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Abstract

This paper analyzes the recent debate surrounding inclusive fitness
and argues that certain limitations ascribed to it by critics — such as re-
quiring weak selection or providing dynamically insufficient models — are
better thought of as limitations of the methodological framework most
often used with inclusive fitness (quantitative genetics). In support of
this, I show how inclusive fitness can be used with the replicator dynam-
ics (of evolutionary game theory, a methodological framework preferred
by inclusive fitness critics). I conclude that much of the debate is best
understood as being about the orthogonal issue of using abstract versus
idealized models.

1 Introduction

The mathematical framework of inclusive fitness was first introduced by Hamil-
ton (1963, 1964) in order to help explain the evolution of social traits by kin
selection and has helped to give new, intuitive explanations of a variety of traits
including altruism, eusociality, parental care, and genomic imprinting (Grafen,
1984; Marshall, 2015, and references therein). In calculating inclusive fitness,
one looks at the effects an organism has on other organisms’ reproductive suc-
cess, rather than just looking at the organism’s own reproductive success. These
effects are then weighted by the ‘relatedness’ of the organism to those organisms
it affects.

In recent years, there has been an extensive debate surrounding inclusive
fitness. Some authors argue that inclusive fitness calculations can be wrong (van
Veelen, 2009), while others argue that it requires stringent assumptions and is
less general than ‘standard’ natural selection (Nowak et al., 2010; Wilson, 2012;
Allen et al., 2013). The response is that inclusive fitness calculations are not
(merely by virtue of using the mathematical framework) susceptible to being
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wrong (Marshall, 2011) and do not require stringent assumptions like weak
selection (Abbot et al., 2011; Marshall, 2015, etc.), additive payoffs (Queller,
1992; Taylor and Maciejewski, 2012; Birch, 2014b; Birch and Okasha, 2015, etc.),
pairwise interactions (Taylor and Gardner, 2007; Abbot et al., 2011; Marshall,
2011, etc.), or special population structures (Taylor and Frank, 1996; Taylor
and Gardner, 2007; Abbot et al., 2011; Taylor and Maciejewski, 2012; Marshall,
2015, etc.).

Critics of inclusive fitness often propose evolutionary game theory and/or
population genetics as alternatives to the inclusive fitness framework (Traulsen,
2010; Nowak et al., 2010, 2011; Allen et al., 2013; Allen and Nowak, 2015).
Often, the comparisons are made between very simple models in quantitative
genetics, which abstract away from particular details of any given population,
and more complex models arising out of population genetics, which often take
into account more of the particular details. Here, we will look at how inclusive
fitness can function in evolutionary game theory, which often makes idealiza-
tions rather than abstractions in order to achieve simple models. The difference
between these two modeling strategies (using abstractions versus using idealiza-
tions) and how this relates to the inclusive fitness debate will be discussed more
in sections 3.3 and 5. Looking at the way inclusive fitness can be incorporated
into evolutionary game theory will help show where some of the disagreements
about inclusive fitness arise and when inclusive fitness calculations might be
expected to have the limitations ascribed to them by critics. It will also demon-
strate how we can think of some parts of the debate as arising from different
sides emphasizing different methodologies, rather than as disagreements over
inclusive fitness as a way of calculating fitness.

First, I will introduce the framework of inclusive fitness and compare it to
‘neighbor-modulated’ fitness calculations in section 2. Then, in section 3, T
will discuss the debate that has arisen around the inclusive fitness framework,
focusing on issues which can be understood as arising from the different sides
of the debate emphasizing different methodologies. In section 4, I will discuss
how models using both neighbor-modulated and inclusive fitness are connected
and provide a simple example to demonstrate these connections. Section 5 will
provide a few ways to think about these connections and explain how they can
help us understand some issues in the inclusive fitness debate. Finally, section
6 concludes.

2 Inclusive Fitness and Neighbor-Modulated Fit-
ness

2.1 Basic Calculations

Inclusive fitness and the related concept of neighbor-modulated fitness were first
proposed by Hamilton (1964). Roughly, the neighbor-modulated fitness of an
organism is calculated by adding up the number of offspring the organism is
expected to have from some social interaction of interest. Inclusive fitness is
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an alternative mathematical framework in which fitness calculations track the
offspring caused by a particular organism, rather than tracking the offspring an
organism actually has. The offspring caused by the organism are then weighted
according to a ‘relatedness’ parameter, which is a measure of how likely it is that
the focal organism and its social partner share genetic material, relative to the
rest of the population. The two types of fitness calculations provide alternative
ways of partitioning the causal structure of social interactions. A more concrete
description of the equations used in both frameworks will be provided below.

The inclusive fitness framework might initially seem counter-intuitive, so it
is helpful to start with a basic observation: in general, a trait will increase in
frequency when organisms with that trait have more offspring than the average
organism in the population. To determine whether a trait of interest will increase
in frequency, we want to see how many offspring organisms with that trait will
have. Inclusive fitness gives us this information by telling us how many offspring
are caused by an organism and how likely it is that these offspring are had by
an organism with the trait of interest.

We can calculate inclusive fitness for a focal organism, ¢, by looking at the
effects from all its social interactions relevant to our trait of interest. When i
interacts with other organisms, it affects its own fitness by some amount (s;;)
and the fitness of another organism, j, by some amount (s;;). The genotype of
organism 7 also predicts, to a certain extent, the genotype of the social partner j.
This relationship is described by r;;. There will be more details on calculating
ri; in sections 2.2 and 4, but for now we can think of it as a measure of how
likely it is that ¢ and j share genetic material. We can then calculate inclusive

fitness as follows:
fi= rijsis (1)
J

This fitness calculation gives us information about how the population will
evolve. It tells us how many offspring are had by organisms with the trait
of interest, and since offspring tend to be like their parents, this gives us infor-
mation about how the composition of a population is expected to change. Note
that, although it is sometimes described this way, inclusive fitness is not calcu-
lated by counting the number of offspring an organism has and then adding all
the offspring its relatives have (weighted by relatedness).

Compare the inclusive fitness approach to the neighbor-modulated fitness
approach, where we look at an organism, i, and add up the effects of its social
interactions on its own number of offspring. The neighbor-modulated fitness of
organism i is then calculated as follows:

fi= Zsa‘z‘ (2)

where s;; is the effect i’s social interaction with j has on 4’s fitness.! This
gives us information about how many offspring ¢ is expected to have and, since

INote that the definition of neighbor-modulated fitness looks formally different from in-
clusive fitness as fitness effects are unweighted, while the fitness effects in inclusive fitness are
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1’s offspring tend to be like i, about how the composition of a population is
expected to change.?

2.2 Hamilton’s Rule, the Price Equation, and Kin Selec-
tion

Hamilton’s rule, famously associated with inclusive fitness, gives a condition for
the increase of an altruistic behavior, where an organism performs an action
that decreases its own fitness and increases the fitness of another. (An example
of a model of the evolution of altruistic traits will be given in section 4.2.) It
says simply that if the relatedness-weighted benefit of a trait exceeds its cost,
then we should expect selection to favor that trait. That is, the trait is favored
when:

bR—c>0 (3)

where b is the benefit to the focal organism’s social partner and c is the cost to
the focal organism.

