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Abstract

The independence phenomenon in set theory, while pervasive, can be par-
tially addressed through the use of large cardinal axioms. A commonly assumed
idea is that large cardinal axioms are species of maximality principles for the iter-
ative conception, and assert that the length of the iterative stages is as long as
possible. In this paper, we argue that whether or not large cardinal principles
count as maximality principles depends on prior commitments concerning the
richness of the subset forming operation. In particular we argue that there is a
conception of maximality through absoluteness, that when given certain technical
formulations, supports the idea that large cardinals are consistent, but false. On
this picture, large cardinals are instead true in inner models and serve to restrict
the subsets formed at successor stages.

Introduction

Large cardinal axioms are widely viewed as some of the best candidates for new ax-
ioms of set theory. They are (apparently) linearly ordered by consistency strength,
have substantial mathematical consequences for independence results (such as con-
sistency statements and Projective Determinacyﬂ), and often appear natural to the
working set theorist, providing fine-grained information about different properties
of transfinite sets. They are considered mathematically interesting and central for
the study of set theory and its philosophy.

In this paper, we do not deny any of the above views. We will, however, argue
that the status of large cardinal axioms as maximality principles is questionable. In
particular, we will argue that there are conceptions of maximality in set theory on
which large cardinal axioms are viewed as restrictive principles that serve to leave
out the consideration of certain subsets formed under the iterative conception of set.

Our strategy is as follows: We first (§1) explain how large cardinals have been
seen to be related to the iterative conception of set, and how they might be viewed
as maximality principles. Specifically, we will canvass the idea that large cardinal
axioms assert that the stages in the iterative conception go as far as very large ordi-
nals. We then (§2) present a different conception of maximality under the iterative

*Kurt Godel Research Center for Mathematical Logic (KGRC), Wahringer Strafle, 25, 1090, Vienna,
Austria. E-mail: neil.barton@univie.ac.at.

T would like to thank David Asper6, David Fernandez-Bretén, Monroe Eskew, Sy Friedman, Luca
Incurvati, Michael Potter, Chris Scambler, Matteo Viale, Kameryn Williams and audiences in Cambridge,
New York, Konstanz, and Sao Paulo for helpful discussion. I am also very grateful for the generous
support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme).

1See [Schindler, 2014] for a textbook treatment of large cardinals and determinacy.



conception, the absoluteness idea that ‘possible” sets should be witnessed already in
the universe. We link this idea to subset formation, and point out that under the it-
erative conception there is a priority of width considerations rather than height con-
siderations. Next (§3) we present three troublesome cases for large cardinals based
on ideas of maximality through absoluteness (concerning Reinhardt Cardinals, in-
accessible cardinals, and the existence of w;). Given this picture, we argue, large
cardinals serve as restrictive principles rather than maximising principles; when they
are asserted, they serve to leave out subsets. We then (§4) argue that this intuition can
be made formally precise using Maddy’s notion of restrictiveness. However, we also
(§5) argue that the roles played by large cardinals in contemporary set theory are left
relatively untouched. In particular, we contend that even in the anti-large cardinal
frameworks proposed, large cardinal axioms are still fruitful objects of study and
can be used to play their usual foundational roles of indexing consistency strength,
constructing models, and justifying axioms of definable determinacy. Finally (§6) we
make some concluding remarks and identify some open questions.

1 Large cardinals, the iterative conception of set, and
maximality

In this section, we provide some required background on large cardinals and the
iterative concept of setE] We then explain how one might think that the iterative
conception legislates in favour of large cardinals on the basis of their status as maxi-
mality principles.

1.1 Large cardinals

Given a set theory capable of axiomatising a reasonable fragment of arithmetic (i.e.
able to support the coding of the relevant syntactic notions), we start our discussion
with the following celebrated theorem:

Theorem 1. [Godel, 1931] (Second Incompleteness Theorem). No consistentE] recur-
sive theory T capable of axiomatising primitive recursive arithmetic can prove its
own consistency sentenceﬂ (often denoted by ‘Con(T)’).

Given then some appropriately strong set theory T, we can then obtain a strictly
stronger theory by adding Con(T) to T. So, if we accept the standard axioms of
Zermelo-Fraenkel set theory with Choice (henceforth ‘ZFC’) then, ZFC+Con(ZFC)
is a strictly stronger theory, and ZFC + Con(ZFC + Con(ZFC)) is strictly stronger
still. More generally:

Definition 2. A theory T has greater consistency strength than S if we can prove

2One might feel that this section covers well-known ground. We include it simply for clarity and
because our main point is rather philosophical in nature: The place of large cardinals in the iterative
conception requires further sharpening of how sets are formed in the hierarchy. For this reason, we hope
that the philosophical claims of the paper will be readable and open to scrutiny by a relatively wide
audience, even if some of the technical details are somewhat tricky in places. Time-pressed readers are
invited to proceed directly to §1.3.

SStrictly speaking, this is Rosser’s strengthening, but we suppress the usual discussion of w-
inconsistency for clarity.

4The consistency sentence for a theory T is a sentence in the language of T that states that there is no
code of a proof of 0 = 1 (or some other suitable contradiction) in T.



Con(S) from Con(T), but cannot prove Con(T) from Con(S). They are called equicon-
sistent iff we can both prove Con(T) from Con(S) and Con(S) from Con(T)E]

The interesting fact for current purposes is that in set theory we are not lim-
ited to increasing consistency strength solely through adding Godel-style diagonal
sentences. The axiom which asserts the existence of a transitive model of ZFC is
stronger still (such an axiom implies the consistency of theories with transfinite it-
erations of the consistency sentence for ZFC). As it turns out, by postulating the
existence of certain kinds of models, embeddings, and varieties of sets, we discover
theories with greater consistency strength. For example:

Definition 3. A cardinal « is strongly inaccessible iff it is uncountable, regular (i.e.
there is no function from a smaller cardinal unbounded in «), and a strong limit
cardinal (i.e. if |z| < & then |P(z)| < k).

Such an axiom provides a model for second-order ZFCy [namely (Vi, €, Vi11)].
These cardinals represent the first steps on an enormous hierarchy of logically and
combinatorially characterised objects)’l More generally, we have the following rough
idea: A large cardinal axiom is a principle that serves as a natural stepping stone in
the indexing of consistency strength.

In the case of inaccessibles, many of the logical properties attaching to the cardi-
nal appear to derive from its brute size. For example, it is because of the fact that
such a x cannot be reached ‘from below’ by either of the axioms of Replacement or
Powerset that (V;, €, V,.11) satisfies ZFC,. In addition, this is often the case for other
kinds of cardinal and consistency implications. A Mahlo cardinal, for example, is a
strongly inaccessible cardinal x beneath which there is a stationary set (i.e. an S C s
such that S intersects every closed and unbounded subset of «) of inaccessible cardi-
nals. The fact that such a cardinal has higher consistency strength than that of strong
inaccessibles (and mild strengthenings thereof) is simply because it contains many
models of these axioms below it.

It is not the case, however, that consistency strength is inextricably tied to size.
For example, the notion of a strong[?] cardinal has lower consistency strength than that
of superstrongf| cardinal, but the least strong cardinal is larger than the least super-
strong cardinalﬂ The key point is that despite the fact that the least superstrong is
not as big as the least strong cardinal, one can always build a model of a strong car-
dinal from the existence of a superstrong cardinal (but not vice versa). Thus, despite
the fact that a superstrong cardinal can be ‘smaller’, it still validates the consistency
of the existence of a strong cardinal.

Before we move on to our discussion of the iterative conception, we note two
phenomena concerning large cardinals that make them especially attractive objects
of study:

5A subtlety here concerns what base theory we should use to prove these equiconsistency claims.
Number theory will do (since consistency statements are number-theoretic facts), but we will keep dis-
cussion mostly at the level of a suitable set theory (e.g. ZFC).

60ften, combinatorial and logical characterisations go hand in hand, such as in the case of measurable
cardinals. However, sometimes it is not clear how to get one characterisation from another. Recently,
cardinals often thought of as having only combinatorial characterisations have been found to have em-
bedding characterisations. See [Holy et al., S| for details.

7 A cardinal & is strong iff for all ordinals ), there is a non-trivial elementary embedding (to be discussed
later) j : V' — 90, with critical point «, and in which V), C 9.

8 A cardinal  is superstrong iff it is the critical point of a non-trivial elementary embedding j : V — 0
such that V;(,.) C M.

9See [Kanamori, 2009], p- 360.



Fact 4. The ‘natural’ large cardinal principles appear to be linearly ordered by con-
sistency strength.

One can gerrymander principles (via metamathematical coding) that would pro-
duce only a partial-order of consistency strengths{ﬂ however it is an empirical fact
that the large cardinal axioms that set theorists have naturally come up with and
view as interesting are linearly ordered This has resulted in the following:

Fact 5. Large cardinals serve as the the natural indices of consistency strength in
mathematics.

In particular, if consistency concerns are raised about a new branch of mathemat-
ics, the usual way to assess our confidence in the consistency of the practice is to
provide a model for the relevant theory with sets, possibly using large cardinalsPZ]
For example, worries of consistency were raised during the emergence of category
theory, and were assuaged by providing a set-theoretic interpretation, which then
freed mathematicians to use the category-theoretic language with security. For in-
stance, Grothendieck postulated the existence of universes (equivalent to the exis-
tence of inaccessible cardinals), and Mac Lane is very careful to use universes in his
expository textbook for the working mathematician|"’| These later found application
in interpreting some of the cohomological notions used in the original Wiles-Taylor
proof of Fermat’s Last Theorem (see [McLarty, 2010]). Of course now category the-
ory is a well-established discipline in its own right, and quite possibly stands free
of set-theoretic foundations. Nonetheless, set theory was useful providing an up-
per bound for the consistency strength of the emerging mathematical field. More
recently, several category-theoretic principles (even some studied in the 1960s) have
been calibrated to have substantial large cardinal strength

This observation concerning the role of large cardinals in contemporary mathe-
matics point to a central desideratum for their use:

Interpretative Power. Large cardinals are required to maximise interpreta-
tive power: We want our theory of sets to facilitate a unified foundational
theory in which all mathematics can be developedE]

Maximising interpretative power entails maximising consistency strength; we
want a theory that is able to incorporate as much consistent mathematics as is pos-
sible whilst preserving a sense of intended interpretation, and hence (assuming the
actual consistency of the relevant cardinals) require the consistency strength of our
framework theory to be very high.

10See [Koellner, 2011] for discussion.

HThere are some open questions to be tied up, for example around strongly compact cardinals and
around Jénsson cardinals.

12See here, for example, Steel:

“The central role of the theories axiomatized by large cardinal hypotheses argues for adding
such hypotheses to our framework. The goal of our framework theory is to maximize inter-
pretative power, to provide a language and theory in which all mathematics, of today, and
of the future so far as we can anticipate it today, can be developed.” ([Steel, 2014], p. 11)

13Gee [Mac Lane, 1971]], Ch.1, §6. Also interesting here is [McLarty, 1992], Ch. 12.

14See [Bagaria and Brooke-Taylor, 2013] for details. The consistency strength is really quite high; many
category-theoretic statements turn out to be equivalent to Vopénka’s Principle.

15This idea is strongly emphasised in [Steel, 2014] and has a strong affinity with Penelope Maddy’s
principles UNIFY and MAXIMIZE (see [Maddy, 1997] and [Maddy, 1998]). We will discuss the latter in
due course.



1.2 The iterative conception of set

It seems then that large cardinals are important foundationally, but do not follow
from our usual canonical set theory (ZFC). We might then ask the natural question:
What reason (aside from their usefulnesﬂ do we have for accepting them?

