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Abstract In this article, it is argued that, for a clas-

sical Hamiltonian system which is closed, the ergodic

theorem emerge from the Gibbs-Liouville theorem in

the limit that the system has evolved for an infinitely

long period of time. In this limit, from the perspective

of an ignorant observer, who do not have perfect knowl-

edge about the complete set of degrees of freedom for

the system, distinctions between the possible states of

the system, i.e. the information content, is lost leading

to the notion of statistical equilibrium where states are

assigned equal probabilities. Finally, by linking the con-

cept of entropy, which gives a measure for the amount

of uncertainty, with the concept of information, the sec-

ond law of thermodynamics is expressed in terms of the

tendency of an observer to loose information over time.
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1 The Gibbs-Liouville theorem

For classical Hamiltonian systems, the Gibbs-Liouville

theorem [1][2] is equivalent to the statement that the di-

vergence of the Hamiltonian phase flow velocity vanish,

i.e. that

∇ · v = 0 (1)

where

v = (q̇, ṗ) =

(
∂H
∂p

,−∂H
∂q

)
(2)

where H is the Hamiltonian of the system. In this arti-

cle, the Gibbs-Liouville theorem is interpreted to rep-

resent a mathematical statement on the deterministic

evolution of classical Hamiltonian systems, i.e. that dis-

tinctions between the possible states of the system, or,
equivalently, the information content within the system,

is conserved in time [3].

2 Uncertainty and indistinguishability

Even when ignoring the laws of quantum mechanics,

which place a fundamental limit on the precision which

can be gained, the dynamical evolution of a system is

quite complicated. Most systems of interest contain a

vast amount of particles that interact in complicated

ways. For such large systems, it is usually very hard

to track the individual evolution of each particle as the

system evolve in time. Perfect knowledge about the po-

sition and velocity, or momenta, of each individual par-

ticle is lost. It is lost not because of a fundamental vio-

lation of the principle of information conservation but

merely because of the difficulty for an observer to keep

track of all the degrees of freedom. Therefore, from the

perspective of the observer, there is an uncertainty ∆q
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associated with the position of a state and an uncer-

tainty ∆p associated with the momentum of a state.

For this reason, the observer is unable to determine

with absolute certainty the state of the system at any

given time. The observer can only determine whether

or not the system occupy a state which lie within any

given region Ωj on phase space, whose volume VΩj is

given by the uncertainties ∆q and ∆p, i.e.

VΩj = ∆q∆p (3)

The volume VΩj is thus a measure of how ignorant the

observer is about the details of the system, in the sense

that the observer cannot locate an individual state to a

greater precision than the size of Ωj . Due to this lack of

precision, the observer is unable to distinguish between

states that lie within Ωj . All states within Ωj , with

their individual sets of degrees of freedom, has, from

the perspective of the observer, collapsed into a single

state whose single set of degrees of freedom is given

by q + ∆q and p + ∆p. This so-called coarse-grained,

or mixed, state is not a fundamental, or pure, state

of the system. It is a description that average over all

pure states within Ωj . Put differently, a mixed state

ψj , j ∈ [1,M ], where M is the number of mixed states

on phase space, is a subjective representation, by an

ignorant observer, of a collection of pure states φα, α ∈
[1, N ], where N is the number of pure states within Ωj .

As the system evolve in time, the observer is only able to

measure the coarse-grained flow, i.e. the jumping from

one mixed state ψj to a different mixed state ψi, i 6= j.

It should be noted that due to the lack of perfect

knowledge about all the relevant degrees of freedom,

the observer is unable to predict a unique evolutionary

path on phase space along which the system evolve.

3 Conservation of classical probability

Due to the ignorance of the observer, i.e. the observers

inability to distinguish the set of pure states within any

given coarse-grained region Ωj , it is necessary to intro-

duce the notion of probability on phase space. Let Pj
be the probability that the system occupy Ωj and let

Pα be the probability that the system occupy the pure

state φα within Ωj . If the observer know with absolute

certainty that the system occupy the mixed state ψj
and not some other state ψi, i 6= j ∈ [1,M ], it is given

that

Pi = 0,∀i 6= j ∈ [1,M ] (4)

Pj ≡
N∑
α=1

Pα = 1 (5)

For continuous systems, the summation is replaced by

an integral, i.e.