Many results within the inclusive fitness framework, including Hamilton’s
rule, are derived from the Price equation, which is a general description of
evolutionary change. Let f be the fitness of a trait in the population, relative
to the average fitness in the population. Then, the Price equation describes
expected evolutionary change in the following way:

E(p) = Cov(f,p) (4)

We can think of p as the average phenotypic value of the population, although
p can actually represent anything a modeler might want to keep track of: phe-
notypic value, genetic value, frequency of a trait, etc. E(p) is then the change
in the average value. The covariance term measures how fitness changes with
differences in phenotype.?

When fitness effects are additive, that is, when the fitness effects on the
recipient do not depend on the recipient’s genotype/phenotype and fitness effects
from all an organism’s social interactions can simply be added up, we can derive
equations for both inclusive fitness and neighbor-modulated fitness from the

weighted by a relatedness parameter. This apparent asymmetry disappears at the population
level when we calculate the fitness of organisms with a certain trait. See section 4.1 for a
calculation of neighbor-modulated fitness at the population level. For more information on
the calculations of these two types of fitness, see (Frank, 1998, p. 48-9) and Birch (2016).

2Technically, both inclusive fitness and neighbor-modulated fitness include a baseline non-
social fitness component, so these calculations are the fitness effects of the social trait of
interest.

3There is sometimes a second term, E 7(p), included which measures the fitness-weighted
transmission bias, the difference between the phenotypic value of a parent and the average
phenotypic value of their offspring. It is often assumed that Ef(p) = 0, which is generally
thought of as assuming there is no transmission bias. (Assuming that E¢(p) = 0 is not exactly
the same as assuming there is no transmission bias (van Veelen, 2005), but the details of what
exactly it means to assume Ey(p) = 0 are not crucial here.)
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Price equation.* These equations are discussed further in the appendix, but

here we will look at Hamilton’s rule as derived from the Price equation. The
(inclusive fitness version of) Hamilton’s rule is:

. Cov(p, g’
E(g) > 0 when f5,, - ﬁ

- BSMP >0 (5)
When we can interpret the covariance between an organism’s phenotype and its
own fitness (Bs,,,) as a ‘cost’ and the covariance between an organism’s pheno-
type and its social partner’s fitness (8s, ,p) as a ‘benefit’, we have Hamilton’s

Cov(p,g’)
Cov(p,g)
between a focal organism’s phenotype, p, and its social partner’s genotype, ¢,

with the covariance between the focal organism’s phenotype and its own geno-
type, g (Orlove and Wood, 1978). It is a measure of the degree to which the
focal organism and its social partner are genetically related, or how likely it is
that the fitness effects from a trait fall on organisms with the gene(s) encoding
for the trait.

Section 4.1 and the appendix discuss how inclusive fitness results derived
from the Price equation are related to the replicator dynamics, which is often
used in game theoretic models, using methods drawn from Page and Nowak
(2002). Section 4.2 will discuss how this definition of relatedness matches up
with the definition of relatedness we will use in game theoretic models. Section
5.2 will discuss versions of Hamilton’s rule which do not rely on the assumption
of additive fitness components in relation to the results discussed here.

Relatedness is commonly thought of as a measure of the average kinship be-
tween interacting organisms when talking about kin selection for a trait. How-
ever, it is widely acknowledged that R, and many methods for calculating R, can
be thought of as general measures of correlation between types (Marshall, 2015).
In this case, R can measure how likely it is that altruists interact with other
altruists regardless of whether that correlation is caused by interacting with kin
or by some other mechanism, such as a green-beard effect where altruists are
able to recognize and preferentially interact with other altruists.

Because inclusive fitness is often used in describing traits that evolve via
kin selection, the terms ‘inclusive fitness’ and ‘kin selection’ are sometimes used
interchangeably. However, it is important to distinguish inclusive fitness from
kin selection. Inclusive fitness is a method of calculating fitness, as described
above. Kin selection, on the other hand, refers to the selection of a trait due
to benefits falling differentially on relatives. Inclusive fitness is a mathematical
framework used to describe evolution of a trait; kin selection is a mechanism by
which traits can evolve (Hamilton, 1975; Grafen, 2007a, among others).

Some of the critiques of inclusive fitness models are aimed at showing that kin
selection has been less important as an evolutionary force than many inclusive

rule, where R = This measure of relatedness compares the covariance

4The additivity of fitness effects requires satisfying these two conditions, which Birch (2016)
refers to as actor’s control and weak additivity. Actually, only the second condition is required
to derive neighbor-modulated fitness while both are required to derive inclusive fitness. See
Birch (2016) for a discussion of this.
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fitness theorists presume (see Wilson, 2012, for example). Other parts of the
criticism are aimed at the mathematical framework of inclusive fitness itself,
such as claims that there are mathematical difficulties with the calculations
in inclusive fitness (Nowak et al., 2010; Traulsen, 2010; Wilson, 2012). This
paper will not discuss whether kin selection provides an adequate explanation of
prosocial behavior. Instead, it looks at whether inclusive fitness can provide an
adequate mathematical framework for use in evolutionary models. Kin selection
is discussed only in considering how inclusive fitness can be used in models of
traits evolving via kin selection. This focus will help us see which aspects of
the debate are relevant to the inclusive fitness framework, and which pertain
to kin selection explanations of the evolution of particular traits. Section 5 will
discuss this further.

3 The Debate Surrounding Methods

There are several critiques levied against the inclusive fitness framework. This
paper will address a couple of particularly important critiques which, as we will
see, can be understood in light of an emphasis on different modeling techniques:
the critiques that inclusive fitness requires the assumption of weak selection and
cannot provide dynamically sufficient models. Here, I will give a description
of these critiques and a brief motivation for thinking of them as arising from
different sides of the debate emphasizing different methodologies. Section 5
provides a more detailed argument for this conclusion using material that will
be laid out in section 4.

3.1 Weak Selection

First, inclusive fitness has been critiqued for requiring the assumption of weak
selection. In assuming that there is weak selection, we assume that gene fre-
quencies are not changing or that the changes in gene frequencies are small
enough to be ignored.? This assumption is used in various ways in inclusive
fitness models: in employing estimation methods for calculating relatedness, in
ignoring higher-order effects or certain types of population structure, etc.

It is easy to see why certain methods of estimating relatedness require weak
selection. For example, unless very special conditions hold, estimating related-
ness using pedigrees, or family trees, requires that selection is weak. If gene
frequencies are systematically changing in the population, the relatedness of an
organism to its siblings, for example, will change as the genetic composition of
its siblings changes (Grafen, 1984). However, calculating relatedness does not,

50ne way to achieve this in a model is to write down fitness as the sum of two components:
f = fo+ 6fs. One of these, fo, is the ‘background’ fitness, the fitness organisms get from
things that are not related to the trait of interest. This is the same for all organisms. The
fitness the organisms get from things related to the trait of interest, fz, is then weighted by a
parameter § and as we take § to zero, we approach the limit of weak selection. This is what
Wild and Traulsen (2007) refer to as ‘6-weak selection’.
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in general, require weak selection, and we can calculate how relatedness changes
as gene frequencies change (Grafen, 1985; Birch, 2014a; Marshall, 2015).