When analysing whether or not we should accept an axiom, it is important to
bear in mind the background concept of set against which we measure it. The con-
temporary conception of set is, for most philosophically-minded mathematicians,
the iterative conception. There are other conceptions of sem however the iterative
conception is normally the paradigm within which set-theoretically inclined math-
ematicians operate (especially those interested in large cardinals) and so is the con-
ception we consider here. The discovery of the set-theoretic paradoxes at the turn
of the century necessitated (assuming a revision of logic is not on the table) a con-
ception of set on which not every condition ¢(x) determines a set. The iterative
conception incorporates this though the idea that sets are formed in stages. At the
initial stage of construction we do not have anything, and so form the set containing
nothing (i.e. the empty set). At the next stage, we form all possible sets available at
previous stages. We continue going in this way, and at a limit stages collect together
everything we have formed at previous stages, and continuing this for as long as
possible.

The picture is informal, but is often formally construed through the repeated
application of the powerset operation and union through the ordinals:

Definition 6. The Cumulative Hierarchy (or V') is defined by transfinite recursion over
the ordinals as follows:

i Vo =9,

(ii) Vaq1 = P(V,), for successor ordinal o + 1,
(i) a=U s<x Vo, where ) is a limit ordinal,
(i) V =U,con Vs

The iterative conception is often seen as theoretically appealing. First, it appears
to block the set-theoretic paradoxes: Since the relevant problematic conditions have
objects satisfying them unboundedly in the cumulative hierarchy, there is no set of
all of them['| Secondly, it does so in a way that, one might think, is natural and
seemingly well-motivated. Whether or not we would have come up with the iter-
ative conception of set independently of the discovery of the paradoxes (as Boolos
comes close to suggestingfjb is a difficult question, but there is nonetheless a natural
‘picture’ behind this resolution of the paradoxes, and one that meshes well with our
canonical theory of sets.

16Some authors (e.g. [Maddy, 2011]) regard the usefulness of an axiom as key to its acceptance (say
because of the relevant foundational goals of set theory). Since we are focussed on the very specific issue
of large cardinals are linked to maximality, we set aside this issue here.

17For discussions of different conceptions of set, the seminal [Fraenkel et al., 1973] is an important
early text. More specifically, [Holmes, 1998] (Ch.8) and [Forster, 1995] provide some remarks about
a possible conception for NFU, and Incurvati and Murzi (in [Incurvati, 2014], [Incurvati, 2012], and
[Incurvati and Murzi, 2017]) discuss various different conceptions of set.

18 A slight complication here for the Burali-Forti paradox is how we interpret the notion of ordinal in set
theory. Usually a canonical representative is chosen with the property that such representatives appear
unboundedly in a cumulative hierarchy: Common choices here are von Neumann ordinals (very much
the canonical option), or Scott-Potter ordinals (see [Potter, 2004]).

19See [Boolos, 1971], p. 219.



1.3 Relating large cardinals and the iterative conception

The above serves as an introduction for the uninitiated, but will be familiar to spe-
cialists. Given these seemingly natural axioms and the usual iterative conception of
set, a natural question is the extent to which there is a relationship between the two.

Note first that what is satisfied by the cumulative hierarchy™’| depends on two
main factors:

(1.) What sets get formed at each additional stage.

(2.) How far the stages extend upwards.

The former issue we shall refer to as issues of width and the latter as issues of
height. The relationship between the two determines what sentences are true in the
cumulative hierarchy; once we fix what sets are formed at each additional stage and
how far the stages go we thereby settle on the reference of our set-theoretic concepts
and definitions. Given a principle that mathematics should be as unconstrained as
possible, and that mathematical existence is relatively undemanding, the thoughts
that there should be as many sets formed as possible at each additional stage, and that
the stages should go on as far as possible are appealing (i.e. the cumulative hierarchy
should be ‘maximal’). Hao Wang concisely sums up this thought:

“In a general way, hypotheses which purport to enrich the content of
power sets (say that of integers) or to introduce more ordinals conform
to the intuitive model. We believe that the collection of all ordinals is
very ‘long” and each power set (of an infinite set) is very ‘thick’. Hence,
any axioms to such effects are in accordance with our intuitive concept.”
([Wang, 1974], p. 202)

We would thus like principles that axiomatise the idea that the length of the
stages is ‘long’ (i.e. the universe is very high). Discussing height, Incurvati writes (in
a survey on maximality principles in set theory):

“We are told that the cumulative process of construction is indexed by
ordinals, but how far does this process go? An initial and frequently
given answer is that the process should be iterated as far as possible:

Height Maximality. There are as many levels of the hierarchy as possi-
ble.” ([Incurvati, 2017], p4)

As Incurvati notes, however:

“However, Height Maximality does not tell us much until the idea of iter-
ation ‘as far as possible” is developed to some extent.” ([Incurvati, 2017],

p-4)

Here is where large cardinals come in. In order to capture height maximality, one
might think that we should appeal to large cardinals. After all, don’t large cardinals
simply assert that ‘very large’ order-types exist? Incurvati continues:

201f there is a single such thing—for simplicity we shall assume that there is despite the subtlety of the
question for the philosophy of set theory.



“To answer this question, a number of principles have been invoked.
The ones that are probably best known are principles telling us, effec-
tively, that the hierarchy goes at least as far as a certain ordinal. These
include the Axiom of Infinity and the standard large cardinal axioms,
such as (in order of increasing consistency strength): inaccessible, Mahlo,
weakly compact, w-Erdés, measurable, strong, Woodin, and supercom-
pact.” ([Incurvati, 2017], p.4)

Similar remarks are also found elsewhere in the literature, for example in the
work of Maddy:

“As with any large cardinal, positing a supercompact can be viewed as
a way of assuring that the stages go on and on; for example, below any
supercompact cardinal « there are x measurable cardinals, and below any
measurable cardinal A, there are A inaccessible cardinals.” ([Maddy, 2011
pp. 125-126)

Since it will form the main target of our paper, we isolate the following assump-
tion:

The Height Maximality though the Existence of Large Cardinals Principle. (MELC-
Principle) One way axiomatise the claim that the sequence of stages is
long is to postulate the existence of ordinals with large cardinal proper-
ties.

The thought then might be the following: Since large cardinals assert that the
stages go as far as a particular large ordinal (i.e. they are good characterisations of
height maximality), and since the iterative conception incorporates the idea that the
stages should go as far as possible, then we should adopt large cardinals as axioms
in virtue of their height-maximising properties. This argument goes back at least as
far as Godel who suggested that:

“...the axioms of set theory by no means form a system closed in itself,
but, quite on the contrary, the very concept of set on which they are based
suggests their extension by new axioms which assert the existence of still
further iterations of the operation “set of”. These axioms can also be
formulated as propositions asserting the existence of very great cardinal
numbers or (which is the same) of sets having these cardinal numbers.”
([Godel, 1947], p. 181)

as well Hauser, who refers to large cardinals as “global existence postulates mo-
tivated in part by a priori considerations about the inexhaustibility of the universe
of all sets” ([Hauser, 2001]], p. 257). The suggestion can also be found in set theory
textbooks, such as Frank Drake’s pleasantly written volume on large cardinals:

“But probably the main reason to study them [measurable cardinals] is
the more open-minded interest in the properties which follow from as-
suming that very large cardinals exist; we want to consider the universe
of set theory as being the cumulative type structure, continued through
all possible ordinals, so that if it is possible to go so far that we get to
a cardinal that is measurable, then we should do so.” ([Drake, 1974], p.

186]

2l [Drake, 1974] is in fact sensitive to the broad shape of some of the considerations we shall mention
later. Note that in the above passage he is careful to say that “...if it is possible to go so far that we get to a
cardinal that is measurable, then we should do so.”; it is precisely this possibility we will challenge.




Closely linked to the hypothesis that large cardinals maximise height is the idea
that the consistency of a large cardinal principle provides sufficient (or at least good)
evidence for its truth. For example Koellner writes (in an endnote to his PhD thesis):

“Dodd and Jensen showed that this [a certain embedding principle] is
equivalent to the statement that there is an inner model with a measur-
able cardinal. So we have a justification of such a model. Note, however,
that this is quite different from a justification of the existence of a measur-
able cardinal. A further argument would be required to move from the
consistency to the existence of a measurable cardinal. I suspect that such
an argument can be supplied—Ilarge cardinals (in contrast, say, to an ws-
well-ordering of the reals) seem to be the type of things which require for
their existence only their consistency. But I will not pursue this thought
here.” ([Koellner, 2003], p100)

Similar ideas might be extracted from the work of Cantor. For example, the fol-
lowing is a famous quotation:

“If on the other hand the totality of the elements of a multiplicity can be
thought of without contradiction as “being together”, so that they can be
gathered together into “one thing”, I call it a consistent multiplicity or a
“set”.” ([Cantor, 1899]: p.114)

Hallett, develops this Cantorian idea concerning ‘consistent’ multiplicities:

“Let us grant that the Absolute is not counted in the scale of transfi-
nite numbers. But why should numerability mean just numerability in
the transfinite scale? Why does the Absolute not give rise to a further
domain of mathematical activity, to super-transfinite numbers, Absolute
numbers, or whatever? Why is it as Cantor says an Absolute maximum?
One answer that Cantor would give is that to try to mathematize the
Absolute would be simply a category mistake: everything mathematiz-
able (or numerable) is already in the realm of the finite and transfinite
and the Absolute is simply that which embraces all these. There are no
numbers beyond all transfinite numbers waiting to enumerate the Abso-
lute. This is not to say that we may not discover new types of number,
perhaps with surprising properties. For example, Hausdorff later discov-
ered numbers w,, such that @ = w,, and since then much larger ordinals
have been defined or isolated. But if—to take one example—‘the small-
est uncountable measurable cardinal’ is a genuine number (i.e. if this
concept is self-consistent or coherent) then it is not a new Absolute num-
ber, but a normal increasable transfinite number. We have discovered it
within the realm of the transfinite. The same would hold of all numbers
we might define or hope to introduce.” ([Hallett, 1984], p43)

The idea then, for Hallett’s Cantor, is that in the case of cardinals and ordinals, if
you can isolate a coherent or consistent concept, then there is such an ordinal with the
relevant property. That is just what it is for the universe to be Absolute; it contains
all numbers we could coherently talk about.

Our main target for this paper is the MELC-Principle; we will argue that there are
conceptions of maximality on which large cardinals are not height maximising. As
we’ll see, on these frameworks large cardinals are in fact restrictive; when we assert
a large cardinal axiom we actually leave out subsets. As a corollary (though not the
direct focus of this paper), we obtain the result there are significant challenges to
arguments from the consistency of large cardinals to their truth.



2  Width Maximality through Absoluteness

The focus of our arguments will be on what holds under the formation of stages
under the iterative conception. When we look at the iterative conception, we note
that part of the idea is to form as many sets as possible at each additional stage, and then
continue this process for as long as possible. Our core point later will be the following;:
It might be that the formation of certain subsets at each additional stage precludes the
formation of a certain stage with a large cardinal property attached.

Some principles that have anti-large cardinal properties were already well—known@
Aside from an axiom asserting the brute non-existence (or inconsistency) of a large
cardinal, good examples here are axioms of constructibility (such as V' = L) and con-
sequences thereof (such as O-principles). However, it is not clear how any of these
conceptions of subset formation should be linked to maximality. The hypothesis that
every set is constructible, for example, seems to represent a minimality condition on
what sets are formed at additional stages (we just take those sets that are definable
and hence needed to satisfy ZFC) and so does not seem to cohere well with our
concept of forming all possible sets at each additional stage. As Frank Drake puts it:

“Note that this is a case where the word axiom [i.e. V = L]is used simply
to indicate that we shall look at models of this sentence; there seems to be
no very good argument to say that it should hold of the cumulative type
structure. Most set theorists regard it as a restriction which may prevent
one from taking every subset at each stage, and so reject it (this includes
Géde@ who named it).” ([Drake, 1974], p131)

However, and importantly for our current discussion, there are principles that
seek to maximise the width of the hierarchy (i.e. the sets formed at each additional
stage) that have anti-large cardinal properties. This raises serious challenges for the
idea that large cardinal principles can be directly inferred from maximality under
the iterative conception; it might simply be that forming as many sets as possible at
successor stages precludes the existence of a stage indexed by an ordinal with the
relevant property. As we'll see, we can also have large cardinals consistent on these
width-maximal pictures.