Pj ≡
∫
Ωj

Pα dVα = 1 (6)

where dVα = dqαdpα is the phase space volume of the

pure state φα. If the knowledge possessed by the ob-

server about the coarse-grained flow of the system is

not lost over time, then the probability Pj is constant

in time, i.e.

dPj
dt

= 0 (7)

In other words, it is assumed that there is no loss of

probability from Ωj to any other coarse-grained region

Ωi, i 6= j. Written in terms of the probabilities Pα, the

condition of no loss of coarse-grained knowledge become

dPj
dt

=
d

dt

∫
Ωj

Pα dVα

=

∫
Ωj

(
dPα
dt

+ Pα ∇ · v
)
dVα

= 0 (8)

Since this should hold independently on the size of Ωj ,

the integrand must identically vanish, i.e.

dPα
dt

+ Pα ∇ · v = 0 (9)

This is the continuity equation for probability flow within

any given coarse-grained region Ωj . It is referred to as

the Gibbs-Liouville equation for the probability distri-

bution within Ωj [1][2]. Given that information is con-

served within Ωj it is thus obtained that the probability

distribution Pα is conserved, i.e. if ∇ · v = 0 then

dPα
dt

= 0 (10)

The continuity equation can be rewritten, showing that

probability is locally conserved within Ωj . Using the

total time derivative of Pα, i.e.

dPα
dt

=
∂Pα
∂t

+ ∇Pα · v (11)

and the product rule

∇ · (Pα v) = ∇Pα · v + Pα ∇ · v (12)

the continuity equation become

∂Pα
∂t

+ ∇ · (Pα v) = 0 (13)

The term ∇ · (Pα v) represent the difference between

the probability outflow and inflow for the pure state φα.

If there is a net probability outflow from φα to the rest

of Ωj , i.e. if

∇ · (Pα v) > 0 (14)
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then the continuity equation give that the probability

for φα decrease with time, i.e.

∂Pα
∂t

= −∇ · (Pα v) < 0 (15)

If there is a net probability inflow to φα from the rest

of Ωj , i.e. if

∇ · (Pα v) < 0 (16)

then the continuity equation give that the probability

for φα increase with time, i.e.

∂Pα
∂t

= −∇ · (Pα v) > 0 (17)

In terminology borrowed from quantum mechanics, sys-

tems which evolve in such a way that the probability

distribution is conserved in time and with a total prob-

ability equal to unity are said to exhibit unitary evolu-

tion. The assumption of unitary evolution for quantum

systems is a key ingredient in the formulation of quan-

tum mechanics. In classical mechanics, unitary evolu-

tion is a direct consequence of the principle of informa-

tion conservation.

4 Statistical equilibrium

Consider a system which has been closed for a suffi-

ciently long period of time such that the density of

pure states within Ωj , and hence M , do not change

with time. In this situation, the probability distribution

Pα has no explicit dependence on time. The continuity

equation is then reduced to

∇ · (Pα v) = 0 (18)

This is the mathematical condition the system need to

satisfy in order for it to be said to exist in statistical

equilibrium. In other words, a system is in statistical

equilibrium if there is no net probability flow on phase

space.

5 The ergodic theorem

The incompressibility of the Hamiltonian flow imply

that the time the system spend in any single pure state,

before evolving to the next single pure state, is the

same for all pure states. If this was not the case, the

state points on phase space would lump together which

would signify a violation of the principle of conserva-

tion of information. This imply that over the course of

a long period of time, the total time spent by the sys-

tem in any given pure state is expected to be the same

for all pure states. This expectation, which is due to

a combination of the Gibbs-Liouville theorem and the

law of large numbers, is in this article interpreted to

be equivalent to the ergodic theorem [4][5][6] of statis-

tical mechanics. Let nα denote the number of times the

system occupy the pure state φα. The total number of

times, n, the system occupy the set of N pure states

within Ωj is then

n =

N∑
α=1

nα (19)

The ergodic theorem then say that over a long period of

time, such that n is large, it is expected that the system

occupy all pure states within Ωj an equal number of

times, i.e.

nα = nβ , ∀β 6= α ∈ [1, N ] (20)

such that

n = N · nα (21)

6 Microcanonical probability distribution

It is now possible to define the notion of a probability

Pα for the pure state φα of a closed system from the

notion of a relative frequency1,

Pα ≡ lim
n→∞

nα
n

=
nα

N · nα
=

1

N
(22)

Thus, all the pure states within Ωj are equally proba-

ble. This imply that an observer has lost all informa-

tion, down to the scale of VΩj , about the system, since

no distinctions can be made between the possible pure

states within Ωj . This is always true for systems in

statistical equilibrium. The uniform probability distri-

bution given by equation 22 is commonly referred to as

the microcanonical [1], or fundamental [7], probability

distribution.