The assumption of weak selection is also used because it allows one to ig-
nore non-additive fitness effects. That is, the assumption of weak selection has
been used to ignore things like synergistic effects (where organisms receive ad-
ditional benefits from cooperation if they both cooperate) or the the effects of
competition over resources. This is perhaps the more important use of the as-
sumption of weak selection, as it allows one to separate the way an organism
affects its own fitness (a self-effect) from the way it affects its social partner’s
fitness (an other-effect) in cases where the simplifying assumption of additive
fitness components is false. Note that this critique also applies to neighbor-
modulated fitness, as the fitness effects are similarly separated into components
for self- and other-effect components. At some points in the debate, it seems
that critics argue against the use of inclusive fitness (and neighbor-modulated
fitness) because it requires weak selection in order to achieve the separation of
fitness components. That is, without the assumption of weak selection, one is
restricted to a special case in which fitness effects are additive, leading to the
conclusion that inclusive fitness is less general than ‘standard’ natural selection
(Nowak et al., 2010).

However, at some points it seems that critics want to claim that, whether
or not fitness effects can be split into additive components, inclusive fitness
calculations require weak selection. For instance, Nowak et al. (2010) claim that
“...inclusive fitness theory cannot even be defined for non-vanishing selection;
thus the assumption of weak selection is automatic” (SI 14). It is this second,
stronger, claim that will addressed here. In section 4, the claim will be shown
to be clearly false using modeling techniques from evolutionary game theory,
one of the preferred frameworks of critics of inclusive fitness. Section 5 will then
discuss how, if we read the debate as a debate about inclusive fitness theory as a
set of methods rather than inclusive fitness theory as a framework for calculating
fitness, we can make sense of this claim.

3.2 Dynamic Sufficiency

Inclusive fitness has also been criticized for not being able to provide dynamically
sufficient models (Nowak et al., 2010; Wilson, 2012). In a dynamically sufficient
model, information about the population at any particular time is enough to
make predictions about the population at all future times. So, information
about a population at some starting time is enough to be able to predict how the
population will evolve at all future times. In a dynamically sufficient model, one
can predict whether the population will reach an equilibrium, a state in which
the population is no longer evolving, and what the population composition will
be at the equilibrium should it reach one.® Critics of inclusive fitness argue

6This paper only deals with deterministic models, but stochastic models can also be dy-
namically sufficient. A stochastic model is dynamically sufficient when the information about
the probability distribution over types at some starting time is enough to predict how the
probability distribution will evolve at all future times and to predict the limiting distribution.
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that it cannot be used to describe the evolutionary trajectories or end points of
evolution (Nowak et al., 2010, SI4).

One reason this criticism might be leveled against inclusive fitness is the
general reliance on the Price equation, which is not dynamically sufficient.”
More specifically, the Price equation itself is neither dynamically sufficient or
insufficient (because it merely expresses a mathematical identity), but it can be
either depending on what sort of model it is used with. When we do have a
dynamically sufficient model, the Price equation will correctly describe evolu-
tionary change in the model, but will not itself give any additional predictions
(van Veelen et al., 2012).

Because many of the results in inclusive fitness theory, like Hamilton’s rule,
are formulated in absence of a particular model, and because the focus is often
on estimating the covariances rather than calculating them from an evolution-
ary model, we might not always get dynamically sufficient models within the
framework. These estimations of parameters will only predict the evolutionary
outcome if they do not change over time, which is not the case when selection
is frequency dependent (Nowak et al., 2010; Allen et al., 2013). However, as
we will see in section 4, the regression methods often emphasized in inclusive
fitness theory are intimately connected with the sort of dynamically sufficient
models preferred by critics of inclusive fitness.

3.3 The Debate Over Methodologies

Critics of inclusive fitness often propose population genetics or evolutionary
game theory as alternative frameworks in which one can provide models that are
dynamically sufficient and that do not require stringent assumptions like weak
selection (Traulsen, 2010; Nowak et al., 2010, 2011; Allen et al., 2013; Allen and
Nowak, 2015). It is not immediately clear how we should read this proposal,
because although it is true that inclusive fitness tends to be used in quantitative
genetics models (Frank, 2013) and is seen as primarily a quantitative method in
spirit (Queller, 1992), it has been used in both game theoretic (Skyrms, 2002; van
Veelen, 2009, 2011, etc.) and population genetics models (Rousset, 2002; Grafen,
2007b; Lehmann and Rousset, 2014, etc.). In fact, when Hamilton (1964) first
proposed using inclusive fitness, he did so in the context of a population genetic
model.

The methods used in quantitative genetics are designed to handle contin-
uously varying traits, such as height or weight. In models of social behavior,
a continuously varying trait could be the probability of performing an altru-
istic action. Models within quantitative genetics tend to emphasize simplicity
and measurability. These models usually start with observations about pheno-
types, or other easily measurable quantities, with few assumptions about the
underlying genetics of a trait. This method of modeling involves abstractions,
ignoring complicating details of the situation by merely leaving them out while

7 Another reason, which will be discussed further in sections 3.3 and 5.2, is that many of
the results which do not rely on the Price equation are focused solely on equilibrium analysis.
See, for example, Taylor and Frank (1996).



Copyright Philosophy of Science 2016
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

still giving a description that is literally true (Godfrey-Smith, 2009). The Price
equation is often used within this approach. As mentioned in section 2.2, many
of the common results within inclusive fitness theory are derived from the Price
equation.

By contrast, challenges to the inclusive fitness framework tend to come from
population genetics (Frank, 2013, p. 1153). This is an approach that tends to
start with specific assumptions (such as assuming we know the underlying ge-
netics of a trait, the mutation rates, etc.), and make predictions based on these
assumptions. Models within this approach tend to be dynamically sufficient,
meaning that information about the population at any particular time is enough
to make predictions about the population at all future times. The use of simpli-
fying assumptions also means that these models make use of idealizations rather
than abstractions. That is, they talk about populations which have features we
know real populations do not have (e.g. infinite population size, no mutations,
etc.) in order to provide a simple model. One way to think about models using
idealizations is that they describe non-actual, fictional populations that we take
to be similar to real populations in important ways (Godfrey-Smith, 2009). As
mentioned, critics propose evolutionary game theory as an alternative to the
inclusive fitness framework.® The replicator dynamics is often used within this
approach. This dynamics requires many idealizing assumptions, which will be
discussed in section 4.1.

The rest of this paper will look more closely at the use of inclusive fitness in
evolutionary game theory, focusing on the replicator dynamics. Since inclusive
fitness is not as commonly used in evolutionary game theory, this will help
us see the benefits and drawbacks of using inclusive fitness in highly idealized
models. This paper will also compare how inclusive fitness calculations can
be used in evolutionary game theory with some of their uses in quantitative
genetics. This comparison between the use of inclusive fitness within these two
traditions for studying evolution will be helpful in understanding key issues in
the debate, since they represent extremes of methodologies using idealizations
and abstractions: the replicator dynamics of evolutionary game theory is highly
idealized, while the Price equation often employed in quantitative genetics uses
only abstractions. We will see how some of the disagreement arises out of the
sides of the debate emphasizing different methodologies and how this relates to
arguments over the usefulness of Hamilton’s rule.

It is important to note that, while this distinction between abstract mod-
els in quantitative genetics and idealized models in evolutionary game theory
is illuminating for the present purposes, it does not capture the full variety of
modeling techniques within the two methodological traditions. There are evolu-
tionary game theoretic models which make the assumption of weak selection in
order to abstract away from genetic details and fail to be dynamically sufficient.
For instance, Taylor and Frank (1996) employ a weak selection assumption, al-

8Evolutionary game theory and population genetics are sometimes seen as having distinct
methods and other times they are seen as more or less continuous (Hammerstein and Selten,
1994, p. 953). They are loosely grouped together here because they are similar in that models
within both approaches tend to start which specific assumptions and be dynamically sufficient.
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lowing them to approximate regression coefficients using partial derivatives, in
order to use standard maximization techniques for finding evolutionary stable
strategies (p. 28). This method can be used to derive ‘approximate’ versions of
Hamilton’s rule, which will be described further in section 5.2.