The core template for width maximality that we shall examine is the following:

Width Maximality through Absoluteness Principles. (WA-Principles) Let I
be a class of sentences in some appropriate logic. If ¢ € I' is true in some
appropriate extension of V' with the same ordinals (i.e. a width extension)
then ¢ is already realised in some appropriate structure contained in V.

Clearly the WA-Principles are schematically formulated, and the content a WA-
Principle has will be relative to the logical resources, extensions, and internal struc-
tures allowed. Some precedents do exist for justification of axioms by this means.
Forcing axioms are a good example here. To facilitate understanding of the ideas later
in this section, we first provide a very coarse and intuitive sketch of the forcing tech-
nique.

Forcing, loosely speaking, is a way of adding subsets of sets to certain kinds of
model. For some model 9t and atomless partial order P € 2, we (via an ingenious

2] am grateful to the community on MathOverflow here. Special thanks are due to Monroe Eskew,
Mohammad Golshani, Joel Hamkins, and Stefan Miedzianowski. An archive of the discussion is available
at [Barton, 2017].

Z3Presumably Drake has in mind Godel’s remarks in [Godel, 1947] and its rewrite [Godel, 1964].



definition of ways of naming possible sets and evaluating these names) add a set
G that intersects every dense set of P in 1. The resulting model (often denoted by
‘M[G]’), can be thought of as the smallest object one gets when one adds G to 9t and
closes under the operations definable in 1.

A forcing axiom expresses the claim that the universe has been saturated under
forcing of a certain kind. For example we have the following axiom:

Definition 7. Let x be an infinite cardinal. MA(k) is the statement that for any forcing
poset P in which all antichains are countable (i.e. P has the countable chain condi-
tion), and any family of dense sets D such that |D| < &, there is a filter G on P such
that if D € D is a dense subset of P, then G N D # ().

Definition 8. Martin’s Axiom (or just MA) is the statement that for every « smaller
than the cardinality of the continuum, MA(x) holds.

One can think of Martin’s axiom in the following way: The universe has been
saturated under forcing for all posets with a certain chain condition and less-than-
continuum-sized families of dense sets.

There are several kinds of forcing axiom, each corresponding to different permis-
sions on the kind of forcing poset allowed (the countable chain condition is quite a
restrictive requirement). Many of these have interesting consequences for the study
of independence, notably many (e.g. the Proper Forcing Axiom) imply that CH is
false and that in fact 2% = N,. If we think of forcing as a way of generating subsets
we might think that saturation under forcing represents a good approximation to
having all possible subsets at successor stages.

Some set theorists are sympathetic to this idea. For example, Magidor writes:

“Forcing axioms like Martin’s Axiom (MA), the Proper Forcing Axiom
(PFA), Martin’s Maximum (MM) and other variations were very success-
ful in settling many independent problems. The intuitive motivation for
all of them is that the universe of sets is as rich as possible, or at the slogan
level: A set [whose] existence is possible and there is no clear obstruction
to its existence [exists]...

..What do we mean by “possible”? I think that a good approximation
is “can be forced to [exist]”... I consider forcing axioms as an attempt to
try and get a consistent approximation to the above intuitive principle by
restricting the properties we talk about and the the forcing extensions we
use. ” ([Magidor, U], pp. 15-16)

We can add precision to Magidor’s intuition by considering different kinds of
WA-Principle obtained by considering different classes of sentences and forcing ex-
tensions. Indeed some forcing axioms can be characterised this way. For example
Martin’s Axiom can be characterised as follows:

Definition 9. [Bagaria, 1997] Absolute-MA. We say that V satisfies Absolute-MA iff
whenever V[G] is a generic extension of V by a partial order P with the countable
chain condition in V, and ¢(x) is a ¥1(P(wy)) formula (i.e. a first-order formula
containing only parameters from P(w1)), if V[G] | Jz¢(z) then thereis a y in V
such that ¢(y).

and we can characterise the Bounded Proper Forcing Axiom (BPFA) as folows:

Definition 10. [Bagaria, 2000] Absolute-BPFA. We say that V' satisfies Absolute-BPFA
iff whenever ¢ is a 3, sentence with parameters from H(ws), if ¢ holds a forcing
extension V[G] obtained by proper forcing, then ¢ holds in V.
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These formulations make it particularly perspicuous the sense in which some
forcing axioms can be thought of as maximising the universe under “possible’ sets;
if we could force there to be a set of kind ¢ (for a particular kind of ¢ and P), one
already exists in V Some authors (e.g. [Bagaria, 2005]) see this fact as evidence
for the claim that such axioms are natural in virtue of their making precise a notion
of maximality.

Of course, one immediate objection, especially for those that think there is a defi-
nite powerset operation, is that there are no non-trivial extensions of V. This would
then result in the vacuity of WA-Principles; since there are no non-trivial extensions,
vacuously anything satisfied in an extension is satisfied in V. This worry is assuaged
by the fact that we can code satisfaction in forcing extensions of V' by various means,
for example by using forcing relations (often denoted, for conditions in p € P, by
p Ikp ¢) that are definable over VE] In this way, one can think of these WA-Principles
as stating that there are actual existents in V' for certain sentences that can be satisfied
ideally by coded extensions. For example, we might express an equivalent version of
Absolute-MA as follows:

Definition 11. (ZFC) We say that V satisfies Absolute-MA" iff whenever P € V is
a partial order with the countable chain condition in V, and ¢(x) is a X1 (P(w1))
formula, if there is a p € P and IFp, such that p IFp Jz¢(z), then there is a y in V such
that ¢(y).

Thus there is no obstruction to formulating WA-Principles as long as the relevant
talk of ‘extensions’ can be coded, even if one thinks that there is just one universe of
sets, unique up to isomorphism. These forcing axioms have no anti-large cardinal
properties themselves, however as we shall see there are close relatives that do.

3 Three troublesome cases for the MELC-Principle

Thus far, we’'ve provided an account of two kinds of maximality principles. One, the
MELC-Principle, purported to maximise the length of the stages by postulating the
existence of large cardinals. The others, WA-Principles, seek to maximise the subsets
formed at successor stages by holding that such an operation supports a high-degree
of absoluteness between V' and its (coded) extensions. As we’ll see, there are areas
in which the two come in to conflict. If we then accept that a rich process of subset
formation (as given by WA-Principles) can preclude the existence of large cardinals,
but nonetheless ratify their consistency, we have a challenge to the claim that large
cardinals maximise height.

3.1 The Axiom of Choice and Reinhardt Cardinals

The first example serves as something of a warm-up, and is more speculative than
the second two. It does, however, show the style of reasoning that we shall adopt in
§3.2Jand Our strategy will be to argue that the Axiom of Choice can be recast as a
WA-Principle, and that it then implies the falsity of a certain large cardinal principle
(the existence of Reinhardt cardinals), whilst leaving the (epistemic) possibility that
such axioms are realised in structures that leave out subsets.

We can formulate the Axiom of Choice as follows:

24For some discussion of the coding of Absolute-MA (and similar principles) for the philosopher in-
clined towards a “universist” picture of set-theoretic ontology see [Barton and Friedman, 2017].
25See here [Kunen, 2013, §IV.5 for a summary of these techniques.
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Axiom 12. Axiom of Choice (AC). Let F be a non-empty family of pairwise disjoint
non-empty sets. Then there is a set C' that contains exactly one element of every
member of F.

While Choice is often regarded as receiving justification from a wide range of
sources (especially notable here is its equivalence with diverse natural statements
across mathematics) we might think that it follows naturally from the iterative con-
ception. Suppose we have some family F of pairwise-disjoint non-empty sets first
formed in some V,,41 (nothing new is formed at limit ordinals, the previous sets are
simply collected together). Then we know that every element of F is first formed at
latest at stage V,,, and hence all members of elements of sets are first formed at latest
by stage V,. But then, assuming that all subsets are formed at additional stages, a
choice set must be formed at latest at stage V.41 (what could possibly prevent it from
existing?). Indeed, Kreisel went so far as to say:

“For the fat (or “full”) hierarchy, the axiom of choice is quite evident.”
([Kreisel, 1980], p. 192

[Potter, 2004] (p. 257) explains how to recast the discussion in terms of second-
order logic. The details need not detain us, but salient is that through using a logical
choice function in second-order logic (rather than through coding a set of ordered-
pairs), one can derive the second-order choice principle from the second-order sepa-
ration principle (in conjunction with some other reasonably unobjectionable assump-
tions). We thus arrive at a position where, on the basis of the iterative conception,
we hold that Choice receives a natural motivation from the idea that we form all
possible sets at an additional stage, and this motivation can be recast in terms of an
argument in second-order logic:é]

Can we interpret this idea that Choice maximises subsets via a WA-Principle?
Well, we do know that it is possible to characterise AC via forcing axioms@ We
begin with the following definition:

Definition 13. Let « be a cardinal and P = (P, <p) be a partial order. FA,(P) is the
statement that for all families D = {D,|a < x} of predense subsets of P, there is a
filter G on P meeting all these predense sets.

Definition 14. Given a class I' of partial orders FA, (I') holds iff FA, (P) holds for all
Pel.

Definition 15. Let A be a cardinal. A partial order P is (< \)-closed iff every decreas-
ing chain {p,|a < 7} indexed by some v < A has a lower bound in P.

26 As [Potter, 2004] notes, similar remarks are to be found in [Ramsey, 1926]. However, by 1926 the iter-
ative conception had not yet been fully isolated, and so it is questionable whether Ramsey’s views flowed
from a conception that was iterative as well as combinatorial, rather than a straight-up combinatorialism.

27Similar remarks can be found in [Paseau, 2007] concerning Boolos’ views on the Axiom of Choice:

“There is also an alternative to Boolos’s suggestion that the Axiom of Choice should be
derived from a stage version of Choice. One could instead see Choice as flowing from a
combinatorial understanding of the set-formation process. If one thinks that any arbitrary
combination of sets below some given stage constitutes a property, then a generalisation
of Spec [i.e. Separation] to cover all possible properties whatsoever—as opposed to those
expressible in some formal language, as in Boolos’s initial presentation—expresses the intu-
itive thought that at any given stage all the possible sets available for formation are indeed
formed. As it is usually conceived, and as Boolos himself conceives it, the iterative concep-
tion includes this combinatorial idea. And combinatorialism straightforwardly implies a
Choice axiom.” ([Paseau, 2007], pp. 35-36)

2This is very nicely explained in [Parente, 2012].
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Definition 16. I'y denotes the class of (< A)-closed posets.
We can now point out the following:
Theorem 17. (Todorcevic) FA,(T',,) is equivalent (modulo ZF) to the Axiom of ChoiceEg]

What should we take from this? If we accept the earlier argument that AC makes
precise the claim that as many sets as possible are formed at successor stages, then
there is a very clear sense in which this can be viewed as the existence of certain
generics for forcing notions@ This supports the idea that forcing is a way of ‘gen-
erating’ new subsets, and perhaps we should view saturation under generics as part
of taking “all possible’ sets at each additional stage.

In the context of a WA-Principle, we can make this idea precise using the follow-
ing WA-Principle:

Definition 18. We say that V satisfies Absolute-AC iff for every ordinal x and every
(< k)-closed prunedﬁ n-treefiz] T,if T has a cofinal branch in a forcing extension V'[G]
of V, then T already has a cofinal branch in Vﬁ

and note the following:
Proposition 19. Absolute-AC is equivalent (modulo ZF) to the usual Axiom of Choice.