There exist also non-uniform probability distribu-

tions. The non-uniformity arise due to interactions that

the system has, or have had in the not too far distant

past, with an environment. In other words, the system

is, or was recently, not isolated. Due to the interaction

with an environment, the density of states change with

time. If the interaction is uniform on phase space, the

density change uniformly on phase space. However, in

general, this is not the case. An interaction, character-

ized by a potential energy, do depend on the specific

values for the generalized coordinates. In that scenario,

the density of states is a local function on phase space.

This has the consequence that the total time spent by

1 It must be emphasized that this relative frequency is not
possible to obtain from a set of repetitive experimental mea-
surements, since the observer, being ignorant, is not able to
distinguish between the set of pure states.
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the system within any given region on phase space is

not necessarily the same as within any other equally-

sized region. In other words, the ergodic theorem ap-

pear to be violated. Thus, not only is the probability

distribution non-uniform when there is a non-negligible

net interaction with the environment, it can also change

over time.

From the definition of probability in statistical equi-

librium it is clear that the probability for any given

pure state decrease as the number of pure states N in-

crease, i.e. as the uncertainty volume increase. In non-

equilibrium, where probabilities are not equal, it is the

average probability which decrease as the uncertainty

volume increase.

7 Ergodicity breaking

It should be emphasized that the apparent violation of

the ergodic theorem is not of a fundamental character.

It is only due to the fact that the degrees of freedom

associated with the environment cannot be excluded

when defining the degrees of freedom for the system.

In other words, the environment should be included in

the definition of the system. If that is done then there

exist no environment and hence there cannot be any

net transfer of energy and particles from, or to, the

system. Then, this redefined system, which take into

account all degrees of freedom, even those which the

experimenter may think belong to an ’environment’, do

indeed conserve information and ergodicity is not bro-

ken. The probability distribution for the states of this

redefined system is uniform, i.e. all mixed states for

any given system, assuming the system has been de-

fined such that no degrees of freedom are being forgot-

ten, are equally probably. In most practical situations,

however, there will always exist an environment to any

system under study. The question is to what degree this

environment interact with the system. The weaker the

interaction, the weaker is the ergodicity breaking and

the closer will the system come to a uniform probability

distribution.

8 Is information conserved or lost?

At this stage, it is necessary to clarify the notions of

information loss and information conservation to avoid

confusion. The process of information loss, experienced

by an observer, and the notion that information is con-

served seem to contradict each other, making it impos-

sible for a given system to reach statistical equilibrium

over time unless it started there. The confusion arise

due to a key difference between the statistical evolu-

tion of the system, as experienced by an ignorant ob-

server, and the deterministic evolution of the system

as described by the classical laws of motion. The sub-

tlety which must be emphasized is that the statement

of classical determinism, represented mathematically by

the Gibbs-Liouville theorem, is a postulate on the fun-

damental character of classical systems independent on

whether there exist any observer or not, whereas the

notion of information loss is observer dependent. The

statement of information loss tries to capture the ten-

dency of an observer to become more ignorant over

time. In conclusion, statistical equilibrium is a state-

ment on the amount of knowledge, or information, an

observer of the system possess. In statistical equilib-

rium, the observer is unable to make any distinctions

between the possible states of the system and therefore

possess zero information. This do not imply that there

are no fundamental distinctions between the states of

the system. The observer is simply unaware of them. In

fact, if the system do fundamentally conserve informa-

tion, i.e. the distinctions between the possible states of

the system exist for all times, the system is fundamen-

tally never in statistical equilibrium, from the perspec-

tive of an observer whose knowledge of the degrees of

freedom for the system is perfect and complete.

Thus, the fundamental question of how a system,

which is initially not in statistical equilibrium, can evolve

into a state of statistical equilibrium, should be modi-

fied as follows:

How can an observer of a given classical system, which

flow on phase space according to the Hamilton equa-

tions, loose information about the system over time?