This paper will focus on the special case where fitness effects are additive.
This is a starting point to examine how inclusive fitness can be calculated in
idealized evolutionary game theoretic models and to see if there is any benefit
to using inclusive fitness in this context. We will see that the assumption of
weak selection is not essential to the calculation of inclusive fitness and that
one can build dynamically sufficient models using inclusive fitness. There is, of
course, further work to be done to see whether and how this can extend into the
more complicated cases generally talked about in inclusive fitness theory. The
relationship between these results and general versions of Hamilton’s rule, which
do not require weak selection and do not assume additive fitness components,
will be discussed in section 5.2. Note, however, that while the special case of
additive fitness effects will not be applicable to many traits of interest in the
real world, it is an important special case which has been studied extensively in
a variety of contexts even outside of the inclusive fitness framework (Eliashberg
and Winkler, 1981; Chakraborty and Harbaugh, 2007; Maciejewski et al., 2014,
among others).

4 Inclusive Fitness in Evolutionary Game The-
ory

Inclusive fitness and neighbor-modulated fitness are commonly viewed as ‘for-
mally equivalent’ in that they yield the same predictions in terms of the direc-
tion of evolutionary change. That is, they give the same conditions for when
a social trait is favored by evolution (see Birch, 2016, and references therein).
This section will show that, in the special case discussed above, we can prove
further that they also give the same prediction for magnitude of evolutionary
change. Section 4.1 will prove that the two calculations of fitness are equivalent
when used with the replicator dynamics, a standard model from evolutionary
game theory. These results are then compared to more common calculations
of inclusive fitness in the appendix, which proves the equivalence between the
replicator dynamics and both the neighbor-modulated and inclusive fitness cal-
culations derived from the Price equation. Then, section 4.2 provides a simple
example to illustrate the connections between these fitness calculations.

4.1 Inclusive Fitness and Neighbor-Modulated Fitness in
Evolutionary Game Theory

In evolutionary game theoretic models, the replicator dynamics is a standard
model of the evolutionary process. Under this dynamic, if the fitness of a trait
is greater than the average fitness of the population, the frequency of the trait

10
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will increase. The traits of interest dictate behavior in some social interaction,
So a trait’s fitness is determined by how well it does against the other possible
traits in the population (in addition to the population composition). If z; is
the frequency of the trait of interest, and fi(x) its fitness in a population of
composition x, the replicator dynamics is governed by the following equation:

i = m[fe(x) — f(a)] (6)

where f(x) is the average fitness in the population. There are a number of
assumptions involved in using the replicator dynamics, notably that the popu-
lation size is infinite and there are a finite number of traits.

Since we are trying to see whether the trait of interest is favored, we can
calculate the fitness of organisms which have the trait and the fitness of those
that do not in order to have a full description of evolutionary change according to
the replicator dynamics. As mentioned, we will look at the case where there are
additive fitness effects. If we assume further that there are pairwise interactions,
we can denote organism ¢’s social partner as —i. In this case, we can write the
neighbor-modulated fitness of the organisms with the trait of interest as

fe(x) = P(T_;|T;) - (545 + Si—i) + P(N_4|T;) - 545
= Si; + P(T_1|TZ) ©Siq (7)

where P(T_;|T;) is the probability an organism with the trait will interact with
another organism that has the trait and where P(N_;|T;) is the probability an
organism with the trait will interact with an organism that does not have the
trait. Similarly, the neighbor modulated fitness of organisms without the trait
of interest is

fn(x) = P(T-i|Ni) - si— (8)

where P(T_;|N;) is the probability an organism that does not have the trait
will interact with another organism that does have the trait.

The inclusive fitness of organisms with the trait of interest is (now using w
for inclusive fitness to distinguish it from neighbor-modulated fitness, f)

wt(x) =8 + Rsi_; (9)

and the inclusive fitness of not having the trait is 0. The relatedness between
interacting organisms, R, is defined as a difference in conditional probabilities
(Skyrms, 2002; van Veelen, 2009; Okasha and Martens, 2016). The relatedness
of a focal organism to its social partner is the probability the social partner has
a trait given the focal organism does, minus the probability the social partner
has the trait given the focal organism does not:

R = P(T-;|T;) — P(T";|N;) (10)

This is a measure of the degree to which the focal organism’s phenotype predicts

11
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it’s social partner’s phenotype.” Since genotypes (to a certain extent) predict
phenotypes, this can also be thought of as a measure of genetic relatedness.'”

If we start with the replicator dynamics with neighbor-modulated fitness as
our measure of fitness, we can show that it is equivalent to using the replicator
dynamics with inclusive fitness as our measure of fitness:

iy =z fr(z) — fl2)]

= X¢|Sii + P(T_1|T) ©Si—i — zt(sii + P(T_1|T1) . Si—i) — :Iin(P(T_l|NZ) . Si—i)]
= x¢[Si; — 4S5 + P(T—i|T;) - Simi — 2e P(T—3|T5) - Si—i — (1 — 2) P(T—i|N;) - Si—3)]
= @y[sii + (P(Ti|Ti) — P(T-i|N;))si—i — @18ii — 2 (P(T—|T;) — P(T-i|N;))si—i]

= xy[84 + Rsi—i — x4 (84 + Rsi—i)]

= xy[wy(z) — W ()]

That is, neighbor-modulated fitness and inclusive fitness are equivalent when
used with the replicator dynamics, a standard model of evolution used in evo-
lutionary game theory.!

The appendix shows further that, given the assumptions stated above, using
the replicator dynamics is equivalent to the Price equation with either method
of calculating fitness. That is, the following are equivalent descriptions of evo-
lutionary change:

[
[
[
[
[
[

1. The replicator dynamics used with neighbor-modulated fitness
2. The replicator dynamics used with inclusive fitness

3. The Price equation used with neighbor-modulated fitness

4. The Price equation used with inclusive fitness

The equivalence between (1) and (3) is demonstrated in appendix A. The gen-
eral strategy is the same as the one used in Page and Nowak (2002). First,
show that the Price equation used with neighbor-modulated fitness (3) is de-
scriptive of a population evolving according to the replicator dynamics used with
neighbor-modulated fitness (1), then show that when there are a finite number
of types (3) is also descriptive of a population evolving according (1). Using

9Why this is the right definition to use is shown in (Skyrms, 2002). For a demonstra-
tion that the assortment rate from Grafen (1979) commonly used in the replicator dynamics
is equivalent to a covariance definition of relatedness derived from the Price equation, see
(Marshall, 2015, chapter 5, note 1).

10Note that relatedness is not just the probability that the two organisms share the allele
of interest. It is a measure of their genetic similarity relative to the genetic composition of the
population as a whole. This is important because in studying altruism, for example, we want
to know whether the benefits of altruistic acts fall on altruists sufficiently more often than
they fall on non-altruists. That is, the benefits must fall on altruists rather than non-altruists
with sufficient frequency to give them a reproductive advantage over non-altruists. We will
see an example of how R depends on the population’s genetic composition in section 4.2.