Proof. By Theorem 12 of [Lévy, 1964], we know that AC is equivalent to VxDC,,
where DC,; is Dependent Choice for sequences of length . We also know that DC, is
equivalent to the claim that every (< k)-closed k-tree has a cofinal branch@ We now
claim that Absolute-AC is equivalent to YsDC,. One direction is immediate (since
if every pruned (< x)-closed k-tree has a cofinal branch, then there is a forcing ex-
tension in which the tree has a branch). The other direction holds because one can
just force using a tree 1" as a forcing partial order to obtain a cofinal branch in some
V[G], and hence a cofinal branch in V' by Absolute-AC. Thus we have, Absolute-AC
iff VeDC(k) iff AC. O

So, we can characterise AC as a WA-Principle. But how could there be a conflict
with the MELC-Principle?

We can see this when we consider the definition of cardinals through elementary
embeddings. We have already seen mention of measurable cardinals earlier, now the
time has come to define them:

Definition 20. A cardinal « is measurable iff it is the critical point of a non-trivial
j: V. — M, for some transitive inner model 2t = (M, E)E]

29Gee [Viale, 2016], for discussion. A full proof is available in [Parente, 2012].

30In fact, it turns out that a wide variety of statements (including choice principles, Los-style Theorems,
and certain large cardinal axioms) can be unified in the guise of forcing axioms (again, see [Viale, 2016]).
While the philosophical ramifications of these facts bear exploring, we lack the space to do so here.

LA k-tree T is pruned iff » is regular and above any node there are x-many nodes.

32 A k-tree is a tree with height x and such that every level of 7" has size smaller than x.

3] am grateful to David Asperé for suggesting this idea, as well as subsequent discussion. More gener-
ally, I would like to thank David Fernandez-Bretén and Asaf Karagila for some discussion of absoluteness
and choice principles.

34The result that DC,, is equivalent to the claim that every (< r)-closed k-tree has a cofinal branch is
(to the best of my knowledge) folklore, but follows quickly from (a) a generalisation of the usual result
that every pruned w-tree has a cofinal branch is equivalent to DC,,, and (b) the observation that DC
is continuous for singular A. Thus, letting cof(\) = &, one can partition a singular \-tree into pruned
k-trees and use DC,; to obtain DC,.

35See [Drake, 1974] for a relatively friendly introduction to measurable cardinals, and [Kanamori, 2009]
and [Jech, 2002] for detailed technical discussion. These cardinals admit of a wide variety of characterisa-
tions, many notably first-order in character.
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One route to providing stronger definitions of large cardinals is to increase the
similarity between V' and 9. For example, the following provides a definition of a
cardinal far stronger than measurable:

Definition 21. Let A be an ordinal. A cardinal x is A-supercompact iff « is the critical
point of a non-trivial elementary embedding j : V' — M for some transitive inner
model M = (M, €), j(k) > )\, and *M C M.

Here, for sufficiently large ), specifying that M is closed under A-sequences sub-
stantially strengthens the kind of cardinal defined. (An additional subtlety here is
that part of what strengthens the cardinal is that j sends « above A, but we set this
aside for now.) More generally, many such strengthenings of the notion of measur-
ability make use of this strategy. Carrying this idea to its natural endpoint suggests
the following principle:

Definition 22. A cardinal x is Reinhardt iff x is the critical point of a non-trivial ele-
mentary embedding j : V — V.

However, we can now state the following:
Theorem 23. [Kunen, 1971] There are no Reinhardt cardinals.

Importantly, Kunen’s proof makes essential use of the Axiom of Choicd™} as do
more recent proof§”’| However, it is unknown whether or not the existence of a
Reinhardt cardinal is inconsistent in ZF. In investigating this question, Koellner,
Woodin, and Bagaria in unpublished worlﬁhave developed strengthenings of these
axioms within ZF. For example:

Definition 24. A cardinal « is Super-Reinhardt iff for every ordinal A thereisaj: V — V
with critical point x and such that j(x) > A.

Interestingly, it turns out that these ‘choiceless cardinals’ in turn form an elegant
hierarchy of consistency strengthd™} What should our reaction to this situation be?
In his PhD thesis, Koellner remarked:

“There is an entire hierarchy of “choiceless cardinals” and it may be the
case that the hierarchy of consistency strength outstrips that which as-
sumes choice. In the end it may turn out to be reasonable to view ACas a
limitative axiom on a par with V' = L.” ([Koellner, 2003], p. 100)

Assuming (highly non-trivially) that the existence of a Reinhardt cardinal is in
fact consistent with ZF, and realised in an inner model of V, one might think that
we should drop Choice. After all, then there is a natural theory of sets (ZF), one
which can be given an iterative story, and under which it is consistent to have a
Reinhardt cardinal.

36This is because Kunen uses the theorem in [Erdés and Hajnal, 1966] that for any infinite ordinal ),
there is a function “ A\ — X such that whenever A C A and |A| = || then F” (¥ A) = A.

37For example those that use the Solovay Splitting Lemma that if  is a regular uncountable cardinal
then any stationary subset of x can be partitioned into x many disjoint stationary sets (such as the proof
due to Woodin presented in [Schindler, 2014]).

38See [Koellner, 2014] for a summary of some of these ideas, and [Cutolo, 2018] for some recent work.

% There is a question of exactly what the consistency strength of a Reinhardt cardinal is within ZF,
given that Choice has to be given up. [Woodin, 2011] (p. 456) mentions a result that the theory ZF+"“There
exists a weak Reinhardt cardinal” implies the consistency of ZFC+"There exists a proper class of w-huge
cardinals”. Further discussion of this issue is available on MathOverflow at [Campion, 2016].
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Insofar as we accept the earlier iterative story concerning the justification of the
Axiom of Choice in terms of a WA-Principle, we should not be moved by the thought
that AC might be limitative in a similar way to V' = L. Simply put, we would already
be confident that the formation of choice sets at each additional stage guarantees that
there is no such cardinal. Continuing the hierarchy ‘as far as possible” does not go
so far as to include choiceless cardinals, since AC is true when we form ‘all possible’
sets at each additional stage.

Nonetheless, the consistency of a Reinhardt cardinal could still be witnessed. We
could perfectly well have a Reinhardt cardinal in countable models of ZF or even an
inner model of V satisfying ZF. It is just that such a model has to miss out some sub-
sets, specifically those that guarantee the existence of the relevant choice functions@]
Indeed, this has long been appreciated; for some time Jensen was a staunch adherent
of V = L, yet held that we might have countable transitive models containing large
cardinals. Drake is clear about the situation:

“Perhaps it is worth indicating the sort of reason why the mere fact that
a definition makes a cardinal look very large is not sufficient to convince
us that such cardinals must exist in the cumulative type structure, if only
we continue it far enough. Suppose there is, in some transitive model
of ZFC, a strongly compact cardinal. Then there must be a countable,
transitive model of ZFC, M say, in which there is a strongly compact car-
dinal (according to M); suppose « is an ordinal which is strongly com-
pact in M. Then the various a-additive measures which must exist in
M will only be measures in M because a great many possible subsets
are missing in M, so that the purported measure does not have to con-
sider them...This sort of consideration highlights the fact that even if we
are convinced that strongly compact cardinals are consistent with ZFC,
we have not answered the question whether they exist in the cumulative
type structure.” ([Drake, 1974], pp. 315-318)

Aside from countable models, we might have a model containing all ordinals, but
leaving out some choice sets. Thus, it is at least epistemically possible that we have a
x that is Reinhardt in some inner model, but no Reinhardt in V. Given that we hold
(for the purposes at hand) that Choice should be true, the only sense in which one
‘could” continue the hierarchy to include a Reinhardt « is to leave subsets out when
iterating the powerset operation. Thus, in this possibly maximal context the large
cardinal axiom “There exists a Reinhardt cardinal” is actually a restricting principle;
necessitating the omission of subsets. It is in this sense, given a prior justified width
maximality operation, that width is prior to height.

3.2 The Inner Model Hypothesis

We will see a similar feature with respect to a variety of principles known as inner

model hypotheses. Again, we will see that this class of WA-principles provides a con-

ception of maximality and forming as many sets as possible at each additional stage

on which large cardinal axioms are width-restricting rather than height maximising.
We begin with the following:

40 An additional subtlety here is that the consistency of a Reinhardt cardinal may be witnessed by an
outer model of ZF, and not every outer model of ZF can be widened to a model of ZFC. In that case
though, the witnessing model is (from the point of view of V') not a bona fide two-valued set-theoretic
structure, but rather a Boolean-valued structure (which may be captured through the use of a forcing
relation), and so we omit its consideration here.
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Definition 25. [Friedman, 2006] Let ¢ be a parameter-free first-order sentence. The
Inner Model Hypothesis (or IMH) states that if ¢ is true in an inner model of an outer
model of V' (all with the same ordinals), then ¢ is already true in an inner model of
V.

Issues surrounding coding of the IMH are difficult if one thinks that there is a
maximal universe of sets, since there are no restrictions on the kind of width ex-
tension that can be taken in finding a model satisfying ¢ (and hence no guarantee
that we can definably capture satisfaction in all extensions). One can code the IMH
in a strong impredicative class theory@ however all we need for the results of the
present paper is the following:

Definition 26. (NBG) Let (V,€,C) be a NBG structure. The Class-Generic Inner
Model Hypothesis (or CIMH) is the claim that if a (first-order, parameter free) sentence
¢ holds in an inner model of a tame class forcing extension (V[G], €,C[G]) (Where
where V[G] consists of the interpretations of set-names in V using G, and C[G] con-
sists of the interpretations of class-names in C using G), then ¢ holds in an inner
model of V ]

Since forcing relations are definable for tame class forcings, we can formulate the
above principle as follows:

Definition 27. (NBG) (V, €,C) satisfies the Absolute Class-Generic Inner Model Hy-
pothesis (or ACIMH) iff whenever P C V is a tame class forcing, and ¢ is a parameter-
free first-order sentence, then if there is a p € P such that p IFp “¢ is true in an inner
model” then ¢ is true in an inner model of V.

Thus, the Class-Generic Inner Model Hypothesis can be formalised even the be-
liever in just one universe of sets, using NBG. How might we figure the CIMH
into an iterative account? We have shown that it is a WA-Principle stating that any
parameter-free first-order sentence consistent with the structure of V' is already re-
alised in V.

In fact, the CIMH can be formulated as other kinds of absoluteness principles:

Definition 28. (NBG) A formula is persistent->1 iff it is of the following form:

EM)M = ¢
where 1 is first-order.

Definition 29. (NBG) Parameter-free persistent $1-class-absoluteness is then the claim
that if ¢ is persistent-E% and true in a tame class-generic extension of V, then ¢ is
truein V.

Theorem 30. [Friedman, 2006] (NBG) The CIMH is equivalent to parameter-free
persistent >1-class-absoluteness.

This in turn can be viewed as a generalisation of the following theorem of ZFC:

41See here [Antos et al., 5.

“n fact much of the strength of the IMH is captured by Lévy-absoluteness for %; formulas with pa-
rameter w1 for w-preserving outer models which are tame, Az-definable class forcing extensions. Thus,
for many of the results stemming from the IMH, one does not need the full force of arbitrary outer models;
the formula to which absoluteness is to be applied can just be first-order (31) with parameter w;. If sat-
isfaction in arbitrary well-founded outer models is desired, NBG + E%—Comprehension suffices (with an
assumption on the existence of isomorphisms) since satisfaction in arbitrary outer models can be coded
as long as it is possible to produce a code for Hyp(V )—the least admissible set containing V. See here
[Antos et al., S].
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Theorem 31. (ZFC) Lévy-Shoenfield Absoluteness. Let ¢ be a ¥; sentence. If ¢ is true
in an outer model of V, then ¢ is true in V.

