Notice that the Gödel theorems say that if a sufficiently strong version of arithmetic 
is consistent, then the result follows. But we cannot prove consistency (by the 
second theorem). This is the basic conundrum. We have to assume consistency, but
this moves outside the formalized theorems.

  Inductive support is provided by the fact that no inconsistencies have so far been 
produced. ‘Syntactic’ means referring to grammar, instead of ‘semantic’, which refers
to meaning as well as grammar. Gödel places great stress on the constructivist 
aspect of syntax, but the argument leads to a conundrum, as we have seen, which 
can only be solved in terms of the semantic approach, in the way we have described.

But does the argument show that minds are not machines? For any given 
unprovable statement, we can always work in a stronger system where it becomes 
provable. (This is used to deny the Lucas-Penrose argument). But no machine can 
deal with all unprovable statements. This is the basis of the Lucas-Penrose 
argument that we are following. Notice our argument for the truth of CM involves the 



semantic conception of truth, and moreover the truth of statements which are 
universally quantified over infinite domains.

  In such a case do we really have a clear conception of truth? In a slogan: IS 
CANTOR’S PARADISE ANOTHER NAME FOR LALA LAND?

  Of course, we are interested, not in transfinite entities, but we are dealing with 
infinite quantities. To be sure if we could assume a strict finitism, this might be a 
possible let-out for our own approach.

Notes and References

Gödel assumed the Peano axioms to be ω-consistent. This was later relaxed by 
Rosser to the weaker assumption of consistency. See Machover (1996). For an up-
to-date version of Gödel, along the lines of Boolos and Jeffrey, see Smith (2007).

See Lucas (1961), (1970) and Penrose (1989), (1994). Penrose employs a simplified
form of the Gödel argument due to Turing.

For complete references to the many different types of response to the Lucas-
Penrose argument, see Lucas (2000) and Penrose (1994).

What predicates are admissible depends on whether we choose to employ first- or 
second- order logic.

In more formal terms, we have sought to demonstrate that sorites arithmetic is ω- 
complete in a semantic sense, while recognizing that it is w- incomplete in syntactic 
terms. From this perspective, Gödel’s theorem establishes the ω-incompleteness of 
Peano arithmetic. The truth of the Gödel sentence then follows from an argument 
similar to the one given in the text showing that Peano arithmetic is ω-complete in a 
semantic sense.

It is important to notice that none of these theorems can be proved using the logical 
principle of Universal Generalization (UG). UG allows us to pass from the fact that a 
typical member of a collection possesses a property to the claim that all members of 
the collection possess that property. But the decisive point is that, for the purposes of
these theorems, all the numbers are uniquely different- there is no such thing as a 
typical number. We stress again that we are talking of theorems which are true of the
intended interpretation. There will, of course, be non-standard interpretations of 
sorites arithmetic (in first-order logic), but these will include an initial segment 
isomorphic to the natural numbers. It is with regard to this initial segment that we are 
claiming the theorems to be true. We owe this point to Richard Healey. An additional 
remark: these theorems could be proved if we employed an infinitary logic 
incorporating the so-called ω-rule. But such logics cannot of course be implemented 
on a machine with a finite number of operations. This is what Lucas has in mind 
when he talks of digital machines.



See Berto (2009) p. 154, following Smullyan (1992) p.112. Notice that the Gödel 
theorem says that if a sufficiently strong version of arithmetic is consistent then the 
result follows. But we cannot prove consistency (by the second theorem). This is the 
basic conundrum. We have to assume consistency, but this moves us outside the 
formalized theorems. Inductive support, as we have seen, is provided by the fact that
no inconsistencies have so far been produced. Gödel makes great stress on the 
constructivist aspect of syntax, but the argument leads to a conundrum, as we have 
seen, which can only be solved in terms of the semantic approach in the way we 
have described.

This has been challenged by Raatikainen (2005) who claims correctly that Tarskian 
semantics invoke a failure of showing that truth outruns provability. But we do not of 
course have to believe in Tarskian semantics. See, in this respect the views of 
Kirkham (1995). Further points are made in the reply by Lucas and Redhead (2007).

I make some comments on the paper. True means agreement with fact or reality. 
Correspondence means agreement with statements of objective facts. Their own 
variations on this notion such as coherence theory, pragmatic theories, etc. We 
follow here the Ancient Greek usage!

Proof of my result. Since for Gödel true means that it is unprovable, i.e. it means 
what it says, and then goes to show that it is unprovable, the hard part. In my 
example unprovability is taken for granted so to speak, and we concentrate on 
playing about with truth!

For our example truth correlates with the universal quantifier, whereas provability 
does not. Since the theorems are analytically true, we can replace proof with truth, in
the sense that they express defining properties of the numbers 0, 1, 2, etc. If the 
theorems were false, we would not be talking about numbers, i.e. if we are talking 
about numbers then the theorems are true.

Notice the step from (3) to (4) is an instance of universal generalisation in 
quantification theory. 

Recursion moves from n to n-1 to n-2 etc until it stops at the so- called base case.

If we employ an infinitary logic incorporating the so-called ω-rule, then our argument 
fails. 

But such logics cannot be implemented on a machine that has a finite number of 
operations. This is what Lucas has in mind when he talks of digital machines.
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