HTor a discussion of the relationship between inclusive fitness and neighbor-modulated
fitness in games that do not assume pairwise interactions, but with a constant relatedness,
see van Veelen (2011).
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the same strategy, we can show that (2) and (4) are equivalent. This is done
in appendix B. Note that these four ways of modeling evolutionary change are
shown to be equivalent in that that they give the same prediction for both the
direction and magnitude of evolutionary change. This goes beyond what is com-
monly meant by the claim that neighbor-modulated fitness and inclusive fitness
are equivalent, which is that they give the same prediction for the direction of
evolutionary change (see Birch, 2016, and references therein).

The next section provides a simple model using inclusive fitness in the con-
text of evolutionary game theory. This simple illustrative example will let us
see, in more concrete terms, the benefits and disadvantages of using inclusive
fitness in such an idealized setting. Section 5 discusses how to understand these
equivalences in the context of the inclusive fitness debate.

4.2 A Simple Model: Altruism with Haploid Siblings

This section will provide an idealized model using haploid siblings to show how
one can dynamically model relatedness within the inclusive fitness framework
when selection is not weak. We will assume that these organisms either have the
altruistic trait or not, which is completely determined by whether or not they
receive a certain gene from their parent. So that the relationship between this
model and Hamilton’s rule is clear, we will assume that when an organism has
the altruistic trait, it pays a cost ¢ and bestows a benefit b on its social partner.
When an organism lacks the altruistic trait, it does not pay the cost and does
not benefit its social partner. In this model, an organism’s social partner is its
sibling. Based on these assumptions, we can calculate the inclusive fitness of
altruists to be:

fo=—-c+Rb (11)

The inclusive fitness of non-altruists is 0 because they do not perform any action
(relevant to our trait of interest) that affects their own or their social partner’s
reproduction. Thus altruism will spread when bR — ¢ > 0.

Since the relatedness of haploid siblings is determined by the genetic mate-
rial they receive from their common parent, we can let p be the frequency of
altruists in the parent generation and use this to calculate relatedness among
the offspring. We will also account for a small mutation rate p in the calculation
of relatedness. Once we rewrite the probabilities (according to the definition of
conditional probability) so that they are easier to calculate from the assump-
tions of the model, we can calculate the relatedness of an altruist to its haploid
sibling in the following way:

R = P(A_;|A;) — P(A_;|N;)
_ P(A_i&4y)  P(A_i&N;)

P(4;) P(N;)
_p(—p?+ (A —pp? pl—pp+ (1 —p)(1—pp
p(L = p) + (1 =p)u pp+ (1 =p)(1 = p)
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Figure 1: Relatedness graphed over the frequency of altruists in the parent
population, for p = 0.1.

Briefly, here is how to understand this calculation. The numerator of the first
term is the probability of two haploid siblings both being altruists. Since there
are two ways to get two altruistic offspring, we can calculate this as the prob-
ability the parent is an altruist (p) times the probability it has two offspring
without mutations ((1 — p)?), plus the probability the parent is a non-altruist
(1 — p) times the probability it has two offspring which both have a mutation
(4?). The denominator of the first term is then the frequency of altruists in the
offspring generation. These offspring can come from an altruist parent without
mutation or from a non-altruist parent with mutation. The second term is cal-
culated similarly. The numerator is the probability that a focal non-altruist will
have an altruist sibling: the probability that the parent is an altruist and the
focal organism mutates while its sibling does not plus the probability the parent
is a non-altruist and the focal organism does not mutate while its sibling does.
This is divided by the frequency of non-altruists in the offspring generation.

Figure 1 shows how R will change when the population’s composition changes.

In particular, it shows that relatedness decreases as the population becomes
more uniform.!> To see why this is the case, it is easiest to look at the ex-
tremes of p = 0 and p = 1. When p = 0, the parent population is entirely
composed of non-altruists. In the offspring generation, altruists only exist be-
cause of mutation. The probability an altruist has an altruist sibling is just p,
the probability that their sibling also has a mutation. However, the probability
that a non-altruist has an altruist sibling is also p, the probability that their
sibling has a mutation. So R = P(A_;|A;) — P(A_;|N;) = 0. Similar reasoning
applies when p = 1. The parent population is composed entirely of altruists,
so any non-altruists in the offspring generation arise through mutation. This
means that although altruists are likely to have altruist siblings, non-altruists

12This graph was created with a mutation rate of y = 0.1, which is a fairly high mutation
rate. This mutation rate was chosen in order to make the graphs more readable. Results
similar to those described in this section can be obtained with much smaller mutation rates.
3For a demonstration of this is a more general setting, see Rousset (2002).
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are equally likely to have altruist siblings. So although P(A_;|A;) is high at
1—p, P(A_;|N;) is also 1 — p, and R = 0.

We can also calculate relatedness in this model using covariances or regres-
sions. Since phenotypes in this idealized model are completely determined by
genotypes (an organism with the altruistic gene is assumed to be an altruist),
we can write:

_ Couv(p,g) _ Couvlg,g")
Cov(p,g)  Cou(g,9)

For any population composition, we can perform a regression to calculate the
value of R, and it will give the same value of relatedness as the probabilistic
definition of relatedness. Figure 2 gives a way to visualize why this is the case.
In this model, an organism’s genetic value, g, is 1 if it has the gene for altruism
and 0 if it does not. Thus there are four possible places for data points on
a graph of g versus ¢’: the four corners of the graph. Then, when we do a
regression of g on ¢, what matters is how many data points are in each of these
locations. When the focal organisms’ genetic value is 1, its social partner’s
genotype will on average be P(A_;|A;). Similarly, when the focal organisms’
genetic value is 0, its social partner’s genotype will on average be P(A_;|N;).

As shown in figure 2, this is the intercept of the regression, and the regression
coefficient is By, = P(A_;|A;) — P(A_;|N;).

= ﬁg’g (12)

1@ e
O

g -

= é’ =a+ Byq9
P(A_;IN;

@ @
0 1

9

Figure 2: An illustration of a = P(A_;|N;) and gy = P(A_;|A;) — P(A_;|N;).

The inclusive fitness of altruists depends on R, so it also changes as the
population composition changes. Figure 3 shows how the inclusive fitness of
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altruists compares with the inclusive fitness of non-altruists over the possible
population compositions, for b = 18 and ¢ = 10. Since relatedness drops off as
the population becomes uniform, the inclusive fitness of altruists drops off as the
population becomes more uniform. For many possible values of b, ¢, and p this
means that altruists will have a fitness advantage for some area around p = 0.5,
but their fitness will drop below the fitness of non-altruists as the population
becomes more uniform.

Inclusive Fitness

altruists

— non-altruists

0.4 06 0.8 1
Frequency of Altruists

Figure 3: Inclusive fitness graphed over the frequency of altruists in the parent
population, for 4 = 0.1, b = 18 and ¢ = 10.

These calculations of relatedness and inclusive fitness can be used in a dy-
namic model where frequencies of genotypes are changing over time; we use
these calculations with an appropriate dynamics to see how the population will
evolve and to find the equilibria. For this model, we use the selection-mutation
dynamics, which is just like the replicator dynamics except that there is an extra
term that keeps track of mutations.'*

Figure 4 shows the dynamical analysis of this model, using both inclusive
fitness and neighbor-modulated fitness. Figures 4(a) and 4(b) show, respec-
tively, how the inclusive fitness and neighbor-modulated fitness change as the
population composition changes. Figures 4(c) and 4(d) show the evolutionary
trajectories in the population, in terms of the change in frequency of altruists.
When this change is positive (when the pink line is above the x-axis, which is
represented by the black dashed line in figures 4(c) and (d)), altruists will in-
crease in frequency. Likewise when the change is negative, altruists will decrease
in frequency. Information about the magnitude of selective pressures is also rep-
resented; the further the pink line is from zero, the more selective pressure there
is and the faster the population composition will change.