We wish to take the following points from the above observations. First, the CIMH
can be thought of as a principle that asserts that anything (of a particular kind) that
‘could” have been realised by the formation of subsets already has a witness. In
this way, it is clearly a WA-Principle. Second, it does so by generalising an idea
already present in ZFC. In this respect, it resembles a reflection principle for height:
A standard principle of absoluteness true in ZFC is generalised to a language of
higher—order%

Let us then, as before, suppose that we take this motivation for the CIMH to be
sound. We immediately have the following result:

Theorem 32. [Friedman, 2006] (NBG) If the Class-Generic Inner Model Hypothesis
holds, there are no inaccessible cardinals in V.

On our current understanding, this would mean that there could be no (signifi-
cant) large cardinals in V; a conception of the formation of powersets on which there
is a high degree of absoluteness between V' and ideal class forcing extensions pre-
cludes their existence. Here though, an interesting contrast is highlighted with the
example of choiceless cardinals. There we were only able to conjecture that it might
be possible to leave out subsets to obtain large cardinals. In the current context,
however, the existence of large cardinals in inner models is positively implied:

Theorem 33. [Friedman et al., 2008] (NBG) The Class-Generic Inner Model Hypoth-
esis implies that there is an inner model with measurable cardinals of arbitrarily
large Mitchell order@

Thus, while the Inner Model Hypothesis does not permit the existence of large
cardinals in V, it does vindicate their existence in inner models and thus their use in
consistency proofs. Large cardinals, whilst not true, are acceptable for determining
what combinations of sets are possible in satisfying particular formal theories, even
if they are strictly incompatible with the full powerset operationﬁ] However, on the
current conception of maximality they act as restrictive principles; whilst they are
witnessed as consistent we must omit subsets in order for them to hold.

43See [Barton et al., 2017] for an examination of other width reflection principles, and some explanations
of the differences between height and width reflection.

4The Mitchell ordering is a way of ordering the normal measures on a measurable cardinal. Roughly,
it corresponds to the strength of the measure, where a measure U; is below another Us in the Mitchell
order if Uy belongs to the ultrapower obtained through Us. See [Jech, 2002] Ch. 19.

“Indeed, a worry we might have about the Inner Model Hypothesis is whether or not it is consistent.
This is somewhat assuaged by the following:

Theorem 34. [Friedman et al., 2008] Assuming the consistency of the existence of a Woodin cardinal with
an inaccessible above, the Inner Model Hypothesis is consistent.

Thus, we have a rough guide as to the consistency strength of the Inner Model Hypothesis (somewhere
between many measurables and a Woodin with an inaccessible above). Should the believer in the Inner
Model Hypothesis be (significantly) perturbed by the non-existence of Woodin cardinals or inaccessibles
in V in getting this consistency proof? Itis at least plausible that they should not; they hold that the subset
operation supports the Inner Model Hypothesis, and thus supports many inner models with large cardi-
nals. The hypothesis of the consistency of an inner model of a Woodin cardinal with an inaccessible above
is thus substantially less worrisome than it would be otherwise—we already have some large cardinals in
inner models, so why not have an inner model with a Woodin cardinal and an inaccessible above?
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3.3 The ultimate set-forcing axiom

We have seen thus far that there are conceptions of maximality on which large cardi-
nals are restricting rather than maximising principles. We will now consider a very
extreme version of maximality which calls into question large-cardinal-like axioms
of ZFC.

Earlier, we talked briefly about how Martin’s Axiom could be viewed as a kind of
WA-Principle expressing saturation under subsets. However, as will be well known
to specialists, there are usually some limitations as to how far one can go. For in-
stance, consider the following theorems:

Theorem 35. Letting ¢ denote the cardinality of the continuum, MA(¢) is inconsistent
with ZFC [

Theorem 36. In ZFC there is a non-countable-chain-condition P such that for a
(< Ry)-sized family of dense subsets D of P, there is no filter G on P intersecting
every member of D (i.e. MAp(Ry) is false)

It seems then that there are some limitations on what generics one can have.
Given ZFC, we cannot just assert the existence of generic sets willy-nilly. However,
the above two proofs depend on notions of uncountability; the first on the existence
of ¢, and the second on the existence of N;.

Here then is a controversial suggestion: We might regard axioms asserting the
existence of uncountable sets (e.g. the Powerset Axiom, or the claim that w; exists) as
certain kinds of large cardinal axiom, whilst using forcing (along with some definable
powerset operation) as our way of generating all possible subsets.

These claims are certainly plausible when we take the theory of ZFC-Powerset.
Since there are some subtleties in formulating this theory (see here [Gitman et al., 2011]),
we make the following;:

Definition 37. ZFC™ is the theory comprising of ZFC with the Replacement Scheme
and usual Axiom of Choice removed, plus:

(i) Well-Ordering Principle: Every set can be well-ordered.
(ii) Collection Scheme: VaVr € a3y(¢p(x,y) — (F2Vz € aTy € z¢(z,y)))
(iii) Axiom Scheme of Separation: VxIyVz((¢(2) A z € ) <> z € y)

Definition 38. NBG ™ is NBG with the Powerset axiom removed, and second-order
versions of Collection and Separation substituted instead of Replacement.

We can then observe the following. For powerset, we have (trivially) that both
Con(ZFC7) is strictly weaker than Con(ZFC™ + Powerset), since the latter is just
ZFC. In fact, the assertions that “w; exists”, “wy exists” etc. have ever increasing
consistency strength over the theory ZFC™. Thus, the existence of uncountable sets
over the theory ZFC™ is something like the behaviour of small large cardinals over
ZFC. Moreover, iterations of Powerset and uncountable sets behave something
like a large cardinal axioms with respect to determinacy axioms; Borel determinacy
requires wi-many iterations of the Powerset Axiomﬁ in a similar way to other de-
terminacy axioms reversing to inner models with large cardinals (we shall see dis-
cussion of this fact regarding determinacy axioms later)

46See [Kunen, 2013], p. 175, Lemma I11.3.13.

#7See [Kunen, 2013], pp. 175-176, Lemma I11.3.15.

48See [Friedman, 1971].

#See [Koellner, 2014] for discussion of the links between large cardinals and determinacy.
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With this in mind, we might view the limitative theorems concerning forcing
axioms as indicative of a fundamental tension between forming every possible set
given a particular point in the set-theoretic construction, and the formation of all sub-
sets of an infinite set at a successor stage. Rather, we might think, in order to form all
possible subsets in the hierarchy, they have to be formed in a piecemeal process; we
get new subsets of certain sets appearing unboundedly in V. We can motivate such
a position by generalising an idea of Cohen’s:

“A point of view which the author feels may eventually come to be ac-
cepted is that CH [the continuum hypothesis] is obviously false...X; is the
set of countable ordinals and this is merely a special and the simplest way
of generating a higher cardinal. The set C' [the continuum] is, in con-
trast, generated by a totally new and more powerful principle, namely
the Power Set Axiom. It is unreasonable to expect that any description of
a larger cardinal which attempts to build up that cardinal from ideas de-
riving from the Replacement Axiom can ever reach C. Thus C' is greater
than X, 8., X, where o = R, etc. This point of view regards C as an in-
credibly rich set given to us by one bold new axiom, which can never be
approached by any piecemeal process of construction. Perhaps later gen-
erations will see the problem more clearly and express themselves more
eloquently.” ([Cohen, 1966], p. 151)

Cohen’s thought is based on the following idea: Given the immense richness of
the powerset operation, and the flexibility afforded by the forcing technique, we can
make the continuum have almost any value (of course though it can’t have certain
large cardinal properties or contradict Kénig’s Theorem). So perhaps we should
say that it resists having a specifiable X-number, instead being outside those we can
define[]

But if the continuum is really generated by such a principle, why insist (aside
from a prior adherence to the Powerset Axiom) that ¢ has an aleph value at all? Scott
(in a forward to Bell’s textbook on Boolean-valued modelﬂ expresses the following
thought:

“I see that there are any number of contradictory set theories, all extend-
ing the Zermelo-Fraenkel axioms: but the models are all just models of
the first-order axioms, and first-order logic is weak. I still feel that it
ought to be possible to have strong axioms, which would generate these
types of models as submodels of the universe, but where the universe
can be thought of as something absolute. Perhaps we would be pushed
in the end to say that all sets are countable (and that the continuum is
not even a set) when at last all cardinals are absolutely destroyed. But
really pleasant axioms have not been produced by me or anyone else,
and the suggestion remains speculation. A new idea (or point of view) is
needed, and in the meantime all we can do is to study the great variety
of models.” ([Scott, 1977], p. xv)

The idea then is that perhaps that since we can force the continuum to be larger
than any particular ordinal, maybe we should accept that it is, in fact, a proper class
of V. Hallett, after appreciatively quoting the above two passages, sums the point
up nicely:

500ne interesting axiom that might capture this thought is the Strong Inner Model Hypothesis. Since our
focus lies elsewhere for the moment, we do not consider it here, but see [Friedman, 2006] for discussion.
51gee [Bell, 2011] for the third edition.
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“Thus, the continuum evades all our attempts to characterize it by size
(Cohen), so maybe we should start with this transcendence as a datum
(Scott).” ([Hallett, 1984],

Building on Scott, our “new point of view” will be to regard the universe as gen-
erated not through the powerset axiom, but through saturation under forcing (com-
bined with a definable power set operation)F_T] We consider the following axiomati-
sation:

Definition 39. The theory of Forcing Saturated Set Theory or FSST comprises the
following axioms:

1. All axioms of ZFC — Powerset.

2. Definable Powerset Axiom. (Vx)(Jy)y = Def(x) (where Def(x) is the definable
powerset of x)FE]

3. Forcing Saturation Axiom. (FSA) If P is a forcing poset, and D is a family of
dense sets, then there is a filter G C P intersecting every member of D.

Thus, under FSST, we view the ‘richness’ of available subsets as given by satu-
ration under forcing for any set-sized family of dense sets.

Below, we explain how one might think of FSST as arising from an iterative
process. For now, we pause briefly to note some of the theory’s properties.

Theorem 40. FSST is equivalent to the theory ZFC—Powerset+“Definable power-
sets exist”+”Every set is countable”ﬁ]

Proof. (1) FSST = ZFC—Powerset+"“Definable powersets exist”+“Every set is
countable”.

The only thing to show for this direction is to show that FSST implies that every
set is countable. To see this, let a be the order-type of a well-ordering of an arbitrary
set « (« is our putative ‘uncountable’ cardinal). Then, the poset C'ol(«,w) is obtain-
able by taking definable powersets. Letting D be an a-sized family of dense sets on
Col(a,w) (again, obtained by the Definable Powerset Axiom) and using the Forcing
Saturation Axiom, there is a generic G for this family, and so there is a collapsing
function from o to w.

(2.) ZFC—Powerset+"“Definable powersets exist”+“Every set is countable” = FSST.

Again, we just have to show that we can obtain the Forcing Saturation Axiom
from the axiom that every set is countable. So, let P be a forcing poset and D be
a family of dense subsets of P. Since every set is countable, we can enumerate D
in order-type w. So, without loss of generality, D = (D,|n € w). Since every set
is countable, P can also be enumerated in order-type w, let “f” denote the relevant
enumerating function. We can then define via recursion (and using the parameter f)
the following function 7 from D to P:

m(Dy) = “The f-leastp € Dy”

52 A salient alternative approach to ours, one which expands the notion of continuum to an ‘absolute’
continuum, uses Conway’s notion of ‘surreal number’. An explanation of this idea is available in
[Ehrlich, 2012].

53This is in fact redundant, since for any set z, one can construct L(x) in the theory ZFC—Powerset.
We include it simply to emphasise the iterative picture.