9 Entropy as a measure of uncertainty

A measure for the amount of ignorance possessed by the

observer, i.e. the amount of uncertainty in the determi-

nation of the pure state of the system, should depend on

the probability distribution {Pα}. This measure is de-

noted by S({Pα}) and referred to as the entropy of the

system. To obtain a specific form for the entropy as a

function of the probability distribution, it is noted that

this function should satisfy the following conditions.

i The entropy should be zero when the observer has

complete knowledge about the evolution of the sys-

tem. In other words, if the observer know with ab-

solute certainty that the system occupy a specific

state φα, such that Pα = 1 and Pβ = 0 ∀β 6= α, the

entropy must vanish.
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ii The entropy should always be either zero or a pos-

itive number, i.e. S ≥ 0.

iii The entropy should take a maximum value when the

observer is maximally ignorant. This happen when

the system is in statistical equilibrium. When all

states are equally probable, it imply that the ob-

server possess zero partial knowledge which can be

used to distinguish between some of the features of

the set of states. Thus,

Pα =
1

N
∀α ∈ [1, N ] → S({Pα}) = Smax (23)

iv The entropy should, in statistical equilibrium, be

a continuously increasing function of the number

of states N . In other words, when N increase, the

uncertainty volume VΩj increase continuously.

v The entropy should satisfy the following composi-

tion law,

S({Pα} · {Pβ}) = S({Pα}) + S({Pβ}) (24)

This composition law is understood as follows. Let

Ωj be divided into two subregions Ωαj and Ωβj such

that VΩj = VΩαj + VΩβj
. The states φα, α ∈ [1, Nα],

belong to Ωαj and the states φβ , β ∈ [1, Nβ ], belong

to Ωβj , where Nα + Nβ = N . The corresponding

probability distributions, {Pα}Nαα=1 and {Pβ}
Nβ
β=1, sat-

isfy
∑Nα
α=1 Pα +

∑Nβ
β=1 Pβ = 1 and, due to them

being independent of each other, their product give

the probability distribution associated with the re-

gion Ωj , i.e. P (Ωj) = {Pα} · {Pβ}. The composition

law thus state that the total uncertainty within re-

gion Ωj is the sum of the uncertainties associated

with the subregions of Ωj .

Conditions (i) and (v) suggest that the entropy has a

logarithmic dependence on the probability distribution.

Condition (ii) suggest that it is necessary to include an

additional minus sign in the definition of the entropy.

This is seen from the general definition of Pα, i.e.

logPα = lim
n→∞

log
(nα
n

)
= log nα − lim

n→∞
log n < 0 (25)

which, for a system in statistical equilibrium become

logPα = log
1

N
= log 1− logN = − logN < 0 (26)

Since the entropy function should act as a measure for

systems both in and out of statistical equilibrium, i.e.

for both uniform and non-uniform probability distribu-

tions, it is required to take the statistical average of all

logarithmic contributions to the entropy, i.e.

S({Pα}) ∼ −
(n1
n

logP1 + · · ·+ nN
n

logPN

)
(27)

∼ −
N∑
α=1

nα
n

logPα (28)

∼ −
N∑
α=1

Pα logPα (29)

This entropy function then satisfy conditions (iii) and

(iv). With the proportionality constant identified with

the Boltzmann constant kB , it is referred to as the

Gibbs entropy [1] and is, in the information theoretic

language, identical to the Shannon entropy [8][9][10].

In conclusion, the entropy of a system measure the

amount of uncertainty within the system, and it is given

by the Gibbs formula

S({Pα}) = −kB
N∑
α=1

Pα logPα (30)

In statistical equilibrium, the Gibbs entropy reduce to

the Boltzmann entropy [4][11],

S = kB logM (31)

It is important to emphasize that entropy is not a phys-

ical quantity in the same manner as e.g. energy. It is

determined by the probability distribution of the states

of the system and as such it is a quantity which depend

both on the specifics of the system and of the ignorance

of the observer.

10 The second law of thermodynamics

Given that the probability distribution is conserved, i.e.

that the observer do not become more ignorant over

time, the entropy, which is a function of the probability

distribution, is necessarily also conserved. In practical

reality, however, it is most often the case that the ob-

server loose more and more track of the flow of the

system as time evolve thus becoming more ignorant

over time. The reason for this is that any motion of

some object, initially fairly isolated, will interact with

its environment thus involving more and more degrees

of freedom over time, making it increasingly difficult for

the observer to avoid information loss.

Thus, for any observer, over time, the entropy tend

to increase. Therefore, over time, the observer tend to

loose information about the system. Eventually, the en-

tropy has reached a maximum value, which is when the

system is in statistical equilibrium. At this point, en-

tropy will not increase and the observer has stopped

loosing information. The information has been com-

pletely lost. There is zero information left since the

observer is unable to make any type of distinctions be-

tween the possible states of the system. The second

law of thermodynamics is thus, in terms of informa-

tion, stated as:

An observer tend to loose information about any given
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system over time until there is none left.

It is important to emphasize that the second law is a

probabilistic law. The amount of information possessed

by an observer about a system is equivalently charac-

terized by the amount of uncertainty, i.e. the entropy,

which is dependent on the probability distribution as

discussed earlier.
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