14With the selection-mutation dynamics, a population with two types will evolve according
to the following equation: @; = z¢[fi(x) — f(x)] + u(1 — 2z¢). Note that since this is the
same as the replicator dynamics except for the mutation term, which does not depend on the
definition of fi(x), we can prove that using neighbor-modulated fitness and inclusive fitness
will be equivalent in the same way as in section 4.1.
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Figure 4: A comparison of inclusive fitness and neighbor-modulated fitness, for
pw=0.1,b =18 and ¢ = 10. Comparing the calculations of inclusive fitness
shown in (a) and neighbor-modulated fitness in (b) shows how the calculations
of the two types of fitnesses differ. Comparing the change in the frequency of
altruists found using inclusive fitness in (c¢) and neighbor-modulated fitness in
(d) shows that the evolutionary trajectories are the same regardless of which
calculation of fitness is used.
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Comparing figures 4(a) and 4(b) shows that the two methods of calculating
fitness do yield different numerical values of fitness. However, in comparing
the evolutionary trajectory found using inclusive fitness in figure 4(c) with the
trajectory calculated using neighbor-modulated fitness in figure 4(d), one can see
that the choice between these fitness measures makes no difference for predicting
the evolution of the population, either for the quantitative predictions of the
amount of evolutionary change over time or the qualitative predictions about
the evolutionary outcomes based on the model. That is, in this simple model,
inclusive fitness and neighbor-modulated fitness both give us the same answer
when we ask how much altruists will increase or decrease in frequency, across
all possible population compositions.

We can also use either type of fitness calculation to find when the change
in altruists is zero, when frequencies are not changing and the population is
at an equilibrium. With the values of u, b, and ¢ chosen here, there are four
equilibria, two of which are stable: one at about 1% altruists and one at about
75% altruists.'®

5 Discussion

We can see from section 4 not only that inclusive fitness is perfectly well-suited
for use in evolutionary game theory, but also that weak selection is not a neces-
sary assumption for inclusive fitness calculations and that these calculations can
be part of dynamically sufficient models. Some methods of calculating or esti-
mating inclusive fitness may require stringent assumptions, but the calculations
in general do not always require extra assumptions. How are we to understand
this in the context of the debate over inclusive fitness?

5.1 Inclusive Fitness with Idealized Models

Some of the disagreement over inclusive fitness can be understood as arising
from two sides of the debate emphasizing different methodologies. Recall from
section 3.3 that inclusive fitness is seen as fundamentally within the quantita-
tive genetics tradition, while critics of inclusive fitness tend to favor population
genetics or evolutionary game theory. This means that inclusive fitness theo-
rists tend to favor models which make use of abstractions, leaving details out
while still providing literally true general claims about evolution. By contrast,
evolutionary game theory, one of the preferred frameworks of the critics of inclu-
sive fitness, tends to provide highly idealized models, making many assumptions
which we know are not true of any real population but which allow us to develop
a simple model of a fictional population that we think is similar to the real world
in important ways.

As discussed in section 4.1, when there is an infinite population and a finite
number of types, inclusive fitness calculations from quantitative genetics and

15 An equilibrium is stable when selective pressures will cause the population to return to
the equilibrium if a small amount of drift changes gene frequencies in the population.
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evolutionary game theory are equivalent. Since quantitative methods are de-
signed to handle continuously varying traits, assuming a finite number of types
takes the methods out of the context in which they were developed and puts
them into the context where dynamically sufficient models can be built. In
doing so, we can get models with the kinds of properties valued by critics of
inclusive fitness.

One way to think about this is that the regression methods developed by in-
clusive fitness theorists do not, in themselves, provide models with the properties
the critics of inclusive fitness argue evolutionary models should have. However,
we can formulate idealized models which are dynamically sufficient and which
incorporate selection that is not weak. Then, when we abstract away from the
particular details of genetic inheritance or population structure assumed by the
simplified models, we arrive at the abstract equations based on the Price equa-
tion, which are often used in inclusive fitness theory. Section 4.1 (and the ap-
pendix) showed how, when we make simplifying assumptions commonly made
in evolutionary game theory, the replicator dynamics and the versions of the
Price equation often used in inclusive fitness theory are equivalent descriptions
of evolutionary change.

Section 4.2 gives an example of how the regression methods commonly used

in inclusive fitness can be seen as abstract descriptions of models within evolu-

Cov(p.g')
Cov(pog) changes

as the population evolves. Using covariances might seem a bit unnatural in this
overly simplified case: because we can calculate the relatedness directly from
the assumptions of the model, we do not need to estimate it using the methods
of quantitative genetics.

In fact, one might wonder whether there is any benefit to be gained from
inclusive fitness in this sort of simplified model. One of the main perceived
benefits of inclusive fitness is that it allows modelers to track changes in traits
rather than the genes encoding for these traits (which are very difficult to dis-
cover empirically) while accounting for genetics by using relatedness (which is
often not too difficult to estimate in real populations) (Queller, 1992). Because
we abstract away from the mechanisms of genetic inheritance and how the genes
encode for the trait of interest, summarizing this with a ‘relatedness’ parame-
ter, we can develop a phenotypic model that still incorporates genetics in a way
that can be empirically easy to measure. That is, one can account for genetics
without knowing or making assumptions about the actual underlying genetics
of a trait. When we switch to an evolutionary game theoretic or a popula-
tion genetics model, like the replicator dynamics, we generally then must make
assumptions about what these underlying genetics are. We no longer use relat-
edness to estimate genetic assortment; we can calculate the level of assortment
directly.

So, to a certain extent one might think that it is appropriate that the debate
over inclusive fitness is a debate over methods: although we can use inclusive
fitness in the highly simplified models of evolutionary game theory, in doing
so we lose some of the main benefits of the inclusive fitness framework. The

tionary game theory. In this simple model, we can track how
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statistical methods used in inclusive fitness make the framework particularly
useful, although these methods may require weak selection to split fitness effects
into additive components and do not provide dynamically sufficient models.
Further, if we view the debate as being about the methods commonly used in
quantitative genetics, we can see where these criticisms come from.'® That is,
since inclusive fitness has often been seen as fundamentally quantitative, and
since one of the main benefits of inclusive fitness (incorporating genetics in a
way that is easy to estimate in real populations) is generally tied up in the
statistical methods arising out of quantitative genetics, it makes sense that the
debate over inclusive fitness will be in part a debate over methods. However,
the status of inclusive fitness should not be decided by a debate over the use of
methods for which inclusive fitness is seen as particularly beneficial.

The model in section 4.2 demonstrates that there can still be some benefit
to calculating inclusive fitness rather than neighbor-modulated fitness even in
models which are highly idealized, where the level of assortment can be calcu-
lated directly. The explanation given for why the population does not evolve
to a population composed entirely of altruists was that relatedness drops off as
the population becomes more uniformly altruistic. This sort of intuitive expla-
nation is not readily available when using neighbor-modulated fitness. Because
the terms describing how the benefits of altruism fall differentially on altruists
are split between two different fitness calculations (one for the fitness of altruists
and one for fitness of non-altruists), there is no parameter which systemically
changes as the population composition changes that we can point to in order
to explain why the fitness of altruists drops off as the population becomes more
uniform.!”