541 thank Sy-David Friedman for pointing out this fact to me and for discussion of the proof.
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m(Dypy1) = “The f-least p € D,,41 such that p <p n(D,)”

Effectively 7 successively picks elements of each member of D, ensuring that we
always go below our previous pick in the forcing order (this is allowed because each
D € Dis dense in P, and so such a p always exists). By Replacement, ran(m) exists,
and the object obtained is a generic for P and D, and so the Forcing Saturation Axiom
holds. O

By the above theorem, we have the immediate:
Corollary 41. FSST is consistent relative to the theory ZFC™ +“w; exists”.

Proof. Thisis a quick consequence of the fact that FSST is equivalent to ZEC™ +"“Every
set is countable”, and the latter has a model in H(w1) (i.e. the heriditarily countable
sets). O

Of course, as things stand, we haven’t yet showed how to get FSST from a WA-
Principle. However, we can with the following:

Definition 42. (ZFC™) We say that V, a model of ZFC™, satisfies the Axiom of Set-
Generic Absoluteness (ASGA) iff whenever ¢(a@) is a sentence in the language of set
theory in the parameters @ € V,if P € V is a forcing partial order, G is V-generic in the
sense that it intersects every dense set in V, and ¢(a) holds in V[G] = ZFC™, then
¢(@) holdsin V.

Clearly ASGA is a WA-Principle, stating that sentences holding in set forcing ex-
tensions are true in V. It also implies that every set is countable, since the cardinality
of any set is collapsed to the countable in some extension V[G]. However it also
goes substantially further than FSST, since we can force the existence of a non-
constructible set and so ZFC™ + ASGA implies that V' # L, whereas FSST can be
satisfied in models satisfying V' = L (e.g. the H(w,) of any model of ZFC +V = L).
The question then arises as to whether or not ASGA is consistent, which we can an-
swer in the affirmative:

Proposition 43. ZFC™ + ASGA is consistent relative to ZFC.

Proof. We begin with a model 9t of ZFC. Next, force using an R;-product of Cohen
forcings with finite support (call this forcing P), to form an extension M[G].

We claim that H(w;)™¢] satisfies ZFC~ + ASGA. The fact that ZFC™~ holds is
immediate, since the H (w1 ) of any model of ZFC satisfies FSST. It just remains to
argue that H(w;)™¢] satisfies ASGA. To see this, we begin by noting that any finite
sequence of parameters @ from H(w;)™¢] appears at some stage of the iteration. In
other words, if we let G, be the first a-many Cohen reals added by G, then @ appears
in V[Ga).

Since d is hereditarily countable, it can be coded by some real r. Moreover,
must belong to V[G,] for some countable «. This is because P has the countable
chain condition, which in turn implies that any real added by G has a countable P-
name, and hence, letting P,, be the finite support a-length product of Cohen forcing,
r has a P,-name. In other words, any real » added by G is already added for some
G, for countable a. Letting G, be the Cohen reals added after G, by P, we can
then view H (w1)™C] as H(w1)™[G4][G -], where G, is H(w;)™[G,]-generic for
the wi-many Cohen forcings after the o' stage of the iteration given by P.

Now suppose that there is a countable forcing Q in H (w;)™¢] = H(w)™[G4][Ga-],
and generic Gq such that H (w;)™[Gq] = ¢(@) where @ € H(w1)™4. To show that
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the ASGA is satisfied by H(w;)™¢], we just have to show that H(w;)™¢] = ¢(a).
Since Gq is generic over H (w1)™C] for a countable forcing (i.e. Q), we can as-
sume without loss of generality that Gg is generic for Cohen forcing, since Co-
hen forcing is the only countable forcing up to forcing-equivalence. Thus, since
H(w)™C = H(w;)™M[Go][Gan-], we know that H (w; )™ Gq] = H(w1)™[G4][Ga-][Gal,
and hence that ¢(&) becomes true after forcing with the finite support product over
H(wy)™C] = H(w)™M[G,], adding G,.. and Gg, i.e. adding (w; + 1)-many Co-
hen reals (which is just wi-many Cohen reals). It follows (using the homogeneity of
Cohen forcing) that H (w1)™[G4][Ga~] = H(w1)™[G] = ¢(a), as required O

We thus have a consistent WA-Principle that proves the FSA and hence that every
set is countable. However there is a substantial challenge here; since we no longer
have the Powerset Axiom, we no longer have the V-hierarchy. How might we un-
derstand theories containing the FSA or the ASGA as iterative theories?

What we want here is some recursive process of forming subsets along the or-
dinals, such that the resulting structure models FSST. One suggestion that is in-
structive, but ultimately flawed, is to take definable power sets and saturate under
all generics at each successor stage:

Definition 44. The Naive Forcing Saturated Hierarchy is defined as follows (within
FSST):

(i) No=90

(ii) Not1 = Def(N,)U{G|3P € N,ID € N,"“P is a forcing poset” A “D is a family
of dense sets of P” A “G intersects every member of D"}

(i) Nx = Uy N5
(lV) N = UaGOn Fa'

Such a hierarchy looks like it would satisfy FSST by design (since we have
thrown in all generics at successor stages). Unfortunately the idea does not work.
This is because once the Cohen poset has been formed, one immediately puts in all
reals which are Cohen-generic for arithmetically-definable families of dense sets. But
then we would immediately get uncountably-many reals at the following stage, and
so the hierarchy breaks downﬁ]

We thus need a more subtle perspective, and the N-hierarchy helps show what
needs to be changed. Its failure highlighted that we couldn’t just throw in all generics
at successor stages, rather they need to be fed in slowly and unboundedly. We will
therefore consider a well-order R on the universe, with countable initial segments.
Let R be a predicate for this well-order, and define the following theory:

Definition 45. FSSTF + ASGA comprises the following axioms:
(i) All axioms of NBG ™ (in the expanded language with R).
(ii) The ASGA.

(iii) The axiom that R is a class well-order of V with countable (i.e. set-sized) initial
segments.

%5The proof can actually be conducted over ZFC ™ +"w; exists”, but we conduct it in ZFC for simplic-
ity. Many thanks to Sy-David Friedman for suggesting and discussing this proof.

%0ne could have a hierarchy in which stages need not be set-sized. We leave consideration of such
class-like hierarchies as an open problem. I thank Joel-David Hamkins for pointing out this idea, and for
subsequent discussion of possibilities in this direction.
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We can then modify the definition of the hierarchy as follows:
Definition 46. The Forcing Saturated Hierarchy is defined as follows (within FSSTF):

(i Fo=10

(ii) Fot1 = Def(F,)U{G|3P € F,3D € F,”P is a forcing poset” A “D is a family
of dense sets for P” A “G intersects every member of D” A “G is the R-least
generic for P and D"}

(iii) Fx = Ugey Fi
(v) F =U,con Fa-

On this perspective, we think of the hierarchy as formed by taking definable
power sets, and adding at each stage a single generic for each pair of forcing poset
and family of dense sets. Thus under this perspective, a set is ‘possible” if it is ob-
tainable by definable power set or the ‘next’ (codified in the sense of R) generic for
some P and D.

The situation is not quite as clean as with ZFC and the V,, since there is no obvi-
ous theorem that every set of a model of FSST" must belong to the F-hierarchy. For
example, if 0! exists, it can very well be a member of H(w,), but it is unclear whether
or not it would be part of the F-hierarchy (it might depend, for example, on whether
or not it is coded in by R). Despite this limitation, the F-hierarchy shows how we
can have a perspective on which every set is countable and we have a meaningful
hierarchy and notion of iterative set formation.

The existence of an iterative story not only gives us confidence that FSST is co-
gent, but also shows how we might have models of ZFC by missing out subsets. One
way is somewhat obvious; letting ® be large cardinal axiom, we could just bluntly
assert the existence of a countable transitive model of ZFC+®. Clearly, such a model
will have to miss out subsets in order to satisfy the large cardinal axiom in question.
However, a less brutal approach is also possible. Since ZFC™ provides us with the
resources to construct ultrapowers, we can construct inner models using mice. For
example, one can define 0* equivalently as a countable structure (L,, €,U), where U
is an ultrafilter with certain properties that allow us to construct (by iterating U) a
non-trivial j : L — LF_7] Perhaps then, we might adopt the theory FSST-+"0% exists”.
If we did, we obtain the following result:

Proposition 47. FSST+ “0% exists” implies that there is an inner model (i.e. a tran-
sitive model containing all the ordinals) for ZFC (and indeed large cardinals).

Proof. Since we have 0f we can construct the usual ultrapower embedding by iter-
ating U. We also know that w; (i.e. On in this context) is inaccessible in L in the
presence of 0°. Thus L | ZFC in a model of FSST+“0% exists”. Moreover, since
wp = On is in fact Mahlo, in L, L will also satisfy the existence of many large cardi-
nals, as well as ZFC[¥| O

57See [Schimmerling, 2001]] for a pleasant explanation of mice, and [Schindler, 2014], §10.2 for details of
this characterisation of 0.

58This observation shows that there is a fundamental difference between the kinds of large cardinal
axioms that postulate that there are ordinals with genuine largeness properties (e.g. “there exists a mea-
surable cardinal”) versus those that merely have large cardinal strength (e.g. “0f exists”); the latter can be
true even in the total absence of large cardinals.
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Thus, by viewing axioms asserting the existence of uncountable sets as species
of large cardinal axioms, we have another theory where a WA-Principle, capturing
maximality in the formation of subsets in the iteative process, is incompatible with
the MELC-Principle. Nonetheless, ZFC with large cardinals added can be consistent
on these pictures, but the action of asserting these axioms is to restrict the subsets we
are allowed to consider. Regarding a similar state of affairs, Meadows writes:

“Observing this situation and given our claim there are not any really
uncountable infinities, we might imagine ourselves as, so to speak, navi-
gating an endless collection of these countable models in something like
the generic multiverse we have described. While the illusion of mul-
tiple infinite cardinalities is witnessed inside each of the universes, we
are free to move between them...I would like to make the provocative
suggestion that forcing is a kind of natural revenge or dual to Cantor’s
theorem: where Cantor gives us the transfinite, forcing tears it down.”
([Meadows, 2015]], p205-206)

In this way, FSST" codifies Meadow’s intuitio and the picture we have de-
scribed represents a peculiar fusion between so called “actualist” and ‘potentialist’

frameworks. The universe of FSST exists absolutely and tells us what sets exist.
The ZFC-worlds however, are all ultimately countable transitive models or inner
models, and can be extended in many and varied ways. Again, importantly, we have
a picture on which the existence of certain cardinals is incompatible with a notion of
taking “all sets possible” at each additional stage, and the ‘large cardinal” axioms “w;
exists”, “wy exists”, Powerset, and the usual large cardinals only serve to restrict the
subsets we consider rather than maximise, despite the fact that they can perfectly
well be consistent. A theorist who holds that FSST is the right theory for capturing
the iterative process of subset formation should not be moved by the consistency of
the Powerset Axiom (or any other large cardinal axiom) to its truth; ironically, for
the friend of FSST, you can only have the Powerset Axiom by missing out subsets@]

4 Restrictiveness and maximality

Thus far we’ve argued that there are natural interpretations of maximality (WA-
Principles) based on iterative ideas that have anti-large cardinal features whilst al-
lowing for the consistency of large cardinal axioms. As it stands, one might try
and raise the charge that we are just intuition trading here; the friend of the MELC-
Principle has their conception of maximality, and the friend of WA-Principles has
their conception. The MELC-Principle theorist looks at the WA-Principle theorist
and thinks that they are living in some small structure containing only countable
sets (at least for the CIMH and FSST'), the WA-Principle theorist looks at the MELC-
Principle theorist and thinks that they also leave out subsets. We have already ar-
gued that iterative considerations might lead us to prioritise WA-Principles over the
MELC-Principle, however aside from these general considerations, is there anything
that points in favour of either the MELC-Principle or WA-Principles?

59 At least insofar as sets are concerned. We actually have two infinite ‘sizes’; countably infinite, and
proper-class-sized (of which the continuum is one). Only the former, however, corresponds to sizes of
sets.

%00One interesting philosophical and technical question is how to handle the continuum which becomes
a proper class in FSST and its relatives. Clearly some sort of second-order class theory is required, but
we leave it open what form this might take.
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There is at least one technically precise sense in which we can say that the MELC-
Principle perspective is restrictive, at least for some of the axioms we’ve considered.
For this we will examine [Maddy, 1998|]'s notion of theories maximising over one an-
other and (some thus being restrictive). Her account roughly takes the idea that one
set theory T'; maximises over another T3 (and hence shows it to be restrictive) when
one can use T to provably find an interpretation of T in an appropriately “nice’
context, and not vice versa, and the two theories are jointly inconsistent. More pre-
cisely, Maddy begins with the following definition.

Definition 48. [Maddy, 1998|] A theory T shows ¢ is an inner model iff there is a fomula
¢ in one free variable such that:

(i) Porall o in ZFC, T - 0 (i.e. o holds relative to the ¢-satisfiers).

(ii)) T F Ya¢(a) or T F Ix((“k is inaccessible”) A Va(a < k — ¢(a))) (i.e. the
¢-satisfiers either contain all ordinals, or all ordinals up to some inaccessible),
and

(iii) T+ VaVy((x € y A d(y)) — ¢(x)) (i-e. ¢ defines a transitive interpretation).

This definition serves to specify the interpretations we are interested in; proper
class inner models and truncations thereof at inaccessibles. She then defines:

Definition 49. [Maddy, 1998] ¢ is a fair interpretation of T in T iff:
(i) Ty shows ¢ is an inner model, and
(ii) Forall o in Ty, Ty F o®.

i.e. a fair interpretation of one theory T in another T is provided by finding some
¢ defining an inner model (or truncation thereof) in T that satisfies T;. Maddy
then goes on to define what it means for a theory to maximise over another. First,
she thinks that there should be new isomorphism types outside the interpretation,
which, in the presence of Foundation, amounts to the existence of sets not satisfying

¢:

Definition 50. [Maddy, 1998|] Ty maximizes over T iff there is a ¢ such that:
(i) ¢ is a fair interpretation of T in T, and
(i) Tk Jx—d(z).

With this idea of maximisation in play, we next need to set up some additional
definitions to make sure that weak but unrestrictive theories, whilst not maximising,
do not count as restrictive. This is dealt with by the following definitions.

Definition 51. [Maddy, 1998] Ty properly maximizes over T, iff Ty maximizes over
T, but not vice versa.

Definition 52. [Maddy, 1998] T, inconsistently maximizes over T, iff Ty properly
maximises over T and T is inconsistent with T';.

Definition 53. [Maddy, 1998] T, strongly maximizes over T, iff Ty inconsistently
maximizes over T, and there is no consistent T3 extending T, that properly maxi-
mizes over Ts.
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Thus we have a picture on which one theory T, (strongly) maximises over T
when we can prove in T that a certain formula ¢ defines a proper inner model (or
truncation thereof), satisfying T, and such that we cannot extend T; to a theory
capable of finding such an interpretation for Ty. If there is a theory Ty strongly
maximising over T, then we say that T is restrictive. A natural example here is
contrasting the theories ZFC + V = L and ZFC+“There exists a measurable car-
dinal”. The latter strongly maximises over the former, since we can always build L
to find a model of ZFC + V = L, but there are no fair interpretations with mea-
surable cardinals under V' = L (though they can exist in other kinds of model, e.g.
countable).

Maddy’s definitions are not without their problems (notably some false nega-
tives and positives), a fact which Maddy herself is admirably transparent aboutE]
Subsequent developments of the notion have been considered by Léwe and Incur-
VatiF_Z] Our point here is not that Maddy’s definitions provide the definitive word
on restrictiveness, but rather that they provide an interesting perspective on which
the rough ideas sketched earlier (about iterativity and leaving out subsets) could be
made precise, if one so desired.

Indeed we get some interesting conclusions if we consider the WA-Principles
advanced earlier in light of Maddy’s definitions. Since the technical situation with
Reinhardt Cardinals and AC is still relatively murky, we will set it to one side. How-
ever, both the CIMH and FSST can have maximising properties.

First, the CIMH. The CIMH is formulated in NBG, and since Maddy’s formula-
tion is intended to apply only to ﬁrst—ordelﬁ set theories, we require some modifica-
tion. It is, nonetheless, possible to prove the following:

Proposition 54. Let ZFC“™" be the first-order part of NBG + CIMH. Then ZFC“™"
strongly maximises over ZFC+“There exist a-many measurables” for every .

Proof. We first need to show that ZEFC“™" shows that some ¢ is an inner model with
a-many measurables, for any desired « (let a be fixed from now on). Theorem 2 of
[Friedman et al., 2008] establishes that NBG + CIMH proves that there is a definable
inner model with measurable cardinals of arbitrarily large Mitchell order Thus, by
going high enough in the Mitchell order, ZFC“™" provides a fair interpretation of
ZF C+"“There exist a-many measurables”.

Moreover ZEC“™H also maximises over ZFC+“There exist a-many measurables”,
since there are always sets outside this interpretation. In particular, since ZFC“™"
implies that there are no inaccessible cardinals, for any particular j that is measur-
able in our interpretation, the interpretation misses out the sets witnessing the acces-
sibility of 8. Clearly, the two theories are also inconsistent with one another.

It just remains to show that ZFC+“There exist a-many measurables” does not
maximise over ZFC“™* (for inconsistent maximisation), nor can any consistent ex-
tension (for strong maximisation). These are established by the following claim:

11n the original [Maddy, 1998].

62Gee here [Lowe, 2001]], [Lowe, 2003], and [Incurvati and Lowe, 2016] (which responds to some criti-
cisms of [Hamkins, 2014])).

63 A brief note on nomenclature: In set theory is usual to refer to theories that do not have class variables
as first-order, and those that do as second-order. This is despite the fact that, strictly speaking, NBG and
its cousins are two-sorted first-order theories, even if they could be given a second-order formulation in
which we quantify into predicate position.

®4Note: Friedman, Welch, and Woodin are explicit about the fact that none of their theorems depend on
arbitrary outer models, but rather could be formulated in terms of the CIMH. See [Friedman et al., 2008]
pp- 391-392.
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Claim 55. No consistent extension of ZFC+"“There exist a-many measurables” can
provide a fair interpretation of ZFC“™",

To show this, we need to show that under any extension of ZFC+"“There exist
a-many measurables”, none of (i) there is an inner model of ZFC“MH (i) there is
a truncation at an inaccessible with ZFC“™" or (iii) there is a truncation at an in-
accessible of an inner model with ZFC“MH  are possible. For (i) it suffices to note
that being accessible is upwards absolute. Since all cardinals are accessible under
ZFC“MH if ZFC“MH holds in an inner model, then all cardinals are accessible, rul-
ing out (i). For (ii) and (iii) note that if « is inaccessible, then any inner model C of V,
contains a proper class of wordly cardinalﬁ since (C, €, PL(C)) E MK, and MK
implies that there is a proper class of worldly cardinals. However, the CIMH implies
that there is a definable inner model of the form L[R], where R is a real, with no
worldly cardinals (see Theorem 15 of [Friedman, 2006]). Thus neither a truncation
at an inaccessible nor a truncation of an inner model at an inaccessible can satisfy

ZFC“™", proving Claim [55/and hence Proposition O

We can thus see that the CIMH has maximising properties with respect to large
cardinals, and shows them to be restrictive in a precise sense

Turning to the FSST case, we can again get restrictiveness properties, given a
modification of Maddy’s definition. Maddy considers extensions of ZFC, and since
FSST contradicts ZFC, it is unclear how we can use Maddy’s notion of restrictive-
ness without a change of definition. In what follows, then, we will consider Maddy’s
definition as applying to theories extending ZFC™.

Of course, neither FSST nor FSST+ASGA can maximise over ZFC or its cousins,
since the latter are strictly stronger in consistency strength. However, one might
nonetheless adopt the existence of various mice as new axioms:

Proposition 56. FSST+"0¢ exists” strongly maximises over ZFC+"There exists a
proper class of inaccessible cardinals”.

Proof. We can (exactly as in Proposition @ iterate the ultrafilter U provided by 0F
(conceived of as a mouse) through the (countable) ordinals, since 0% exists and FSST
has the resources to construct the ultrapower. Under the existence of 0%, w; (which
in this case is Ord) is Mahlo in L, and so there is a proper class of L-inaccessible
cardinals (in fact a stationary class thereof) in L. Thus FSST+“0" exists” provides
a fair interpretation of ZFC+"“There exists a proper class of inaccessible cardinals”.
FSST-+"0F exists” also clearly maximises over this theory, since ZFC-based theories
will always miss out collapsing functions, and is trivially inconsistent with ZFC-
based set theories. All that is needed to show strong maximisation is then that no
extension of ZFC can provide a fair interpretation of FSST+"0% exists”, but this is
immediate, since any transitive interpretation of FSST-based theories contains only
hereditarily countable setslg_g] O

53 is worldly iff Vi = ZFC.

61 am grateful to Kameryn Williams for some useful discussions concerning this proof.

70f course, for stronger large cardinals that are capable of proving the CIMH consistent (e.g. anything
stronger than the existence of a Woodin cardinal with an inaccessible above), it is not possible to provide
a fair interpretation of those large cardinals within ZFCCMH 31one. However, if we were to augment our
theory (somewhat artificially) with the claim that there is a definable inner model for the large cardinals
(say by asserting the existence of the required mouse), then parallel reasoning would yield the same
restrictiveness result. This can only be done up to a point since the CIMH contradicts PD, however there
is the possibility of modifying the CIMH to make it consistent with PD

%8For ease we have stated this proof just for inaccessibles in L. However, exactly the same argument
can be generalised to any large cardinal properties holding in an L-like model under the existence of a
suitable countable mouse.
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Thus, both the CIMH and FSST-based set theories seem to have maximisation
properties over set theories with large cardinals, lending credence to the claim that
there is a genuine sense in which some WA-Principles maximise subsets as compared
to MELC-Principle-inspired set theory.

5 The proper place for large cardinals

We have thus far argued that (i) there is a distinction between Width Absoluteness
Principles and asserting Maximality through the Existence of Large Cardinals, (ii)
that the iterative conception seems to speak in favour of WA-Principles for max-
imising subsets at successor stages, and (iii) that MELC-inspired set theory seems
restrictive as compared to some set theories inspired by WA-Principles. However,
we do not wish to deny that large cardinals are rightly viewed as some of the most
central principles in set-theoretic mathematics. There is thus a remaining substantive
question: What happens to the study of large cardinals if we do adopt one of these
anti-large-cardinal perspectives? In this section, we’ll examine some uses of large
cardinals in foundational discussions and argue that these uses are not necessarily
threatened by the arguments we’ve put forward.

The uses of large cardinals in foundationsf_g] We have already seen two uses for
large cardinals in §1: (1.) To index the consistency strength of theories in a linearly or-
dered fashion, and (2.) To provide a framework theory that maximises interpretative
power.

Point (1.) can be dealt with very quickly. In order to study the consistency
strengths of mathematical theories, we only require that the theories be true in some
model or other, not necessarily in V. More generally, note that there are the following
‘levels’ to where an axiom A can be true:

(i) A could be truein V.
(ii) A could be true in an inner model.
(iii) A could be true in a transitive model.
(iv) A could be true in a countable transitive model.

(v) A could be true in some model (whatever it may be).

For consistency statements, any model will do, and so any of (i)—(v) are accept-
able places for considering A. As we have seen, there is no obstacle to having any of
(ii)~(v) for the friend of anti-large-cardinal principles.