5.2 The Use of Hamilton’s Rule

Hamilton’s rule, the most famous result arising out of inclusive fitness theory,
has been criticized for not being generally true, for not having any predictive
power, and for being misleading in the absence of a particular model (Nowak
et al., 2010). There is some truth to these claims. To get Hamilton’s rule in the
form bR —c > 0, where ¢ and b are interpreted as costs and benefits as described
in section 2.2, one has to assume additive fitness components as we have been
doing throughout this paper. If fitness components are not additive, then the
rule will not give a correct description of a condition for the spread of a trait.
Additionally, if we only have enough information to estimate b, ¢, and R at a
particular point in time, we cannot predict the evolutionary outcome. Further,
if bR— ¢ > 0 when we estimate these parameters, we might even be mislead into

16This is, of course, not to say that these are the only methods used in inclusive fitness
theory, but that the critiques of inclusive fitness are often wrapped up in critiques of the
statistical methods (see Allen et al., 2013, for instance).

170thers argue that inclusive fitness is valuable because it allows us to maintain the analogy
of organisms acting as if they are maximizing fitness (Grafen, 2007b; West and Gardner, 2013;
Okasha et al., 2014; Okasha and Martens, 2016), or more modestly that it allows us to explain
the selection of social traits due to their casual contributions to fitness (Birch, 2016). These
benefits would hold regardless of the methods one uses, and so are not addressed here.
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thinking that the population will eventually be entirely altruistic if we forget
that the value of any of these parameters can change as the population evolves.
However, inclusive fitness theorists will generally agree to this (see Marshall,
2015, for example), but maintain that Hamilton’s rule has both predictive and
explanatory power. It is not immediately clear where the disagreement lies.'®

The distinction between idealizations and abstractions can again be help-
ful in understanding part of the dispute. In particular, why should we expect
Hamilton’s rule to be true in general? Results derived within population ge-
netics and evolutionary game theory are never true in general, as they rely on
idealizations to achieve their simplicity. By contrast, Hamilton’s rule is seen
as a general result that is applicable to any real population one might wish to
study. This fits well with its prominent role in quantitative genetics, relying
on abstractions rather than idealizing assumptions to help provide “the general
principles of social evolution theory” (Marshall, 2015, p. xiv).

In this vein, there is emphasis on providing a version of Hamilton’s rule that
is generally true. Hamilton’s rule can be given in a very general form in which
we do not have to assume any particular population structure or additive payoft
affects (Gardner et al., 2011). Birch (2014b) and Birch and Okasha (2015) de-
scribe this in detail, but we can think of the ‘cost’ and ‘benefit’ terms in the rule
as statistical associations between an organism’s fitness and its own genotype (a
self-effect) and its social partner’s genotype (an other-effect), respectively. This
general version of Hamilton’s rule is true of any population. “In effect, this is
because we are abstracting away from the complex causal details of social in-
teraction to focus on the overarching statistical relationship between genotype
and fitness” (Birch and Okasha, 2015, p. 24).

The question is then whether this version of Hamilton’s rule has any predic-
tive power. It can have predictive power if its components can be understood
causally instead of just statistically. That is, if the self-effect and other-effect
terms can be interpreted as ways in which the focal organism causally con-
tributes to its own and its social partner’s fitness, we have a model that can
be used to make predictions rather than just a statistical summary of evolution
within a population. However, as Birch and Okasha (2015) explain, it is not
entirely clear when a causal interpretation can be provided.

There are, however, a variety of different rules that go under the name
‘Hamilton’s rule’, each of which follows from different assumptions about the
evolutionary process. We can describe these versions of Hamilton’s rule as falling
into three categories. There are ‘special’ versions of the rule (where the b and ¢
terms are interpreted as payoffs in a model) and ‘approximate’ versions (which
provide marginal approximations of the general versions of the rule) in addition
to the ‘general’ version described above (Birch and Okasha, 2015).

In the version of Hamilton’s rule in section 3.1, the b and ¢ terms are in-
terpreted as payoff from a game, or parameters in the model, so this can be
thought of as a special version of Hamilton’s rule. The fact that we derived

183ee (Marshall, 2015, chapter 6, note 9) for an example of an inclusive fitness model where
parameters can change as the population evolves.
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a condition bR — ¢ > 0 for the spread of altruism depends on the particular
payoff structure of the model. If there were non-additive payoffs, we would have
derived a different condition for the spread of altruism. Section 4 (and the ap-
pendix) illustrated how these general versions of Hamilton’s rule describe the
special versions from particular models. As mentioned in sections 3.1 and 3.3,
there are also approximate versions of Hamilton’s rule that require the assump-
tion of weak selection to calculate relatedness or in order to split fitness effects
into additive components. Thus, these rules abstract away from the particular
payoff structure and so describe a wider range of cases than special forms of the
rule. The assumption of weak selection, then, provides some restriction on the
conditions under which approximate versions of Hamilton’s rule will apply, but
allows us to give an approximately correct condition for the spread of a social
behavior for arbitrary payoff structures. (See Birch and Okasha (2015) for more
discussion.)

Note that both general and approximate versions of Hamilton’s rule apply for
arbitrary payoff structures, but neither are dynamically sufficient. They instead
allow us to perform a static analysis, comparing fitnesses at specific points in
the evolutionary process (usually the points of interest are equilibria). Since
this paper has looked at how inclusive fitness is used in the replicator dynamics
compared with approaches based on the Price equation, it has focused on the
the contrast between abstract models in quantitative genetics and idealized
models in evolutionary game theory. However, that the critics of inclusive fitness
prefer dynamic models over these static modeling techniques is perhaps the more
fundamental disagreement in the debate.

There is the additional issue of interpreting the R parameter in Hamilton’s
rule. Although many inclusive fitness theorists recognize that R in inclusive fit-
ness calculations can be thought of as a general measure of correlation, Hamil-
ton’s rule is still usually presented as a condition for the evolution of a trait by
kin selection. However, this is an additional opportunity for Hamilton’s rule to
be misleading; a suggested biological or causal interpretation of the parameter
might be unwarranted. Some criticisms seem to assume that Hamilton’s rule is
only useful when R is a measure of kinship (Nowak et al., 2010). The thought
behind these sort of critiques of Hamilton’s rule seems to be that when R does
not have an intuitive biological interpretation, it is not clear what explanatory
power is gained from forcing terms into this particular inequality. The power
of Hamilton’s rule then comes from using something like the statistical defini-
tions of relatedness provided here and estimating relatedness using measures of
kinship, like pedigrees.'®

Since the statistical definitions of relatedness are historically explained and
used as measures of kinship, adopting Hamilton’s rule as a starting point might
seem to suggest an interpretation in terms of kin selection and may lead to

19There are of course, other issues with applications of Hamilton’s rule aside from inter-
preting R in terms of kinship. Often in more biologically realistic models, in order to keep
R defined in a way that is plausibly connected to relatedness, b and ¢ become functions of R
itself. These sorts of issues are dealt with by Frank (2013); Birch and Okasha (2015) among
others.
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theorists ignoring other mechanisms that generate assortment between types.
Connecting the statistical and probabilistic definitions here is one way of em-
phasizing how the association between ‘relatedness’ and R is contingent: R just
measures differences in conditional probabilities of interacting with certain types
in the population. In this context, Hamilton’s rule might be thought of as a
convenient mathematical description of the fact that there must be sufficient as-
sortment between types in order for a trait such as altruism to evolve, a general
point that has been made without the use of Hamilton’s rule (see Skyrms, 1996,
for example). A fully specified (but idealized) model, like the one in section 4.2,
can connect R in Hamilton’s rule to kinship, giving it a meaningful biological
interpretation.

This is in line with one suggestion to avoid wrongly interpreting results in
terms of kin selection, advanced by Taylor and Frank (1996) and Frank (2013),
among others: formulate and analyze a model first, then afterwards use Hamil-
ton’s rule to give an intuitive explanation of the results if appropriate. This
allows us to set up the model with whatever mechanism of assortment we think
is plausible, then use Hamilton’s rule if it helps illuminate important aspects of
the causal structure.

6 Conclusion

While there can be benefits to using inclusive fitness, this does not mean that it
is always beneficial to do so. Whether inclusive fitness or Hamilton’s rule should
be used depends on the model or the population one is studying. Many of the
issues involved in deciding whether to use these methods were not addressed
here. This paper has discussed the use of inclusive fitness in a special type
of evolutionary model, in which pairwise interactions, additive fitness effects,
and a finite number of types were assumed. In doing so, this paper focused
the discussion on issues surrounding the different methodologies favored by the
critics and proponents of inclusive fitness theory, in absence of conceptual and
mathematical complexities that can arise in more complicated scenarios. Look-
ing at this simple case helped to illuminate several features of the mathematical
framework of inclusive fitness and the debate surrounding it.

While there may be difficulties with partitioning fitness effects into the form
demanded by inclusive fitness when interactions become more complicated, we
have seen that the specific causal partition used in inclusive fitness does not pre-
vent one from building dynamically sufficient models nor does it require weak
selection. Criticisms of inclusive fitness claiming that it requires these stringent
assumptions are best thought of as criticisms of the types of quantitative meth-
ods generally used by inclusive fitness theorists. One can use inclusive fitness
calculations in the sort of population genetic or evolutionary game theoretic
models favored by these critics. In these models much of the advantage of using
inclusive fitness, such as providing terms that can be easy to estimate empiri-
cally, disappears, but its power as an intuitive explanation of the evolution of
social traits remains.
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A Equivalence with Neighbor-Modulated Fitness

A.1 The Price equation describes the replicator dynamics

Following the definition provided in section 2.1, we can calculate the neighbor-
modulated fitness of a pairwise interaction as follows:

fi = 8+ 5_i (13)

Keeping track of probabilities of receiving payoffs was necessary in section 4.1 in
order to show the connection between neighbor-modulated fitness and inclusive
fitness, but since we are only dealing with neighbor-modulated fitness we can
use this less complicated expression. In these calculations, we will track the
change in g, genetic value.

By definition, E(g) = > 9iti + >, gix;. As mentioned, for simplicity we
will assume there is no transmission bias and set ZZ g;z; = 0. Then, since the
replicator dynamics provides us an equation for &;, we can plug the replicator
dynamics into the Price equation:

E(g) = Zgifci
7
= giwilsii — % D syt sii— % > sl
i i i
= Zgixisii - ZgiIi% Z 845 + Zgﬂis—ii - Zgﬂi% Z S—jj
i i i i j

= E(sii9) — E(s4)E(g9) + E(s—iig9) — E(s—i:)E(g)
= Cov(s;;,g) + Cov(s_i;, g) (14)

This is the Price equation with fitness partitioned into two components, the
effect the focal organism has on its own fitness and the effect the social partner
has on the focal organism’s fitness. Theorists often derive this from the origi-
nal Price equation in order to use neighbor-modulated fitness calculations and
introduce relatedness calculations (see Queller, 1992, for example).

Hamilton’s rule can easily be derived from this equation. Since the way an
organism affects the fitness of itself and others is (to a certain degree) predicted
by its phenotype, we can write both fitness terms as the following regressions:

Sii = Qsyp + ﬁs“'p Pt €sup (15)

S—ii = Ols_y;pr + ﬁs—iip, 'pl T €s_up! (16)

Since the a’s are the intercepts of the regression, they are constants and cannot
covary with g. The €’s are error terms, which do not covary with g when payoffs
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are additive (Queller, 1992). So, plugging (15) and (16) into (14), we're left
with: .
E(g) = Bs.ipCov(p, g) + Ps_.py Cov(p', g) (17)

When we can interpret f3;,,, as a cost ¢ and 35 ,,,» as a benefit b this gives us:

- Cov (p /a g )
E(g) >0whenb- ——————= —c>0 18
) Couv(p, 9) (%)
where % is the neighbor-modulated fitness version of relatedness.

A.2 The replicator dynamics describes the Price equation
When there are a finite number of types, g; can be written as an indicator
function: o

g<z> — 1 ifi=y

J 0 otherwise

For Page and Nowak (2002), who were considering phenotypes rather than geno-
types, assuming a finite number of types was a restriction. Here, in considering
genotypes, it is a natural assumption to make.

We can then use this indicator function in the Price equation with two fitness
components derived above, and simplify:

E(g) = COU(Siiu g<i>) + COU(S—’iia g<i>)
= E(Siz’9<i>) - E(Sii)E(9<i>) + B(s_iig~"") — E(s_ii)E(g=")

1
<z> <i> <i>
_E g] :c]s” g 9; g s”—|—§ 95 T xjS i — g 9; IEE S—jj
J
1 1
= TiSii — Tis E Sjj T TisS—ii T E 5—jj

= [ fi(x) - ]
(19)

Since gj<i = 1 when i = j and 0 otherwise, 3 g<1> = x;, and this simplifies
to yield the replicator dynamics.

B Equivalence with Inclusive Fitness

B.1 The Price equation describes the replicator dynamics

This is done in the same way as appendix A, except we take into account that
the genetic value of the focal organism times its relatedness to its social partner
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is a measure of the social partner’s genetic value:

Zgz xlsll__zs_]j—i_xrl 1[51 Z__ZS] —J
_Zgzxzsu Zgzxz ZS]]+Zgzrz iLiSi—q Zgzrz iLi— ZS] —J

= Cov(sii, 9) + Cov(si_i, g )
(20)
This is again a version of the Price equation where the fitness effect is split into
two components. Here, though, fitness is split into the effect the focal organism
has on its own fitness and the effect the focal organism has on its social partner’s
fitness.

In order to relate this to Hamilton’s rule, we can again notice that the fitness
components are predicted by phenotype. Since in this case the focal organism
causes the fitness effects, both for itself and its social partner, the phenotype of
the focal organism predicts both fitness effects. So, we use the phenotype of the
focal organism in both regressions:

ii — Qsyp + ﬁs“p - p + €siip (21)

S—ii = Qs;_;pt+ Bsi_ip P+ Esi_ip (22)
We can then plug (21) and (22) into (20) and rearrange to obtain the inclusive
fitness version of Hamilton’s rule:

Cov(p, g')

E > (0 when b -
@) )

—¢>0 (23)

B.2 The replicator dynamics describes the Price equation
We can again let g; be an indicator function and write:

E(g) = Cov(sii,g~") + Cov(s_ii79/<i>)

1
<i> <z> <z> <i>
E 95 " TjSii — E 9; E 53]"’2 Tj—jTjSi—i E 9; rj—jijE Sj—j
J

= T;Sii — ;EZ; Z Sjj + Xiri—iSi—i — xiri—i; Z Sj—j
j J
= zilfi(z) — f]

Again, this simplifies to yield the replicator dynamics.
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