Point (2.) can also be dealt with reasonably easily. In order to maximise interpre-
tive power we just need some appropriately ‘nice” or ‘standard’ (e.g. well-founded,
containing all ordinals) place where the relevant mathematics can be developed. But
the observations of §4 show that we can perfectly well have large cardinals in inner
models in many anti-large cardinal frameworks, and so there is not necessarily any
loss of interpretive power; we can always assert (and often prove) that large cardi-
nals exist in inner models, even if not in V. Thus any interpretability work that could
be done using a large cardinal could be done by a large cardinal in an inner model
on the frameworks we have considered.

9See also [Arrigoni and Friedman, 2013] for discussion of some of these uses.
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We will consider a further two uses for large cardinals in foundations; (3.) large
cardinals are used in the case for so called “axioms of definable determinacy”, and
(4.) large cardinals are used to build certain kinds of models (e.g. in the inner model
programme that tries to construct L-like models for large cardinals).

For (3.), the full details will be familiar to specialists and obscure to non-specialists,
so we omit them here[”| Nonetheless, a coarse description will be helpful in stating
our arguments. Roughly put, axioms of definable determinacy assert (schematic)
claims about second-order arithmetic, postulating the existence of winning strategies
for games played with natural numbers{ﬂ Importantly, some authors have argued
that these axioms have various pleasant consequences we would like to captureF_Z]
One salient fact is that Projective Determinacy yields high degree of completeness for
the hereditarily countable sets [i.e. there are no known statements apart from Godel
style diagonal sentences independent from the theory ZFC + PD +V = H (wl)]r_g]
Moreover, whilst it is a theorem of ZFC that not all games are determined, certain
restricted forms can be proved from large cardinals. For example:

Theorem 57. Borel Determinacy is provable in ZFC, but any proof requires w;-many
applications of the Powerset Axiom.

Theorem 58. Analytic Determinacy is provable in ZFC+“There exists a measurable
cardinal”, but is independent from ZFC.

Theorem 59. Projective Determinacy is provable in ZFC+ “For every n € N, there
are n-many Woodin cardinals”, but is independent from ZFC+ “There exists a mea-
surable cardinal”.

Theorem 60. The Axiom of Determinacy for L(R) is provable in ZFC+ “There are
w-many Woodin cardinals with a measurable above them all”, but is not provable in
ZFC+ “For every n € N, there are n-many Woodin cardinals”

Again, we will not go through the definitions of Borel, Analytic, Projective, or
L(R) here. Suffice to say, each admits progressively more sets of reals with a more
permissive notion of definability, and each is resolved by strictly stronger large car-
dinal axioms. So, assuming that out ‘best” theory of sets should contain axioms of
definable determinacy, it remains to explain how we might obtain them in the ab-
sence of large cardinals.

Our core point is that it is not the case that a principle having anti-large cardinal
features immediately disqualifies the justificatory case for PD found in the literature.
This is because axioms of definable determinacy do not require the literal truth of
large cardinal axioms, but rather only the truth of the large cardinals axioms in in-
ner models. Generally speaking this is where there are equivalences (rather than
strict implications from the large cardinals to axioms of definable determinacy). For
exampl

Theorem 61. (Woodin) The following are equivalent:

70The interested reader is directed to [Schindler, 2014] for a recent presentation of the technical details,
and [Koellner, 2006], [Maddy, 2011], and [Koellner, 2014] for a philosophical discussion.

"IThere are also versions of determinacy for real-valued games, or games of longer length. We put aside
these issues here.

72See, for example, [Maddy, 2011] and [Welch, 2017].

73[Koellner, 2014] provides a detailed survey of the literature here, and is quick to point out that axioms
of definable determinacy seem to be the consequence of any strong ‘natural” theory extending ZFC (e.g.
ZFC+PFA). Given the focus of this paper, we shall concern ourselves only with the argument from large
cardinals.

74For a list see [Koellner, 2011].
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(a) Projective Determinacy (schematically rendered).

(b) Forevery n < w, there is a fine-structural, countably iterable inner model 91 such
that 9t |= “There are n Woodin cardinals”.

Thus it may very well be the case that PD holds, there are plenty of Woodin car-
dinals in inner models, but no actual Woodin cardinals in V. More must be done to
argue why the existence of such models must be explained by truth of the large cardi-
nals, rather than the apparent consistency of the practice)”| The friend of anti-large
cardinal principles may acknowledge that the existence of an inner model theory is
good evidence that the axiom is consistent (perhaps even in an inner model), agree-
ing that the diverse theoretical relationships between models of large cardinals and
axioms of definable determinacy are evidence for the consistency of the practice. For
them, however, this consistency is to be explained by the existence of an inner model
rather than the strict truth of the axiom. Perhaps a supplementary argument can be
provided. However, for the moment, any such claim stands in need of support and
clarification.

For the specific theories FSST and NBG + CIMH that we have considered, two
additional points are salient. For FSST, if we add PD to FSST we would obtain
a highly complete set theory, since (as noted above) PD implies a high degree of
completeness concerning the hereditarily countable sets. One might think that in
the case of FSST that this provides additional strength to the ‘extrinsic” justification
of PD from completeness; we would obtain completeness about our whole theory of
sets, not just a substructure thereof.

For the CIMH, the issue is somewhat subtle. Whilst there is no prima facie reason
why such principles would interfere with a case for axioms of definable determinacy,
as a matter of fact the CIMH implies that PD is false outright[?| However, it is open
whether there could be an CIMH-like principle with anti-large cardinal features that
is nonetheless consistent with axioms of definable determinacym So it is not obvi-
ously the case that it is the anti-large cardinal features or even the status of the CIMH

75This is perhaps what lies behind the following idea of Woodin:

“A Set Theorist’s Cosmological Principle: The large cardinal axioms for which there is an
inner model theory are consistent; the corresponding predictions of unsolvability are true
because the axioms are true.” ([Woodin, 2011, p. 458)

Woodin's idea is that on the basis of consistency statements, we can make predictions. For example,
“There will be no discovery of an inconsistency in the theory ZFC+“There is a Woodin cardinal” in the
next 10’000 years” is a prediction ratified by the truth of the theory ZFC+“There is a proper class of
Woodin cardinals”.

76This is because the CIMH implies that it is not the case that for every real z, z! exists.

77For a somewhat speculative example, suppose that one is moved by justifications for Woodin cardi-
nals and adopts ZFC+“There is a proper class of Woodin cardinals” as one’s canonical theory of sets.
Suppose further that one holds that some IMH-like principle should hold on the basis of absoluteness
considerations. We might then formulate the following principle:

Definition 62. The Class-Generic Inner Model Hypothesis for Woodins (CIMHW) states that if (first-order,
parameter-free) ¢ is true in an inner model of a tame class-generic extension of V' containing a proper
class of Woodin cardinals, then ¢ is true in a inner model of V.

Assuming that the existence of a proper class of Woodin cardinals can be given an inner model theory
(i.e. there is a model of the form L[E] such that L[E] = “There is a proper class of Woodin cardinals”), the
results of [Friedman, 2006] (in particular Theorem 15) might well then be generalised to show that over
the base theory ZFC+"“There is a proper class of Woodin cardinals”, the Inner Model Hypothesis for
Woodins implies that there is no inaccessible limit of Woodin cardinals in V' in the presence of PD. Since
the required inner-model-theoretic questions are still to be answered here, we will leave this question
open.
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as a WA-Principle that results in the falsity of PD, since there may well be similar
principles with these features consistent with PD.

Another use of large cardinals (4.) is in the building and studying of different
models. In particular, we want to construct various ‘L-like” inner models from large
cardinals: For many large cardinal axioms we can (using large cardinals) build a
model containing the cardinal, but also with a good deal of information (in particu-
lar, these L-like models satisfy various so called ‘fine-structural” properties). Again,
the details are rather technical, so we omit themm The point is the following: Of-
ten in set theory we have very little information about the properties of certain sets,
as exhibited by the independence phenomenon. This is not so for large cardinals
with L-like inner models, where (whilst there are open questions) there is a large
amount of highly tractable information concerning the objects. The construction of
inner models from large cardinals thus represents an important and technically so-
phisticated area of study. Can we construct these models when we don’t have the
literal truth of the large cardinals?

A response to this is available in a similar fashion to (3.); there are no obvious
obstacles to having various kinds of model within an anti-large cardinal framework.
In fact, these fine-structural model building techniques are performed by iterating
countable mice, and again one can have the relevant mice in play and construction
of the ultrapower (pace, of course, the consistency of the existence of these mice with
the theory in question). Thus it is not clear that building various kinds of models
really requires the truth of a large cardinal axiom.

6 Open questions and concluding remarks
Thus far we have argued that:

(1.) There is a distinction to be made between maximality conceived of through
large cardinal principles (the MELC-Principle) and maximality as conceived of
through width absoluteness (WA-Principles).

(2.) The iterative conception seems to speak in favour of maximising subsets at suc-
cessor stages, and then iterating this process as far as possible, and thus supports
WA-Principles.

(3.) There are set theories based upon WA-Principles on which large cardinals are
false but consistent, and serve to leave out subsets. This challenges the claim
that large cardinals are genuine maximality principles.

(4.) This point can be further codified by showing that large cardinals are restrictive
in senses derived from Maddy’s notion of restrictiveness.

(5.) Large cardinals can still play their usual foundational roles in these anti-large
cardinal frameworks, despite their falsity (putting aside some questions regard-
ing possible modifications of the CIMH to incorporate PD).

Do we wish to repudiate large cardinals on this basis as definitively false? We
wish to emphasise that this is not our intention. All we have identified is that the
fact that large cardinals appear to postulate ‘big’ sets cannot be taken to straightfor-
wardly imply that they are maximality principles, since there seem to be conceptions

78For the state of the art concerning inner model theory and the challenges faced, see [Sargsyan, 2013]
and [Woodin, 2017].
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of maximality (given by the WA-Principles we discussed) on which they serve to re-
strict the subsets we consider. It may well be that more precision concerning the
notion of maximality in set theory is able to rehabilitate large cardinal axioms as
genuine maximality principles. We therefore ask:

Question 63. Is there a criterion for ‘height maximality’ that can operate more inde-
pendently of background theory, unlike the MELC-Principle?

One conjecture is to say that only those height principles that are downward
absolute to inner models should definitely count as maximising height, other prin-
ciples are too dependent on prior commitments regarding the (possibly presently
unclear) notion of arbitrary subset. Thus, any large cardinal absolute between V' and
L should count as definitely height-maximising{”| This idea, however, does not get
us very high in the large cardinal hierarchy (it would fail to take us outside L).

It thus an interesting question whether there are other criteria that would allow
us to draw a clean distinction between ‘height’ and ‘width’. One suggestion is to
regard large cardinals themselves as species of a kind of absoluteness as understood
as reflection principles (as suggested in [Bagaria, 2012]]). Given this, the results of
the current paper would suggest there is a kind of tension in the iterative conception
between different kinds of absoluteness. This is further suggested by the fact that
second-order reflection is inconsistent with the CIMH in the NBG-setting (since it
implies the existence of inaccessibles). Moreover, in the NBG ™ -setting, the existence
of wy can be seen as an instance of reflection. More precisely over NBG ~, we might
formulate:

Definition 64. (NBG ™) Let weak second-order reflection be the claim that if ¢(A) is a
sentence of NBG™ in the parameter A, then if ¢(A) holds then there is a transitive
set S such that (S, €,P(S)) & ¢(A4)°.

Since the universe is uncountable, this principle would imply (over NBG ™) that
wy exists (in fact, that there is a proper class of uncountable cardinals). This fur-
ther suggests that there is a tension between height and width absoluteness, since
this weak form of height absoluteness is inconsistent with the comparatively strong
width absoluteness given by the ASGA.

Perhaps a greater understanding of these questions will in turn yield a better un-
derstanding of how maximality in set theory is linked to absoluteness, and whether
there is an optimal middle-ground to be found. For now we conclude that it is at
least unclear how large cardinals are related to notions of height maximality.
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